
Universal Leaky Random Oracle Model

Guangjun Fan1, Yongbin Zhou2, Dengguo Feng1

1 Trusted Computing and Information Assurance Laboratory,Institute of
Software,Chinese Academy of Sciences,Beijing,China

guangjunfan@163.com , feng@is.iscas.ac.cn
2 State Key Laboratory of Information Security,Institute of Information

Engineering,Chinese Academy of Sciences,Beijing,China
zhouyongbin@iie.ac.cn

Abstract. K. Yoneyama et al. introduces the Leaky Random Oracle
Model at ProvSec2008, which only considers the leakage of the hash list
of a hash function used by a cryptosystem due to various attacks caused
by implementation or sloppy usages. However, an important fact is that
such attacks not only leak the hash list of a hash function, but also leak
other secret states outside the hash list of a cryptosystem (e.g. the secret
key). In most cases, an adversary may be more interesting in revealing
these secret states. Therefore, the Leaky Random Oracle Model is very
limited because it only considers the leakage of the hash list and does
not consider the leakage of other secret states. In this paper, we present
a new leakage model based on the Leaky Random Oracle Model. In our
new model, both the secret states (secret key) and the hash list can be
leaked. Furthermore, the secret key can be leaked continually. Hence,
our new model is more universal and stronger than the Leaky Random
Oracle Model and some other leakage models. Furthermore, we give a
provable security public key encryption scheme which is IND-CCA se-
cure in our new model.

Keywords: leaky random oracle model, secret key, hash list, Cramer-
Shoup cryptosystem, leakage.

1 Introduction

Hash function is one of the most important building blocks of cryptographic
schemes and is widely used in various schemes. For example, public key cryp-
tosystem, digital signature, authenticated key exchange, etc.

In practical sense, hash functions is used to hide private information to other
parities in the protocol. The spreading use of transaction by small electronic
devices has been encouraging researchers to develop an efficient and practical
security system in a limited resources environment. Due to the computational
costs of hash function is lower than that of public key cryptosystem. Therefore,
hash function is received much attention to construct protocols for such low-
power devices.

In the theoretical sense, hash function is modeled as a idealized model. This
idealized model is called random oracle model [1] (ROM). Mostly, proofs with

ROM are easier than the model without random oracles, i.e. the standard model
(SM), and can provide tight security reductions.

Unfortunately, Canetti et al. [2,3] showed that there are digital signature
schemes and public-key cryptosystems which are secure in ROM but insecure if
random oracles are instantiated by real hash function. However, since to prove
security of cryptography constructions in SM is very hard, ROM is an important
tool to design new constructions as the guideline of the provable security.

The physical attacks (Such as cold boot attack [4] and side-channel attacks
[6,7,8]) to a implementation of a cryptosystem and sloppy usages of a cryptosys-
tem may leak sensitive information of a cryptsystem. Usually, the adversary
could exploit leakage information to break a cryptosystem [4,6,7,8,14]. There-
fore, leakage information of a cryptosystem pose a serious threat on the security
of the implementation of a cryptosystem.

For ROM, when the random oracle is instantiated in practice using hash
function, all the pairs of inputs and outputs (contents of the hash list) of hash
functions may be leaked to adversaries. For example, the hash list of a hash
function may remain in the memory for reuse of hash values in order to reduce
computational costs or for failing to release temporary memory area, then con-
tents of the memory may be revealed by various attacks, e.g. cold boot attack,
malicious Trojan Horse programs.

K. Yoneyama et al. [5] introduces the Leaky Random Oracle Model (LROM)
considering this kind of leakage. In this model, all the contents of the hash list of a
hash function may be leaked to the adversary. By using the LROM, they confirm
whether a cryptographic protocol is secure or not if the leakage of the hash list
occurs. They analyzed the security of five prevailing protocols in LROM. The five
prevailing protocols are FDH, OAEP, Cramer-Shoup cryptosystem, Kurosawa-
Desmedt cryptosystem and NAXOS.

1.1 Motivation

An important fact is that the adversary not only obtains leakage of the hash
list of a hash function, but also leakage of the other secret states outside the
hash list (e.g., the secret key of an encryption scheme) of the cryptosystem
from physical attacks and sloppy usages. Moreover, in most cases, the adversary
is more interested in recovering this kind of secret states of a cryptosystem.
Many cryptosystems are broken due to the leakage of this kind of secret states.
However, LROM only considers the leakage of the hash list. In other words,
any cryptography scheme that is secure in LROM may not be secure any more
when the adversary obtains some leakage of this kind of secret states of the
cryptography scheme. Therefore, LROM is very limited.

