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Abstract

We consider the problem of constructing anonymous credentials for use in a setting where the
issuer of credentials is also the verifier, or more generally where the issuer and verifier have a
shared key. In this setting we can use message authentication codes (MACs) instead of public key
signatures as the basis for the credential system.

To this end, we construct two algebraic MACs in prime-order groups, along with efficient proto-
cols for issuing credentials, asserting possession a credential, and proving statements about hidden
attributes (e.g., the age of the credential owner). We prove the security of the first scheme in the
generic group model, and prove the security of the second scheme — using a dual-system-based ap-
proach — under decisional Diffie-Hellman (DDH). Our MACs are of independent interest, as they
are the only uf-cmva-secure MACs with efficient proofs of knowledge.

Finally, we compare the efficiency of our new systems to two existing constructions of anonymous
credentials: U-Prove and Idemix. We show that the performance of the new schemes is competitive
with U-Prove (which is not provably secure, whereas ours is based on DDH), and many times faster
than Idemix.

1 Introduction

An anonymous credentials system [12, 8, 10] allows for a landscape in which users can be known in
different context by different pseudonyms. For example, a user Alice might be known to Bob under
one pseudonym nym, and to Carol under a different pseudonym nym′. Her behavior under these two
pseudonyms should be unlinkable, meaning no one can discern that the two pseudonyms belong to the
same user, yet she should be able to prove possession of a credential issued to one given pseudonym
to any other user, without revealing the pseudonym (e.g., if Carol issued a credential to nym′, Alice
should nevertheless be able to prove to Bob — using nym— that she is in possession of the credential).
Beyond proving basic possession of a credential, Alice may want to furthermore prove that it captures
certain attributes about her (e.g., her age).

Many of the potential applications of anonymous credentials involve authentication. For example,
a transit authority might issue monthly passes and then check for possession of such a pass when the
user boards a bus; similarly, a university might issue keycards to access certain buildings, and then
require a user to swipe his card upon entering one of these buildings. For each of these situations, the
authority needs to know only that an authorized user is gaining entry, yet current implementations of
such access systems allow the authority to learn the patterns of each individual participants (e.g., who
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is entering which building and when). Anonymous credentials present a solution that simultaneously
preserves the integrity of the system through an unforgeability guarantee that a user cannot prove
possession of credentials he wasn’t issued (e.g., cannot gain access to a building without having been
granted access) but also preserves the anonymity of the individual participants. If the anonymity is
preserved throughout multiple presentations of the credential (e.g., each time a user boards the bus),
it is said to satisfy multi-show unlinkability.

Traditionally, the models for anonymous credentials have assumed that a user must be prepared
to prove possession of his credentials to many other participants in the system; as such, all existing
constructions are built on top of public-key primitives such as digital signatures. In both of the
above examples, however, the issuer and verifier are in fact the same entity; e.g., the transit authority
both sells (i.e., issues) monthly passes and then verifies them when users enter the system. In these
scenarios, and more generally in any setting in which the party controlling access to a resource also
manages the accounts of authorized parties, constructions can take advantage of this symmetry to
use symmetric-key primitives — which are typically significantly more efficient than their public-key
counterparts — to construct a keyed-verification credential.

If we define keyed-verification credentials as allowing the issuer and verifier to share access to some
secret key, then symmetric-key primitives can be further adopted beyond the setting in which the
issuer and verifier are the exact same entity. As long as a user does not need to authenticate himself
to any other user in the system, the issuer can share a separate secret key with each verifier, and then
issue credentials specific to each of these verifiers. In a purely non-interactive setting this might require
the issuer to provide credentials for each verifier all at once (which might become fairly unattractive
beyond a small number of verifiers), but in a more online setting the user might request credentials
from the issuer as needed.

More generally, it is also possible to translate a publicly verifiable credential into a more efficient
keyed-verification credential with the same attributes and functionality. Another use case is thus as
follows: when a user wishes to interact with a new verifier, he first enrolls with the verifier by presenting
a traditional credential; the verifier checks this credential, then issues a new credential that only he can
verify. When the user returns, the efficient keyed-verification credential is used, and it is impossible
to link this use with previous presentations of the credential or with the user’s initial enrollment.
Translating credentials in this manner provides the appealing trade-off that public verifiability is still
possible when necessary, but credential use becomes more efficient with repeat verifiers.

Our contributions. In this paper, we introduce keyed-verification credentials, which formalize the
intuition outlined above. By using message authentication codes (MACs) in place of more tradi-
tional public-key signatures, we show that we can achieve performance improvements over existing
constructions of anonymous credentials.

In order to integrate nicely with primitives such as zero-knowledge proofs (which are typically
needed to construct anonymous credentials), we require an algebraic MAC, meaning a MAC con-
structed using group operations rather than block ciphers or hash functions. In Section 3, we present
two such MACs, both constructed in prime-order groups. The first, MACGGM, is a generalization of a
MAC presented by Dodis et al. [16]. While Dodis et al. show that this MAC provides only a very weak
notion of security under the DDH assumption, we generalize the scheme to allow for blocks of mes-
sages, and then prove it satisfies the standard notion (uf-cmva security) of MAC unforgeability, albeit
in the generic group model. The second, MACDDH, is uf-cmva secure under the DDH assumption.

Both MACs are of potential independent interest, as they avoid techniques such as collision-
resistant hash functions and bit-wise decompositions, which have often been relied upon to construct
efficient MACs. MACGGM is additionally quite efficient, while MACDDH is based on a mild assumption
(and still quite efficient). Interestingly, the proof of security for MACDDH follows the dual-system
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approach introduced by Waters [31], which makes it (to the best of our knowledge) the first application
of this technique outside of the pairing-based setting.

Next, in Section 4, we present keyed-verification credentials. We first present a formal security
model, and then present two constructions, one based on each of our MACs. For each construction,
we describe how to efficiently issue and prove possession of credentials. Our constructions consider
credentials for various attributes to reflect situations with a complex access policy (e.g., in the transit
setting, a monthly pass could encode an expiration date, the area of usage, etc.); allow for blind
issuance of credentials, in which one or more of the attributes may remain hidden from the issuer
(e.g., a senior citizen might need to provide their date of birth or other sensitive information in order
to receive a discount transit pass); and allow for presentation of credentials with attributes satisfying
a given statement. We then prove the security of our MACDDH-based construction under DDH.

Finally, in Section 5, we provide a detailed efficiency comparison of our new keyed-verification
credentials to U-Prove [7, 24] and Idemix [9, 21], the two most efficient anonymous credential schemes
to date. Our comparison indicates that, depending on the parameters of the presentation, our new
constructions both have the same or slightly higher cost when compared to U-Prove, and are always
many times faster than Idemix (by our estimates, anywhere between 4 and 16 times faster).

Related work. The state of the art in MACs based on number-theoretic assumptions are the
schemes by Dodis et al. [16]. (Their paper also contains a survey of prior work. Of the nine MACs
presented in [16], all either (1) satisfy a weaker security notion than uf-cmva, or (2) use hash func-
tions or bitwise decomposition of the message, thus preventing an efficient proof of knowledge. Since
our keyed-verification credential constructions require both of these properties, we cannot use these
existing MACs directly. Section 3 describes the differences in more detail.

Anonymous credentials were introduced by Chaum [12] as a way to provide individuals more
control over the disclosure of personal data. U-Prove [24] is a credential system constructed from
a blind version of Schnorr signatures [7]. It is defined in a prime-order group, and is thus very
computationally efficient. A U-Prove credential is constructed as a number of tokens, where each token
may be used once unlinkably, so the size of U-Prove credentials is linear in the number of unlinkable
uses. A recent paper of Baldimtsi and Lysyanskaya [2] presents a construction with efficiency similar
to U-Prove (and similarly with no multi-show unlinkability), but with a security proof assuming the
DDH assumption in the random oracle model (U-Prove does not have a formal proof of security).

Idemix [21] is based on the Camenisch-Lysyanskaya [10] signature scheme (CL signatures). In
terms of performance, Idemix and U-Prove credentials have an opposite trade-off: Idemix creden-
tials have constant size, but are considerably more expensive to present. The computational cost is
increased because the underlying signature scheme is constructed in a group where the strong RSA
problem (SRSA) is hard. While there are no guidelines for choosing parameters for the strong RSA
problem, they must be at least as large as RSA parameters, e.g., 3072 bits for 128-bit security.1 With
multiple attributes, and advanced presentation proof predicates, this cost quickly becomes too high
for lightweight provers such as smartcards [5].

There are also versions of the CL signature scheme defined in bilinear groups [1, 10], and Belenkiy
et al. [3] construct anonymous credentials that support delegation. However, the algorithms in this
setting are considerably more expensive, and the computational costs of creating a presentation proof
and verifying it are still significantly greater than in U-Prove. The standardization of cryptographic
schemes based on SRSA and bilinear groups also lags further behind prime-order groups, presenting
another hurdle to deployment.

1Note the optimizations that apply to the RSA signing operation are only available to the issuer in Idemix, not the
user or verifiers, as in that case the group order is unknown and exponents must be large to satisfy privacy requirements.
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Given the trade-offs of each system, our design goal is a credential system with the strengths of
U-Prove (efficient presentation and standard parameters), and those of Idemix (constant credential
size and multi-show unlinkability).

2 Preliminaries

Notation. We use the notation x ∈R X or x
$←− X to mean x is chosen uniformly at random from

the set X. The notation {xi}n1 ,
∑n

1 xi, and
∏n

1 xi are shorthand for {xi}ni=1,
∑n

i=1 xi, and
∏n
i=1 xi

respectively. This shorthand is used only when the set, sum or product has a single index. The
notation ~x is used to denote the vector (x1, . . . , xn), where n will be clear from the context.

We use games in the definition of MAC security and in proofs. A game G has a main procedure
whose output is the output of the game. Pr[G] denotes the probability that this output is 1.

Zero-Knowledge Proofs. The protocols that comprise our credential system make use of zero-
knowledge (ZK) proofs to prove knowledge of, and relations between, discrete logarithms. We abstract
these protocols with a notation introduced by Camenisch and Stadler [11]. Proofs are expressed with
the notation

PK{(x, y, . . .) : statements about x, y, . . .}

where (x, y, . . .) are secrets (discrete logarithms) which satisfy statements. The prover is asserting
knowledge of (x, y, . . .), and all other values in the protocol are public.

