
A Formal Proof of Countermeasures against
Fault Injection Attacks on CRT-RSA

Pablo Rauzy, Sylvain Guilley
firstname.lastname@telecom-paristech.fr

Télécom ParisTech

Abstract. In this article, we describe a methodology that aims at ei-
ther breaking or proving the security of CRT-RSA algorithms against
fault injection attacks. In the specific case-study of BellCoRe attacks,
our work bridges a gap between formal proofs and implementation-level
attacks. We apply our results to three versions of CRT-RSA, namely the
naive one, that of Shamir, and that of Aumüller et al. Our findings are
that many attacks are possible on both the naive and the Shamir imple-
mentations, while the implementation of Aumüller et al. is resistant to
all fault attacks with one fault. However, we show that the countermea-
sure is not minimal, since two tests out of seven are redundant and can
simply be removed.

Keywords: RSA (Rivest, Shamir, Adleman [13]), CRT (Chinese Remainder
Theorem), fault injection, BellCoRe (Bell Communications Research) attack,
formal proof, OCaml.

1 Introduction

It is known since 1997 that injecting faults during the computation of CRT-
RSA could yield to malformed signatures that expose the prime factors (p and
q) of the public modulus (N = p · q). Notwithstanding, computing without the
fourfold acceleration conveyed by the CRT is definitely not an option in practical
applications. Therefore, many countermeasures have appeared that consist in
step-wise internal checks during the CRT computation. To our best knowledge,
none of these countermeasures have been proven formally. Thus without surprise,
some of them have been broken, and then patched. The current state-of-the-art
in computing CRT-RSA without exposing p and q relies thus on algorithms
that have been carefully scrutinized by cryptographers. Nonetheless, neither the
hypotheses of the fault attack nor the security itself have been unambiguously
modeled.

This is the purpose of this paper. The difficulties are a priori multiple: in
fault injection attacks, the attacker has an extremely high power because he can
fault any variable. Traditional approaches thus seem to fall short in handling
this problem. Indeed, there are two canonical methodologies: formal and com-
putational proofs. Formal proofs (e.g., in the so-called Dolev-Yao model) do not

capture the requirement for faults to preserve some information about one of
the two moduli; indeed, it considers the RSA as a black-box with a key pair.
Computational proofs are way too complicated since the handled numbers are
typically 2, 048 bit long.

The state-of-the-art contains one reference related to the formal proof of
CRT-RSA: it is the work of Christofi, Chetali, Goubin and Vigilant [6]. For
tractability purposes, the proof is conducted on reduced versions of the algo-
rithms parameters. One fault model is chosen authoritatively (the zeroization of
a complete intermediate data), which is a strong assumption. In addition, the
verification is conducted on a pseudo-code, hence concerns about its portability
after compilation into machine-level code. Another reference related to formal
proofs against fault injection attacks is the work of Guo, Mukhopadhyay and
Karri. In [8], they explicit an AES implementation that is provably protected
against differential fault analyses [3]. The approach is purely combinational,
because the faults propagation in AES concerns 32-bit words called columns;
consequently, all fatal faults (and thus all innocuous faults) can be enumerated.

Contributions. Our contribution is also to reach a full fault coverage on CRT-
RSA algorithm, thereby keeping the proof even if the code is transformed (e.g.,
compiled or partitioned in software/hardware). To this end we developed tools
based of symbolic computation in the framework of modular arithmetic, which
enable formal analysis of CRT-RSA and its countermeasures against fault injec-
tion attacks. We apply our methods on three implementations of CRT-RSA: an
unprotected one, one protected by Shamir countermeasure, and one protected by
Aumüller et al. countermeasure. We find many possible fault injections which
enable BellCoRe attacks on an unprotected implementation of the CRT-RSA
computation, as well as on one protected by Shamir countermeasure. We for-
mally prove the security of the Aumüller et al. countermeasure against the Bell-
CoRe attack, under a fault model that considers permanent faults (in memory)
and transient faults (one-time faults, even on copies of the secret key parts),
with or without forcing at zero, and with possibly faults at various locations.
We also simplify Aumüller et al. countermeasure by proving that two out of the
seven tests it consists of are redundant and can be removed.

Organization of the paper. We recall CRT-RSA cryptosystem and the BellCoRe
attack in Sec. 2; still from an historical perspective, we explain how the CRT-
RSA implementation has been amended to withstand more or less efficiently the
BellCoRe attack. Then, in Sec. 3, we define our approach. Sec. 4, Sec. 5, and
Sec. 6 are case studies using the methods developed in Sec. 3 of respectively
an unprotected version of the CRT-RSA computation, a version protected by
Shamir countermeasure, and a version protected by Aumüller et al. countermea-
sure. Conclusions and perspectives are in Sec. 7. To improve the readability of
the article, the longest code portions have been consigned in appendix.

2 CRT-RSA and the “BellCoRe” attack

This section recaps known results about fault attacks on CRT-RSA (see also [12]
and [15, Chap. 3]). Its purpose is to settle the notions and the associated nota-
tions that will be used in the later sections (that contain novel contributions).