In this paper, we formulate a new leakage model based on LROM. In this
new model, both the secret states outside the hash list of a cryptosystem (We
only consider the secret key in this paper.) and the hash list of a hash function
used by the cryptosystem can be leaked. We believe that this new model is more
universal and stronger than LROM and some other leakage models. Furthermore,
we try to construct a provably secure cryptography scheme in this new model.

2

1.2 Our Contribution

The main contributions of this paper are two-fold as follows. First, we introduce
a new leakage model. This model captures both leakage of the secret key of
the cryptosystem and leakage of the hash list of a hash function used by the
cryptosystem. Second, we give a public key encryption scheme that is provably
secure in this new model.

Universal Leaky Random Oracle Model Our new model named Uni-
versal Leaky Random Oracle Model (ULROM) allows the adversary to obtain
both leakage of the secret key of the cryptosystem and leakage of the contents
of the hash list of a hash function used by the cryptosystem simultaneously. We
model the query in order to obtain leakage of the secret key of a cryptosystem
as leakage query. As that in LROM, we model the query in order to obtain a
hash value to the (leaky) random oracle as hash query and the special query in
order to obtain all the contents of the hash list as leak hash query1. ULROM is
stronger than the LROM. Any cryptography scheme which is secure in ULROM
will be secure in LROM. However, any cryptography scheme which is secure in
LROM will not be secure in ULROM due to leakage of the secret key.

A Leakage Resilient Public Key Encryption Scheme in ULROM We
also construct a leakage resilient public key encryption scheme called Cramer-
Shoup-Fan cryptosystem in ULROM. This scheme is based on Cramer-Shoup
cryptosystem and does not use any additional assumption and complex cryp-
tography tool. In fact, it is a variant of the Cramer-Shoup cryptosystem with
a different way of implementation. According to our new leakage model, this
scheme is IND-CCA secure even if the secret key is leaked continually.

1.3 Related Works

A cryptosystem may be compromised by cold boot attack [4] and side-channel
attacks [5]. This two kinds of attacks may leak some sensitive information of a
cryptosystem. In [10], a new class of strong side-channel attacks named memory
attacks is defined. Moreover, memory attacks generalized the cold boot attack.
Two leakage models against memory attacks are also presented in [10]. In [11],
the Continual Memory Leakage Model (CMLM) is introduced. CMLM is stronger
than the two leakage models in [10], because the secret key can be refreshed and
leaked continually2.

K.Yoneyama et al. [5] introduces the Leaky Random Oracle Model (LROM)
considering the leakage of the hash list of a hash function used by a cryptosystem.

Our new leakage model (ULROM) is a combination of the Continual Memory
Leakage Model and the Leaky Random Oracle Model.

1 We rename the leak query in [5] as leak hash query because we define leakage query
in our new model. Note that the leak hash query and the leak query in [5] are the
same.

2 If the leakage of the secret key is caused by sloppy usage, the CMLM is still available
as long as the leakage satisfies the requirement of the CMLM.

3

1.4 Organization of This Paper

In section 2, we introduce some basic notation and concept. We present our new
leakage model (ULROM) in section 3. Our provable secure public key encryption
scheme (Cramer-Shoup-Fan cryptosystem) in ULROM is introduced in section
4. In this section, we also prove the security of the scheme. We conclude this
paper in section 5.

2 Preliminaries

In this section, we first introduce the basic assumptions which are used in this
paper. Second, we review the Leaky Random Oracle Model (LROM). Third, the
Cramer-Shoup cryptosystem and the security of it are introduced. Finally, we
present some symbols and notations used throughout the paper.

2.1 Basic Assumptions

Let Gen be a probabilistic polynomial-time algorithm that takes as input a se-
curity parameter and outputs a triple (G, q, g), where G is a group of order q
and is generated by g ∈ G.

The Decisional Diffie-Hellman assumption. The Decisional Diffie-Hellman
(DDH) assumption is that the ensembles {G, g1, g2, g

r
1, g

r
2} and {G, g1, g2, g

r1
1 , gr22 }

are computationally indistinguishable, where G ← Gen(1k), and the elements
g1, g2 ∈ G and r, r1, r2 ∈ Zq are chosen independently and uniformly at random.

In this paper, we exploit an assumption which is equivalent to the DDH as-
sumption. The assumption is in the following.