There are many choices to implement these protocols, especially since the types of statements
required by our protocols are relatively simple (knowledge of a representation and proof of logarithm
equality). In particular, all the statements we prove can be captured by efficient sigma protocols.

For our application, we need a proof system that is zero knowledge and satisfies a weak form of
online extraction [18]. We propose two approaches to instantiate the proof system. The first is to
use the Damg̊ard protocol [15], which converts any sigma protocol into a three-round interactive zero-
knowledge proof of knowledge secure under concurrent composition. This protocol requires trusted
parameters, but this restriction can be omitted in the random oracle model. The second option is
to make the assumption that Fiat-Shamir based proofs [17] in the random oracle model satisfy the
required extraction property. For more discussion, see Appendix D.

Parameter Generation. Some of the parameters of our constructions include a group element h,
chosen such that logg h is unknown, where g is a generator of the group. In practice, this can be done
by deterministically deriving h from arbitrary public information using a cryptographic hash function.
All protocol participants may then verify that h was derived correctly by repeating the derivation
process. One such derivation procedure is specified in [24]. Formally, we model this as a trusted setup
algorithm which generates g, h where logg h is unknown to all parties.

Cryptographic Assumptions. The decisional Diffie-Hellman problem (DDH) is the following: Let
G be a cyclic group of prime order p with generator g and let a, b, c ∈R Fp; given (A = ga, B = gb, C) ∈
G3, determine whether C = gab or C = gc. The DDH assumption is that this problem is intractable
for all polynomial time adversaries.

For some of our constructions we will also give security results in the generic group model (GGM).
Intractability results in this model essentially mean that problems are intractable provided the adver-
sary only performs a series of group operations. The GGM was first used by Shoup to prove lower
bounds on DDH and related problems [6, 27].
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Concrete examples of groups that are thought to satisfy these assumptions are certain elliptic curve
groups over Fp, such as those standardized by NIST in [23].

3 MACs in Prime-Order Groups

In this section we present two MACs constructed using a cyclic group of prime order. Both schemes
use the same system parameters, created with the following algorithm.

Setup(1k). Choose a group G with order p, where p is a k-bit prime. Let g and h be generators of G
such that logg h is unknown. The system parameters are params := (G, p, g, h).

In addition to the Setup algorithm, MACs have a key generation function KeyGen, a MAC function
MAC that produces an authentication tag on a message, and a verify function Verify that verifies a tag
is valid with respect to a key and message. While we do not include it as an explicit parameter, the
MAC and Verify functions are assumed to have params. This could easily be captured by including it
in the secret key; we omit it to simplify the descriptions. The message space of both schemes is Fnp ,
where n > 0 is a parameter.

We say that (Setup,KeyGen, MAC,Verify) is a secure MAC if it is existentially unforgeable under
chosen message attack, given a verification oracle (defined as uf-cmva in [16]). We augment the
definition slightly to guarantee security even when the signer publishes some parameters iparams
associated with his secret key. In our application to anonymous credentials, iparams are the issuer
parameters and we use them to implement an efficient presentation protocol.

Definition 1 (uf-cmva security). For a MAC (Setup,KeyGen,MAC,Verify), define Advuf-cmva
mac,A (k) =

Pr[GA
uf-cmva(k)], where GA

uf-cmva(k) is defined as follows:

main GA
uf-cmva(k)

Q← ∅; params
$←− Setup(1k); (iparams, sk)

$←− KeyGen(params)

(m,σ)
$←− AMac,Verify(params, iparams)

return (m /∈ Q) ∧ (Verify(sk ,m, σ) = 1)

Procedure Macsk (m)

Q← Q ∪ {m}
return MAC(sk ,m)

Procedure Verifysk (m,σ)

return Verify(sk ,m)

Then the MAC is uf-cmva secure if for all PPT adversaries A, there exists a negligible function ν(·)
such that Advuf-cmva

mac,A (k) < ν(k).

A stronger security notion for MACs is sometimes used, where A may win by outputting (m,σ),
even if m ∈ Q, provided σ was not output by the MAC oracle for m. The schemes we present were
expressly designed not to provide this type of security, to allow tags to be re-randomized (or blinded)
and thus allow for more efficient zero-knowledge proofs of possession of a MAC.

3.1 MACGGM

Our first MAC is a generalization of a scheme due to Dodis et al. [16]. The original MAC works in a
cyclic group G of prime order p, and the secret key is a pair (x0, x1) ∈ F2

p. To compute the MAC of
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a message m ∈ Fp, choose u ∈R G, and compute (u, umx1+x0) as the tag. To verify a tag (u, u′) for a
message m, check whether umx1+x0 = u′.

We extend the scheme to support n attributes, where the secret key becomes (x0, x1, . . . , xn)
and tags are computed as (u, ux1m1+...+xnmn+x0). Note that m1, . . . ,mn are n messages, each in Fp,
rather than the binary decomposition of a single message m. We refer to this scheme as MACGGM

(the single message and binary message schemes were respectively called MAChwPRF and MACWhwPRF

in [16]). KeyGen has an optional step that is required only when MACGGM is used for keyed-verification
credentials.

In what follows (including for MACDDH), we use ~m = (m1, . . . ,mn) to mean a list of n messages
in Fp, and use Hx(~m) := x0 +

∑n
i ~xi ~mi.

KeyGen(params): Choose a secret key sk := ~x ∈R Fn+1
p . Optionally, choose x̃0 ∈R Fp and compute

Cx0 := gx0hx̃0 and (X1 := hx1 , . . . , Xn := hxn), and publish the issuer parameters, denoted
iparams := (Cx0 , X1, . . . , Xn).

MAC(sk , ~m): Choose u ∈R G \ {1} and compute the tag σ = (u, u′), where u′ := uHx(~m).

Verify(sk , ~m, σ): Parse σ = (u, u′) ∈ G2. Accept if u 6= 1 and u′ = uHx(~m).

Dodis et al. [16] prove that under the DDH assumption, MACGGM is suf-cma secure when n = 1. In
this definition, security is called selective unforgeability, because the attacker must select the message
he will use in a forgery before seeing any tags, and is not allowed verification queries. However, for our
credential system, we require uf-cmva security. (Selective unforgeability gives only very limited protec-
tion against misbehaving adversaries, and verification queries are inherent in anonymous credentials
as the adversary is always able to present credentials and observe the verifier’s reaction.)

We stress that Dodis et al. give no evidence that MACGGM is not in fact uf-cmva secure. Rather,
it appears that their proof technique does not extend to also prove security under the stronger defi-
nition. A simple (but inefficient) reduction exists between uf-cma and suf-cma. A uf-cma adversary
is transformed into an suf-cma adversary by an algorithm which guesses the message to be forged by
the uf-cma adversary. The success probability of the new adversary is ε/|M | where M is the message
space of the scheme, and ε is the success probability of the uf-cma adversary. If the size of M is
constrained, the loss in security may be acceptable (i.e., it may be acceptable to use an suf-cma secure
scheme). This may be of use in our application, in the very limited setting where credentials contain
a small number of attributes from a small set, known to the issuer, and where during presentation the
user is required to prove that all the attributes in his credential are within this set.

To ensure security in the more realistic case of unconstrained messages (attributes), and when
verification queries are allowed (as in a credential system), we prove that MACGGM is uf-cmva secure
in the generic group model. Additionally, we include iparams in our analysis. A proof of the following
theorem is given in Appendix A.1.

Theorem 2. In the generic group model, a uf-cmva adversary attacking the MACGGM scheme, suc-
ceeding with non-negligible probability, performs Ω(

√
p) group operations.

3.2 MACDDH

In this section, we describe another MAC construction, called MACDDH. Recall that params are
created by Setup(1k) and are assumed to be available to all algorithms, that ~m = (m1, . . . ,mn) is a
list of n messages in Fp, and that the optional step in KeyGen is required only when MACDDH is used
for keyed-verification credentials.
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KeyGen(params): Pick z, x0, y0 . . . , xn, yn
$←− Fp. Output sk := (~x, ~y, z). Optionally, compute Xi :=

hxi and Yi := hyi for each i ∈ {0, . . . n}, and publish iparams := ( ~X, ~Y ).

MAC(sk , ~m): Pick r
$←− Fp and set σw := gr, σx := grHx(~m), σy := grHy(~m), and σz := gzr. Output

(σw, σx, σy, σz).

Verify(sk , ~m, σ): Parse σ = (σw, σx, σy, σz) ∈ G4. Check that σw 6= 1, σx = σ
Hx(~m)
w , σy = σ

Hy(~m)
w , and

σz = σzw. Accept if these checks pass and reject otherwise.

Theorem 3. If the DDH assumption holds in G, then MACDDH is uf-cmva secure.

A proof of this theorem is given in Appendix A.2. Briefly, the proof approximately follows the
standard dual-system approach [31], which proceeds (roughly) as follows: first, the scheme exists in
a subgroup of some larger group, and a “shadow” copy of the scheme is added into a new subgroup.
This addition goes unnoticed by subgroup hiding, a computational assumption. Next, this shadow
copy is randomized, so that it becomes decoupled from the scheme in the original subgroup. This
goes unnoticed by parameter hiding, which is typically a statistical property of the group. Finally,
the additional randomness from the new subgroup is folded back into the original subgroup (again, by
subgroup hiding), at which point it can be used to, e.g., blind information.

In our setting, in which we are working in a cyclic group, we have no nontrivial subgroups. We can
nevertheless think of two different “groups”: one using g as a generator, and one using h. Our first step
in the proof is therefore folding in values using h into the MACs, and switching to a different verification
procedure to accommodate this change. This change goes unnoticed, not by a computational subgroup
hiding argument (because, again, we have no subgroups), but rather by a statistical argument.

Next, we continue to follow the dual-system approach by decoupling the randomness used in the
h component from the g component. Whereas in the standard dual-system approach this change is
statistical, we now use a computational assumption (DDH) to argue that the change goes unnoticed.
We can now use this extra randomness to mask the secret values, at which point outputting a valid
MAC becomes statistically hard.

