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Abstract

We consider the problem of constructing anonymous credentials for use in a
setting where the issuer of credentials is also the verifier, or where the issuer and
verifier have a shared key. In this setting we can use message authentication
codes (MACs) instead of public key signatures as the basis of the credential
system.

To this end, we construct two algebraic MAC schemes in prime order
groups, along with efficient protocols for issuing credentials, asserting pos-
session a credential, and proving statements about the attributes. Security of
the first scheme is proven in the generic group model, and we show that the
second is secure under the decisional Diffie-Hellman (DDH) assumption, using
a dual system-based approach.

Finally, we compare the efficiency of our new systems to two traditional
credential systems, U-Prove and Idemix. We show that performance of the new
schemes are competitive with U-Prove, and many times faster than Idemix.
This brings together the best aspects of these two existing systems: the effi-
ciency of U-Prove combined with the multi-show unlinkability of Idemix.



1 Introduction

Traditionally, anonymous credentials systems are constructed from public-key sig-
nature schemes. To issue a credential to a user certifying a set of attributes, the
issuer generates a signature on those attributes. Later, when the user wants to use
his credential, he presents a zero knowledge proof of knowledge of a valid signature
on appropriate attributes; this allows him to demonstrate possession of a credential
without revealing unnecessary attributes, and ensures that even if the issuer and ver-
ifier cooperate it remains infeasible to link a run of the presentation protocol using
a given credential to the run of the issuance protocol in which that credential was
generated.

In the U-Prove system [6, 21] (sometimes also called “Brands credentials”) the
issuer and user jointly compute the zero knowledge proof, so each proof requires an
interaction with the issuer. In the Idemix system [7, 18] (Camenisch-Lysyanskaya
signatures), the user can generate proofs on his own. This means that each time
he presents his credential the user can generate a fresh proof, so that one credential
can be presented many times, and the verifier will be unable to distinguish many
presentations of the same credential from presentations of many different credentials
with appropriate attribute sets. This property is often referred to as multi-show
unlinkability.

Because they are constructed from signature schemes, known anonymous creden-
tial schemes are publicly verifiable, i.e., any party may verify a credential given the
issuer’s public key and the system parameters.

MAC based credentials. In many authentication scenarios, the party controlling
access to a resource also manages the accounts of authorized parties. For example, a
transit company will typically be responsible for issuing and managing transit cards.
Online marketplaces and other online services may also choose to manage their own
accounts, rather than accept credentials from outside identity providers. In these
types of systems, public verifiability is not a requirement.

In this paper we introduce the notion of keyed-verification credentials to address
the functionality needed in these systems. The main observation is that in many of
these settings, it is natural to assume that the verifier and the issuer will possess
a shared secret. As we will show, focusing on this simpler setting, without public
verifiability, can lead to performance improvements. Our new constructions use
MAC schemes as a basis for the credential. These MAC schemes are algebraic,
constructed in prime order groups, rather than being constructed with block ciphers
or hash functions. While algebraic MACs are much slower than traditional MACs,
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the additional structure of the tags allows for efficient proofs of knowledge using
sigma protocols, for proving possession of a MAC on a (committed) message, and
for securely obtaining a MAC on potentially hidden messages. Naturally, issuance
and verification both require the secret key of the MAC scheme, which motivates
the name keyed-verification credentials. By comparison, credential systems with
multi-show unlinkability constructed from signature schemes seem to require either
a strong RSA group [7], or a group with a bilinear pairing [1, 2, 8], resulting in slower
protocols and much larger credentials. Among other things, this limits the devices
which can practically use these credentials; for example Bischel et al. [4] report that
a partial implementation of the Idemix presentation proof on a smart card required
7.4 seconds to complete (at a security level below 80 bits).

Other use cases. We stress that it is also possible to use keyed-verification creden-
tials in the more traditional anonymous credential scenario with multiple verifiers.
For a small number of verifiers, the issuer can issue separate keyed-verification cre-
dentials with the same attributes under separate secret keys shared with each of the
verifiers. A user may obtain credentials for all verifiers at once, or if the user and
issuer are online, credentials may be obtained as needed. Interestingly, if the user
needs to return to the issuer to request credentials for additional verifiers, he can do
so anonymously, and using blind issuance the new credential can be made to have
the same attributes as the old one, without revealing these attributes to the issuer.

As we will describe, it is possible using our scheme to translate a publicly verifiable
credential into a more efficient keyed-verification credential with the same attributes
and functionality. Thus another use case is as follows: when a user wishes to inter-
act with a new verifier, he first enrolls with the verifier by presenting a traditional
credential; the verifier checks this credential, then issues a new credential which only
he can verify. Importantly, this protocol does not require that the user reveal the
attributes in the traditional credential, or allow the issuer and verifier together to
link the credential used during enrollment with a run of the issuance protocol. When
the user returns, the efficient keyed-verification credential is used, and again it will
be impossible to link this use with previous presentations or with the enrollment.
In the case of U-Prove, this allows a single-use credential to be used to bootstrap
multiple unlinkable credential uses. In the case of Idemix, subsequent uses of the
keyed-verification credential remain unlinkable, but are significantly more efficient.
Translating credentials in this manner provides an appealing tradeoff; public verifia-
bility is still possible when necessary, but credential use becomes more efficient with
repeat verifiers.
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1.1 Summary of Contributions and Paper Outline

The main contributions of this paper are the following.

New MAC schemes We present two new MAC schemes and analyze their security
(§3). The first (§3.1), called MACGGM, is a generalization of a scheme presented by
Dodis et al. [13] who proved that it satisfies a very weak notion of security. We
generalize the scheme to support blocks of messages, and prove it satisfies standard
MAC unforgeability (uf-cmva) in the generic group model. Our second scheme (§3.2),
MACDDH, is new. We prove that MACDDH is uf-cmva secure assuming DDH is hard.

The advantage of these constructions, when compared to the uf-cmva MAC
schemes from [13] is that they are entirely algebraic, without collision resistant hash
functions or bit-wise decompositions, which allows us to construct very efficient pro-
tocols for them. For this reason we feel that MACDDH and MACGGM will be useful
primitives in other privacy protocols. The advantage of MACDDH is that its prov-
able security relies on weaker assumptions, while the advantage of MACGGM is its
simplicity which results in extra efficiency gains.

Another potentially interesting aspect of the MACDDH construction is that its
proof of security follows the outline of the dual system approach introduced by Waters
[28, 16], making it the first (to our knowledge) use of dual system techniques in a
setting without pairings.

Protocols We also demonstrate how these MAC schemes can be used to construct
an efficient keyed-verification anonymous credential system. In particular, we show
efficient protocols (§4) for issuing credentials on hidden attributes (blind issuance),
and for proving possession of a credential with attributes satisfying a given statement
(credential presentation). As the keyed-verification setting is somewhat different from
that of previous credential systems, we also present formal definitions for the security
required in this setting, and prove that our protocols satisfy these definitions. (This
is deferred to Appendices B and C for lack of space.)

Efficiency Comparison We provide a detailed efficiency comparison of our new
keyed-verification schemes to U-Prove and Idemix (§5). Our estimates are supported
by an implementation of the dominant operations in each group for the cost of a
presentation protocol. The results confirm that our goals are met; depending on the
parameters of the presentation, our new schemes have the same or slightly higher
cost when compared to U-Prove, and are always many times faster than Idemix (by
our estimates at least 4 times, and up to 16 times faster).
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1.2 Related Work on Anonymous Credentials

U-Prove [21] is a credential system constructed from a blind version of Schnorr signa-
tures [6]. U-Prove is defined in a prime order group, and is thus very computationally
efficient. A U-Prove credential is constructed as a number of tokens, where each to-
ken may be used once unlinkably. Therefore, the size of U-Prove credentials are
linear in the number of unlinkable uses.

Idemix [18] is based on the Camenisch-Lysyanskaya [8] signature scheme (CL sig-
natures). In terms of performance Idemix and U-Prove credentials make the opposite
trade-off; Idemix credentials have constant size, but are considerably more expensive
to present. The computational cost is increased because the underlying signature
scheme is constructed in a group where the strong RSA problem is hard (SRSA).
While there are no guidelines for choosing parameters for the strong RSA problem,
they must be at least as large as RSA parameters, e.g., 3072 bits for 128-bit secu-
rity. 1 With multiple attributes, and advanced presentation proof predicates, this
cost quickly becomes too high for lightweight provers (such as smartcards [4]).

There are also versions of the CL signature scheme defined in bilinear groups [1, 8],
and Belenkiy [2] et. al. construct a signature scheme with Groth-Sahai proofs of
knowledge supporting delegation. However, the applicable signature schemes in this
setting are considerably more expensive, and the computational costs of creating a
presentation proof and verifying it are still significantly greater than in U-Prove. The
standardization of cryptographic schemes based on SRSA and bilinear groups also
lags further behind prime-order groups, presenting another hurdle to deployment.

Given the trade-offs of each system, our design goal is a credential system with
the strengths of U-Prove (efficient presentation, standard parameters), and those of
Idemix (constant credential size).

2 Preliminaries

Notation We use the notation x ∈R X or x ← X to mean x is chosen uniformly
at random from the set X. The notation {xi}n1 ,

∑n
1 xi, and

∏n
1 xi are shorthand

for {xi}ni=1,
∑n

i=1 xi, and
∏n

i=1 xi respectively. This shorthand is only used when the
set, sum or product has only a single index.

1Note the optimizations that apply to the RSA signing operation are only available to the issuer
in Idemix, not the user or verifiers, as in that case the group order is unknown and exponents must
be large to satisfy privacy requirements.
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Zero Knowledge Proofs The protocols that form our credential system make
use of zero knowledge (ZK) proofs to prove knowledge of, and relations between
discrete logarithms. In our presentation we abstract these protocols with a notation
introduced by Camenisch and Stadler [9]. Proofs are expressed with the notation

PK{(x, y, . . .) : statements about x, y, . . .}

where (x, y, . . .) are secrets (discrete logarithms) which satisfy statements. The prover
is asserting knowledge of (x, y, . . .), and all other values in the protocol are public.

There are many choices to implement these protocols, especially since the types
of statements required by the protocols in this paper are relatively simple (knowledge
of a representation and proof of logarithm equality). In particular, all the statements
we prove can be captured by efficient sigma protocols.