The Generalized Diffie-Hellman assumption. The Generalized Decisional
Diffie-Hellman (GDDH) assumption is that the ensembles

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr1, . . . , grn}, {grn+1, . . . , g
r
2n}}

and

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}}

are computationally indistinguishable, where G ← Gen(1k), and the elements
g1, g2, . . . , g2n ∈ G and r, r1, r2 ∈ Zq are chosen independently and uniformly at
random.

We will show that the GDDH assumption and the DDH assumption are
equivalent.

Theorem 1. The GDDH assumption and the DDH assumption are equivalent.

4

Proof. We will proof the theorem by the following two claims.
Claim 1.1 The GDDH assumption implies the DDH assumption.
Proof. Let A be an adversary who can break the DDH assumption. We can
construct an adversary B who can break the GDDH assumption using A. The
adversary B is as follows:

When B gets an input ensemble S1:

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr1, . . . , grn}, {grn+1, . . . , g
r
2n}},

he sends {G, g1, gn+1, g
r
1, g

r
n+1} to A and runs A as a subroutine. When A out-

puts b ∈ {0, 1}, then B outputs b.
When B gets an input ensemble S2:

{G, {g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}},

he sends {G, g1, gn+1, g
r1
1 , gr2n+1} to A and runs A as a subroutine. When A

outputs b ∈ {0, 1}, then B outputs b.
Clearly, we have

Pr[B(S1) = 1] = Pr[A(G, g1, gn+1, g
r
1, g

r
n+1) = 1]

and

Pr[B(S2) = 1] = Pr[A(G, g1, gn+1, g
r1
1 , gr2n+1) = 1].

Due to A can break the DDH assumption, then B can break the GDDH assump-
tion. Therefore, Claim 1.1 holds. 2
Claim 1.2 The DDH assumption implies the GDDH assumption.
Proof. Let A be an adversary who can break the GDDH assumption. We can
construct an adversary B who can break the DDH assumption using A. The
adversary B is as follows:

When B gets an input ensemble {G, g1, g2, g
r
1, g

r
2}, he chooses ai, bi ∈ Zq, i =

1, 2, . . . , n − 1 independently and uniformly at random and computes η1 =

g1, ηi = g
ai−1

1 , ηri = g
rai−1

1 , ηn+1 = g2, ηn+i = g
bi−1

2 , ηrn+1 = gr2, η
r
n+i = g

rbi−1

2 , i =
2, . . . , n.

Thus, B has the ensemble S1 :

{G, {η1, . . . , ηn}, {ηn+1, . . . , η2n}, {ηr1, . . . , ηrn}, {ηrn+1, . . . , η
r
2n}}

and sends it to the adversary A. B runs A as a subroutine. When A outputs
b ∈ {0, 1}, then B outputs b.

Similarly, when B gets an input ensemble {G, g1, g2, g
r1
1 , gr22 }, he chooses

ai, bi ∈ Zq, i = 1, 2, . . . , n − 1 independently and uniformly at random and

computes η1 = g1, ηi = g
ai−1

1 , ηr1i = g
r1ai−1

1 , ηn+1 = g2, ηn+i = g
bi−1

2 , ηr2n+1 =

gr22 , ηr2n+i = g
r2bi−1

2 , i = 2, . . . , n.
Thus, B has the ensemble S2 :

{G, {η1, . . . , ηn}, {ηn+1, . . . , η2n}, {ηr11 , . . . , ηr1n }, {η
r2
n+1, . . . , η

r2
2n}}

5

and sends it to the adversary A. B runs A as a subroutine. When A outputs
b ∈ {0, 1}, then B outputs b.

Clearly, we have

Pr[B(G, g1, gn+1, g
r
1, g

r
n+1) = 1] = Pr[A(S1) = 1]

and

Pr[B(G, g1, gn+1, g
r1
1 , gr2n+1) = 1] = Pr[A(S2) = 1].

Due to A can break the GDDH assumption, it is clearly that B can break the
DDH assumption. Therefore, the Claim 1.2 holds. 2

This concludes the proof of the theorem. 2

2.2 Leaky Random Oracle Model

K.Yoneyama et al. [5] introduces the Leaky Random Oracle Model (LROM). We
introduce the Leaky Random Oracle Model in Definition 1. LROM is trivially
stronger than ROM [5]. There exists separation between LROM and SM [5].
In [5], the difference between LROM and ROM under randomness revealing is
shown.