4 Keyed-Verification Credentials

In this section we first describe the set of algorithms that form a keyed-verification credential scheme.
We then informally describe the desired security and privacy properties (formal definitions are in Ap-
pendix B), present constructions of keyed-verification credentials based on MACGGM and MACDDH, and
prove our MACDDH-based construction secure assuming DDH. The proof of security for our MACGGM-
based construction is a trivial simplification of the MACDDH-based proof, so we omit it.

A keyed-verification credential system consists of the following algorithms:

Setup(1k) defines the system parameters params. We will assume that params is available to all
algorithms, and that all parties have assurance it was created correctly.

CredKeygen(params) is run by the issuer on input params to generate a secret key sk and (public)
issuer parameters iparams.

BlindIssue(sk , S)↔ BlindObtain(iparams, (m1, . . . ,mn)) is a potentially interactive protocol where a
user can obtain a credential on attributes (m1, . . . ,mn) from an issuer who is only given some
subset S of those attributes.
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Show(iparams, cred , (m1, . . . ,mn), φ)↔ ShowVerify(sk , φ) is an interactive protocol between a user
and a verifier. Show is run by a user to generate a proof of possession π of a credential cred
certifying some set of attributes (m1, . . . ,mn) satisfying a set of statements φ under the key
corresponding to iparams, and ShowVerify is run by the verifier in possession of sk to verify
proof π claiming knowledge of a credential satisfying the statements φ.

While we defined our presentation protocol in terms of a single credential, we could generalize our
definitions and constructions to allow the user to prove relationships between attributes across multiple
credentials that he owns. We chose the above variant because it allows for fairly simple definitions,
yet still allows us to consider properties of a credential scheme as it would be used.

Note that the standard approach of requiring that the Show protocol be a proof of knowledge of a
credential cannot be directly applied here because the verifier must know the issuer secret key in order
to verify the credential. This is somewhat similar to a designated verifier proof [22], but it has the
additional complication that the statement (validity of the credential) depends on the verifier’s secret
key.

4.1 Security properties

A keyed-verification credential system should have the following security properties (defined formally
in Appendix B). Informally, correctness requires that every credential generated by Issue for attribute
set {m1, . . . ,mn} can be used to generate a proof for any statement satisfied by that attribute set.
Unforgeability requires that an adversary cannot produce an accepting proof for a statement φ that is
not satisfied by any of the attribute sets for which it has received credentials. Anonymity requires that
the proofs produced by Show reveal nothing more than the statement being proved. Blind issuance
requires that BlindIssue,BlindObtain define a secure two-party protocol for generating credentials on the
user’s attributes. Finally, key-parameter consistency requires that the probability that an adversary
can find two secret keys that correspond to the same set of issuer parameters is negligible; this
guarantees that the issuer cannot use different secret keys with different users and thus compromise
their anonymity.

4.2 Keyed-verification credentials from MACGGM

We now give a construction of a keyed-verification credential system from MACGGM = (SetupGGM,
KeyGenGGM,MACGGM,VerifyGGM). We define the following setup algorithms for the credential system.

Setup(1k): Output (G, p, g, h)
$←− SetupGGM(1k).

CredKeygen(params): Parse params as (G, p, g, h). Output ((Cx0 ,
~X), (~x, x̃0))

$←− KeyGenGGM(params).

Issuance. To issue a credential with the n attributes (m1, . . . ,mn) ∈ Fnp , the issuer computes
(u, u′)← MACGGM(sk , (m1, . . . ,mn)) and returns (u, u′) and π to the user, where

π := PK{(x0, x1, . . . , xn, x̃0) : u′ = ux0
n∏
i=1

(umi)xi ∧ Cx0 = gx0hx̃0

∧ Xi = hxi ∀i ∈ {1, . . . , n}}

The proof π proves that (u, u′) is well-formed with respect to the system and issuer parameters. If
this proof verifies, the user accepts and outputs (u, u′). Otherwise it rejects with output ⊥.
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To alternatively keep some subset H ⊆ {1, . . . , n} of the attributes hidden from the issuer, we can
proceed as follows: The user generates an ElGamal keypair (d, γ := gd), then creates an encryption of
gmi for each hidden attribute mi as Ei = (gri , gmiγri) for all i ∈ H, using ri ∈R Fp. The user sends
these ciphertexts to the issuer, along with a proof of knowledge of {ri,mi}i∈H. The issuer chooses
b ∈R Fp. It then computes u = gb, and uses the homomorphic properties of ElGamal to generate an
encryption Eu′ of u′ = gbx0

∏n
1 (gmi)bxi , and to randomize this encryption to obtain E′u′ (by multiplying

with an encryption of 0 using randomness r′ ∈R Fp). It sends u,E′u′ to the user and gives a proof that
these values have been generated correctly with respect to (Cx0 , {Xi}n1 ) (i.e. a proof of knowledge of
the appropriate {xi}n0 , x̃0, b, and randomizing factors r′). If the proof does not verify, the user outputs
⊥. Otherwise, the user decrypts E′u′ to get u′, and outputs (u, u′).

Credential translation. In addition to proving that the ciphertexts Ei are well formed, the user
can include proofs about the attributes the ciphertexts encrypt. For example, the user may prove that
some of the attributes mi are the same as in another credential, such as one that is more expensive
to use (e.g., an Idemix credential), or one that cannot be presented multiple times unlinkably (e.g., a
U-Prove credential).

Credential presentation. Here we present a construction for Show and ShowVerify. The details of
(one possible way of) instantiating the proof of knowledge are given in Appendix E.

Show(params, iparams, φ, cred , {mi}ni ): The prover chooses r, z1, . . . , zn ∈R Fp and parses cred =
(u, u′). It then computes {Cmi := umihzi}ni=1 and Cu′ := u′gr and sends σ = (u, {Cmi}ni , Cu′)
and a proof of knowledge π, which it computes as

π = PK{(~m,~z,−r) : φ(m1, . . . ,mn) = 1 ∧ Cmi = umihzi ∀i ∈ {1, . . . , n} ∧ V = g−r
n∏
i=1

Xi
zi}.

ShowVerify(params, iparams, φ, {xi}ni , z, σ, π): The verifier parses σ = (u, {Cmi}ni , Cu′), computes V
as

V =
ux0

∏n
i=1Cmi

xi

Cu′

and verifies the proof π using V . If the proof is valid, it outputs (Cm1 , . . . , Cmn), and otherwise
it outputs ⊥.

Security. To see that the MACGGM protocol works when n = 1 and both parties are honest, note
that the verifier computes

V =
Cm1

x1ux0

Cu′
=
um1x1hx1z1ux0

um1x1+x0gr
= hx1z1g−r = Xz1

1 g
−r,

which matches the statement in the proof π. The security of the credential scheme is obtained as a
special case of the MACDDH-based construction (as this is a strictly simpler construction).

4.3 Keyed-verification credentials from MACDDH

We now give a construction of a keyed-verification credential system from MACDDH = (SetupDDH,
KeyGenDDH,MACDDH,VerifyDDH). We define the following setup algorithms for the credential system.

Setup(1k): Output (G, p, g, h)
$←− SetupDDH(1k).

9



CredKeygen(params): Compute (( ~X, ~Y ), (~x, ~y, z))
$←− KeyGenDDH(params). Pick x̃, ỹ, z̃ ∈R Fp and

form commitments Cx0 := gx0hx̃, Cy0 := gy0hỹ, and Cz := gzhz̃. Output iparams = ( ~X, ~Y ,Cx0 ,
Cy0 , Cz) and sk = (~x, ~y, z, x̃, ỹ, z̃).

Issuance. To issue a credential with the attributes (m1, . . . ,mn) ∈ Fnq , the issuer chooses σ =

(σw, σx, σz)
$←− MACDDH(sk , (m1, . . . ,mn)), and returns σ to the user with a proof π, where

π := PK{(~x, ~y, z, x̃, ỹ, z̃) : σx = σx0w

n∏
1

(σw
mi)xi ∧ σy = σy0w

n∏
1

(σmiw )yi ∧ σz = σw
z

∧ Cx0 = gx0hx̃ ∧ Cy0 = gy0hỹ ∧ Cz = gzhz̃

∧ Xi = hxi ∧ Yi = hyi ∀i ∈ {1, . . . , n}}.

The proof π proves that the credential is well-formed with respect to the system and issuer parameters.
If this proof verifies, the user outputs σ; otherwise it outputs ⊥.

If some of the attributes must be hidden, we can first proceed as we did with MACGGM, to the point
where the user sends the ciphertexts Ei and proofs of knowledge of {ri,mi}i∈H to the issuer. The issuer
now chooses b ∈R Fp, computes σw = gb, σz = σzw, and uses the homomorphic properties of ElGamal
to generate an encryption Ex of σx = gbx0

∏n
1 (gmi)bxi and an encryption Ey of σy = gby0

∏n
1 (gmi)bxi .

It then randomizes these to obtain E′x (by multiplying with an encryption of 0 using randomness
rx ∈R Fp) and E′y. It sends (σw, σz, E

′
x, E

′
y) to the user and gives a proof that these values have been

generated correctly with respect to ( ~X, ~Y ,Cx0 , Cy0 , Cz) (i.e., a proof of knowledge of the appropriate
(~x, ~y, z, x̃, ỹ, z̃, b, rx, ry)). If the proof does not verify, the user outputs ⊥. Otherwise, the user decrypts
E′x and E′y to get σx and σy respectively, and outputs σ = (σw, σx, σy, σz).

As with the MACGGM scheme, credential translation is also possible with the MACDDH scheme.

Credential presentation. Here we present a construction for Show and ShowVerify.

Show(params, iparams, φ, cred , {mi}ni ): The prover chooses r, rx, ry, z1, . . . , zn ∈R Fp and parses cred =
(σw, σx, σy, σz). It first randomizes the credential by computing σw = σrw, σx = σrx, σy = σry, and
σz = σrz , and then computes

{Cmi := σmiw hzi}ni=1, Cσx := σxg
rx , Cσy := σyg

ry , Vx := g−rx
n∏
i=1

Xzi
i , and Vy := g−ry

n∏
i=1

Y zi
i .

It then sends σ = (σw, σz, Cσx , Cσy , Vx, Vy, {Cmi}ni ) along with a proof of knowledge π, which it
computes as

π = PK{~m, ~z,−rx,−ry) : φ(m1, . . . ,mn) = 1 ∧ Cmi = σm1
w hz1 ∀ i ∈ {1, . . . , n}

∧ Vx = g−rx
n∏
i=1

Xi
zi ∧ Vy = g−ry

n∏
i=1

Y zi
i }.