For our application, we need a proof system that is zero knowledge and satisfies
a weak form of online extraction [15]. We propose two approaches to instantiate
the proof system. The first is to use the Damg̊ard protocol [12], which converts
any sigma protocol into a three round interactive zero knowledge proof of knowledge
secure under concurrent composition. This protocol requires trusted parameters but
this restriction can be omitted in the random oracle model. The second option is to
make the assumption that Fiat-Shamir based proofs [14] in the random oracle model
satisfy the required extraction property. For more discussion, see Appendix C.5.

Parameter Generation Some of the parameters of our constructions include a
group element h, chosen such that logg h is unknown, where g is a generator of the
group. In practice, this can be done by deterministically deriving h from arbitrary
public information using a cryptographic hash function. All protocol participants
may then verify that h was derived correctly by repeating the derivation process.
One such derivation procedure is specified in [21]. Formally, we will model this as a
trusted setup algorithm which generates g, h where logg h is unknown to all parties.

Cryptographic Assumptions The decisional Diffie-Hellman problem (DDH), is
the following. Let G be a cyclic group of prime order p with generator g and let
a, b, c ∈R Zp; given (A = ga, B = gb, C) ∈ G3, determine whether C = gab or C = gc.
The DDH assumption is that this problem is intractable for all polynomial time
adversaries. For a precise definition, see [5, 13].

For some of our constructions we will also give security results in the generic group
model (GGM). Intractability results in this model essentially mean that problems
are intractable provided the adversary only performs a series of group operations.
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The GGM was first used by Shoup to prove lower bounds on DDH and related
problems [5, 24].

Concrete examples of groups that are thought to satisfy these assumptions are
certain elliptic curve groups over Fp, such as those standardized by NIST in [20].

3 MAC Schemes in Prime Order Groups

In this section we present two MAC schemes constructed using a cyclic group of prime
order. Both schemes use the same system parameters, created with the following
algorithm.

Setup(1k) Choose a group G with order p, where p is a k-bit prime. Let g and h
be generators of G such that logg h is unknown. The system parameters are
params := (G, p, g, h).

In addition to the Setup algorithm, MAC schemes have a key generation function
(KeyGen), a MAC function MAC (that produces an authentication tag on a message),
and a verify function Verify (that verifies a tag is valid with respect to a message).
While we do not include it as an explicit parameter, the MAC and Verify functions are
assumed to have params . This could easily be captured by including it in the secret
key; we omit it to simplify the descriptions. The message space of both schemes is
Znp , where n > 0 is a parameter.

We say that (Setup,KeyGen, MAC,Verify) is a secure MAC if it is existentially
unforgeable under chosen message attack, given a verification oracle (defined as uf-
cmva in [13]). We augment the definition slightly to guarantee security even when
the signer publishes some parameters IParams associated with his secret key. In our
application, we will use IParams to implement an efficient presentation protocol.

Definition 1 (uf-cmva security). (Setup,KeyGen,MAC,Verify) is a secure MAC if
for any PPT adversary A, there exists a negligible function ν such that for all k

Pr
[
params ← Setup(1k), (IParams , sk)← KeyGen(params);

(m,σ)← AMAC(sk ,·),Verify(sk ,·,·)(params , IParams)

such that m /∈ Q ∧ Verify(sk ,m, σ) = 1
]

= ν(k)

where Q is the list of messages A queried to the oracle MAC(sk , ·).

A stronger security notion for MAC schemes is sometimes used, where A may
win by outputting (m,σ), even if m ∈ Q, provided σ was not output by the MAC
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oracle for m. The schemes we present were expressly designed not to provide this
type of security, to allow tags to be re-randomized (or blinded), to allow for more
efficient zero-knowledge proofs of possession of a MAC.

3.1 MACGGM

Our first MAC is a generalization of a scheme from [13]. The original MAC scheme
works in a cyclic group G of prime order p, and the secret key is a pair (x0, x1) ∈ Z2

p.
To compute the MAC of a message m ∈ Zp, choose u ∈R G, and compute (u, umx1+x0)
as the tag. To verify a tag (u, u′) for a message m, check whether umx1+x0 = u′.

We extend the scheme to support n attributes, where the secret key becomes
(x0, x1, . . . , xn) and tags are computed as (u, ux1m1+...+xnmn+x0). Note thatm1, . . . ,mn

are nmessages, each in Zp; this is not the binary decomposition of a single messagem.
We refer to this scheme as MACGGM (the single message version was called MAChwPRF

in [13]). The optional step in KeyGen is only required when MACGGM is used for
keyed-verification credentials.

KeyGen(params) Choose a secret key sk := (x0, x1, . . . , xn) ∈R (Zp)n+1. Optionally,
choose x̃0 ∈R Zp and compute Cx0 := gx0hx̃0 and (X1 := hx1 , . . . , Xn := hxn),
and publish the issuer parameters, denoted

IParams := (Cx0 , X1, . . . , Xn) .

MAC(sk ,m) Parse m as (m1, . . . ,mn) ∈ Znp , and sk as (x0, x1, . . . , xn) ∈ Zn+1
p .

Choose u ∈R G \ {1} and compute the tag σ = (u, u′) where

u′ := ux0+
∑n

1 mixi .

Verify(sk ,m, σ) Parse m as (m1, . . . ,mn) ∈ Znp , and sk as (x0, x1, . . . , xn) ∈ Zn+1
p ,

and σ as (u, u′) ∈ G2. Accept iff u 6= 1 and

u′ = ux0+
∑n

1 mixi .

Security Dodis et al. [13] prove that under the DDH assumption, MACGGM is suf-
cma secure. In this definition, security is called selectively unforgeable, because the
attacker must select the message he will use in a forgery before seeing any tags, and
is not allowed verification queries. However, for our credential system, we require
uf-cmva security. (Selective unforgeability gives only very limited protection against
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misbehaving adversaries and verification queries are inherent as the adversary will
always be able to present credentials and observe the verifier’s reaction.)

We stress that Dodis et al. give no evidence that MACGGM is not in fact uf-cmva
secure. Rather, it appears that their proof technique does not extend to also prove
security under the stronger definition. A simple (but inefficient) reduction exists
between uf-cma and suf-cma. A uf-cma adversary is transformed into an suf-cma
adversary by an algorithm which guesses the message to be forged by the uf-cma
adversary. The success probability of the new adversary is ε/|M | where M is the
message space of the scheme, and ε is the success probability of the uf-cma adversary.
If the size of M is constrained, the loss in security may be acceptable (i.e., it may be
acceptable to use an suf-cma secure scheme). This may be of use in our application,
in the very limited setting where credentials contain a small number of attributes
from a small set, known to the issuer, and where during presentation the user is
required to prove that all the attributes in his credential are within this set.

To ensure security in the more realistic case of unconstrained messages (at-
tributes), and when verification queries are allowed (as in a credential system), we
prove that MACGGM is uf-cmva secure in the generic group model. Additionally, we
include IParams in our analysis. Proof of the following theorem is given in Appendix
§A.1.

Theorem 2. In the generic group model, a uf-cmva adversary attacking the MACGGM

scheme, succeeding with non-negligible probability, performs Ω(
√
p) group operations.

3.2 MACDDH

In this section, we describe another MAC construction, called MACDDH. Recall that
params are created by Setup(1k), defined at the beginning of this section, and are
assumed to be available to all algorithms, and that (m1, . . . ,mn) is a list of nmessages
in Zp.

KeyGen(params): Choose random values {xi}n+1
0 , {yi}n+1

0 , z from Zp. Store sk :=
({xi, yi}n+1

0 , z). Optionally compute Xi := hxi and Yi := hyi for each i ∈
{1, . . . n+ 1}, and publish IParams := ({Xi, Yi}n+1

1 ).

MAC(sk ,m): On input m = (m1, . . . ,mn) ∈ Znp , choose u ∈R G \ {1}, mn+1 ∈R Zp.
Compute and output

σ := (u, ux0+
∑n+1

1 ximi , uy0+
∑n+1

1 yimi , uz,mn+1) .

8



Verify(sk ,m, σ): Parse σ as (σW , σX , σY , σZ ,mn+1) ∈ G4×Zp. Accept if σW 6= 1 and

σX = σW
x0+

∑n+1
1 ximi and σY = σW

y0+
∑n+1

1 yimi and σZ = σW
z .

The optional step in KeyGen is only required when MACDDH is used for keyed-
verification credentials. The randomly chosen value mn+1 is not needed if, in a
particular application, one of the messages is chosen by the signer at random. An-
other possible optimization to reduce the size of the tag is to derive mn+1 from u with
a cryptographic hash function; in the random oracle model, this will be equivalent
since u is chosen at random for each tag.

Theorem 3. MACDDH is uf-cmva secure, assuming the DDH problem is hard in G.

Proof. First, we define a few alternate algorithms which we will use in the proof. The
first, KeyGen′, is a modified key generation algorithm that produces IParams and
sk distributed identically to KeyGen, but also produces some additional values sk ′.
MAC′ uses sk ′ and produces tags identical to those produced by MAC. SimMAC is a
simulated MAC algorithm in which σW and σZ are not correctly formed. FinalVerify
is designed to accept tags produced by MAC and reject those produced by SimMAC.
Finally, SimVerify is designed to accept tags produced by either MAC or SimMAC.

Briefly, the proof will begin with the real unforgeability game, then argue that the
adversary’s success probabiliy will not decrease too much if verification queries are
evaluated using SimVerify, and the final tag is considered a success if it is accepted
by SimVerify and FinalVerify rather than Verify. Then we argue that the adversary’s
success probability will be roughly the same if he is given tags issued by SimMAC
instead of MAC. Finally, we observe that once the adversary is only given access to
oracles for SimMAC and SimVerify rather than MAC and Verify, it has only negligible
probability of producing a tag which is accepted by SimVerify and FinalVerify.

In the description of these algorithms and in the rest of the proof, we will abuse
notation: for m = m1, . . . ,mn+1 ∈ Znp we will write Ha(m) to denote a0+

∑n+1
1 aimi.