2.1 CRT-RSA

RSA is both an encryption and a signature scheme. It relies on the identity that
for all message 0 ≤ m < N , (md)e ≡ m mod N , where d ≡ e−1 mod ϕ(N),
by the Euler theorem. In this equation, ϕ is the Euler totient function, equal to
ϕ(N) = (p− 1) · (q − 1) when N = p · q is a composite number, product of two
primes p and q. For example, if Alice generates the signature S = md mod N ,
then Bob can verify it by computing Se mod N , which must be equal tom unless
Alice is pretending to know d although she does not. Therefore (N, d) is called
the private key, and (N, e) the public key. In this paper, we are not concerned
about the key generation step of RSA, and simply assume that d is an unknown
number in J1, ϕ(N) = (p− 1) · (q − 1)J. Actually, d can also be chosen equal to

the smallest value e−1 mod λ(n), where λ(n) = (p−1)·(q−1)
gcd(p−1,q−1) is the Carmichael

function. The computation of md mod N can be speeded-up by a factor four
by using the Chinese Remainder Theorem (CRT). Indeed, figures modulo p and
q are twice as short as those modulo N . For example, for 2, 048 bit RSA, p and
q are 1, 024 bit long. The CRT-RSA consists in computing Sp = md mod p
and Sq = md mod q, which can be recombined into S with a limited overhead.
Due to the little Fermat theorem (special case of the Euler theorem when the
modulus is a prime), Sp = (m mod p)d mod (p−1) mod p. This means that in
the computation of Sp, the processed data have 1, 024 bit, and the exponent
itself has 1, 024 bits (instead of 2, 048 bits). Thus the multiplication is four times
faster and the exponentiation eight times faster. However, as there are two such
exponentiations (modulo p and q), the overall CRT-RSA is roughly speaking
four times faster than RSA computed modulo N .

This acceleration justifies that CRT-RSA is always used if the factorization
of N as p · q is known. In CRT-RSA, the private key is a more rich structure
than simply (N, d): it is actually comprised of the 5-tuple (p, q, dp, dq, iq), where:

– dp
.
= d mod (p− 1),

– dq
.
= d mod (q − 1),

– iq
.
= q−1 mod p.

The “naive” CRT-RSA algorithm is presented in Alg. 1. It is straightforward to
check that the signature computed at line 3 belongs to J0, p·q−1K. Consequently,
no reduction modulo N is necessary before returning S.

2.2 BellCoRe attack on CRT-RSA

In 1997, an dreadful remark has been made by Boneh, DeMillo and Lipton [4],
three staff of BellCoRe: Alg. 1 could reveal the secret primes p and q if the

Algorithm 1: Naive CRT-RSA

Input : Message m, key (p, q, dp, dq, iq)
Output: Signature md mod N

1 Sp = mdp mod p /* Signature modulo p */

2 Sq = mdq mod q /* Signature modulo q */

3 S = Sq + q · (iq · (Sp − Sq) mod p) /* Recombination */

4 return S

computation is faulted, even in a very random way. The attack can be expressed
as the following proposition.

Proposition 1 (Orignal BellCoRe attack). If the intermediate variable Sp

(resp. Sq) is returned faulted as Ŝp (resp. Ŝq)1, then the attacker gets an erro-

neous signature Ŝ, and is able to recover p (resp. q) as gcd(N,S − Ŝ).

Proof. For all integer x, gcd(N, x) can only take 4 values:

– 1, if N and x are coprime,
– p, if x is a multiple of p,
– q, if x is a multiple of q,
– N , if x is a multiple of both p and q, i.e., of N .

In Alg. 1, if Sp is faulted (i.e., replaced by Ŝp 6= Sp), then S − Ŝ = q ·(
(iq · (Sp − Sq) mod p)− (iq · (Ŝp − Sq) mod p)

)
, and thus gcd(N,S− Ŝ) = q.

If Sq is faulted (i.e., replaced by Ŝq 6= Sq), then S − Ŝ ≡ (Sq − Ŝq) − (q

mod p) · iq · (Sq− Ŝq) ≡ 0 mod p because (q mod p) · iq ≡ 1 mod p. Thus S− Ŝ
is a multiple of p. Additionally, S−Ŝ is not a multiple of q. So, gcd(N,S−Ŝ) = p.

ut

This version of the BellCoRe attack requires that two identical messages with
the same key can be signed; indeed, one signature yields the genuine S while
the other one is perturbed, and thus returns Ŝ. Little later, the BellCoRe attack
has been improved by Joye, Lenstra and Quisquater [10]. This time, the attacker
can recover p or q with one only faulty signature, provided the input m of RSA
is known.

Proposition 2 (One faulty signature BellCoRe attack). If the intermedi-

ate variable Sp (resp. Sq) is returned faulted as Ŝp (resp. Ŝq), then the attacker

gets an erroneous signature Ŝ, and is able to recover p (resp. q) as gcd(N,m−Ŝe)
(with an overwhelming probability).

1 In other papers related to faults, the faulted variables (such as X) are noted either
with a star (X∗) or a tilde (X̃); in this paper, we use a hat, as it can stretch,
hence cover the adequate portion of the variable. For instance, it allows to make an
unambiguous difference between a faulted data raised at some power and a fault on
a data raised at a given power (contrast X̂e with X̂e).

Proof. By proposition 1, if a fault occurs during the computation of Sp, then

gcd(N,S − Ŝ) = q (most likely). This means that:

– S 6≡ Ŝ mod p, and thus Se 6≡ Ŝe mod p (indeed, if the congruence was true,
we would have e|p− 1, which is very unlikely);

– S ≡ Ŝ mod q, and thus Se ≡ Ŝe mod q;

As Se ≡ m mod N , this proves the result. A symmetrical reasoning can be done
if the fault occurs during the computation of Sq. ut

2.3 Protection of CRT-RSA against BellCoRe attacks

Several protections against the BellCoRe attacks have been proposed. A non-
exhaustive list is given below, and then, the most salient features of these coun-
termeasures are described:

– Naive;
– Obvious countermeasures: no CRT, or with signature verification;
– Shamir [14];
– Aumüller et al. [1];
– Vigilant, original [16] and with some corrections by Coron et al. [7];
– Kim et al. [11].

Obvious countermeasures Fault attacks on RSA can be thwarted simply
by refraining from implementing the CRT. If this is not affordable, then the
signature can be verified before being outputted. Such protection is efficient in
practice, but is criticized for two reasons. First of all, it requires an access to e;
second, the performances are incurred by the extra exponentiation needed for
the verification. This explains why other countermeasures have been devised.