ShowVerify(params, iparams, φ, {xi, yi}ni , z, σ, π): The verifier parses σ = (σw, σy, σz, Vx, Vy, {Cmi}ni , Cσx ,
Cσy) and verifies that

Vx =
σx0w

∏n
i=1C

xi
mi

Cσx
and Vy =

σy0w
∏n
i=1C

yi
mi

Cσy
.

It then verifies the proof π. If the proof is valid and if σz = σzw it accepts and outputs
(Cm1 , . . . , Cmn), and otherwise it rejects and outputs ⊥.
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Security. We give a formal proof of the following theorem in Appendix C.

Theorem 4. If DDH holds and the proof system is a zero-knowledge proof of knowledge, the above
algorithms (CredKeygen, Issue,CredVerify, ,Show,ShowVerify, ,BlindIssue,BlindObtain) make up a secure
keyed-verification credential system.

Intuitively, credential unforgeability follows from the unforgeability of the MAC (which is based
on DDH); credential anonymity follows from the zero knowledge property of the proof; blind issuance
follows from the extractability of the proof and the IND-CPA security of the encryption scheme
(which, for ElGamal, follows from DDH); and key-parameter consistency follows from the binding
property of the commitment scheme (which, for Pedersen commitments, follows from the discrete log
assumption, which is implied by DDH). In Appendix D we discuss several possible instantiations of
the zero-knowledge proof of knowledge.

As the protocols for MACGGM are essentially a simplified version of those for MACDDH, the proof
for MACGGM is a straightforward simplification of the proof, so we omit it.

5 Efficiency

In this section we compare the efficiency of our new schemes to U-Prove and Idemix. We focus on
the computational cost of creating a presentation proof, as this operation typically must be done
by the largest range of devices. We consider the MACGGM- and MACDDH-based schemes, where the
proof system is implemented with Fiat-Shamir (full details of MACGGM are given in Appendix E, and
MACDDH is very similar). Using the proof system from [15] will have essentially the same computational
cost (not including communication time). Complete descriptions of Idemix and U-Prove are available in
[21] and [24] respectively. We did not include the bilinear CL signature schemes [1, 10], or the recent
scheme of Baldimtsi and Lysyanskaya [2], in our comparison, as detailed specifications (including
parameter choices) are not available.

Credential Size. Table 1 shows the size of a credential in all four schemes, both asymptotically,
and for a concrete choice of parameters. The parameter s is the number of times the credential may be
shown unlinkably (which is relevant for U-Prove). The size only counts the cryptographic components
of the credential, the metadata and attribute values are assumed to be the same for all systems. The
overhead of MACGGM is the least, followed by MACDDH, which is the size of a single U-Prove token. The
size of SRSA group elements makes Idemix credentials larger than MACGGM and MACDDH, however,
once s > 5, Idemix credentials are smaller than U-Prove credentials.

Credential size for s shows
Asymptotic Concrete (in bits)

U-Prove O(s) 1024s
Idemix O(1) 5369
MACGGM O(1) 512
MACDDH O(1) 1024

Table 1: Comparison of credential sizes of U-Prove, Idemix, MACGGM and MACDDH. The number of times
the credential may be shown is denoted s. U-Prove, MACGGM and MACDDH use a 256-bit elliptic curve group.
Idemix uses a 2048-bit modulus.
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Computation Cost for Presentation. We estimate the cost of creating a presentation proof and
compare the four schemes. Our estimate is formed by counting the number of multi-exponentiations
required to create a presentation proof. We use the notation `-exp to denote computing the product
of ` powers. To realistically estimate the performance of Idemix, the bitlengths of the exponents
must also be considered, so we use the notation `-exp(b1, . . . , b`) to denote the product of ` powers
when the bitlengths of the exponents are b1, . . . , b`. These bitlengths are calculated from the Idemix
specification [21]. For U-Prove, MACGGM and MACDDH the bitlength of the exponent is always the
length of the group order (256-bits in our comparison).

Table 2 gives the number of multi-exponentiations in terms of three parameters: n is the number
of attributes in a credential, r is the number of revealed attributes in a presentation proof, and c is the
number of committed attributes. For each committed attribute m, a separate Pedersen commitment
is output. As a further comparison, Table 2 includes the time required to compute these multi-
exponentiations for a given choice of parameters (n, c, r). Our multi-exponentiation implementation
in G uses the NIST 256-bit elliptic curve, and for Idemix uses the parameters in [21]. The benchmarks
were computed on an Intel Xeon CPU (E31230, quad core, 3.2 GHz) on an HP Z210 workstation
running Windows 7 (64-bit). The times are in milliseconds, and are the average of 100 runs.

The times given in Table 2 show that the new schemes are competitive with U-Prove, especially
when most of the attributes are committed, and that they are much faster than Idemix. In particular,
in the first benchmark (when (n, c, r) = (10, 2, 2)), MACGGM is 6.28 times faster than Idemix, and
MACDDH is 4.7 times faster than Idemix. Compared to U-Prove, MACGGM and MACDDH are 3.4 and
4.5 times slower, much less than the 21.2 times slowdown for Idemix.

In the second benchmark, when (n, c, r) = (10, 10, 0), the performance of U-Prove, MACGGM and
MACDDH are very similar. MACGGM and MACDDH are only 1.04 and 1.5 times slower than U-Prove.
Idemix is 18.2, 16.3 and 12.5 times slower than U-Prove, MACGGM and MACDDH, respectively.

Time (in ms) when (n, c, r) =
Number of exponentiations (10,2,2) (10,10, 0)

U-Prove 1 (n− r + 1)-exp, 2c 2-exp 3.38 12.43
MACGGM 3 1-exp, 1 (n− r + 1)-exp 11.42 13.93

2(n− r) 2-exp
MACDDH 6 1-exp, 2 (n− r + 2)-exp 15.31 18.10

2(n− r + 1) 2-exp
Idemix 1 1-exp(2048) 71.72 226.79

c 2-exp(256, 2046)
c 2-exp(592, 2385)
1 (n− r + 2)-exp(456,3060,592,. . . ,592)

Table 2: Comparison of estimated presentation proof generation cost. U-Prove, MACGGM and MACDDH use
256-bit elliptic curve parameters, and Idemix uses a 2048-bit modulus.

Discussion. These performance estimates show that the new schemes do provide a considerable
performance advantage when compared to Idemix, and a small decrease compared to U-Prove. The
other protocols, namely issuance and verification, have similar relative performance (for the user and
issuer). In the case of issuance, our new schemes are expected to have slightly higher computational
cost than issuing a single U-Prove token, but with one less round of interaction (when implemented with
Fiat-Shamir proofs). When issuing multiple tokens, MACGGM and MACDDH have the best performance.
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In all protocols, the cost of verification is within a small factor of the cost of proof generation.
We note some limitations of our comparison. First, the comparison is limited to applications where

the issuer and verifier share a key. The parameter set used for Idemix is not believed to provide 128-bit
security, so this favors Idemix in the comparison. For RSA, a 3072-bit modulus is required for 128-bit
security, and for strong RSA we are unaware of any published guidance on choosing the modulus size.
(Idemix would need at least a 3072-bit modulus for 128-bit security.) Another limitation is our choices
of (n, c, r), which will be different across applications. Once an application is fixed, optimizations
may be possible, such as creating a single commitment to multiple attributes, or re-using the same
commitment in multiple presentations (e.g., when the commitment is used as a pseudonym).
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A MAC Security

A.1 Security of MACGGM

In this section we give the proof of Theorem 2, that MACGGM is uf-cmva secure in the generic group
model. The proof is for the message space Fp, however it may easily be generalized to the message
space Fnp . Since the system parameter Cy hides y perfectly and unconditionally, we omit it from this
analysis.

Proof. Let g be a fixed generator of a generic group G, and let G be written multiplicatively. We
then represent elements a ∈ G as logg a ∈ Fp. We encode elements of G as random strings in a set
S ∈ {0, 1}∗ with the function ζ : Fp → S (i.e., ζ(logg a) gives the encoding of a ∈ G as an element of
S). The choice of S is not important, provided |S| ≥ q.

Let A denote a uf-cmva attacker. A refers to elements of G only using their representation as
elements of S. The attacker refers to elements in the message space directly.

We describe an algorithm B, which interacts with A, implementing oracles for group operations,
as well as MAC and verification queries. B chooses the secret values (x, y, h) ∈R F3

p. The inputs B

gives A are the system parameters: g,H = gh, and X = Hx = ghx, encoded as ζ(1), ζ(h), and ζ(xh).
B maintains a list L of polynomials in Fp[x, y, h, z1, . . . , zqt ], where qt is the number of tag queries

made by A. The indeterminates (x, y, h, z1, . . . , zqt) correspond to the secrets (x, y, h) and the random
values zi used to create tags. Each polynomial in L corresponds to a group element at each step of A’s
computation. The list contains pairs (Fi, ζi) ∈ Fp[x, y, h, z1, . . . , zqt ] × S. A second list Q maintains
the set of queried messages. Both lists are initially empty.

B counts the number of group oracle queries by qG, and the number of tag queries with qt, both
initialized to zero. The number of verification queries are not counted (but is assumed to be polynomial
in the security parameter). The total number of group operations is q = qG+2qt, since each tag query
requires two group operations to answer.

Group operation. A provides input (ζi, ζj ,±) where ± corresponds to multiply/divide, and i, j <
qG. Then B sets FqG = Fi ± Fj . If FqG = F` for ` < qG, B sets ζqG = ζ`, otherwise B sets ζqG ∈R S
distinct from ζ0, . . . , ζqG−1. B adds (FqG , ζqG) to L and outputs ζqG to A. Finally, B increments qG.
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MAC operation. On the i-th query, A provides input mi ∈ Fp. B sets FqG = zi and ζqG ∈R S.
Then B computes FqG+1 = zi(mix+y) = zimix+ziy. If FqG+1 = F` for ` < qG, then B sets ζqG+1 = ζ`,
otherwise B sets ζqG+1 ∈R S (distinct from ζ0, . . . , ζqG). The output to A is (ζqG , ζqG+1). Finally B
adds two to qG, one to qt, and mi is added to Q.