KeyGen′(params): Choose values z′, s, t, {x′i}n+1
0 , {y′i}n+1

0 , {vi}n+1
0 ∈R Zp. Implicitly

let w = logg h.2 Compute Z = gz
′
h−t, and for each i ∈ {0, . . . n + 1} compute

Xi = gx
′
ihvi , and Yi = gy

′
iX−si .

Also compute z = z′/w−t, and for each i ∈ {0, . . . n+1} compute xi = x′i/w+vi
and yi = y′i/w − sxi.
Set IParams = ({Xi, Yi}n+1

1 ), and optionally publish it.

2This discrete logarithm will only be used in our information theoretic proof steps.
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Store sk ′ = ({x′i, y′i, vi}n+1
0 , s, z′, t, X0, Y0, Z, IParams), and sk = ({xi, yi}n+1

0 , z,
IParams).

MAC′(sk ′,m): Extract IParams , Z,X0, Y0 from sk ′. Parse m = m1, . . .mn. Choose
r ∈R Z∗p, mn+1 ∈R Zp. Compute and output

σ = (hr, (X0

n+1∏
i=1

Xmi
i )r, (Y0

n+1∏
i=1

Y mi
i )r, Zr,mn+1).

SimMAC(sk ′,m): Extract {y′i}n+1
0 , s, z′, t from sk ′. Parse m = m1, . . .mn. Choose

r,mn+1 ∈R Zp and σW ∈R G \ {1} and σX ∈R G, let m̂ = (m1, . . . ,mn+1) and
output

σ = (σW , σX , (g
Hy′ (m̂))rσX

−s, gz
′rσW

−t,mn+1).

FinalVerify(sk ′,m, σ): Extract {x′i, y′i, vi}n+1
0 , s from sk ′ and ignore the rest. Parse σ

as (σW , σX , σY , σZ ,mn+1) and m as m1, . . .mn and let m̂ = (m1, . . . ,mn+1).
Verify σX , σY w.r.t. σW , i.e., accept iff

(σW
−Hv(m̂)σX)Hy′ (m̂) = (σX

sσY )Hx′ (m̂)

SimVerify(sk ′,m, σ): Extract {y′i}n+1
0 , z′, s, t from sk ′ and ignore the rest. Parse σ

as (σW , σX , σY , σZ ,mn+1) and m as m1, . . .mn, and let m̂ = (m1, . . . ,mn+1).
Accept iff σW 6= 1 and

(σY σX
s)z

′
= (σZσW

t)Hy′ (m̂).

Then our proof will proceed by considering the following sequence of games:

Real Game: The real uf-cmva game using KeyGen,MAC,Verify as in Definition 1.

Game G1: As above except that keys are generated by KeyGen′, tags are generated
by MAC′, and when the adversary produces a forgery, the adversary succeeds
only if Verify(sk ,m, σ) = 1 and FinalVerify(sk ′,m, σ) = 1.

Claim 4. The adversary’s success probability in Game G1 will be identical to
that in the Real Game. This follows directly from the observation that KeyGen
and KeyGen′ produce identically distributed IParams , sk , and the output of
MAC′ on sk ′ is identical to the output of MAC on sk , and the observation that
any tag that is accepted by Verify will also be accepted by FinalVerify.
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Game G2: As in game G1 except that Verify is replaced by SimVerify both in the
adversary’s verification queries, and in the final verification of the adversary’s
forgery.

Claim 5. The adversary’s success probability in games G1 and G2 differ by at
most a negligible amount. We will show that this follows from an information
theoretic argument: since (s, t) are information theoretically hidden from A, it
has only negligible probability of finding a tag on which Verify and SimVerify
behave differently. See Appendix A.2 for details.

Game Hi: As in game G2 except that the first i MAC queries made by the adversary
are answered using SimMAC. (Note that games H0 and G2 are identical.)

Claim 6. Let Q be a polynomial upper bound on the number of MAC queries
made by the adversary. For all i ∈ {1, . . . Q}, the adversary’s success probability
in games Hi−1 and Hi differs by at most a negligible amount. We will show
that this follows from DDH. At a high level, view the values in the ith tag
as σW = hr, σX = (gr)Hx′ (m̂)(hr)Hv(m̂), σY = (gr)Hy′ (m̂)σX

−s, σZ = (gr)z
′
σW
−t.

First choose mn+1 such that Hv(m̂) = 0, and view (h, gr, hr) as a DDH triple so
that σW can be replaced by a random element. Then choose mn+1 at random
and note that again we have a DDH triple (h, gr, hr) where now hr only appears
in σX , so we can replace σX with a random element. See Appendix A.2 for
details.

Game G3: In this game all of the adversary’s MAC queries are answered using
SimMAC, and as in gameG2, the verification queries are answered using SimVerify,
and the forgery is considered a success iff it is accepted by both SimVerify and
FinalVerify. (Note that games G3 and HQ are identical.)

Claim 7. The adversary’s success probability in game G3 is at most negligible.
We will show this through an information-theoretic argument: informally this
follows from the fact that x0 (and thus x′0, v0 and Hx′(m), Hv(m)) is information
theoretically hidden from A in this game. See Appendix A.2 for details.

We conclude that the adversary’s success probability in the real game is at most
negligible.
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4 Protocols for Keyed-Verification Credentials

In this section we first describe the set of algorithms that form a keyed-verification cre-
dential scheme. Then we informally describe the desired security and privacy prop-
erties (formal definitions are in Appendix B). We present a construction based on
MACGGM (§4.1), and one based on MACDDH (Appendix C). We give a formal proof
of security for the scheme from MACDDH (§C.4); as the protocols for MACGGM are
essentially a simplified version of those for MACDDH, the proof for MACGGM is a
straightforward simplification of the proof in §C.4.

A keyed-verification credential system consists of the following algorithms:

Setup(1k) defines the system parameters params . We will assume that params is
available to all algorithms, and that all parties have assurance it was created
correctly.

CredKeygen(params) is run by the issuer on input params to generate a secret key
sk and parameters IParams .

BlindIssue(sk , S)↔ BlindObtain(IParams , (m1, . . . ,mn)) is a potentially interactive
protocol where a user can obtain a credential on attributes (m1, . . . ,mn) from
an issuer who is only given some subset S of those attributes.

Show(IParams , cred , (m1, . . . ,mn), φ)↔ ShowVerify(sk , φ) is an interactive protocol
between a user and a verifier. Show is run by a user to generate a proof of
possession π of a credential cred certifying some set of attributes (m1, . . . ,mn)
satisfying a set of statements φ under the key corresponding to IParams , and
ShowVerify is run by the verifier in possession of sk to verify proof π claiming
knowledge of a credential satisfying the statements φ.

Discussion We defined our presentation protocol in terms of a single credential,
however we could generalize our definitions and constructions to allow the user to
prove relationships between attributes across multiple credentials that they own. We
chose the above variant because it allows for fairly simple definitions, and still allows
us to consider properties of a credential scheme as it would be used.

Note that the standard approach of requiring that the Show protocol be a proof
of knowledge of a credential cannot be directly applied here because the verifier must
know the issuer secret key in order to verify the credential. This is somewhat similar
to a designated verifier proof [19], but it has the additional complication that the
statement (validity of the credential) depends on the verifier’s secret key.
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Security Properties A keyed-verification credential system should have the fol-
lowing security properties (defined formally in Appendix B). Informally, Correctness
requires that every credential generated by Issue for attribute set {m1, . . . ,mn} can
be used to generate a proof for any statement satisfied by that attribute set. Unforge-
ability requires that an adversary cannot produce an accepting proof for a statement
φ that is not satisfied by any of the attribute sets for which he has received creden-
tials. Anonymity says that the proofs produced by Show reveal nothing more than
the statement being proved. Blind Issuance requires that BlindIssue,BlindObtain de-
fine a secure two party protocol for generating credentials on the user’s attributes.
Finally, we require Key-Parameter Consistency, which says that the probability that
an adversary can find two secret keys that correspond to the same set of issuer pa-
rameters is negligible – this guarantees that the issuer cannot use different secret
keys with different users and thus compromise their anonymity.

4.1 A Keyed-Verification Credential Scheme From MACGGM

We will now give a construction of a keyed-verification credential system using
MACGGM. Let SetupGGM,KeyGenGGM,MACGGM,VerifyGGM be the algorithms described
in Section 3.1. Then we define the following setup algorithms for the credential
system.

Setup(1k) will be the same as SetupGGM.

CredKeygen(params): Parse params as (G, p, g, h). Run KeyGenGGM(params) to ob-
tain IParamsGGM = ({Xi}n1 , Cx0) and skGGM = ({xi}n0 , x̃0). Output IParams
and skGGM.

4.1.1 Issuance

Here we describe the protocols BlindIssue and BlindObtain for issuing credentials. We
first consider a simplified issuing protocol that can be used if all of the attributes
are known to the issuer. Then we present the more general protocol allowing for
hidden attributes. Section 2 has a discussion of some possible instantiations of the
ZK proofs.

Issuance with public attributes To issue a credential with the n attributes
m1, . . . ,mn ∈ Zp, the issuer computes (u, u′) ← MACGGM(sk , (m1, . . . ,mn)), then
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returns (u, u′) and π to the user, where

π = PK{(x0, x1, . . . , xn, x̃0) : u′ = (um1)x1 · · · (umn)xnux0

∧ X1 = hx1 ∧ . . . ∧ Xn = hxn

∧ Cx0 = gx0hx̃0}

The proof π proves that (u, u′) is well-formed with respect to the system and issuer
parameters. If this proof verifies, the user accepts and outputs (u, u′), otherwise it
rejects with output ⊥.

Issuance with hidden attributes To keep some of the attributes hidden from the
issuer, we can proceed as follows: The user generates an Elgamal keypair (d, γ := gd),
then creates an encryption of gmi for each hidden attribute mi as follows: Ei =
(gri , gmiγri), using ri ∈R Zp. The ciphertexts are sent to the issuer (along with a
proof of knowledge of {ri,mi}). The issuer chooses b ∈R Z∗p . It then computes
u = gb, and uses the homomorphic properties of Elgamal to generate an encryption
Eu′ of u′ = gbx0

∏n
1 (gmi)bxi , and to randomize this encryption to obtain E ′u′ (by

multiplying with an encryption of 0 using randomness r′ ← Zp). It sends u,E ′u′
to the user and gives a proof that these values have been generated correctly with
respect to (Cx0 , {Xi}n1 ) (i.e. a proof of knowledge of the appropriate {xi}n0 , x̃0, b, and
randomizing factors r′). If the proof does not verify, the user outputs ⊥. Otherwise,
the user decrypts E ′u′ to get u′, and outputs (u, u′).