Shamir The CRT-RSA algorithm of Shamir builds on top of the CRT and
introduces, in addition to the two primes p and q, a third factor r. This factor r
is random and small (less than 64 bit long), and thus co-prime with p and q. The
computations are carried out modulo p′ = p · r (resp. modulo q′ = q · r), which
allows for a retrieval of the intended results by reducing them modulo p (resp.
modulo q), and for a verification by a reduction modulo r. Alg. 2 describes one
version of Shamir’s countermeasure.

Aumüller The CRT-RSA algorithm of Aumüller et al. is a variation of that
of Shamir, that is primarily intended to fix two shortcomings. First it removes
the need for d in the signature process, and second, it also checks the recom-
bination step. The countermeasure, given in Alg. 3, introduces, in addition to
p and q, a third prime t. The computations are done modulo p′ = p · t (resp.
modulo q′ = q · t), which allows for a retrieval of the intended results by reducing
them modulo p (resp. modulo q), and for a verification by a reduction modulo t.

Algorithm 2: Shamir CRT-RSA

Input : Message m, key (p, q, d, iq),
32-bit random prime r

Output: Signature md mod N ,
or error if some fault injection has been detected.

1 p′ = p · r
2 dp = d mod (p− 1) · (r − 1)

3 S′p = mdp mod p′ /* Signature modulo p′ */

4 q′ = q · r
5 dq = d mod (q − 1) · (r − 1)

6 S′q = mdq mod q′ /* Signature modulo q′ */

7 Sp = S′p mod p
8 Sq = S′q mod q
9 S = Sq + q · (iq · (Sp − Sq) mod p) /* Same as in line 3 of Alg. 1 */

10 if S′p 6≡ S′q mod r then
11 return error

12 else
13 return S
14 end

However, the verification is more subtle than for the case of Shamir. In Shamir’s
CRT-RSA (Alg. 2), the verification is symmetrical, in that the computations
modulo p · r and q · r operate on the same object, namely md. In Aumüller et
al.’s CRT-RSA (Alg. 3), the verification is asymmetrical, since the computations
modulo p · t and q · t operate on two different objects, namely mdp mod (t−1) and
mdq mod (t−1). The verification consists in an identity that resembles that of El-
Gamal for instance: (mdp mod (t−1))dq mod (t−1) ≡ (mdq mod (t−1))dp mod (t−1)

mod t. Specifically, if we note S′p the signature modulo p′, then Sp = S mod p
is equal to S′p mod p. Furthermore, let us denote Spt = S′p mod t, Sqt = S′q
mod t, dpt = dp mod (t− 1) and dqt = dq mod (t− 1). It can be checked that

those figures satisfy the identity: S
dqt

pt ≡ S
dpt

qt mod t, because both terms are

equal to mdpt·dqt mod t. The prime t is referred to as a security parameter, as
the probability to pass the test (at line 23 of Alg. 3) is equal to 1/t (i.e., about
2−32), assuming a uniform distribution of the faults. Indeed, this is the proba-
bility to find a large number that, once reduced modulo t, matches a predefined
value.

Alg. 3 does some verifications during the computations, and reports an error
in case a fault injection can cause a malformed signature susceptible of unveiling
p and q. More precisely, an error is returned in either of these seven cases:

1. p′ is not a multiple of p (because this would amount to faulting p in the naive
algorithm)

2. d′p = dp + random1 ·(p−1) is not equal to dp mod (p−1) (because this would
amount to faulting dp in the naive algorithm)

Algorithm 3: Aumüller CRT-RSA

Input : Message m, key (p, q, dp, dq, iq),
32-bit random prime t

Output: Signature md mod N ,
or error if some fault injection has been detected.

1 p′ = p · t
2 d′p = dp + random1 · (p− 1) /* Against DPA, not fault attacks */

3 S′p = md′p mod p′ /* Signature modulo p′ */
4 if (p′ mod p 6= 0) or (d′p 6≡ dp mod (p− 1)) then
5 return error

6 end

7 q′ = q · t
8 d′q = dq + random2 · (q − 1) /* Against DPA, not fault attacks */

9 S′q = md′q mod q′ /* Signature modulo q′ */
10 if (q′ mod q 6= 0) or (d′q 6≡ dq mod (q − 1)) then
11 return error

12 end

13 Sp = S′p mod p
14 Sq = S′q mod q
15 S = Sq + q · (iq · (Sp − Sq) mod p) /* Same as in line 3 of Alg. 1 */

16 if (S − S′p 6≡ 0 mod p) or (S − S′q 6≡ 0 mod q) then
17 return error

18 end

19 Spt = S′p mod t
20 Sqt = S′q mod t
21 dpt = d′p mod (t− 1)
22 dqt = d′q mod (t− 1)

23 if S
dqt
pt 6≡ S

dpt
qt mod t then

24 return error

25 else
26 return S
27 end

3. q′ is not a multiple of q (because this would amount to faulting q in the naive
algorithm)

4. d′q = dq + random2 · (q−1) is not equal to dq mod (q−1) (because this would
amount to faulting dq in the naive algorithm)

5. S − S′p mod p is nonzero (because this would amount to faulting the recom-
bination modulo p in the naive algorithm)

6. S − S′q mod q is nonzero (because this would amount to faulting the recom-
bination modulo q in the naive algorithm)

7. S
dq

pt mod t is not equal to S
dp

qt mod t (this checks simultaneously for the
integrity of S′p and S′q)

Notice that the last verification could not have been done on the naive algorithm,
and constitutes the added value for the Aumüller algorithm. These seven cases
are informally assumed to protect the algorithm against the BellCoRe attacks.
The criteria for fault detection is not to detect all faults; for instance, a fault on
the final return of S (line 26) is not detected. However, of course, such a fault is
not exploitable by a BellCoRe attack.