Definition 1. (Leaky Random Oracle Model) LROM is a model assuming
the leaky random oracle. We suppose a hash function H : X → Y such that
xi ∈ X, yi ∈ Y (i is an index), and X and Y are both finite sets. Also, let LH

be the hash list of H. We say H is a leaky random oracle if H can be simulated
by the following procedure:

Initialization: LH ← ⊥
Hash query: For a hash query xi to H, behave as follows:
If xi ∈ LH , then find yi corresponding to xi and output yi as the answer to

the hash query.
If xi /∈ LH , then choose yi randomly, add pair (xi, yi) to LH and output yi

as the answer to the hash query.
Leak hash query: For a leak hash query to H, output all contents of the

hash list.

2.3 Cramer-Shoup Cryptosystem is secure in LROM

Cramer-Shoup cryptosystem [9] is based on the DDH assumption and universal
one-way hash function family. The description of Cramer-Shoup cryptosystem is
as follows:

Key generation: For input security parameter k, generate a k-bit prime q.
Let G is a group of prime order q. Choose g1, g2 ∈ G randomly and generate
a secret key sk = (x1, x2, y1, y2, z) ∈ Z5

q and public information (c, d, h) such
that c = gx1

1 gx2
2 , d = gy1

1 gy2

2 , and h = gz. Next, a hash function H is chosen
from the family of universal one-way hash functions. The public key is pk =
(g1, g2, c, d, h,H) and the secret key is sk.

6

Encryption: Given a message m ∈ G, it chooses r ∈ Zq at random. Then it
computes

u1 = gr1, u2 = gr2, e = hrm,α = H(u1, u2, e), v = crdrα.

The ciphertext is (u1, u2, e, v).
Decryption: Given a ciphertext (u1, u2, e, v), the decryption algorithm runs

as follows. It first computes α = H(u1, u2, e) and tests if

ux1+y1α
1 ux2+y2α

2 = v.

If this condition does not hold, the decryption algorithm outputs ⊥; other-
wise, it outputs m = e/uz

1.
In [9], the security of Cramer-Shoup cryptosystem in standard model is

proved as follows:
Lemma 1 (Security of Cramer-Shoup cryptosystem in SM). If the hash
function H is chosen from a family of universal one-way hash functions and
the DDH assumption of the group G holds, then Cramer-Shoup cryptosystem
satisfies IND-CCA.

In [5], the security of Cramer-Shoup cryptosystem in LROM is analysed.
Cramer-Shoup cryptosystem is also secure in LROM.
Lemma 2 (Security of Cramer-Shoup cryptosystem in LROM). If the
DDH assumption of the group G holds, then Cramer-Shoup cryptosystem satisfies
IND-CCA where H is modeled as a leaky random oracle.

2.4 Symbols and Notations

Statistical Indistinguishability The statistical distance between two random
variables X,Y is defined by

SD(X,Y) =
1

2

∑
x

∣∣∣Pr[X = x]− Pr[Y = x]
∣∣∣.

We write X
s
≈ϵ Y to denote SD(X,Y) ≤ ϵ and just plain X

s
≈ Y if the

statistical distance is negligible in the security parameter. In the latter case, we
say that X,Y are statistically indistinguishable.

If G is a group of prime order q with generator g and v = (v1, v2, . . . , vn), vi ∈
Zq is a vector, we use gv to denote the vector (gv1 , gv2 , . . . , gvn).

If t = (t1, t2, . . . , tn) and s = (s1, s2, . . . , sn) are two vectors in Zn
q , we use

⟨t, s⟩ = t1s1 + t2s2 + · · ·+ tnsn to denote the inner product of the two vectors.
For a random number r ∈ Zq, rt = (rt1, rt2, . . . , rtn) is also a vector in Zn

q .

3 Universal Leaky Random Oracle Model

In [5], the Leaky Random Oracle Model only assumes that all the contents of
the hash list of a hash function are leaked. The adversary can get the leakage

7

information by physical attack or sloppy usage. However, in real-world situation,
the the adversary not only obtains leakage of the hash list of a hash function,
but also leakage of the other secret states outside the hash list of a cryptosystem
from physical attack and sloppy usages. Therefore, our new model considers
these two kinds of leakage simultaneously. In our new model, the adversary can
obtain both leakage of the hash list of a hash function and leakage of the secret
key of a cryptography scheme. Note that, we consider continual leakage of the
secret key in our new model. Our new model is called Universal Leaky Random
Oracle Model (ULROM).