Credential Translation In addition to proof that ciphertexts Ei are well formed,
the user can include proof about the attributes the ciphertexts encrypt. For exam-
ple, the user may prove that some of the attributes mi are the same as in another
credential, perhaps one which is more expensive to use (such as an Idemix creden-
tial), or one that cannot be presented multiple times unlinkably (such as a U-Prove
credential).

4.1.2 The Show and ShowVerify Protocols

Here we present a construction for Show and ShowVerify. The details of (one possible
way of) instantiating the proof of knowledge are given in Appendix D.

The input to Show must be a rerandomized MACGGM credential. To rerandomize
(u, u′), choose r ∈R Zq, and output the new credential (ur, (u′)r). The value r can
be deleted.
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Show The inputs are params and IParams , the statement φ, the rerandomized
credential (u, u′), and the attribute values m1, . . . ,mn. The Prover chooses val-
ues r, z1, . . . , zn,∈R Zq, computes {Cmi := umihzi}ni=1, Cu′ := u′gr, sends σ =
(u,Cm1 , . . . , Cmn , Cu′) and gives a proof of knowledge

PK{(m1, . . . ,mn,z1, . . . , zn,−r) : Cm1 = um1hz1 ∧ . . . ∧ Cmn = umnhzn

∧ V = X1
z1 · · ·Xn

zng−r ∧ φ(m1, . . . ,mn) = 1} .

ShowVerify The inputs are params , the statement φ and the secret key values
x1, . . . , xn and y. The verifier computes V as

V =
Cm1

x1 · · ·Cmnxnuy

Cu′
,

then verifies the proof using V . If the proof is valid, output (Cm1 , . . . , Cmn) otherwise
output ⊥.

Correctness To see that the protocol works when n = 1 and both parties are
honest, note that the verifier computes

V =
Cm1

x1ux0

Cu′
=
um1x1hx1z1ux0

um1x1+x0gr
= hx1z1g−r = Xz1

1 g
−r

which matches the predicate in the proof π.

5 Efficiency

In this section we compare the efficiency of our new schemes to U-Prove and Idemix.
We will focus on the computational cost of creating a presentation proof, as this
operation typically must be done by the largest range of devices. We consider the
MACGGM and MACDDH based schemes where the proof system is implemented with
Fiat-Shamir (full details of MACGGM are given in Appendix D, and MACDDH is very
similar). Using the proof system from [12] will have essentially the same computa-
tional cost (not including communication time). Complete descriptions of Idemix and
U-Prove are available in [18] and [21] respectively. We did not include the bilinear
CL signature schemes [1, 8] in our comparison, as detailed specifications (including
parameter choices) are not available.
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Credential Size Table 1 shows the size of a credential in all four schemes, both
asymptotically, and for a concrete choice of parameters. The parameter s is the
number of times the credential may be shown unlinkably (which is relevant for U-
Prove). The size only counts the cryptographic components of the credential, the
metadata and attribute values are assumed to be the same for all systems. The
overhead of MACGGM is the least, followed by MACDDH, which is the size of a single
U-Prove token. The size of SRSA group elements makes Idemix credentials larger
than MACGGM and MACDDH, however, once s > 5, Idemix credentials are smaller
than U-Prove credentials.

Credential Size for s shows
Asymptotic Concrete

U-Prove O(s) 1024s bits
Idemix O(1) 5369 bits
MACGGM O(1) 512 bits
MACDDH O(1) 1024 bits

Table 1: Comparison of credential sizes of U-Prove, Idemix, MACGGM and MACDDH.
The number of times the credential may be shown is denoted s. U-Prove, MACGGM

and MACDDH use a 256-bit elliptic curve group. Idemix uses a 2048-bit modulus.

Computation Cost for Presentation We estimate the cost of creating a pre-
sentation proof and compare the four schemes. Our estimate is formed by counting
the number of multi-exponentiations required to create a presentation proof. We use
the notation `-exp to denote computing the product of ` powers. To realistically
estimate the performance of Idemix, the bitlengths of the exponents must also be
considered, so we use the notation `-exp(b1, . . . , b`) to denote the product of ` powers
when the bitlengths of the exponents are b1, . . . , b`. These bitlengths are calculated
from the Idemix specification [18]. For U-Prove, MACGGM and MACDDH the bitlength
of the exponent is always the length of the group order (256-bits in our comparison).

Table 2 gives the number of multi-exponentiations in terms of three parameters: n
is the number of attributes in a credential, r is the number of revealed attributes in a
presentation proof, and c is the number of committed attributes. For each committed
attribute m, a separate Pedersen commitment is output. As a further comparison,
Table 2 includes the time required to compute these multi-exponentiations for a given
choice of parameters (n, c, r). Our multi-exponentiation implementation in G uses
the NIST 256-bit elliptic curve, and for Idemix uses the parameters in [18]. The
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benchmarks were computed on an Intel Xeon CPU (E31230, quad core, 3.2 GHz) on
an HP Z210 workstation running Windows 7 (64-bit). The times are in milliseconds,
and are the average of 100 runs.

The times given in Table 2 show that the new schemes are competitive with U-
Prove, especially when most of the attributes are committed, and that they are much
faster than Idemix. In particular, in the first benchmark (when (n, c, r) = (10, 2, 2)),
MACGGM is 6.28 times faster than Idemix, and MACDDH is 4.7 times faster than
Idemix. Compared to U-Prove, MACGGM and MACDDH are 3.4 and 4.5 times slower,
much less than the 21.2 times slowdown for Idemix.

In the second benchmark, when (n, c, r) = (10, 10, 0), the performance of U-Prove,
MACGGM and MACDDH are very similar. MACGGM and MACDDH are only 1.04 and 1.5
times slower than U-Prove. Idemix is 18.2, 16.3 and 12.5 times slower than U-Prove,
MACGGM and MACDDH, respectively.

Time when (n, c, r) =
Number of exponentiations (10,2,2) (10,10, 0)

U-Prove 1 (n− r + 1)-exp, 2c 2-exp 3.38 ms 12.43 ms
MACGGM 3 1-exp, 1 (n− r + 1)-exp 11.42 ms 13.93 ms

2(n− r) 2-exp
MACDDH 6 1-exp, 2 (n− r + 2)-exp 15.31 ms 18.10 ms

2(n− r + 1) 2-exp,
Idemix 1 1-exp(2048) 71.72 ms 226.79 ms

c 2-exp(256, 2046)
c 2-exp(592, 2385)
1 (n− r + 2)-exp(456,3060,592,. . . ,592)

Table 2: Comparison of estimated presentation proof generation cost. U-Prove,
MACGGM and MACDDH use 256-bit elliptic curve parameters, and Idemix uses a 2048-
bit modulus.

Discussion These performance estimates show that the new schemes do provide a
considerable performance advantage when compared to Idemix, and a small decrease
compared to U-Prove. The other protocols, namely issuance and verification, will
have similar relative performance (for the user and issuer). In the case of issuance,
our new schemes are expected to have slightly higher computational cost than issuing
a single U-Prove token, but with one less round of interaction (when implemented
with Fiat-Shamir proofs). When issuing multiple tokens MACGGM and MACDDH will
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have the best performance. In all protocols, the cost of verification is within a small
factor of the cost of proof generation.

We note some limitations of our comparison. The parameter set used for Idemix
is not believed to provide 128-bit security, and this favors Idemix in the comparison.
For RSA, a 3072-bit modulus is required for 128-bit security, for strong RSA we are
unaware of any published guidance on choosing the modulus size. (Idemix would
need at least a 3072-bit modulus for 128-bit security). Another limitation is our
parameter choices (n, c, r), which will be different in almost every application. Once
an application is fixed, optimizations may be possible, such as creating a single
commitment to multiple attributes, or re-using the same commitment in multiple
presentations (e.g., when the commitment is used as a pseudonym).
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A Security of MACs

This section completes the proofs of Theorems 2 and 3.

A.1 Security of MACGGM

In this section we give the proof of Theorem 2, that MACGGM is uf-cmva secure in
the generic group model. The proof is for the message space Zp, however it may
easily be generalized to the message space Znp . Since the system parameter Cy hides
y perfectly and unconditionally, we omit it from this analysis.

Proof. Let g be a fixed generator of a generic group G, and let G be written multi-
plicatively. We then represent elements a ∈ G as logg a ∈ Zq. We encode elements of
G as random strings in a set S ∈ {0, 1}∗ with the function ζ : Zp → S (i.e., ζ(logg a)
gives the encoding of a ∈ G as an element of S). The choice of S is not important,
provided |S| ≥ q.
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Let A denote a uf-cmva attacker. A refers to elements of G only using their
representation as elements of S. The attacker refers to elements in the message
space directly.

We describe an algorithm B, which interacts with A, implementing oracles for
group operations, as well as MAC and verification queries. B chooses the secret
values (x, y, h) ∈R Z3

q. The inputs B gives A are the system parameters: g,H = gh,
and X = Hx = ghx, encoded as ζ(1), ζ(h), and ζ(xh).

B maintains a list L of polynomials in Zp[x, y, h, z1, . . . , zqt ], where qt is the num-
ber of tag queries made by A. The indeterminates (x, y, h, z1, . . . , zqt) correspond to
the secrets (x, y, h) and the random values zi used to create tags. Each polynomial in
L corresponds to a group element at each step of A’s computation. The list contains
pairs (Fi, ζi) ∈ Zp[x, y, h, z1, . . . , zqt ]×S. A second list Q maintains the set of queried
messages. Both lists are initially empty.

B counts the number of group oracle queries by qG, and the number of tag queries
with qt, both initialized to zero. The number of verification queries are not counted
(but is assumed to be polynomial in the security parameter). The total number of
group operations is q = qG + 2qt, since each tag query requires two group operations
to answer.