Remark 1. Some parts of the Aumüller algorithm are actually not intended to
protect against fault injection attacks, but against side-channel analysis, such as
differential power analysis (DPA). This is the case of lines 2 and 8 in Alg. 3. They
can be removed if a minimalist protection against only fault injection attacks
is looked for; but as they do not introduce weaknesses, they are simply kept as
such.

Vigilant The CRT-RSA algorithm of Vigilant [16] also considers computations
in a larger ring than Zp (abbreviation for Z/pZ) and Zq, to enable verifications.
In this case, a small random number r is cast, and computations are carried out
in Zp×r2 and Zq×r2 . In addition, the computations are now conducted not on
the plain message m, but on an encoded message m′, built using the CRT as the
solution of those two requirements:

i : m′ ≡ m mod N , and
ii : m′ ≡ 1 + r mod r2.

This system of equations has a single solution modulo N ×r2, because N and r2

are coprime. Such a representation allows to conduct in parallel the functional
CRT-RSA (line i) and a verification (line ii). The verification is elegant, as

it leverages this remarkable equality: (1 + r)dp =
∑dp

i=0

(
dp

i

)
· ri ≡ 1 + dp · r

mod r2. Thus, as opposed to Aumüller et al.’s CRT-RSA, that requires one
exponentiation (line 23 of Alg. 3), the verification of Vigilant’s algorithm adds
only one affine computation (namely 1 + dp mod r2).

The original description of Vigilant’s algorithm involves some trivial compu-
tations on p and q, such as p− 1, q− 1 and p× q. Those can be faulted, in such
a way the BellCoRe attack becomes possible despite all the tests. Thus, a patch

by Coron et al. has been released in [7] to avoid the reuse of p̂− 1, q̂ − 1 and
p̂ · q in the algorithm.

Kim The authors Kim, Kim, Han and Hong propose in [11] a CRT-RSA algo-
rithm that is based on a collaboration between a customized modular exponen-
tiation and verifications at the recombination level based on Boolean operations.
The underlying protection concepts being radically different from the algorithms
of Shamir, Aumüller and Vigilant, we choose not to detail this interesting coun-
termeasure.

In this paper, we will focus on three implementations, namely the naive one
(Sec. 4), the one protected by Shamir countermeasure (Sec. 5), and the one with
Aumüller et al. countermeasure (Sec. 6).

3 Formal Methods

For all the countermeasures presented in the previous section (Sec. 2), we can see
that no formal proof of resistance against attacks is claimed. Informal arguments
are given, that convince that for some attack scenarii, the attack attempts are
detected hence harmless. Also, an analysis of the probability that an attack
succeeds is carried out, however, this analysis strongly relies on assumptions on
the faults distribution. Last but not least, the algorithms include protections
against both passive side-channel attacks (SPA, DPA) and against active side-
channel attacks, which makes it difficult to analyze for instance the minimal
code to be added for the countermeasure to be correct.

Our goal is to prove that the proposed countermeasures work, i.e., that they
deliver a result that does leak information about neither p nor q (if the im-
plementation is subject to fault injection) exploitable in a BellCoRe attack. In
addition, we wish to reach this goal with the two following assumptions:

– our proof applies to a very general attacker model, and
– our proof applies to any implementation that is a (strict) refinement of the

abstract algorithm.

First, we must define what computation is done, and what is our threat
model.

Definition 1 (CRT-RSA). The CRT-RSA computation takes as input a mes-
sage m, assumed known by the attacker, and a secret key (p, q, dp, dq, iq). Then,
the implementation is free to instantiate any variable, but must return a result
equal to: S = Sq + q · (iq · (Sp − Sq) mod p), where:

– Sp = mdp mod p, and
– Sq = mdq mod q.

Definition 2 (fault injection). An attacker is able to request RSA computa-
tions, as per Definition 1. During the computation, the attacker can modify any
intermediate value by setting it to either a random value or zero. At the end of
the computation the attacker can read the result.

Of course, the attacker cannot read the intermediate values used during the com-
putation, since the secret key and potentially the modulus factors are used. Such
“whitebox” attack would be too powerful; nonetheless, it is very hard in practice
for an attacker to be able to access intermediate variables, due to protections
and noise in the side-channel leakage (e.g., power consumption, electromagnetic
emanation). Remark that our model only take into account fault injection on
data; the control flow is supposed not to be modifiable.

As a side remark, we notice that the fault injection model of Definition 2
corresponds to that of Vigilant ([16]), with the exception that the conditional
tests can also be faulted. To summarize, an attacker can:

– modify a value in the global memory (permanent fault), and
– modify a value in a local register or bus (transient fault),

but cannot

– inject a permanent fault in the input data (message and secret key), nor
– modify the control flow graph.

The independence of the proofs on the algorithm implementation demands
that the algorithm is described at a high level. The two properties that charac-
terize the relevant level are as follows:

1. The description should be low level enough for the attack to work if protec-
tions are not implemented.

2. Any additional intermediate variable that would appear during refinement
could be the target of an attack, but such a fault would propagate to an
intermediate variable of the high level description, thereby having the same
effect.

From those requirements, we deduce that:

1. The RSA description must exhibit the computation modulo p and q and the
CRT recombination; typically, a completely blackbox description, where the
computations would be realized in one go without intermediate variables, is
not conceivable.