Note that we do not assume each MAC query is distinct: A may request multiple tags for the same
m. A may also implement the re-randomize algorithm by repeated calls to the group operation oracle.

Verify query. The input from A is (m, ζ, ζ ′) ∈ Fp × S × S. If either of ζ, ζ ′ are not in L, return
“invalid”. Then ζ = ζi and ζ ′ = ζj for some i, j < qG. If

Fi · (xm+ y) = Fj

then return “valid”, and otherwise return “invalid”. Note that this operation does not change any of
B’s state, it only lets A query L.

At any time during the game, the polynomials in L are of degree (in x, y, zi) at most two: G-
queries compute Fi±Fj , which does not increase degree, the initial polynomials have degree one, and
MAC queries add a polynomial of degree 1 and of degree 2 to L.

After q queries (q = qG + 2qt), A outputs (m, ζ, ζ ′) for some m 6∈ Q, and (ζ, ζ ′) = (ζi, ζj) for some
i, j ≤ q. If A succeeds,

Fi · (mx+ y) = Fj , or equivalently, Fi · (mx+ y)− Fj = 0 . (1)

Given the operations available to A, we have that

Fj = a(xh) +

qt∑
i=1

bizi +

qt∑
i=1

cizi(mix+ y) ,

where zi indeterminates representing the random values chosen in each MAC query, and a, bi and ci
are integers. Note that the only way we can have Fj = Fi · (mx+ y) for such an Fj is if Fi = fj = 0 or
if m = m` for some m` ∈ m1, . . . ,mqt . In either case this will not be a valid forgery. (In the first case
the forgery will be rejected by Verify, in the second case this is not a new message.) Therefore, the
polynomial in (1) is a non-zero polynomial of degree 2 (in x, y, h, zi), and the adversary will succeed
in his forgery only if the evaluation of this polynomial on the randomly chosen (x, y, z1, . . . , zqt) is 0.
(Event (1).)

If, for a particular choice of (x, y, h, z1, . . . , zqt) ∈ F3+qt
p , we have Fi(x, y, h, z1, . . . , zqt) = Fj(x, y, h,

z1, . . . , zqt), but Fi 6= Fj , the simulation is invalid because B presented two elements to A as distinct,
but they were in fact equal. This condition is described as:

Fi(x, y, h, z1, . . . , zqt)− Fj(x, y, h, z1, . . . , zqt) = 0 . (2)

Clearly, this second condition can only hold for an unfortunate random choice of (x, y, h, z1, . . . , zqt),
and cannot be influenced by A. The success probability of A is bounded by the probability of events
(1) and (2).

For fixed i, j < q the Schwartz-Zippel lemma tells us that the probability that each of (1) or (2)
holds is 2/p, since the degree of the polynomial in each case is at most 2. Therefore the probability
over all pairs (i, j) is (

q

2

)
· 4

p
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main GA
uf-cmva(k) / GA

0 (k) / GA
1 (k)

1 (p,G, g, h)
$←− Setup(1k); Q← ∅; x0, y0, . . . , xn, yn, z

$←− Fp, s, t, v0, . . . , vn
$←− Fp

2 sk ← ((p,G, g, h), s, t, ~v, ~x, ~y, z), sk ← ((p,G, g, h), ~x, ~y, z)

3 iparams ← ({hxi}ni , {hyi}ni )

4 (~m∗, σ∗)
$←− AMac,Verify((p,G, g, h), iparams)

5 b← ((σyσ
s
x)z = (σzσ

t
w)Hy(~m

∗)) ∧ ((σ
−Hv(~m∗)
w σx)Hy(~m

∗) = (σsxσy)
Hx(~m∗)) ∧ (σw 6= 1),

b← ((σx = σ
Hx(~m∗)
w ) ∧ (σy = σ

Hy(~m∗)
w ) ∧ (σz = σzw) ∧ (σw 6= 1))

6 return ((~m∗ /∈ Q) ∧ b)

Procedure Macsk (~m) // GA
uf-cmva(k) / GA

0 (k)

7 Q← Q ∪ {~m}
8 r

$←− Fp; σw ← gr, σw ← hr ; σx ← grHx(~m), σx ← (gHx(~m)hHv(~m))r ;

σy ← grHy(~m), σy ← (gHy(~m)−sHx(~m)h−sHv(~m))r ; σz ← gzr, σz ← (gzh−t)r

9 return (σw, σx, σy, σz)

Procedure Macsk (~m) // GA
0 (k) / GA

1 (k)

8 r
$←− Fp, ω, χ

$←− Fp ; σw ← hr, σw ← hω ; σx ← (gHx(~m)hHv(~m))r, σx ← hχ ;

σy ← (gHy(~m)−sHx(~m)h−sHv(~m))r, σy ← grHy(~m)h−χs ; σz ← (gzh−t)r, σz ← gzrh−ωt

Procedure Verifysk (~m, σ) // GA
uf-cmva(k) / GA

0 (k) / GA
1 (k)

10 return ((σx = σ
Hx(~m)
w ) ∧ (σy = σ

Hy(~m)
w ) ∧ (σz = σzw) ∧ (σw 6= 1)) ,

return ((σyσ
s
x)z = (σzσ

t
w)Hy(~m)) ∧ (σw 6= 1)

Figure 1: Games for the proof of Theorem 3. The boxed game uses the boxed code and the other games do not.

Therefore A’s success probability after q queries is at most

ε =

(
q

2

)
· 4

p

≤ 4q2

p

To have a constant ε > 0 requires Ω(
√
p) operations in G.

A.2 Security of MACDDH

Proof. Let A be a PT adversary playing game GA
uf-cmva(k) that makes qm Mac queries and qv Verify

queries, where qm = qm(k) and qv = qv(k) for polynomials qm(·) and qv(·). We provide a PT adversary
B and negligible functions ν0(·) and ν(·) such that

Advuf-cmva
mac,A (k) ≤ qvν0(k) + qmAdvddh

B (k) + ν(k)
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for all k ∈ N, from which the theorem follows. To do this, we build B , ν0(·), and ν(·) such that for all
k ∈ N we have

Pr[GA
uf-cmva(k)]− Pr[GA

0 (k)] ≤ qvν0(k) (3)

Pr[GA
0 (k)]− Pr[GA

1 (k)] ≤ qmAdvddh
B (k) (4)

Pr[GA
1 (k)] ≤ ν(k). (5)

We then have

Advuf-cmva
mac,A (k) = Pr[GA

uf-cmva(k)]

= (Pr[GA
uf-cmva(k)]− Pr[GA

0 (k)]) + (Pr[GA
0 (k)]− Pr[GA

1 (k)]) + Pr[GA
1 (k)]

≤ qvν0(k) + qmAdvddh
B (k) + ν(k).

Equation 3.

To first prove Equation 3, we consider a modified version of GA
uf-cmva(k) as an intermediate game:

rather than pick ~x and ~y randomly, pick x′i, y
′
i, vi

$←− Fp and set xi := x′i/β + vi and yi := y′i/β − sxi
for all i, 0 ≤ i ≤ n; furthermore, rather than pick z

$←− Fp, pick z′
$←− Fp and set z := z′/β − t. (Recall

that β = logg(h).) In the Mac oracle, use r := r′β for r′
$←− Fp rather than r

$←− Fp. These values are

distributed identically to the values used in GA
uf-cmva(k), so the distribution in this modified game is

identical. Furthermore, we have

σ′w = gr = gr
′β = hr

′

σ′x = grHx(~m) = gr
′β(Hx′ (~m)/β+Hv(~m)) = (gHx′ (~m)hHv(~m))r

′

σ′y = grHy(~m) = gr
′β((Hy′ (~m)−sHx′ (~m))/β−sHv(~m)) = (gHy′ (~m)−sHx′ (~m)h−sHv(~m))r

′

σ′z = grz = gr
′β(z′/β−t) = (gz

′
h−t)r

′
,

so the Mac responses in the modified game are identical to those in GA
0 (k) in which x′i, y

′
i, z
′, r′

$←− Fp.
To address the changes in verification, we proceed through a series of hybrids: define HA

i (k) to be
a game in which the first i Verify queries are answered using Verify, the last qv− i are answered using
the verification procedure defined in GA

0 (k) (referred to in the sequel as SimVerify), and the verification
at the end is considered the qv+1st query; then HA

qv+1(k) is the intermediate game and HA
0 (k) is GA

0 (k).

To transition from HA
i (k) to HA

i−1(k) for i < qv + 1, we therefore need only consider the i-th query
(~m, σ) (as the two games are identical both before and after this query), and the probability that
Verify(sk , ~m, σ) 6= SimVerify(sk , ~m, σ); i.e., that HA

i−1(k) and HA
i (k) produce different responses on the

i-th query. We refer to this event as Ei, and show that Pr[Ei] ≤ ν0(k) for a negligible function ν0(k).
If Verify(sk , ~m, σ) = accept then

(σyσ
s
x)z
′

= (σ
Hy(~m)
w σsHx(~m)

w )z
′

= (σ
(Hy′ (~m)−sHx′ (~m))/β−sHv(~m)
w σ

s(Hx′ (~m)/β+Hv(~m))
w )z

′

= (σ
Hy′ (~m)/β
w )β(z+t)

= (σzwσ
t
w)Hy′ (~m)

= (σzσ
t
w)Hy′ (~m),
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so SimVerify(sk , ~m, σ) = accept and Ei happens only if SimVerify(sk , ~m, σ) = accept but Verify(sk , ~m, σ) =

reject. Consider Rx, Ry, and Rz such that σx = Rxσ
Hx(~m)
w , σy = Ryσ

Hy(~m)
w , and σz = Rzσ

z
w; then Verify

accepts only if Rx = Ry = Rz = 1. If SimVerify(sk , ~m, σ) = accept then, since Hy(~m) + sHx(~m) =
Hy′(~m)/β and z′ = β(z + t), we have

(σyσ
s
x)z
′

= (σzσ
t
w)Hy′ (~m)

(Ryσ
Hy(~m)
w Rxσ

sHx(~m)
w )z

′
= (Rzσ

z
wσ

t
w)Hy′ (~m)

(RxRyσ
Hy(~m)+sHx(~m)
w )z

′
= (Rzσ

z+t
w )Hy′ (~m)

(RxRyσ
Hy′ (~m)/β
w )β(z+t) = R

Hy′ (~m)
z σ

(z+t)Hy′ (~m)
w

(RxRy)
β(z+t)σ

(z+t)Hy′ (~m)
w = R

Hy′ (~m)
z σ

(z+t)Hy′ (~m)
w

(RxRy)
z′ = R

Hy′ (~m)
z .