Group operation: A provides input (ζi, ζj,±) where ± corresponds to multi-
ply/divide, and i, j < qG. Then B sets FqG = Fi±Fj. If FqG = F` for ` < qG, B sets
ζqG = ζ`, otherwise B sets ζqG ∈R S distinct from ζ0, . . . , ζqG−1. B adds (FqG , ζqG) to
L and outputs ζqG to A. Finally, B increments qG.

MAC operation: On the i-th query, A provides input mi ∈ Zp. B sets FqG = zi
and ζqG ∈R S. Then B computes FqG+1 = zi(mix+ y) = zimix+ ziy. If FqG+1 = F`
for ` < qG, then B sets ζqG+1 = ζ`, otherwise B sets ζqG+1 ∈R S (distinct from
ζ0, . . . , ζqG). The output to A is (ζqG , ζqG+1). Finally B adds two to qG, one to qt,
and mi is added to Q.

Note that we do not assume each MAC query is distinct, A may request multiple
tags for the same m. A may also implement the rerandomize algorithm by repeated
calls to the group operation oracle.

Verify query: The input from A is (m, ζ, ζ ′) ∈ Zp × S × S. If either of ζ, ζ ′ are
not in L, return “invalid”. Then ζ = ζi and ζ ′ = ζj for some i, j < qG. If

Fi · (xm+ y) = Fj
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then return “valid”, and otherwise return “invalid”. Note that this operation does
not change any of B’s state, it only lets A query L.

At any time during the game, the polynomials in L are of degree (in x, y, zi)
at most two: G-queries compute Fi ± Fj, which does not increase degree, the initial
polynomials have degree one, and MAC queries add a polynomial of degree 1 and of
degree 2 to L.

After q queries (q = qG + 2qt), A outputs (m, ζ, ζ ′) for some m 6∈ Q, and (ζ, ζ ′) =
(ζi, ζj) for some i, j ≤ q. If A succeeds,

Fi · (mx+ y) = Fj, or equivalently, Fi · (mx+ y)− Fj = 0 . (1)

Given the operations available to A, we have that

Fj = a(xh) +

qt∑
i=1

bizi +

qt∑
i=1

cizi(mix+ y) ,

where zi indeterminates representing the random values chosen in each MAC query,
and a, bi and ci are integers. Note that the only way we can have Fj = Fi · (mx+ y)
for such an Fj is if Fi = fj = 0 or if m = m` for some m` ∈ m1, . . . ,mqt . In either
case this will not be a valid forgery. (In the first case the forgery will be rejected
by Verify, in the second case this is not a new message.) Therefore, the polynomial
in (1) is a non-zero polynomial of degree 2 (in x, y, h, zi), and the adversary will
succeed in his forgery only if the evaluation of this polynomial on the randomly
chosen (x, y, z1, . . . , zqt) is 0. (Event (1).)

If, for a particular choice of (x, y, h, z1, . . . , zqt) ∈ Z3+qt
p , we have Fi(x, y, h, z1, . . . , zqt) =

Fj(x, y, h, z1, . . . , zqt), but Fi 6= Fj, the simulation is invalid because B presented two
elements to A as distinct, but they were in fact equal. This condition is described
as:

Fi(x, y, h, z1, . . . , zqt)− Fj(x, y, h, z1, . . . , zqt) = 0 . (2)

Clearly, this second condition can only hold for an unfortunate random choice of
(x, y, h, z1, . . . , zqt), and cannot be influenced by A. The success probability of A is
bounded by the probability of events (1) and (2).

For fixed i, j < q the probability that each of (1) or (2) holds is 2/p, since the
degree of the polynomial in each case is at most 2 (see [24, Lemma 1]). Therefore
the probability over all pairs (i, j) is (

q

2

)
· 4

p
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Therefore A’s success probability after q queries is at most

ε =

(
q

2

)
· 4

p

≤ 4q2

p

To have a constant ε > 0 requires Ω(
√
p) operations in G.

A.2 Security of MACDDH

Here we prove the claims stated in Section 3.2 to complete the proof of Theorem 3.

Proof of Claim 5. Here we consider a series of games Vi. Let Qv be an upper bound
on the number of verification queries that an adversary can make. In all the games,
keys will be generated with KeyGen′, and MAC queries will be answered using MAC.
In the ith game, the first i verification queries will be answered using Verify, and the
remaining Qv + 1− i by SimVerify. When the adversary produces a forgery, we will
verify it using either SimVerify or Verify (we will consider this to be the Qv + 1th
verification query), and then again using FinalVerify, and the adversary succeeds if
both verifications accept. Note that the Qv+1th game is identical to G1, and because
MAC and MAC′ produce identically distributed tags the 0th game is identical to G2.

Now we argue that for all i ∈ 1, . . . , Qv + 1, the adversary’s success probability
in game Vi differs from his success probability in Vi−1 by at most a 1/2k.

To see this, note that the two games are identical until the ith verification. Let
Ei be the event that in the ith verification, the adversary produces a forgery for
which SimVerify accepts but Verify doesn’t. Then, the games are identical as long
as Ei does not occur, so the adversary’s success probability can differ by at most
Pr[Ei]. (Note that SimVerify will always accept queries that are accepted by Verify.)
We argue that this probability must be at most 1/2k: let m = (m1, . . . ,mn), σ =
(σW , σX , σY , σZ ,mn+1) be the message and tag in the adversary’s ith verification
query, and let m̂ = (m1, . . . ,mn+1). Let RX , RY , RZ be such that

σX = RXσW
Hx(m̂) and σY = RY σW

Hy(m̂) and σZ = RZσW
z.

Note that Verify accepts iff RX , RY , RZ are all 1. Now, if SimVerify accepts, we
know that (σY σX

s)z
′

= (σZσW
t)Hy′ (m̂); rewriting using the choice of z, {yi} given

by KeyGen′ we get (σY σX
s)z

′
= (σZσW

z′/w−z)wHy(m̂)+swHx(m̂) ; substituting the val-
ues above, this means (RYRX

s)z
′

= RZ
wHy(m̂)+swHx(m̂). Finally, we observe that the
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adversary’s view up until the ith query, and the values w, z, {xi, yi}n+1
0 are inde-

pendent of the pair (s, z′). (Note that the distribution of IParams , sk is indepen-
dent of s, z′, and the game up until the ith verification only requires IParams , sk .)
Thus, the probability that the adversary produces (RX , RY , RZ) 6= (1, 1, 1) such that
(RYRX

s)z
′
= RZ

wHy(m̂)+swHx(m̂) is at most 1/2k, which means that the probability of
event Ei, i.e., that the adversary produces an ith verification query which is accepted
by SimVerify and rejected by Verify is also 1/2k.

Since Qv is at most polynomial in k, the claim follows.

Proof of Claim 6. Consider an additional game H ′i which behaves like Hi and Hi−1
except that the ith tag is generated as follows:

SimMAC′(sk ′,m,mn+1): Extract IParams , {xi, yi, vi}n+1
0 , s, z′, t from sk ′ and ignore

the rest. Parse m = m1, . . .mn and let m̂ = (m1, . . . ,mn+1). Choose random
r ← Z∗p and random σW ← G \ {1}. Compute and output

σ = (σW , (X0

n+1∏
i=1

Xi
mi)r, (gHy′ (m̂)(X0

n+1∏
i=1

Xi
mi)−s)r, gz

′rσW
−t,mn+1)

Then we complete the proof in two steps. First, we argue by DDH that the adver-
sary’s success probability in games Hi−1 and H ′i differ at most negligibly, and then
we argue again by DDH that his success probability in games H ′i and Hi is also at
most negligibly different.

Hi−1 and H ′i First, observe that in game H ′i (and game Hi−1) the output of the
game will be exactly the same if we make the following modification: On the ith
MAC query, instead of choosing m

(i)
n+1 at random, we choose m

(i)
n+1 so that if we set

m̂(i) = (m
(i)
1 , . . . ,m

(i)
n+1) (where m(i) = (m

(i)
1 , . . . ,m

(i)
n ) is the message the adversary

queried on), we get Hv(m̂
(i)) = 0. To see that this will produce the same output note

that IParams and the values X0, Y0, {y′i}n+1
0 , z′, s, t needed to run MAC′, SimMAC,

SimMAC′ and SimVerify are all independent of {vi}n+1
0 (because {x′i}n+1

0 are uniformly

random), so this m
(i)
n+1 will be uniformly distributed, independent of these values in

the adversary’s view. Furthermore, his chance of success on output forgery with m̂∗ =
(m∗1, . . . ,m

∗
n,m

∗
n+1) (i.e. where the forgery message is m∗ = (m∗1, . . .m

∗
n) and m∗n+1

is the last element of the forged tag) depends only on Hy′(m̂
∗), Hv(m̂

∗), s,Hx′(m̂
∗)

and these values will be independent of m
(i)
n+1. (We have observed that {y′}n+1

0 , s are

independent of m
(i)
n+1. Then we note that Hv(m̂

∗) will also be independent of m
(i)
n+1 as

long as the adversary produces a forgery on a new message m∗ 6= m(i), because Hv(·)
is a pairwise independent function, and that Hx′(m̂

∗) is completely determined by
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Hv(m̂
∗), w, IParams .) Thus, the distribution of all the values in the game (including

the adversary’s probability of success) will be identical to what it would have been
in the original H ′i (or Hi−1).

Suppose that there exists an adversary for which the success probability in games
H ′i and Hi−1 is non-negligibly different. Then we will construct an adversary B for
DDH as follows: B receives as input a DDH challenge (A,B,C) = (ga, gb, gc) and
must determine whether c = ab. It sets h = A, and then generates all of the other
elements according to KeyGen′. Note that MAC′, SimMAC, SimVerify, and FinalVerify
all work without knowing the discrete log w of h, so B can answer all the verification
queries, generate the first i− 1 (simulated) tags, and the last Qv − i (real) tags, and
evaluate the adversary’s forgery exactly as in games H ′i and Hi−1.

For the ith tag if A queries for message m = (m1, . . . ,mn), B will choose mn+1

such that if we let m̂ = (m1, . . . ,mn+1), we will get Hv(m̂) = 0. (As noted above, this
does not affect the adversary’s view or chances of success.) It then sets σX = BHx′ (m̂),
σY = BHy′ (m̂)−sHx′ (m̂), σW = C, and σZ = Bz′C−t. Implicitly, this is equivalent to
setting r = b. Now, if C = gab, this will be identical to the output of MAC′ and
otherwise it will be identical to the output of SimMAC′ (in both cases conditioned
on the appropriate choice for mn+1).