2. However, it can remain abstract, especially for the computational parts2.

In our approach, the protections must thus be considered as an augmentation
of the unprotected code, i.e., a derived version of the code where additional
variables are used. The possibility of an attack on the unprotected code attests
that the algorithm is described at the adequate level, while the impossibility of
an attack (to be proven) on the protected code shows that added protections are
useful in terms of resistance to attacks.
2 For instance a fault in the implementation of the multiplication (or the exponen-

tiation) is either inoffensive, and we don’t need to care about it, or it affects the
result of the multiplication (or the exponentiation), and our model take it into ac-
count without going into the details of how the multiplication (or exponentiation)
is computed.

Remark 2. The algorithm only exhibit evidence of safety. If after a fault injec-
tion, the algorithm does not simplify to an error detection, then it might only
reveal that some simplification is missing. However, if it does not claim safety,
it produces a simplified occurrence of a possible weakness to be investigated
further.

Several tools are a priori suitable for a formalization of CRT-RSA. PARI/GP
is a specialized computer algebra system, primarily aimed at solving number
theory problems. Although PARI/GP can do a fair amount of symbolic ma-
nipulation, it remains limited compared to systems like Axiom, Magma, Maple,
Mathematica, Maxima, or Reduce. Those last software also fall short to im-
plement automatically number theoretic results like the Euler theorem. This
explains why we developed from scratch a system to reason on modular num-
bers from a formal point of view. Our system is not general, in that it cannot for
instance factorize terms in an expression. However, it is simply able to simplify
recursively what is simplifiable from a set of unambiguous rules. This behavior
happens to be suitable to the problem of resistance to fault attacks, because the
redundancy that is added in the computation is meant to be simplified at the
end (if no fault happened).

We describe the computation by a recursively defined term and we model it
in OCaml [9]3 with an algebraic data type:

type term =

| Zero (* the constant zero *)

| One (* the constant one *)

| Named of string (* a named number with no properties *)

| Num of int (* a number with no properties *)

| Prime of string (* a named prime number *)

| Sum of term list (* a sum of terms *)

| Prod of term list (* a product of terms *)

| Opp of term (* the opposite of a term *)

| Inv of term (* the inverse of a term *)

| Mod of term * term (* the remainder of division of a term by another *)

| Pow of term * term (* the exponentiation of a term by another *)

| Let of string * term * term (* the definition of a variable *)

| Let_ of string * term * term (* the safe definition of a variable *)

| Var of string (* a reference to a variable *)

| If of term * term * term (* a condition *)

There is no difference between Named and Num other than cosmetic, for display
purpose. The Num constructor takes an int to ensure that OCaml sees each of
them as a different value4.

The definition of a variable (Let) consists of a string for the name of that
variable, a term for its value, and a term in which the variable is defined (it writes

3 We can only guarantee the validity of our tools by the simplicity of its code, and by
making it free software (in the near future) so that it can be subject to review.

4 Using a constructor with no argument, Random for instance, is not possible because
OCaml would return true when comparing a Random with a Random.

like the let x = v in e form, which binds x to the value of the expression v in
the expression e, in the OCaml programming language).

The safe definition of a variable (Let) is the same thing except that we
assume that there will be no fault in the value term.

An If conditional consists of three terms. Its value is the value of the second
term if the first one is not zero, or of the third term otherwise5.

Such a description of the computation, while abstracting the computational
parts, allows to simplify the defined terms using rules from arithmetic and prop-
erties that we can deduce on the terms, such as being null, being null modulo
another term, or being a multiple of another term.

We implement simplification as an OCaml function based on pattern-matching
on the term. It applies most of the rules from arithmetic in the Z ring, and from
modular arithmetic in the Z/nZ rings. We omit factorization and expansion as
they are not confluent operations in general. We also implement a few theorems
such as the little Fermat’s theorem and its generalization, i.e., Euler’s theorem.
Of course we cannot do integer factorization to compute ϕ in our model so we
raise an exception to handle cases where the exponent is not a product of prime
numbers, but this actually never happens in well formed CRT-RSA computa-
tions, including computations with Shamir or Aumüller et al. countermeasure.

The simplification function is a recursive traversal of the term tree, and each
step is very simple and easily verifiable, thus making it trustworthy. In particular,
it is able to prove Proposition 1 and 2.

Injecting a fault in a computation amounts to replacing a subterm by zero or
by a number with no properties, according to Definition 2. In the former case,
the fault consists in zeroizing an intermediate variable (like in [6]). In the latter
case, the fault consists in assuming that all the properties of the subterm are
lost. Indeed, numbers with remarkable properties are extremely rare and thus
the probability to create a property by a randomizing fault is negligible.

In our model, a fault can occur at any place in the computation. This is mod-
eled by creating a faulted version of the term for each possible fault. To compute
the nth faulted version, we traverse the term tree incrementing a counter at each
recursive call, and when this counter’s value is n, we return the fault (either Zero
or Num(n)). When the computation of the faulted version is finished, the faulted
term is compared to the original one. If they are the same, it means that the
recursive traversing of the term tree was complete and that n is too large, which
means we have generated all possible faulted versions of the term.

The faulted versions of the term we want to study are then used to check
whether the properties required for the BellCoRe attack to be effective are re-
spected.

Example 1. If we have the following term t which represents the computation
a + b × c: Sum([Named("a") ; Prod([Named("b") ; Named("c")])]), it
can be faulted in five different ways (using the randomizing fault):

5 Remark: we do not apply any restrictions on the possible fault injections in any of
the three arguments of the If constructor.

1. Num(1), the final result is faulted;
2. Sum([Num(2) ; Prod([Named("b") ; Named("c")])]), a is faulted;
3. Sum([Named("a") ; Num(3)]), the result of b× c is faulted;
4. Sum([Named("a") ; Prod([Num(4) ; Named("c")])]), b is faulted;
5. Sum([Named("a") ; Prod([Named("b") ; Num(5)])]), c is faulted.