As up until the i-th query A has never seen the values of z′ and ~y′, however, it has at most a negligible
probability (in fact, probability 1/2k) of coming up with Rx, Ry, and Rz that satisfy this equation
but such that it is not the case that Rx = Ry = Rz = 1. We therefore have that Pr[Ei] ≤ ν0(k)
for a negligible function ν0(·), for all queries to the Verify oracle. To finally address the case of

i = qv + 1, in which we additionally check that (σ
−Hv(~m∗)
w σx)Hy(~m

∗) = (σsxσy)
Hx(~m∗), we observe that

if Verify(sk , ~m∗, σ∗) = accept then

(σ−Hv(~m
∗)

w σx)Hy′ (~m
∗) = (σ−Hv(~m

∗)
w σHx(~m

∗)
w )Hy′ (~m

∗)

= (σ−Hv(~m
∗)

w σ
Hx′ (~m

∗)/β+Hv(~m∗)
w )Hy′ (~m

∗)

= (σ
Hy′ (~m

∗)
w /β)Hx′ (~m

∗)

= (σsHx(~m)
w σ

Hy′ ( ~m
∗)/β−sHx(~m)

w )Hx′ (~m
∗)

= (σsxσ
Hy(~m∗)
w )Hx′ (~m

∗)

= (σsxσy)
Hx′ (~m

∗).

We must also show that if this equality holds then Verify(sk , ~m∗, σ∗) = accept; we do this by an
argument similar to the one for SimVerify, so we have

(σ−Hv(~m
∗)

w σx)Hy′ (~m
∗) = (σsxσy)

Hx′ (~m
∗)

(σ−Hv(~m
∗)

w Rxσ
Hx(~m∗)
w )Hy′ (~m

∗) = (RxRyσ
sHx(~m∗)
w σ

Hy(~m∗)
w )Hx′ (~m

∗)

(Rxσ
−Hv(~m∗)
w σ

Hx′ (~m
∗)/β+Hv(~m∗)

w )Hy′ (~m
∗) = (RxRyσ

sHx(~m∗)
w σ

Hy′/β−sHx(~m∗)
w )Hx′ (~m

∗)

(Rxσ
Hx′ (~m

∗)/β
w )Hy′ (~m

∗) = (RxRyσ
Hy′ (~m

∗)/β
w )Hx′ (~m

∗)

R
Hy′ (~m

∗)
x = (RxRy)

Hx′ (~m
∗).

As A again has at most a negligible probability of coming up with values Rx and Ry that satisfy this
equation but such that either Rx 6= 1 or Ry 6= 1, Pr[Eqv+1] ≤ ν0(k) as well, which proves Equation 3.

Equation 4.

We now prove Equation 4. To do this, we consider a series of hybrids: in each hybrid HA
i (k), the first

i queries use the MAC values from GA
1 (k), and the last qm − i use the values from GA

0 (k); HA
0 (k) is

then equivalent to GA
0 (k), and HA

qm(k) is equivalent to GA
1 (k). To argue that HA

i (k) is indistinguishable
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Procedure Macsk (~m) // HA
i−1(k) / HA

i,1(k)

if (j < i) then r, ω, χ
$←− Fp; σw ← hω; σx ← hχ; σy ← grHy(~m)h−χs; σz ← gzrh−ωt

if (j = i) then r, ω
$←− Fp; σw ← hr, σw ← hω ; σx ← (gHx(~m)hHv(~m))r, σx ← grHx(~m)hωHv(~m) ;

σy ← (gHy(~m)−sHx(~m)h−sHv(~m))r, σy ← gr(Hy(~m)−sHx(~m))h−sωHv(~m) ;

σz ← (gzh−t)r, σz ← gzrh−ωt

if (j > i) then r
$←− Fp; σw ← hr; σx ← (gHx(~m)hHv(~m))r; σy ← (gHy(~m)−sHx(~m)h−sHv(~m))r;

σz ← (gzh−t)r

Procedure Macsk (~m) // HA
i,1(k) / HA

i,2(k)

if (j = i) then r, ω, χ
$←− Fp; σw ← hω; σx ← grHx(~m)hωHv(~m), σx ← grHx(~m)hχ ;

σy ← gr(Hy(~m)−sHx(~m))h−sωHv(~m), σy ← gr(Hy(~m)−sHx(~m))h−χs ; σz ← gzrh−ωt

Procedure Macsk (~m) // HA
i,2(k) / HA

i (k)

if (j = i) then r, ω, χ
$←− Fp; σw ← hω; σx ← grHx(~m)hχ, σx ← hχ ;

σy ← gr(Hy(~m)−sHx(~m))h−χs, σy ← grHy(~m)h−χs ; σz ← gzrh−ωt

Figure 2: Games for the transition from HA
i−1(k) to HA

i (k). The boxed game uses the boxed code and the other
games do not.

from HA
i−1(k), we cannot proceed in a single step. Instead, we gradually change the value of the i-th

query across two additional games HA
i,1(k) and HA

i,2(k), as shown in Figure 2.
We then show that

Pr[HA
i,1(k)]− Pr[HA

i−1(k)] ≤ Advddh
B (k) (4.1)

Pr[HA
i,2(k)]− Pr[HA

i,1(k)] = 0 (4.2)

Pr[HA
i (k)]− Pr[HA

i,2(k)] = 0 (4.3)

for all k ∈ N, from which Equation 4 follows.
To prove Equation 4.1, the construction of B is as follows:
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B(p,G, g,A,B,C)

Q← ∅; h← A

Xi ← gxihvi ; Yi ← gyiX−si ∀ i; iparams ← ( ~X, ~Y )

(~m∗, σ∗)
$←− ASimMac,Verify((p,G, g, h), iparams)

b← ((σyσ
s
x)z = (σzσ

t
w)Hy(~m

∗)) ∧ ((σ
−Hv(~m∗)
w σx)Hy(~m

∗) = (σsxσy)
Hx(~m∗)) ∧ (σw 6= 1)

return b′ = ((~m∗ /∈ Q) ∧ b)

Procedure SimMacsk (~m)

σw ← C; σx ← BHx(~m)CHv(~m); σy ← BHy(~m)−sHx(~m)C−sHv(~m); σz ← BzC−t

return (σw, σx, σy, σz)

Procedure Verifysk (~m, σ)

return ((σyσ
s
x)z = (σxσ

t
w)Hy(~m)) ∧ (σw 6= 1)

To see that B successfully simulates the Mac oracle, observe that if we implicitly use r = b then, if
C = gab, we have

σw = gab = hb = hr

σx = gbHx(~m)gabHv(~m) = (gHx(~m)hHv(~m))r

σy = gb(Hy(~m)−sHx(~m))g−absHv(~m) = (gHy(~m)−sHx(~m)h−sHv(~m))r

σz = gbzg−abt = (gzh−t)r,

which are distributed identically to the values in HA
i−1(k). If instead C is random, then in particular

we can write it as C = hω for some ω
$←− Fp. In thise case

σw = hω

σx = grHx(~m)hωHv(~m)

σy = gr(Hy(~m)−sHx(~m))h−sωHv(~m)

σz = gzrh−ωt,

which are distributed identically to the values in HA
i,1(k).

To prove Equation 4.2, we remind ourselves of the transition: in both games, the first i− 1 queries

are answered using hχj for χj
$←− Fp and the last qm− i queries are answered using (gHx(~mj)hHv(~mj))rj

for rj
$←− Fp. The i-th query then uses either griHx(~mi)hχi (in HA

i,2(k)) or griHx(~mi)hωHv(~mi) (in HA
i,1(k));

if we can argue that the value of Hv(~mi) is independent of any other values in the game, then in
particular Hv(~mi) could take on any value and the distribution over these two values is identical.
To do this, we first observe that SimVerify, and thus Verify, is independent of ~v. The first i − 1
Mac responses are also independent of ~v, so we must prove only two properties: (1) the value of
(gHx(~mj)hHv(~mj))rj in the last qm − i Mac responses is independent of ~v, and (2) the value of Hv(~mi)
is independent of the value of Hv(~m

∗), and thus changing the i-th query does not affect the distribution
at the end of the game.

To first prove this latter property, we observe that Hv(·) is a pairwise independent function. As
the winning conditions of the game require that m∗ /∈ Q and thus ~mi 6= ~m∗, this means that for any
α1, α2 ∈ Fp, Pr[Hv(~mi) = α1 ∧ Hv(~m

∗) = α2] = 1/p2, which in turn implies that the values of Hv(~mi)
and Hv(~m

∗) are independent as desired.
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To prove the former property, we perform a similar argument to that in the proof of Equation 3:
consider a modified game in which xi = x′i − βvi; then for the last qm − i queries,

(g(Hx(~mj)hHv(~mj))rj = grj(Hx(~mj+βHv(~mj))) = grj(Hx′ (~mj)−βHv(~mj)+βHv(~mj)) = grjHx′ (~mj),

so these values information-theoretically hide ~v. For the i-th query, however, if we use griHx(~mi)hωiHv(~mi)

then we have
gri(Hx′ (~mi)−βHv(~mi))gβωiHv(~mi) = griHx′ (~mi)h(ωi−ri)Hv(~mi),

which, using instead ω′i = ωi − ri, is distributed identically to the value in HA
i,1(k).

To prove Equation 4.3, we consider a modified version of HA
i (k) in which, rather than pick χ

$←− Fp,
pick χ′

$←− Fp and set χ := rHx(~m)/β+χ′. Then the distribution over χ is still uniformly random and
thus identical to the distribution in HA

i (k), and

hχ = hrHx(~m)/β+χ′ = gβ(rHx(~m)/β+χ′) = grHx(~m)hχ
′
,

so the distribution over σx in the modified game is identical to that in HA
i,2(k) in which χ′

$←− Fp (and,
consequently, so is the distribution over σy).