Thus, B will continue the game until A outputs a forgery. It will evaluate the
forgery by running SimVerify and FinalVerify, and if both accept it will output 1, and
otherwise it will output 0.

Since B exactly simulates either Hi−1 or H ′i depending on the DDH challenge,
B’s advantage will be exactly the difference in A’s success probabilities between the
two games. We conclude that A’s success probabilities differ by at most a negligible
amount.

H ′i and Hi Suppose that there exists an adversary for which the success probability in
games H ′i and Hi is non-negligibly different. Then we will construct an adversary B
for DDH as follows: B receives as input a DDH challenge (A,B,C) = (ga, gb, gc) and
must determine whether c = ab. It sets h = A, and then generates all of the other
elements according to KeyGen′. Note that MAC′, SimMAC, SimVerify, and FinalVerify
all work without knowing the discrete log w of h, so B can answer all the verification
queries, generate the first i− 1 (simulated) tags, and the last Qv − i (real) tags, and
evaluate the adversary’s forgery exactly as in games H ′i and Hi−1.

For the ith tag if A queries for message m = (m1, . . . ,mn), B will choose
random mn+1 ← Zp and random σW ← G, let m̂ = (m1, . . . ,mn+1), and set
σX = BHx′ (m̂)CHv(m̂), σY = BHy′ (m̂)σX

−s, and σZ = Bz′σW
−t. Implicitly, this is

equivalent to setting r = b. Now, if C = gab, this will be identical to the output of
SimMAC′ and if it is a random element of G it will be statistically close to the output
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of SimMAC. (If Hv(m̂) 6= 0, then this will be identical to the output of SimMAC, and
this case occurs with all but negligible probability because here mn+1 is chosen at
random.)

Thus, B will continue the game until A outputs a forgery. It will evaluate the
forgery by running SimVerify and FinalVerify, and if both accept it will output 1, and
otherwise it will output 0.

Since B exactly simulates either H ′i or Hi depending on the DDH challenge, B’s
advantage will be exactly the difference in A’s success probabilities between the two
games. We conclude that A’s success probabilities differ by at most a negligible
amount.

Proof of Claim 7. Let m = (m1, . . . ,mn), σ = (σX , σY , σW , σZ ,mn+1) be the adver-
sary’s forgery, and let m̂ = (m1, . . . ,mn+1).

Now, if m,σ is accepted by FinalVerify, then the following equation holds:

(σW
−Hv(m̂)σX)Hy′ (m̂) = (σX

sσY )Hx′ (m̂)

Note that x′0, v
′
0 are independent and information theoretically hidden from A,

even given all the secrets other than X0, Y0, x0, y0 (which are not used in Game G3).
This in turn means that Hx′(m̂), Hv(m̂) are information theoretically hidden.

Thus, the probability that A can produce σ with σX
sσY 6= 1 that satisfies

FinalVerify is 1/2k. Furthermore, suppose that σX
sσY = 1. Then if FinalVerify

accepts, it must be the case that σW
−Hv(m̂)σX = 1 as well. Now, consider the prob-

ability that A can produce σ such that this equation holds. Recall that Hv(m̂) is
also information theoretically hidden from A. So the probability that A produces
σW 6= 1 and FinalVerify accepts is also 1/2k. The only remaining case will be σW = 1,
which is rejected by SimVerify. We conclude that the probability A succeeds in game
G3 is at most 1/2k.

B Formal Security Definitions for Protocols

In this section we formally define the security properties of keyed-verification cre-
dential scheme, introduced in Section 4.

To simplify the definition somewhat, we will first consider the setting where
the issuer sees all of the user’s attributes when it issues the credential, and define
Correctness, Unforgeability, and Anonymity in this setting. Then we will require
the existence of a blind issuing protocol, which is a secure two party computation
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allowing the user to obtain credentials identical to those generated by Issue, while
keeping a subset of his attributes private.

We also include two algorithms which will be used to define security for the
system:

Issue(sk , (m1, . . . ,mn)) uses the secret key to generate a credential for attributes
(m1, . . . ,mn). This can be run directly, if the issuer is trusted to behave hon-
estly and knows all the user’s attributes, otherwise BlindIssue and BlindObtain
should be used, as these will allow the user to guarantee that the credential
received is valid, and to hide some of his attributes.

CredVerify(sk , (m1, . . . ,mn), cred) uses the secret key to verify a credential. This is
never run (because it reveals the attributes (m1, . . . ,mn) as well as cred which
may compromise the user’s privacy), but is used to define the set of valid
credentials for attributes (m1, . . . ,mn) under the sk .

Security properties of a keyed-verification credential system We require
the following five properties hold.

Definition 8 (Correctness). Let Φ be the set of statements supported by a credential
system, and U be the universe of attribute sets. Then a keyed-verification credential
system (CredKeygen, Issue,CredVerify, Show, ShowVerify) is correct for Φ,U if for all
for all (m1, . . . ,mn) ∈ U , for all sufficiently large k,

Pr
[
params ← Setup(1k);

(sk , IParams)← CredKeygen(params);

cred ← Issue(sk , (m1, . . . ,mn));

such that CredVerify(sk , (m1, . . . ,mn), cred) = 0
]

= 0

and for all φ ∈ Φ, (m1, . . . ,mn) ∈ U such that φ(m1, . . . ,mn) = 1, for all sufficiently
large k,

Pr
[
params ← Setup(1k);

(sk , IParams)← CredKeygen(params);

cred ← Issue(sk , (m1, . . . ,mn));

Show(IParams , cred , (m1, . . . ,mn), φ)↔ ShowVerify(sk , φ)→ b

such that b = 0
]

= 0
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The unforgeability property ensures an adversary cannot produce an accepting
proof for a statement φ unless at least one of the attribute sets that he requested a
credential for satisfies φ.

Definition 9 (Unforgeability). A presentation protocol Show, ShowVerify for keyed-
verification credentials scheme CredKeygen, Issue is unforgeable if for all PPT adver-
saries A, there exists a negligible function ν such that for all k,

Pr
[
params ← Setup(1k);

(IParams , sk)← CredKeygen(params);

(state, φ)← A(params , IParams)Issue(sk ,·),ShowVerify(sk ,·)

A(state)↔ ShowVerify(sk , φ)→ b

such that b = 1 ∧ (∀(m1, . . . ,mn) ∈ Q, φ(m1, . . . ,mn) = 0)
]

= ν(k)

where Q is the list of all attribute sets (m1, . . . ,mn) queried to the Issue(sk , ·) oracle,
and all executions of ShowVerify are required to be sequential.

Definition 10 (Anonymity). A presentation protocol Show, ShowVerify for keyed-
verification credentials scheme CredKeygen, Issue is anonymous if for all PPT ad-
versaries A, there exists an efficient algorithm SimShow, and a negligible function ν
such that for all k, for all φ ∈ Φ and (m1, . . . ,mn) ∈ U such that φ(m1, . . . ,mn) = 1,
and for all params ← Setup(1k) and all (IParams , sk) ← KeyGen(params), for all
cred such that CredVerify(sk , (m1, . . . ,mn), cred) = 1:

{Show(IParams , cred , (m1, . . . ,mn), φ)↔ A→ state} ≈ {SimShow(IParams , sk , φ)},

i.e., the adversary’s view given the proof can be simulated by SimShow given only φ
and a valid secret key corresponding to IParams.

Note that the statement φ is known to A and may contain information about
the attribute values, which may identify the user. Definition 10 ensures that the
keyed-verification credential scheme’s protocols are anonymous, modulo information
revealed in φ.

Definition 11 (Blind Issuance). Here we consider a setting where the user wishes to
obtain credentials for attributes (m1, . . . ,mn), and the issuer knows only some subset
S of those attributes. Then we consider the following function: f((S, params , IParams),
(sk , r), (m1, . . . ,mn)) on shared input (S, params , IParams), issuer input (sk , r) , and
user input (m1, . . . ,mn), returns ⊥ to the issuer and returns to the user “params er-
ror” if (IParams , sk) are not in the range of CredKeygen(params), “attribute error”
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if S does not agree with (m1, . . . ,mn),and cred ← Issue(sk , (m1, . . . ,mn); r) if neither
of these errors occurs.3

We will say that an issuance protocol BlindIssue,BlindObtain is a Blind issuance
protocol for Issue if it is a secure two party computation (against malicious adver-
saries) for the above function. See [17, Chapter 7] for a definition of secure 2PC.

Definition 12 (Key-Parameter Consistency). The key generation algorithm CredKeygen
satisfies Key-Parameter Consistency if for any PPT adversary A, the probability that
A given params ← Setup(1k) can produce (IParams , sk 1, sk 2) such that (IParams , sk 1)
and (IParams , sk 2) are both in the range of CredKeygen(params) is negligible (where
the probability is over the choice of params and the random coins of A).

Definition 13 (Secure keyed-verification credential system). We say that (CredKeygen,
CredVerify, Issue,BlindIssue,BlindObtain, Show, ShowVerify) is a secure keyed-verification cre-
dential system if these algorithms satisfy Correctness, Unforgeability, Anonymity,
Blind Issuance, and Key-Parameter Consistency as defined above.

C A Keyed-Verification Credential Scheme from

MACDDH

C.1 Basic algorithms: Setup,CredKeygen, Issue,CredVerify

Let SetupDDH,KeyGenDDH,MACDDH,VerifyDDH be the algorithms described in Section
3.2. Then we define the following setup algorithms for the credential system.

Setup(1k) will be the same as SetupDDH.

CredKeygen(params): Parse params = (G, p, g, h). Run KeyGenDDH(params) to ob-
tain IParamsDDH = {Xi, Yi}n+1

1 ) and skDDH = ({xi, yi}n+1
0 , z, IParamsDDH).

Choose x̃, ỹ, z̃ ← Zp and form commitments Cx0 = gx0hx̃, Cy0 = gy0hỹ, Cz =
gzhz̃. Output IParams = (IParamsDDH, Cx0 , Cy0 , Cz) and sk = (skDDH, x̃, ỹ, z̃).

We also present the following algorithms, which will be used to specify the form of
valid credentials when we prove security of the scheme.