If the properties that interest us is to know whether t is congruent with a modulo
b, we can check if Mod(Sum([t, Opp(a)]), b) simplifies to Zero. Of course it
will be true for t, but it will only be true for the fifth version of faulted t. If we
had used the zeroing fault, it would also have been true for the third and fourth
versions.

4 Study of an Unprotected CRT-RSA Computation

Here is the description of the naive CRT-RSA computation (Alg. 1). For read-
ability reasons, Named("x") and Prime("x") have been replaced by x. p and q
are prime numbers; m and e are numbers with no properties):

Let_("dp", Mod(Pow(e, Opp(One)), Sum([p ; Opp(One)])),

Let_("dq", Mod(Pow(e, Opp(One)), Sum([q ; Opp(One)])),

Let_("iq", Mod(Pow(q, Opp(One)), p),

Let("sp", Mod(Pow(m, Var("dp")), p),

Let("sq", Mod(Pow(m, Var("dq")), q),

Sum([Var("sq")

; Prod([q

; Mod(Prod([Var("iq")

; Sum([Var("sp") ; Opp(Var("sq"))])]),

p)])]))))))

The first three lines define dp, dq, and iq. As we can see we use Let rather
than Let for these definitions, so the computation of the values of these vari-
ables cannot be faulted (since they are seen as inputs of the algorithm). After
that, Sp and Sq are computed and then recombined in the last expression, as in
Definition 1.

To test if the BellCoRe attack works on a faulted version Ŝ, we perform the
following tests (we note |S| for the simplified version of S):

1. Is |S| equal to |Ŝ|?
2. Is |S mod p| equal to |Ŝ mod p|?
3. Is |S mod q| equal to |Ŝ mod q|?

If the first test is false and at least one of the second and third is true, we
have a BellCoRe attack, as seen in Sec. 2.

There are 27 different possible faults in our model of the unprotected CRT-
RSA, 17 of which allows a BellCoRe attack using the randomizing fault, and 19
with the zeroing fault. These results are obtained almost instantaneously by our
tool.

As an example, replacing the intermediate variable holding the value of iq ·
(Sp − Sq) mod p in the final expression with zero or a random value makes the
first and second tests false, and the last one true, and thus allows a BellCoRe
attack.

5 Study of the Shamir Countermeasure

The description of the computation of CRT-RSA with Shamir countermeasure
(Alg. 2) can be found in App. A.

Using the same method as for the unprotected implementation of CRT-RSA,
we can prove that on the 75 different possible faults, 21 allows a BellCoRe attack,
whether using a randomizing fault or a zeroing fault (these results are obtained
almost instantaneously by our tool). This is not really surprising, as the test
which is done on line 10 of Alg. 2 does not verify if a fault is injected during the
computations of Sp and Sq, nor during their recombination in S. For instance
zeroing or randomizing the intermediate variable holding the result of Sp − Sq

during the computation of S (line 9 of Alg. 2) result in a BellCoRe attack.

During our study of this countermeasure, we remarked that if the attacker
can modify the value of an intermediate variable only for one use of this variable
(transient fault), we can do more attacks. In practice, it would translate into
faulting the variable when it is read (e.g., in a register or on a bus), rather
than in (persistent) memory. This behavior could also be the effect of a fault
injection in cache, which is later replaced with the good value when it is read from
memory again. To the authors knowledge, these are not impossible situations.
Nonetheless, growing the power of the attacker to take that into account break
some very important assumptions that are classical (sometimes even implicit) in
the literature. It does not matter that the parts of the secret key are stored in
a secure “key container” if their values can be a faulted at read time. Indeed,
allowing this kind of fault enable even more BellCoRe attacks on a CRT-RSA
computation protected by the Shamir countermeasure. For instance, if the value
of p is randomized for the computation of the value of Sp (line 7 of Alg. 2), then

we have S 6= Ŝ, but also S ≡ Ŝ mod q, which enables a BellCoRe attack, as
seen in Sec. 2.

It is often asserted that the countermeasure of Shamir is unpractical due to
its need for d (as mentioned in [1] and [16]), and because there is a possible fault
attack on the recombination, i.e., line 9 of Alg. 2 (as mentioned in [16]). However,
the attack on the recombination can easily be checked, by testing that S−Sp 6≡ 0
mod p and S − Sq 6≡ 0 mod q before returning the result. Notwithstanding, to
our best knowledge, it is difficult to detect the attack our tool found (described
in the previous paragraph), and so the existence of this attack (new, in the sense
it has not been described previously) is a compelling reason for not implementing
Shamir’s CRT-RSA.

6 Study of the Aumüller et al. Countermeasure

The description of the computation of CRT-RSA with Aumüller et al. counter-
measure (Alg. 3) is quite large and can thus be found in the App. B.

Using the same method as before, we can prove that on the 145 different
possible faults, none allows a BellCoRe attack, whether the fault is zero or
random (these results are obtained in very few seconds by our tools). This is a
proof that the Aumüller et al. countermeasure works when there is one fault6.

We also tried to remove some of the tests that the countermeasure consists
of. It appears that two of them are unnecessary : the first ones of lines 4 and 10
in the Aumüller CRT-RSA as presented in Alg. 3. These two tests are actually
redundant with the two tests of line 16 and the test of line 23 of Alg. 3 which
also verify the integrity of p′ and q′ by using them indirectly. Removing these
tests is not very useful in terms of performances, but their uselessness shows
the need for formal studies in the field of implementation security, even if they
might appear unnatural at first.

Since it allowed more attacks on the Shamir countermeasure, we also tested
the Aumüller et al. countermeasure against transient fault such as described in
Sec. 5. It happens that Aumüller et al. is resistant against such fault injections
too.