As an example, we consider a public key encryption scheme which achieves
IND-CCA security in ULROM. Similarly, one can define a IND-CPA security
public key encryption scheme or a signature scheme which is existentially un-
forgeable under an adaptive chosen-message attack in ULROM. A public key
encryption scheme in ULROM consists of the following algorithms:

– KeyGen(1k): Takes as input the security parameter k and outputs the
public key PK, the secret key SK and the update key UK.

– Update(UK,SK): Outputs an updated secret key SK ′.
– Encrypt(PK,M): Outputs the ciphertext CT .
– Decrypt(SK,CT): Outputs the decrypted message M .

Note that the output of Update(UK,SK) i.e. SK ′ and SK are correspond to
the same public key PK. This means that for a ciphertext CT which is encrypted
by PK (CT =Encrypt(PK,M)), we have

Decrypt(SK,CT)=Decrypt(SK ′, CT)=M .

Let L = L(k) be a function of the security parameter.

Definition 2. We say that a public key encryption scheme Π is IND-CCA se-
cure in ULROM if for any probabilistic polynomial time adversary A, it holds
that

AdvLeakageCCA
Π,A (k) =

∣∣∣Pr[ExptLeakageCCA
Π,A (0) = 1]−Pr[ExptLeakageCCA

Π,A (1) = 1]
∣∣∣

is negligible in k, where ExptLeakageCCA
Π,A (b) is defind as follows:

– A random function H is chosen. Let LH denotes the hash list of H. Initial-
ization: LH ← ⊥

– Challenger chooses (PK,UK,SK1)← KeyGen(1k).
– The adversary may ask for the following four queries:

Leakage query: Each such query consists of a function Leak : {0, 1}∗ →
{0, 1}L with L bits output. On the ith such query Leaki, the challenger gives
the value Leaki(SKi) to A and computes the updated secret key SKi+1 ←
Update(UK,SKi).
Hash query: For a hash query ai to H, behave as follows:
If ai ∈ LH , then find bi corresponding to ai from LH and output bi as the
answer to the hash query.

8

If ai /∈ LH , then choose bi randomly, add pair (ai, bi) to LH and output bi
as the answer to the hash query.
Leak hash query: For a leak hash query to H, output all contents of the
hash list LH .
Decryption query: For a decryption query with a ciphertext CT , decrypte
CT with the current secret key SKi and output Decrypt(SKi, CT) to the
adversary A.

– At some point A gives the challenger two messages M0,M1 and |M0| = |M1|.
The challenger computes CT ∗ ← Encrypt(PK,Mb). Then the challenger
sends CT ∗ to the adversary A.

– The adversary A can not ask leakage query after he gets CT ∗. The adversary
A can also ask the hash query and the leak hash query. The adversary A can
also ask the decryption query. But he cannot ask the decryption query with
CT ∗.

– The adversary A outputs a bit b′. If b′ = b, the experiment outputs 1, other-
wise, the experiment outputs 0.

Note that the leaky hash query and the leakage query are essentially different.
On one hand, the secret key is not in the hash list of a cryptosystem, which means
that the secret key can not be leaked from leak hash query. On the other hand,
the leaky hash query leaks all the contents of the hash list, while the leakage
query leaks a part of the secret key between two updates.

Leaky random oracle model in [5] only allows the adversary to obtain leak-
age of the hash list. Therefore, it is very hard to guarantee the security of a
cryptography scheme in LROM when the secret key is leaked.

Some leakage models [10,13] do not consider leakage of the hash list if the
cryptosystem exploits hash function. Therefore, if all the contents of the hash
list are leaked, the cryptosystem which is secure in these models may not be
secure any more like the cryptsystems in [5].

In our new model, the adversary can get both leakage of the hash list and
continual leakage of the secret key. Therefore, our new model is more universal
and stronger than leaky random oracle model and some leakage models [10,13].
For some other leakage models [11,15,16], although they consider some additional
leakage, they do not consider the leakage of hash list.

In next section, we present a public key encryption scheme which is IND-CCA
secure in ULROM.

4 A Provably Secure Public Key Encryption Scheme in
ULROM

In this section, we first introduce our public key encryption scheme in ULROM
and then prove the security of it.

Let vector 1n = (1, 1, . . . , 1), there exists n components in the vector.
Our public key encryption scheme in ULROM is called Cramer-Shoup-Fan

cryptosystem (CSF) and is based on Cramer-Shoup cryptosystem. CSF is shown
in the following.