Issue(sk , (m1, . . . ,mn)): Output cred ← MACDDH(sk , (m1, . . . ,mn), ).

CredVerify(sk , (m1, . . . ,mn), cred): Output the result of VerifyDDH(sk , (m1, . . . ,mn), cred).

3Here Issue(sk , (m1, . . . ,mn); r) means running Issue(sk , (m1, . . . ,mn)) with randomness r.
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C.2 Presentation Proof

Here we present a construction for Show, ShowVerify using a zero knowledge proof
of knowledge. See Section 2 for a discussion of some possible instantiations for this
proof system.

Proof Generation The inputs are the system and issuer parameters (G, p, g, h)
and (Cx0 , Cy0 , Cz, {Xi}n+1

1 , {Yi}n+1
1 ), the credential (σW , σX , σY , σZ ,mn+1), the state-

ment φ, and the attribute values {mi}. The prover will first randomize the credential:
choose r ∈R Zp∗ and compute σW := σW

r, σX := σX
r, σY := σY

r, and σZ := σZ
r.

Then the Prover chooses rx, ry, w1, . . . wn+1 ∈R Zp, and computes

CσX := σXg
rx and CσY := σY g

ry ,

Vx := g−rx
n+1∏
i=1

Xwi
i and Vy := g−ry

n+1∏
i=1

Y wi
i ,

and Cmi := σW
mihwi for all i ∈ 1, . . . , n+ 1 .

He sends σW , σZ , CσX , CσY , Vx, Vy, Cm1 , . . . , Cmn+1 to the verifier4 and gives a proof
of knowledge:

PK{({mi}n+1
1 , {wi}n+1

1 ,−rx,−ry, ) : Cmi = σW
mihwi for all i ∈ 1, . . . n+ 1

∧ Vx = g−rx
n+1∏
i=1

Xwi
i ∧ Vy = g−ry

n+1∏
i=1

Y wi
i

∧ φ(m1, . . . ,mn) = 1} .

Proof Verification The inputs are the system and issuer parameters (G, q, g, h)
and (Cx0 , Cy0 , Cz, {Xi}n+1

1 , {Yi}n+1
1 ), the secret values {xi}n+1

0 , {yi}n+1
0 , z and the pre-

sentation proof γ.
The verifier receives (σW , σZ , Cm1 , . . . , Cmn+1 , CσX , CσY ) from the prover and ver-

ifies that

Vx =
σW

x0
∏n+1

1 Cmi
xi

CσX
,

Vy =
σW

y0
∏n+1

1 Cmi
yi

CσY
,

4If we have a proof of knowledge system where the extractor can extract a witness without being
given the statement, then Vx, Vy can be omitted from this message; in that case the honest verifier

will compute Vx =
σW

x0
∏n+1

1 Cmi
xi

CσX
and Vy =

σW
y0

∏n+1
1 Cmi

yi

CσY
and use that to verify the proof.
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then verifies π. If π is valid and if σZ = σW
z, accept, otherwise reject.

C.3 Issuance

Here we consider the protocols BlindIssue,BlindObtain for issuing credentials. We
first consider a simplified issuing protocol that can be used if all of the attributes
are known to the issuer, then present the more general protocol allowing for hidden
attributes. Again, see Section 2 for a discussion of some possible instantiations for
the proof of knowledge system.

Issuance with public attributes To issue a credential with the attributes (m1, . . . ,mn) ∈
Znq , the issuer chooses σ = (σW , σX , σY , σZ ,mn+1)← MACDDH(sk , (m1, . . . ,mn)), and
returns σ to the user and gives a proof π, where

π := PK{({xi}n+1
0 , {yi}n+1

0 , z, x̃, ỹ, z̃) :σX = σW
x0

n+1∏
1

(σW
mi)xi ∧ σY = σW

y0

n+1∏
1

(σW
mi)yi

∧ σZ = σW
z ∧ Cx0 = gx0hx̃ ∧ Cy0 = gy0hỹ

∧ Cz = gzhz̃ ∧ ∀i ∈ 1, . . . , n+ 1, Xi = hxi

∧ ∀i ∈ 1, . . . , n+ 1, Yi = hyi}

The proof π proves that the credential is well-formed with respect to the system and
issuer parameters. If this proof verifies, the user outputs σ; otherwise it outputs ⊥.

Issuance with hidden attributes If some of the attributes must be hidden,
we can proceed as follows: Let H ⊆ {1, . . . , n}, be the indices of the attributes
that must remain hidden. The user generates an Elgamal keypair (d, γ := gd),
then creates an encryption of gmi for each hidden attribute mi as follows: Ei =
(gri , gmiγri), using ri ∈R Zp. The ciphertexts are sent to the issuer (along with a
proof of knowledge of {ri,mi}i ∈ H). The issuer chooses b ∈R Z∗p , and mn+1 ∈R Zp.5
It computes σW = gb, σZ = σzW , and uses the homomorphic properties of Elgamal to
generate an encryption Ex of σX = gbx0+bmn+1xn+1

∏n
1 (gmi)bxi and encryption Ey of

σY = gby0+bmn+1yn+1
∏n

1 (gmi)byi , and to randomize both of these encryptions to obtain
E ′x, E

′
y (by multiplying with encryptions of 0 using randomness rx ← Zp and ry ← Zp

respectively). It sends σW , σZ , E
′
x, E

′
y,mn+1 to the user and gives a proof that these

values have been generated correctly with respect to (Cx0 , Cy0 , Cz, {Xi, Yi}n+1
1 ) (i.e.

5As discussed in section 3.2, in practice we can choose mn+1 = H(σW ) if we assume H is a
random oracle.
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a proof of knowledge the appropriate {xi, yi}n+1
0 , z, x̃, ỹ, z̃, b, and randomizing factors

rx, ry). If the proof does not verify, the user outputs ⊥. Otherwise, the user decrypts
E ′x, E

′
y to get σX , σY , and outputs σ = (σW , σX , σY , σZ ,mn+1).

C.4 Security

Theorem 14. If the DDH assumption holds and the proof system used is a zero
knowledge proof of knowledge, then the above algorithms (CredKeygen, Issue,CredVerify,
Show, ShowVerify,BlindIssue,BlindObtain) make up a secure keyed-verification creden-
tial system.

Proof. We will show that these algorithms satisfy Correctness, Unforgeability, Anonymity,
and Blind Issuance.

Correctness For correctness we need to show two properties. The first follows
directly from correctness of the MAC. To see the second, consider the following:

Issue(sk , (m1, . . . ,mn)) generates credentials of the form (u, ux0+
∑n+1

1 ximi , uy0+
∑n+1

1 yimi ,
uz,mn+1). Then if both Show and ShowVerify are executed honestly, then the proof
π will be accepting by completeness of the proof system. Also, the honest Show will
compute :

Vx =
σW

x0
∏n+1

1 Cmi
xi

CσX

=
σW

x0
∏n+1

1 σW
mixihxiwi

σXgrx

=
σW

x0
∏n+1

1 σW
mixi

σXgrx

n+1∏
i=1

Xwi
i

=
ux0
∏n+1

1 umixi

grxux0+
∑n+1

1 ximi

n+1∏
i=1

Xwi
i

= g−rx
n+1∏
i=1

Xwi
i

so the verifier’s check on Vx will succeed. A similar equality holds for Vy. Finally,
since Issue produces σZ = uz, the verifier’s final check will succeed and the verifier
will accept.
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Unforgeability We have shown (Theorem 3) that MACDDH is unforgeable under
DDH. Suppose there exists an adversary A who can break the unforgeability prop-
erty of our credential system. Then we can construct an algorithm B that breaks
unforgeability of MACDDH as follows:
B receives params , IParamsDDH and chooses random Cx0 , Cy0 , Cz ← Zp. It then

sends params , IParams = (IParamsDDH, Cx0 , Cy0 , Cz) to A.
When A queries the Issue oracle, B forwards the query to it’s MAC oracle and

returns the resulting tag.
When A queries the ShowVerify oracle: A sends σW , σZ , Cm1 , . . . Cmn+1 , CσX , CσY ,

and gives a proof π. If the proof π is invalid, B will return ⊥. Otherwise B will run
the proof of knowledge extractor to extract {mi}n+1

1 , rx, ry. Then it will compute
σX = CσXg

−rx and σY = CσY g
−ry . Finally, it will query it’s Verify oracle with

(m1, . . .mn), (σW , σX , σY , σZ ,mn+1), and output the result.
In the final show protocol, B will again, extract {mi}n+1

1 , rx, ry, and output
(m1, . . .mn), (σW , CσXg

−rx , CσY g
−ry , σZ ,mn+1) as it’s forgery.

First, note that B’s response to Issue queries will be identical to the honest Issue
algorithm. Then, we argue that it’s response to ShowVerify queries will also with
overwhelming probability be identical to the output of the honest algorithm. To see
this, note that the proof of knowledge property guarantees that the extractor will
succeed in producing a valid witness with all but negligible probability. Furthermore,
if the extractor gives valid {mi}n+1

1 , rx, ry then

Vx =
σW

x0
∏n+1

1 Cmi
xi

CσX

⇐⇒g−rx
n+1∏
1

Xi
wi =

σW
x0
∏n+1

1 (σW
mihwi)xi

CσX

⇐⇒g−rx
n+1∏
1

(hxi)wi =
σW

x0+
∑n+1

1 mixi
∏n+1

1 hwixi

CσX

⇐⇒CσXg−rx = σW
x0+

∑n+1
1 mixi

And similarly Vy =
CryσW

y0
∏n+1

1 Cmi
yi

CσY
iff CσY g

−ry = σW
y0+

∑n+1
1 yimi . The final check

that the honest verifier makes guarantees that σZ = σW
z. Thus, the honest veri-

fier algorithm will accept iff (σW , CσXg
−rx , CσY g

−ry , σZ ,mn+1) would be accepted by
VerifyDDH for message (m1, . . . ,mn).

Similarly, we can argue that B will extract a valid MAC from the final show
protocol whenever ShowVerify would have output 1. Thus, if A can cause ShowVerify
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to accept for some statement φ that is not satisfied by any of the attribute sets
queried to Issue, then B will extract a new message (m1, . . . ,mn) and a valid tag for
that message.