Our methods also confirmed that the computation of dp, dq, and iq (in terms
of p, q, and d) must not be part of the algorithm. The countermeasure effectively
needs these three variables to be inputs of the algorithm to work properly. For
instance there is a BellCoRe attack if dq happens to be zeroed. However, even
with dp, dq, and iq as inputs, we can still attempt to attack a CRT-RSA imple-
mentation protected by the Aumüller et al. countermeasure by doing more than
one fault.

Our results are as follows. With more than one fault it is obvious that the
countermeasure can be dodged if one of the fault is a zeroing of an intermediate
variable which is used as condition in one of the useful tests. However we were
able to prove that Aumüller et al. countermeasure is still efficient if there is two
or even three randomizing faults. The computations for two and three faults
took respectively a few minutes and a few dozen of minutes.

7 Conclusions and Perspectives

We have formally proven the resistance of the Aumüller et al. countermeasure
against the BellCoRe attack by fault injection on CRT-RSA. To our knowledge,
it is the first time that a formal proof of security is done for a BellCoRe coun-
termeasure.

6 This result is worthwhile some emphasis: the genuine algorithm of Aumüller is thus
proved resistant against single fault attacks. At the opposite, the CRT-RSA al-
gorithm of Vigilant is not immune to single fault attacks (refer to [7]), and the
corrections suggested in the same paper by Coron et al. have not yet been proved.

The proof enables us to show that two out of seven of the tests done by
Aumüller et al. countermeasure are unnecessary, thereby simplifying the pro-
tected computation of CRT-RSA.

During our research, we have raised several questions about the assumptions
traditionally made by countermeasures. The possibility of fault at read time
is, in particular, responsible for many vulnerabilities. The possibility of such
fault means that part of the secret key can be faulted (even if only for one
computation). It allows interesting BellCoRe attacks on a computation of CRT-
RSA protected by Shamir countermeasure.

The first of these two points demonstrates the lack of formal studies of fault
injection attack and their countermeasures, while the second one shows the im-
portance of formal proofs in the field of implementation security.

As a first perspective, we would like to address the hardening of software
codes of CRT-RSA under the threat of a bug attack. This attack has been in-
troduced by Biham, Carmeli and Shamir [2] at CRYPTO 2008. It assumes that
a hardware has been trapped in such a way that there exists two integers a and
b, for which the multiplication is incorrect. In this situation, Biham, Carmeli
and Shamir mount an explicit attack scenario where the knowledge of a and b is
leveraged to produce a faulted result, that can lead to a remote BellCoRe attack.
For sure, testing for the correct functionality of the multiplication operation is
impractical (it would amount to an exhaustive verification of 2128 multiplications
on 64 bit computer architectures). Thus, it can be imagined to use a countermea-
sure, like that of Aumüller, to detect a fault (caused logically). Our aim would be
to assess in which respect our fault analysis formal framework allows to validate
the security of the protection. Indeed, a fundamental difference is that the fault
is not necessarily injected at one random place, but can potentially show up at
several places.

As another perspective, we would like to handle the repaired countermeasure
of Vigilant [7] and the countermeasure of Kim [11]. Regarding Vigilant, the
difficulty our verification framework in OCaml shall overcome is to decide how
to inject the remarkable identity (1 + r)dp ≡ 1 + dp · r mod r2: either it is kept
as such such, like an ad hoc theorem (but we need to make sure it is called
only at relevant places, since it is not confluent), or it is made more general
(but we must ascertain that the verification remains tractable). However, this
effort is worthwhile, because the authors themselves say in the conclusion of
their article [7] that:

“Formal proof of the FA-resistance of Vigilant’s scheme including our
countermeasures is still an open (and challenging) issue.”

Regarding the CRT-RSA algorithm from Kim, the computation is very detailed
(it goes down to the multiplication level), and involves Boolean operations (and,
xor, etc.), so more expertise about both arithmetic and logic must be added to
our software.

Eventually, we wish to answer a question raised by Vigilant [16] about the
prime t involved in Aumüller et al. countermeasure:

“Is it fixed or picked at random in a fixed table?”

The underlying issue is that of replay attacks on CRT-RSA, that are more
complicated to handle; indeed, they would require a formal system such as
ProVerif [5], that is able to prove interactive protocols.

Concerning the tools we developed during our research, they currently only
allow to study fault injection in the data, and not in the control flow, it would be
interesting to enable formal study of fault injections affecting the control flow.
We would also like to make these tools usable by anyone, which will require the
creation of a better DSL for describing computations and attacks, as well as a
nice user interface to our code, which is still in “research code” stage for now.

References

1. Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and Jean-Pierre
Seifert. Fault Attacks on RSA with CRT: Concrete Results and Practical Coun-
termeasures. In Burton S. Kaliski, Jr., Çetin Kaya Koç, and Christof Paar, edi-
tors, CHES, volume 2523 of Lecture Notes in Computer Science, pages 260–275.
Springer, 2002.

2. Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug attacks. In CRYPTO, volume
5157 of LNCS, pages 221–240. Springer, 2008. Santa Barbara, CA, USA.

3. Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. In CRYPTO, volume 1294 of LNCS, pages 513–525. Springer, August 1997.
Santa Barbara, California, USA. DOI: 10.1007/BFb0052259.

4. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance
of Checking Cryptographic Protocols for Faults. In Proceedings of Eurocrypt’97,
volume 1233 of LNCS, pages 37–51. Springer, May 11-15 1997. Konstanz, Germany.
DOI: 10.1007/3-540-69053-0 4.

5. Bruno Blanchet. ProVerif: Cryptographic protocol verifier in the formal model.
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/.

6. Maria Christofi, Boutheina Chetali, Louis Goubin, and David Vigilant. Formal
verification of an implementation of CRT-RSA Vigilant’s algorithm. Journal of
Cryptographic Engineering, 3(3), 2013. DOI: 10.1007/s13389-013-0049-3.