Equation 5.
Finally, we prove Equation 5. If the forgery (~m∗, σ∗) output by A passes verification, then by definition

(σ
−Hv(~m∗)
w σx)Hy(~m

∗) = (σsxσy)
Hx(~m∗). Since ~x and ~v are not used in any values given to A and thus

Hx(~m∗) and Hv(~m
∗) are information-theoretically hidden, however, A has a negligible probability of

producing (~m∗, σ∗) such that this equality holds and σw 6= 1, meaning the probability that it passes
final verification is bounded by ν(k) for a negligible function ν(·).

B Formal Security Definitions for Keyed-Verification Credentials

In this section we formally define the security properties of keyed-verification credential scheme, in-
troduced in Section 4.

To simplify the definition somewhat, we first consider the setting where the issuer sees all of the
user’s attributes when it issues the credential, and define correctness, unforgeability, and anonymity
in this setting. Then we require the existence of a blind issuing protocol, which is a secure two party
computation allowing the user to obtain credentials identical to those generated by Issue, while keeping
a subset of his attributes private.

We also include two algorithms which are used to define security for the system:

Issue(sk , (m1, . . . ,mn)) uses the secret key to generate a credential for attributes (m1, . . . ,mn). This
can be run directly, if the issuer is trusted to behave honestly and knows all the user’s attributes,
otherwise BlindIssue and BlindObtain should be used, as these allow the user to guarantee that
the credential received is valid, and to hide some of his attributes.

CredVerify(sk , (m1, . . . ,mn), cred) uses the secret key to verify a credential. This is never run (because
it reveals the attributes (m1, . . . ,mn) as well as cred which may compromise the user’s privacy),
but is used to define the set of valid credentials for attributes (m1, . . . ,mn) under the sk .

For security, we require the following five properties to hold.
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Definition 5 (Correctness). Let Φ be the set of statements supported by a credential system, and U be
the universe of attribute sets. Then a keyed-verification credential system (CredKeygen, Issue,CredVerify,
Show, ShowVerify) is correct for Φ,U if for all for all (m1, . . . ,mn) ∈ U , for all sufficiently large k,

Pr
[
params

$←− Setup(1k); (sk , iparams)
$←− CredKeygen(params);

cred
$←− Issue(sk , (m1, . . . ,mn)) : CredVerify(sk , (m1, . . . ,mn), cred) = 0

]
= 0

and for all φ ∈ Φ, (m1, . . . ,mn) ∈ U such that φ(m1, . . . ,mn) = 1, for all sufficiently large k,

Pr
[
params

$←− Setup(1k); (sk , iparams)
$←− CredKeygen(params); cred

$←− Issue(sk , (m1, . . . ,mn));

Show(iparams, cred , (m1, . . . ,mn), φ)↔ ShowVerify(sk , φ)→ b : b = 0
]

= 0

The unforgeability property ensures an adversary cannot produce an accepting proof for a state-
ment φ unless at least one of the attribute sets that he requested a credential for satisfies φ.

Definition 6 (Unforgeability). A presentation protocol Show,ShowVerify for keyed-verification cre-
dentials scheme CredKeygen, Issue is unforgeable if for all PPT adversaries A, there exists a negligible
function ν such that for all k,

Pr
[
params

$←− Setup(1k);

(iparams, sk)
$←− CredKeygen(params);

(state, φ)
$←− A(params, iparams)Issue(sk ,·),ShowVerify(sk ,·)

A(state)↔ ShowVerify(sk , φ)→ b

such that b = 1 ∧ (∀(m1, . . . ,mn) ∈ Q,φ(m1, . . . ,mn) = 0)
]

= ν(k)

where Q is the list of all attribute sets (m1, . . . ,mn) queried to the Issue(sk , ·) oracle, and all executions
of ShowVerify are required to be sequential.

Definition 7 (Anonymity). A presentation protocol Show, ShowVerify for keyed-verification credentials
scheme CredKeygen, Issue is anonymous if for all PPT adversaries A, there exists an efficient algorithm
SimShow, and a negligible function ν such that for all k, for all φ ∈ Φ and (m1, . . . ,mn) ∈ U such that

φ(m1, . . . ,mn) = 1, and for all params
$←− Setup(1k) and all (iparams, sk)

$←− KeyGen(params), for all
cred such that CredVerify(sk , (m1, . . . ,mn), cred) = 1:

{Show(iparams, cred , (m1, . . . ,mn), φ)↔ A→ state} ≈ {SimShow(iparams, sk , φ)},

i.e., the adversary’s view given the proof can be simulated by SimShow given only φ and a valid secret
key corresponding to iparams.

Note that the statement φ is known to A and may contain information about the attribute values,
which may identify the user. Definition 7 ensures that the keyed-verification credential scheme’s
protocols are anonymous, modulo information revealed in φ.

Definition 8 (Blind issuance). Here we consider a setting where the user wishes to obtain cre-
dentials for attributes (m1, . . . ,mn), and the issuer knows only some subset S of those attributes.
Then we consider the following function: f((S, params, iparams), (sk , r), (m1, . . . ,mn)) on shared in-
put (S, params, iparams), issuer input (sk , r), and user input (m1, . . . ,mn), returns ⊥ to the issuer
and returns to the user “params error” if (iparams, sk) are not in the range of CredKeygen(params),
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“attribute error” if S does not agree with (m1, . . . ,mn),and cred
$←− Issue(sk , (m1, . . . ,mn); r) if neither

of these errors occurs.2

We say that an issuance protocol BlindIssue,BlindObtain is a blind issuance protocol for Issue if
it is a secure two-party computation (against malicious adversaries) for the above function. See [20,
Chapter 7] for a definition of secure two-party computation.

Definition 9 (Key-parameter consistency). The key generation algorithm CredKeygen satisfies key-

parameter consistency if for any PPT adversary A, the probability that A given params
$←− Setup(1k)

can produce (iparams, sk1, sk2) such that (iparams, sk1) and (iparams, sk2) are both in the range of
CredKeygen(params) is negligible (where the probability is over the choice of params and the random
coins of A).

Definition 10 (Secure keyed-verification credential system). We say that (CredKeygen,CredVerify, Issue,
BlindIssue,BlindObtain,Show,ShowVerify) is a secure keyed-verification credential system if these algo-
rithms satisfy correctness, unforgeability, anonymity, blind issuance, and key-parameter consistency
as defined above.

C A Proof of Theorem 4

We present the following algorithms, which will be used to specify the form of valid credentials when
we prove security of the scheme.

Issue(sk , (m1, . . . ,mn)): Output cred
$←− MACDDH(sk , (m1, . . . ,mn), ).

CredVerify(sk , (m1, . . . ,mn), cred): Output the result of VerifyDDH(sk , (m1, . . . ,mn), cred).

Proof. We will show that these algorithms satisfy correctness, unforgeability, anonymity, and blind
issuance.

Correctness. For correctness we need to show two properties. The first follows directly from cor-
rectness of the MAC. To see the second, consider the following:

Issue(sk , (m1, . . . ,mn)) generates credentials of the form (u, ux0+
∑n

1 ximi , uy0+
∑n

1 yimi , uz). Then if
both Show and ShowVerify are executed honestly, then the proof π will be accepting by completeness
of the proof system. Also, the honest Show will compute :

Vx =
σw

x0
∏n

1 Cmi
xi

Cσx

=
σw

x0
∏n

1 σw
mixihxiwi

σxgrx

=
σw

x0
∏n

1 σw
mixi

σxgrx

n∏
i=1

Xwi
i

=
ux0

∏n
1 u

mixi

grxux0+
∑n

1 ximi

n∏
i=1

Xwi
i

= g−rx
n∏
i=1

Xwi
i

so the verifier’s check on Vx will succeed. A similar equality holds for Vy. Finally, since Issue produces
σz = uz, the verifier’s final check will succeed and the verifier will accept.

2Here Issue(sk , (m1, . . . ,mn); r) means running Issue(sk , (m1, . . . ,mn)) with randomness r.
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Unforgeability. We have shown (Theorem 3) that MACDDH is unforgeable under DDH. Suppose
there exists an adversary A who can break the unforgeability property of our credential system. Then
we can construct an algorithm B that breaks unforgeability of MACDDH as follows:

B receives params, iparamsDDH and chooses random Cx0 , Cy0 , Cz
$←− Zp. It then sends params,

iparams = (iparamsDDH, Cx0 , Cy0 , Cz) to A.
When A queries the Issue oracle, B forwards the query to its MAC oracle and returns the resulting

tag.
When A queries the ShowVerify oracle: A sends σw, σz, Cm1 , . . . Cmn , Cσx , Cσy , and gives a proof

π. If the proof π is invalid, B will return ⊥. Otherwise B will run the proof of knowledge extractor
to extract {mi}n1 , rx, ry. Then it will compute σx = Cσxg

−rx and σy = Cσyg
−ry . Finally, it will query

its Verify oracle with (m1, . . .mn), (σw, σx, σy, σz), and output the result.
In the final show protocol, B will again, extract {mi}n1 , rx, ry, and output (m1, . . .mn), (σw, Cσxg

−rx ,
Cσyg

−ry , σz) as its forgery.
First, note that B ’s response to Issue queries will be identical to the honest Issue algorithm. Then,

we argue that its response to ShowVerify queries will also with overwhelming probability be identical
to the output of the honest algorithm. To see this, note that the proof of knowledge property guar-
antees that the extractor will succeed in producing a valid witness with all but negligible probability.
Furthermore, if the extractor gives valid {mi}n1 , rx, ry then

Vx =
σw

x0
∏n

1 Cmi
xi

Cσx

⇐⇒g−rx
n∏
1

Xi
wi =

σw
x0
∏n

1 (σw
mihwi)xi

Cσx

⇐⇒g−rx
n∏
1

(hxi)wi =
σw

x0+
∑n

1 mixi
∏n

1 h
wixi

Cσx

⇐⇒Cσxg−rx = σw
x0+

∑n
1 mixi

And similarly Vy =
Cryσw

y0
∏n

1 Cmi
yi

Cσy
iff Cσyg

−ry = σw
y0+

∑n
1 yimi . The final check that the hon-

est verifier makes guarantees that σz = σw
z. Thus, the honest verifier algorithm will accept iff

(σw, Cσxg
−rx , Cσyg

−ry , σz) would be accepted by VerifyDDH for message (m1, . . . ,mn).
Similarly, we can argue that B will extract a valid MAC from the final show protocol whenever

ShowVerify would have output 1. Thus, if A can cause ShowVerify to accept for some statement φ
that is not satisfied by any of the attribute sets queried to Issue, then B will extract a new message
(m1, . . . ,mn) and a valid tag for that message.