9

KeyGen: For input security parameter k, generate a k-bit prime q. Let G
is a group of prime order q. The generator of G is g. Choose t, s ∈ Zq uni-
formly at randomly. Let g1 = gt, g2 = gs. Generating five random numbers
(x1, x2, y1, y2, z) ∈ Z5

q and compute (c, d, h) such that c = gx1
1 gx2

2 , d = gy1

1 gy2

2 ,
and h = gz1 . Next, choose a hash function H from a family of universal one-
way hash functions. Computing ti ∈ Zq, i = 1, 2, . . . , n at random such that∑n

i=1 ti mod q = t. Similarly, computing si ∈ Zq, i = 1, 2, . . . , n at random
such that

∑n
i=1 si mod q = s. Denote vector t = (t1, t2, . . . , tn) and vector

s = (s1, s2, . . . , sn).
Computing a random vector x1 = (x11, x12, . . . , x1n), where x1i ∈ Zq, i =

1, 2, . . . , n such that ⟨t,x1⟩ mod q = tx1 mod q. Computing a random vector
x2 = (x21, x22, . . . , x2n), where x2i ∈ Zq, i = 1, 2, . . . , n such that ⟨s,x2⟩ mod
q = sx2 mod q.

Computing a random vector y1 = (y11, y12, . . . , y1n), where y1i ∈ Zq, i =
1, 2, . . . , n such that ⟨t,y1⟩ mod q = ty1 mod q. Computing a random vector
y2 = (y21, y22, . . . , y2n), where y2i ∈ Zq, i = 1, 2, . . . , n such that ⟨s,y2⟩ mod q =
sy2 mod q.

Computing a random vector z = (z1, z2, . . . , zn), where zi ∈ Zq, i = 1, 2, . . . , n
such that ⟨t, z⟩ mod q = tz mod q.

The public key pk is (gt, gs, c, d, h,H). The secret key sk is a n × 5 matrix,
namely sk = [x1,x2,y1,y2, z]

T . The update key uk is (t, s).
Encrypt: For input a message m ∈ G, choose r ∈ Zp at random, compute

u1 = gr⟨t,1n⟩ = gr1, u2 = gr⟨s,1n⟩ = gr2, e = hrm, α = H(u1, u2, e) and v = crdrα.
Output a ciphertext (grt, grs, e, v).

Decrypt: Given a ciphtertext (grt, grs, e, v), compute u1 = g⟨rt,1n⟩, u2 =
g⟨rs,1n⟩, α = H(u1, u2, e) and verify whether g⟨rt,x1⟩+α⟨rt,y1⟩+⟨rs,x2⟩+α⟨rs,y2⟩ =
v holds or not by using [x1,x2,y1,y2]. If the verification holds, then output the
message m = e/g⟨rt,z⟩ by using z. Else if, reject the decryption as an invalid
ciphertext ⊥.

Update: Let sk = [x1,x2,y1,y2, z]
T be a n × 5 matrix denotes the old

secret key. Choose β1, β3, β5 ∈ ker(t) and β2, β4 ∈ ker(s) uniformly at random.
Let matrix up = [β1, β2, β3, β4, β5]

T be a n × 5 matrix. Let the new updated
secret key be sk′ = sk + up. Output sk′.

We first verify the correctness of the scheme. We have

g⟨rt,x1⟩+⟨rs,x2⟩ = grx1
1 grx2

2 = cr.

Likewise, we have g⟨rt,y1⟩+⟨rs,y2⟩ = gry1

1 gry2

2 = dr and g⟨rt,z⟩ = grz1 = hr.
Therefore, the test performed by the decryption algorithm will pass, and the
output will be e/hr = m. Second, we verify that the updated secret key can also
decrypt a ciphertext correctly. For example, let’s consider x1. It is clear that

g
⟨t,x1+β1⟩
1 = g⟨t,x1⟩+⟨t,β1⟩ = g⟨t,x1⟩, because β1 ∈ ker(t). Similarly, x2,y1,y2, z
can be updated correctly.

The following theorem establishes the security of the scheme:

Theorem 2. If the hash function H is chosen from a family of universal one-
way hash functions and the GDDH assumption of the group G holds, then the

10

Cramer-Shoup-Fan cryptosystem is IND-CCA secure in Universal Leaky Ran-
dom Oracle model, as long as L < (n− 5)log(q)− ω(log(k)).