7. Jean-Sébastien Coron, Christophe Giraud, Nicolas Morin, Gilles Piret, and David
Vigilant. Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm.
In Luca Breveglieri, Marc Joye, Israel Koren, David Naccache, and Ingrid Ver-
bauwhede, editors, FDTC, pages 89–96. IEEE Computer Society, 2010.

8. Xiaofei Guo, Debdeep Mukhopadhyay, and Ramesh Karri. Provably secure concur-
rent error detection against differential fault analysis. Cryptology ePrint Archive,
Report 2012/552, 2012. http://eprint.iacr.org/2012/552/.

9. INRIA. OCaml, a variant of the Caml language. http://caml.inria.fr/ocaml/

index.en.html.

10. Marc Joye, Arjen K. Lenstra, and Jean-Jacques Quisquater. Chinese Remaindering
Based Cryptosystems in the Presence of Faults. J. Cryptology, 12(4):241–245, 1999.

11. Sung-Kyoung Kim, Tae Hyun Kim, Dong-Guk Han, and Seokhie Hong. An effi-
cient CRT-RSA algorithm secure against power and fault attacks. J. Syst. Softw.,
84:1660–1669, October 2011.

12. Çetin Kaya Koç. High-Speed RSA Implementation, November 1994. Version 2,
ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf.

13. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Commun. ACM, 21(2):120–126,
1978.

14. Adi Shamir. Method and apparatus for protecting public key schemes from timing
and fault attacks, November 1999. Patent Number 5,991,415; also presented at the
rump session of EUROCRYPT ’97.

15. Mohammad Tehranipoor and Cliff Wang, editors. Introduction to Hardware Secu-
rity and Trust. Springer, 2012. ISBN 978-1-4419-8079-3.

16. David Vigilant. RSA with CRT: A New Cost-Effective Solution to Thwart Fault
Attacks. In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES, volume 5154 of
Lecture Notes in Computer Science, pages 130–145. Springer, 2008.

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://eprint.iacr.org/2012/552/
http://caml.inria.fr/ocaml/index.en.html
http://caml.inria.fr/ocaml/index.en.html
ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf

A Description of Shamir Implementation of CRT-RSA

For readability purpose, Named("x") and Prime("x") have been replaced by x;
p, q, and r are prime numbers; m, d, and ERROR are numbers with no properties):

Let_("iq", Mod(Pow(q, Opp(One)), p),

Let("p’", Prod([p ; r]),

Let("dp", Mod(d, Prod([Sum([p ; Opp(One)]) ; Sum([r ; Opp(One)])])),

Let("S’p", Mod(Pow(m, Var("dp")), Var("p’")),

Let("q’", Prod([q ; r]),

Let("dq", Mod(d, Prod([Sum([q ; Opp(One)]) ; Sum([r ; Opp(One)])])),

Let("S’q", Mod(Pow(m, Var("dq")), Var("q’")),

Let("Sp", Mod(Var("S’p"), p),

Let("Sq", Mod(Var("S’q"), q),

Let("S", Sum([Var("Sq")

; Prod([q

; Mod(Prod([Var("iq")

; Sum([Var("Sp") ; Opp(Var("Sq"))])]),

p)])]),

If(Mod(Sum([Var("S’p") ; Opp(Var("S’q"))]), r),

ERROR,

Var("S"))))))))))))))

B Description of Aumüller et al. Implementation of
CRT-RSA

For readability purpose Named("x") and Prime("x") have been replaced by x
(m, e, Random1, Random2, and ERROR are numbers with no properties; and p, q,
and t are prime numbers).

Let_("dp", Mod(Pow(e, Opp(One)), Sum([p ; Opp(One)])),

Let_("dq", Mod(Pow(e, Opp(One)), Sum([q ; Opp(One)])),

Let_("iq", Mod(Pow(q, Opp(One)), p),

Let("p’", Prod([p ; t]),

Let("d’p", Sum([Var("dp") ; Prod([Random1 ; Sum([p ; Opp(One)])])]),

Let("s’p", Mod(Pow(m, Var("d’p")), Var("p’")),

If(Mod(Var("p’"), p),

ERROR,

If(Mod(Sum([Var("d’p") ; Opp(Var("dp"))]), Sum([p ; Opp(One)])),

ERROR,

Let("q’", Prod([q ; t]),

Let("d’q", Sum([Var("dq") ; Prod([Random2 ; Sum([q ; Opp(One)])])]),

Let("s’q", Mod(Pow(m, Var("d’q")), Var("q’")),

If(Mod(Var("q’"), q),

ERROR,

If(Mod(Sum([Var("d’q") ; Opp(Var("dq"))]), Sum([q ; Opp(One)])),

ERROR,

Let("sp", Mod(Var("s’p"), p),

Let("sq", Mod(Var("s’q"), q),

Let("S", Sum([Var("sq")

; Prod([q

; Mod(Prod([Var("iq")

; Sum([Var("sp")

; Opp(Var("sq"))])]), p)])]),

If(Mod(Sum([Var("S") ; Opp(Var("s’p"))]), p),

ERROR,

If(Mod(Sum([Var("S") ; Opp(Var("s’q"))]), q),

ERROR,

Let("spt", Mod(Var("s’p"), t),

Let("sqt", Mod(Var("s’q"), t),

Let("dpt", Mod(Var("d’p"), Sum([t ; Opp(One)])),

Let("dqt", Mod(Var("d’q"), Sum([t ; Opp(One)])),

If(Mod(Sum([Pow(Var("spt"), Var("dqt"))

; Opp(Pow(Var("sqt"), Var("dpt")))]), t),

ERROR,

Var("S"))))))))))))))))))))))))

	A formal proof of countermeasures against fault injection attacks on CRT-RSA