Anonymity. Let φ ∈ Φ and (m1, . . . ,mn) ∈ U be such that φ(m1, . . . ,mn) = 1. Let (iparams, sk)
be in the range of CredKeygen, and let cred be such that CredVerify(sk , cred , (m1, . . . ,mn)) = 1.

Then SimShow(sk , φ) behaves as follows: It chooses random values σw, Cσx , Cσy , Cm1 , . . . , Cmn
$←−

G. It then uses {xi, yi}n0 , z from sk to compute σz = σw
z, Vx =

σwx0
∏n

1 Cmi
xi

Cσx
, and Vy =

σwy0
∏n

1 Cmi
yi

Cσy
.

It will run A with these values as the first message, and then simulate the proof of knowledge, and
output whatever A outputs at the end of the proof.

First note Cσx , Cσy , Cm1 , . . . , Cmn are distributed identically to those produced by Show. Next,
note that for any cred such that CredVerify(sk , cred , (m1, . . . ,mn)) = 1, randomizing the credential
will produce the same distribution as choosing random σw and computing σx = σw

x0+
∑n

1 ximi , σy =
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σw
y0+

∑n
1 yimi , and σz = σw

z for the values z, {xi, yi}n0 in sk . Thus, σw, σz will also be distributed
identically to those produced by Show.

Finally, note that if we define rx, ry, {wi} to be the values such that Cσx = σw
x0+

∑n
1 ximigrx ,

Cσy = σw
y0+

∑n
1 yimigry , and Cmi = umihwi for the random values Cσx , Cσy , Cm1 , . . . , Cmn chosen by

SimShow, then the calculation above in the proof of correctness shows that the Vx, Vy that SimShow
computes will be identical to those that the honest Show would have produced.

By the zero knowledge property of the proof of knowledge, we conclude that the resulting view
will be indistinguishable to that produced by the adversary interacting with Show.

Blind issuance. First, we consider the setting where all of the attributes are known to the issuer and
we use the simpler algorithm. Consider the case where the user is corrupt. Then our 2PC simulator
on shared input (S, iparams) will receive the user’s list of attributes (m1, . . . ,mn) and forward it to
the functionality. The functionality will return ”attribute error” if S 6= (m1, . . . ,mn) and otherwise it
will return cred . If the error does not occur, the 2PC simulator will then send cred and run the proof
of knowledge ZK simulator to simulate the proof of correctness for cred . By zero knowledge, this will
be indistinguishable from the real world.

Next, we consider the case where the issuer is corrupt. In this case our 2PC simulator will receive
cred = (σw, σx, σy, σz) from the issuer and run the verifier for the proof system. If the proof accepts,
it will run the proof of knowledge extractor to extract sk = ({xi}n0 , {yi}n0 , x̃, ỹ, z̃) and r = σw. It will
send (sk , r) to the ideal functionality. By the proof of knowledge property, the credential sent in the
real world is σw, σw

x0
∏n

1 (σw
mi)xi , σy = σw

y0
∏n

1 (σw
mi)yi , σz = σw

z) which is exactly what would be
produced by the ideal functionality on input the (sk , r) described above.

Then, we consider the more complex algorithm which allows hidden attributes. Consider the case
where the user is corrupt. Then our 2PC simulator on shared input (S, iparams) will receive the
user’s list of ciphertexts (E1, . . . , En), and run the verification for the proof of knowledge. If the proof
accepts, it will then use the proof of knowledge extractor to extract {mi}i∈H and send it along with
the set S to the functionality. The functionality will return cred = (σw, σx, σy, σz). The 2PC simulator
will then compute an encryption E′x of σx and an encryption E′y of σy, send (σw, σz, E

′
x, E

′
y) to the

user, and use the ZK simulator to simulate the correctness proof. Note that in the real BlindIssue
protocol, if E1, . . . , En are encryptions of gm1 , . . . , gmn , then the resulting Ex, Ey will be distributed
identically to a fresh encryption of σw

x0
∏n

1 (σw
mi)xi , σw

y0
∏n

1 (σw
mi)yi . Thus, these will be identical

to what the simulator produces.
Next, we consider the case where the issuer is corrupt. In this case our 2PC simulator will generate

encryptions Ei of 1 for all i ∈ H, send them to A, and simulate the proof. It will then receive
cred = (σw, σx, σy, σz) from A and run the verification of the proof of knowledge; if the proof is
accepting, it will run the proof of knowledge extractor to extract sk = ({xi}n0 , {yi}n0 , x̃, ỹ, z̃) and r = b.
It will send (sk , r) to the ideal functionality. To see that this will be indistinguishable from the
real game, consider the following series of games. The first game G1 is identical to the real game,
except that instead of computing σx, σy by decrypting the ciphertexts Ex, Ey, we run the proof of
knowledge extractor to extract sk , r and use those to form the credential by running Issue. By the
proof of knowledge property and correctness and homomorphic properties of the encryption scheme,
the credential sent in the real world is (σw = gb, σw

x0
∏n

1 (σw
mi)xi , σw

y0
∏n

1 (σw
mi)yi , σw

z,mn) which is
exactly what would be produced by the ideal functionality on input the (sk , r) described above. Next,
in game G2 we replace the proof of knowledge of the messages in Ei with a simulated proof - by zero
knowledge this is indistinguishable. Finally, we note that the only difference between this game and
the simulated game is that Ei is generated as an encryption of gmi rather than 1; thus the two games
are indistinguishable by CPA-security of Elgamal encryption (which follows from DDH [28]).
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Key-parameter consistency. This follows under the discrete log assumption from the binding
property of the Pedersen commitment scheme. (Note that the discrete log assumption is implied by
DDH.)

D Instantiating Proofs of Knowledge

For our application we need a proof system that is zero knowledge and satisfies a strong proof of
knowledge property. In our setting we propose two approaches to instantiating the proof system.
The first is to use the Damg̊ard protocol [15], which converts any sigma protocol into a three-round
interactive zero-knowledge proof of knowledge secure under concurrent composition. This protocol
requires trusted parameters but this restriction can be omitted in the random oracle model. The
second option is to make the assumption that the stronger extraction property holds for Fiat-Shamir
based proofs [17] in the random oracle model.

In particular, we need that the proof of knowledge property hold even when the adversary is given
some information about previously extracted values, which can be modeled as access to an extraction
oracle. (This comes up, for example, in the credential unforgeability proof, when we need to extract
in order to answer the user’s ShowVerify queries. For standard model proof protocols, when proofs
are executed sequentially, this follows directly from the standard proof of knowledge property [4]. In
the random oracle model, however, we don’t know of any such implication. (See [18, p. 152] for a
discussion of some of the issues in this setting.)

In our setting we propose two approaches to instantiating the proof system. The first is to use
the Damg̊ard protocol [15], as described above. To see that trusted parameters can be avoided in the
random oracle model, consider the commitment scheme that chooses r and computes the commitment
as H(m; r). It is clear that in the random oracle model this will be a trapdoor commitment, since
control of the random oracle can be used to open such a commitment to any message. Implementing
the trapdoor commitment this way means we do not need any trusted setup besides the establishment
of a secure hash function that can be modeled as a random oracle.3

The second option is to make the assumption that the stronger extraction property holds for Fiat-
Shamir based proofs [17] in the random oracle model. While it is not obvious how to show that this
property holds in the random oracle model, it seems like a reasonable assumption in the combined
random oracle and generic group model, following along the lines of [26, 29]. Since our analysis for
the MACGGM scheme already uses this model, this may be a good choice for use with that scheme.

E Detailed Description of Show with MACGGM

We describe an instantiation of our presentation protocol and corresponding verification when the ZK
proofs are implemented using non-interactive Schnorr proofs. This is the same proof system used in
U-Prove and Idemix. This protocol does not include proof of any additional predicates φ, but outputs
commitments which may be used as input to further proof protocols. H will denote a cryptographic
hash function.

E.1 Proof generation

Inputs: params, a credential u0, u
′
0, and attribute values m1, . . . ,mn.

1. (Re-randomize) Choose a ∈R Fp, compute u = u0
a and u′ = u′0

a. Delete a.

3For alternative trapdoor commitment schemes that do not require a random oracle, see [15, Section 4]. These
alternatives require trusted setup of a common reference string,
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2. (Form commitments)

(a) Choose r, z1, . . . zn ∈R Fp.
(b) Compute {Cmi := umihzi}ni=1, Cu′ := u′gr.

3. (Create proof π)

(a) Choose z̃1, . . . , z̃n, r̃, m̃1, . . . , m̃n ∈R Fp.
(b) Compute {C̃mi := um̃ihz̃i}ni=1, and Ṽ = X z̃1 · · ·X z̃ngr̃.

(c) Form the challenge
c = H(param‖{Cmi}ni=1‖Cu′‖{C̃mi}ni=1‖Ṽ )

(d) Compute responses (all mod p), {smi = m̃i − cmi, szi = z̃i − czi}ni=1, and sr = r̃ + rc. Let
S denote the set of responses.

(e) Output π = (c, S).

4. (Output) Output the presentation proof P = (u, {Cmi}ni=1, Cu′ , π).

E.2 Proof verification

Inputs: Presentation proof P , issuer and system parameters param, private key elements x0, x1, . . . , xn.

1. Parse P as (u,Cm1 , . . . , Cmn , Cu′ , π).

2. Compute

V =
Cm1

x1 · · ·Cmnxnux0
Cu′

,

3. (Verify π)

(a) Parse π as (c, S) where S contains the responses computed in Step 3d of proof generation.

(b) Compute

c′ = H(param‖{Cmi}ni=1‖Cu′‖{Cmigsmihszi}ni=1‖V Xsz1 · · ·Xszngsr)

(c) Accept π as valid if c′ = c, otherwise reject.

4. (Output) If π is valid, output {Cmi}ni=1
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