Proof. We define a new experiment ExptRandomLeakageCCA
Π,A (b) for a public key

encryption Π and any probabilistic polynomial time adversary A. The experi-
ment ExptRandomLeakageCCA

Π,A (b) is identical to the experimentExptLeakageCCA
Π,A (b)

except that in the leakage query, the challenger chooses random numbers (de-
noted by URi) with the same size of the secret key and sends Leaki(URi) to the

adversary. For our scheme, in the experiment ExptRandomLeakageCCA
CSF,A (b), when

the adversary sends a leakage function Leaki to the leakage oracle, the challenger
chooses a matrix URi ∈ Zn×5

q uniformly at random and sends Leaki(URi) to
the adversary.

For our scheme CSF it holds that

AdvLeakageCCA
CSF,A (k) =

∣∣∣Pr[ExptLeakageCCA
CSF,A (0) = 1]−Pr[ExptLeakageCCA

CSF,A (1) = 1]
∣∣∣

≤
∣∣∣Pr[ExptLeakageCCA

CSF,A (0) = 1]− Pr[ExptRandomLeakageCCA
CSF,A (0) = 1]

∣∣∣
+
∣∣∣Pr[ExptRandomLeakageCCA

CSF,A (0) = 1]− Pr[ExptRandomLeakageCCA
CSF,A (1) = 1]

∣∣∣
+
∣∣∣Pr[ExptRandomLeakageCCA

CSF,A (1) = 1]− Pr[ExptLeakageCCA
CSF,A (1) = 1]

∣∣∣.
We will prove this theorem by the following three claims.
Claim 2.1 As long as L < (n− 5)log(q)− ω(log(k)), it holds that∣∣∣Pr[ExptLeakageCCA

CSF,A (0) = 1]− Pr[ExptRandomLeakageCCA
CSF,A (0) = 1]

∣∣∣ < µ1(k)

, where µ1(k) is negligible in k.
Proof. By the following lemma, as long as L < (n − 5)log(q) − ω(log(k)), the
leakage of the real secret key ski is distinguishable with the leakage of random
matrix URi for any leakage function Leaki.
Lemma 3 (Dual Subspace Hiding) Let n ≥ d ≥ u be integers. Let Leak :

{0, 1}∗ → {0, 1}L be some arbitrary function. For randomly sampled C
∗← Zn×d

q ,

E
∗← Zd×u

q , UR
∗← Zn×u

q , we have:

(Leak(CE), C)
s
≈ (Leak(UR), C)

as long as (d− u)log(q)− L = ω(log(k)), n = poly(k), and q = kω(1).
In our scheme, the secret key sk is a n × 5 matrix in Zn×5

p . sk can be de-
composed into the product of two matrix C and E easily, where C is a ma-
trix in Zn×n

q and E is a matrix in Zn×5
q . Therefore, as long as L < (n −

5)log(q) − ω(log(k)), the leakage of the secret key and the leakage of a ran-
dom matrix in Zn×5

p can not be distinguished. Lemma 3 was first formulated
by Z.Brakerski et al.[11] and was improved by S.Agrawal et al. [12]. Without
loss of generality, assume that the attacker makes exactly T 1 leakage queries. In

1 Note that T = poly(k).

11

ExptLeakageCCA
CSF,A (0), the adversary obtains {Leaki(ski)}Ti=1 from leakage queries.

In ExptRandomLeakageCCA
CSF,A (0), the adversary obtains {Leaki(URi)}Ti=1 from leak-

age queries, where URi are sampled uniformly at random from Zn×5
q . The u-

nique difference between ExptLeakageCCA
CSF,A (0) and ExptRandomLeakageCCA

CSF,A (0) is

the leakage information from the leakage query. By lemma 3, {Leaki(ski)}Ti=1

and {Leaki(URi)}Ti=1 are statistically indistinguishable as long as L < (n −
5)log(q)− ω(log(k)). Hence, ExptLeakageCCA

CSF,A (0) and ExptRandomLeakageCCA
CSF,A (0)

are statistically indistinguishable. Therefore, Claim 2.1 holds.2
Claim 2.2 If the GDDH assumption of the group G holds, we have∣∣∣Pr[ExptRandomLeakageCCA

CSF,A (0) = 1]−Pr[ExptRandomLeakageCCA
CSF,A (1) = 1]

∣∣∣ < µ2(k)