Anonymity Let φ ∈ Φ and (m1, . . . ,mn) ∈ U be such that φ(m1, . . . ,mn) =
1. Let (IParams , sk) be in the range of CredKeygen, and let cred be such that
CredVerify(sk , cred , (m1, . . . ,mn)) = 1.

Then SimShow(sk , φ) will behave as follows: It will choose random values σW , CσX ,
CσY , Cm1 , . . . , Cmn ← G. It will then use {xi, yi}n+1

0 , z from sk to compute σZ = σW
z,

Vx =
σW

x0
∏n+1

1 Cmi
xi

CσX
, and Vy =

σW
y0

∏n+1
1 Cmi

yi

CσY
. It will run A with these values as

the first message, and then simulate the proof of knowledge, and output whatever A
outputs at the end of the proof.

First note CσX , CσY , Cm1 , . . . , Cmn are distributed identically to those produced by
Show. Next, note that for any cred such that CredVerify(sk , cred , (m1, . . . ,mn)) = 1,
randomizing the credential will produce the same distribution as choosing random
σW and computing σX = σW

x0+
∑n+1

1 ximi , σY = σW
y0+

∑n+1
1 yimi , and σZ = σW

z for
the values z, {xi, yi}n+1

0 in sk . Thus, σW , σZ will also be distributed identically to
those produced by Show.

Finally, note that if we define rx, ry, {wi} to be the values such that CσX =

σW
x0+

∑n+1
1 ximigrx , CσY = σW

y0+
∑n+1

1 yimigry , and Cmi = umihwi for the random
values CσX , CσY , Cm1 , . . . , Cmn chosen by SimShow, then the calculation above in the
proof of Correctness shows that the Vx, Vy that SimShow computes will be identical
to those that the honest Show would have produced.

By the zero knowledge property of the proof of knowledge, we conclude that the
resulting view will be indistinguishable to that produced by the adversary interacting
with Show.

Blind Issuance First, we consider the setting where all of the attributes are known
to the issuer and we use the simpler algorithm. Consider the case where the user is
corrupt. Then our 2PC simulator on shared input (S, IParams) will receive the user’s
list of attributes (m1, . . . ,mn) and forward it to the functionality. The functionality
will return ”attribute error” if S 6= (m1, . . . ,mn) and otherwise it will return cred .
If the error does not occur, the 2PC simulator will then send cred and run the proof
of knowledge ZK simulator to simulate the proof of correctness for cred . By zero
knowledge, this will be indistinguishable from the real world.

Next, we consider the case where the issuer is corrupt. In this case our 2PC
simulator will receive cred = (σW , σX , σY , σZ ,mn+1) from the issuer and run the
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verifier for the proof system. If the proof accepts, it will run the proof of knowledge
extractor to extract sk = ({xi}n+1

0 , {yi}n+1
0 , x̃, ỹ, z̃) and r = (σW ,mn+1). It will send

(sk , r) to the ideal functionality. By the proof of knowledge property, the credential
sent in the real world is σW , σW

x0
∏n+1

1 (σW
mi)xi , σY = σW

y0
∏n+1

1 (σW
mi)yi , σZ =

σW
z,mn+1) which is exactly what would be produced by the ideal functionality on

input the (sk , r) described above.
Then, we consider the more complex algorithm which allows hidden attributes.

Consider the case where the user is corrupt. Then our 2PC simulator on shared
input (S, IParams) will receive the user’s list of ciphertexts (E1, . . . , En), and run
the verification for the proof of knowledge. If the proof accepts, it will then use the
proof of knowledge extractor to extract {mi}i∈H and send it along with the set S to
the functionality. The functionality will return cred = (σW , σX , σY , σZ ,mn+1). The
2PC simulator will then compute an encryption E ′x of σX and an encryption E ′y of
σY , send (σW , σZ , E

′
x, E

′
y,mn+1) to the user, and use the ZK simulator to simulate

the correctness proof. Note that in the real BlindIssue protocol, if E1, . . . , En are
encryptions of gm1 , . . . , gmn , then the resulting Ex, Ey will be distributed identically
to a fresh encryption of σW

x0
∏n+1

1 (σW
mi)xi , σW

y0
∏n+1

1 (σW
mi)yi . Thus, these will

be identical to what the simulator produces.
Next, we consider the case where the issuer is corrupt. In this case our 2PC

simulator will generate encryptions Ei of 1 for all i ∈ H, send them toA, and simulate
the proof. It will then receive cred = (σW , σX , σY , σZ ,mn+1) from A and run the
verification of the proof of knowledge; if the proof is accepting, it will run the proof of
knowledge extractor to extract sk = ({xi}n+1

0 , {yi}n+1
0 , x̃, ỹ, z̃) and r = (b,mn+1). It

will send (sk , r) to the ideal functionality. To see that this will be indistinguishable
from the real game, consider the following series of games. The first game G1 is
identical to the real game, except that instead of computing σX , σY by decrypting the
ciphertexts Ex, Ey, we run the proof of knowledge extractor to extract sk , r and use
those to form the credential by running Issue. By the proof of knowledge property and
correctness and homomorphic properties of the encryption scheme, the credential sent
in the real world is (σW = gb, σW

x0
∏n+1

1 (σW
mi)xi , σW

y0
∏n+1

1 (σW
mi)yi , σW

z,mn+1)
which is exactly what would be produced by the ideal functionality on input the
(sk , r) described above. Next, in game G2 we replace the proof of knowledge of the
messages in Ei with a simulated proof - by zero knowledge this is indistinguishable.
Finally, we note that the only difference between this game and the simulated game
is that Ei is generated as an encryption of gmi rather than 1; thus the two games
are indistinguishable by CPA-security of Elgamal encryption (which follows from
DDH [25]).
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Key-Parameter Consistency This follows under the discrete log assumption
from the binding property of the Pedersen commitment scheme. (Note that the
discrete log assumption is implied by DDH.)

C.5 Instantiating Proofs of Knowledge

For our application we need a proof system that is zero knowledge and satisfies a
strong proof of knowledge property. In our setting we propose two approaches to
instantiating the proof system. The first is to use the Damg̊ard protocol [12], which
converts any sigma protocol into a three round interactive zero knowledge proof
of knowledge secure under concurrent composition. This protocol requires trusted
parameters but this restriction can be omitted in the random oracle model. The
second option is to make the assumption that the stronger extraction property holds
for Fiat-Shamir based proofs [14] in the random oracle model.

In particular, we need that the proof of knowledge property hold even when the
adversary is given some information about previously extracted values, which can
be modeled as access to an extraction oracle. (This comes up, for example, in the
credential Unforgeability proof, when we need to extract in order to answer the user’s
ShowVerify queries. For standard model proof protocols, when proofs are executed
sequentially, this follows directly from the standard proof of knowledge property [3].
In the random oracle model however, we don’t know of any such implication. (See
[15] pp.152–153 for discussion of some of the issues in this setting.)

In our setting we propose two approaches to instantiating the proof system. The
first is to use the Damg̊ard protocol [12], which converts any sigma protocol into a
three round interactive zero knowledge proof of knowledge secure under concurrent
composition. This protocol requires trusted parameters for a trapdoor commitment
scheme, which can be efficiently implemented (without a trusted party) in the random
oracle model: Consider the commitment scheme which commits by choosing r and
computing the commitment as H(m; r). It is clear that in the random oracle model
this will be a trapdoor commitment, since control of the random oracle can be used to
open such a commitment to any message. Implementing the trapdoor commitment
this way means we do not need any trusted setup besides the establishment of a
secure hash function that can be modeled as a random oracle. 6

The second option is to make the assumption that the stronger extraction prop-
erty holds for Fiat-Shamir based proofs [14] in the random oracle model. While it

6For alternative trapdoor commitment schemes that do not require a random oracle, see [12,
§4]. These alternatives require trusted setup of a common reference string,
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is not obvious how to show that this property holds in the random oracle model,
it seems like a reasonable assumption in the combined random oracle and generic
group model, following along the lines of [23, 26]. Since our analysis for the MACGGM

scheme already uses this model, this maybe a good choice for use with that scheme.

D Detailed Description of Show with MACGGM

We describe an instantiation of our presentation protocol and corresponding verifi-
cation when the ZK proofs are implemented using non-interactive Schnorr proofs.
This is the same proof system used in U-Prove and Idemix. This protocol does not
include proof of any additional predicates φ, but outputs commitments which may
be used as input to further proof protocols. H will denote a cryptographic hash
function.

D.1 Proof Generation

Inputs: params , a credential u0, u
′
0, and attribute values m1, . . . ,mn.

1. (Re-randomize) Choose a ∈R Zp, compute u = u0
a and u′ = u′0

a. Delete a.

2. (Form commitments)

(a) Choose r, z1, . . . zn ∈R Zp.
(b) Compute {Cmi := umihzi}ni=1, Cu′ := u′gr.

3. (Create proof π)

(a) Choose z̃1, . . . , z̃n, r̃, m̃1, . . . , m̃n ∈R Zp.
(b) Compute {C̃mi := um̃ihz̃i}ni=1, and Ṽ = X z̃1 · · ·X z̃ngr̃.

(c) Form the challenge

c = H(param‖{Cmi}ni=1‖Cu′‖{C̃mi}ni=1‖Ṽ )

(d) Compute responses (all mod p), {smi = m̃i − cmi, szi = z̃i − czi}ni=1, and
sr = r̃ + rc. Let S denote the set of responses.

(e) Output π = (c, S).

4. (Output) Output the presentation proof P = (u, {Cmi}ni=1, Cu′ , π).
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D.2 Proof Verification

Inputs: Presentation proof P , issuer and system parameters param, private key
elements x1, . . . , xn, y.

1. Parse P as (u,Cm1 , . . . , Cmn , Cu′ , π).

2. Compute

V =
Cm1

x1 · · ·Cmnxnuy

Cu′
,

3. (Verify π)

(a) Parse π as (c, S) where S contains the responses computed in Step 3d of
proof generation.

(b) Compute

c′ = H(param‖{Cmi}ni=1‖Cu′‖{Cmigsmihszi}ni=1‖V Xsz1 · · ·Xszngsr)

(c) Accept π as valid if c′ = c, otherwise reject.

4. (Output) If π is valid, output {Cmi}ni=1
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