, where µ2(k) is negligible in k.
We show the proof of Claim 2.2 in Appendix A. The main idea of the proof

is that the leakage queries in the two experiments leak no information about the
real secret key. Therefore, the adversary obtains no information about the real
secret key. Furthermore, the Cramer-Shoup cryptosystem is IND-CCA secure in
LROM (Lemma 2). Although our scheme CSF is a variant of the Cramer-Shoup
cryptosystem with a different way of implementation, the principle of theory of
our scheme is identical to the Cramer-Shoup cryptosystem except that the basic
assumptions of the two schemes are different1. Hence the Claim 2.2 holds.
Claim 2.3 As long as L < (n− 5)log(q)− ω(log(k)), it holds that∣∣∣Pr[ExptLeakageCCA

CSF,A (1) = 1]− Pr[ExptRandomLeakageCCA
CSF,A (1) = 1]

∣∣∣ < µ3(k)

, where µ3(k) is negligible in k.
Proof. The proof of Claim 2.3 is similar to the proof of Claim 2.1. 2

Therefore, our new scheme CSF is IND-CCA secure in ULROM. 2
The result of [11], can be used to show that any scheme that is secure against

continual leakage, can tolerate O(logk) leakage from each update process, and
thus our scheme can tolerate such leakage as well.

5 Conclusion

In this paper, we introduce a new leakage model based on Leaky Random Oracle
Model [5] and other leakage models [10,11,13]. In this new model, both the secret
key and the hash list of a hash function used by a cryptosystem can be leaked.
Moreover, the secret key can be leaked continually and refreshed. Therefore,
we believe that our new model is more universal and stronger than the Leaky
Random Oracle Model. We also present a public key encryption scheme (Cramer-
Shoup-Fan cryptosystem) which is IND-CCA secure in this new model. In future
work, one may try to consider additional leakage in the key generation. Leakage
resilient signature scheme in our new leakage model is also expected.

1 But the two assumptions are equivalent. See section 2 for more details.

12

References

1. M. Bellare, P. Rogaway.: Random Oracles are Practical: A Paradigm for Designing
Eifficient Protocols. ACM Conference on Computer and Communications Security
1993. pp.62-73, 1993.

2. R. Canetti, O. Goldreich, and S. Halevi.: The Random Oracle Methodology, Re-
visited (Preliminary Version). STOC1998, pp.131-140,1998.

3. R. Canetti, O. Goldreich, and S. Halevi.: The Random Oracle Methodology, Re-
visited. J.ACM 51(4), pp.557-594,2004.

4. J.A. Halderman, SD. Schoen, H. Nadia, W. Clarkson, W. Paul, JA. Calandrino,
AJ. Feldman, J. Appelbaum, and EW. Felten.: Lest We Remember: Cold-Boot
Attacks on Encryption Keys. 17th USENIX Security Symposium,pp.45-60,2008.

5. K. Yoneyama, S. Miyagawa, and K. Ohta.: Leaky Random Oracle. IEICE TRANS-
ACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS
AND COMPUTER SCIENCES Volume:E92A Issue:8 pp.1795-1807, 2009.

6. P. Kocher, J. Jaffe, and B. Jun.: Differential Power Analysis. CRYPTO1999, LNCS
1666, PP.388-397, 1999.

7. K. Gandol, C. Mourtel, and F. Olivier.: Electromagnetic Analysis: Concrete Re-
sults. CHES2001, LNCS 2162, pp.251-261, 2001.

8. Paul C. Kocher.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. CRYPTO1996, LNCS 1109, pp.104-113, 1996.

9. R. Cramer, V. Shoup.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. CRYPTO1998, LNCS 1462, pp.13-
25, 1998.

10. A. Akavia, S. Goldwasser, and V. Vaikuntanathan.: Simultaneous hardcore bits and
cryptography against memory attacks. TCC2009, LNCS 5444, pp.474-495, 2009.

11. Z. Brakerski, Y.T. Kalai, J. Katz, and V. Vaikuntanathan.: Overcoming the Hole
in the Bucket: Public-Key Cryptography Resilient to Continual Memory Leakage.
FOCS2010, pp.501-510, 2010.

12. S. Agrawal, Y. Dodis, V. Vaikuntanathan, and D. Wichs.: On Continual Leakage
of Discrete Log Representations. IACR Eprint Archive Report 2012/367.

13. S. Dziembowski, K. Pietrzak.: Leakage-Resilient Cryptography. FOCS2008, pp.293-
302, 2008.

14. M. Medwed, E. Oswald.: Template Attacks on ECDSA. WISA2008, LNCS 5379,
pp.14-27, 2009.

15. S. Dziembowski, S. Faust.: Leakage-Resilient Cryptography from the Inner-Product
Extractor. ASIACRYPT2011, LNCS 7073, pp.702-721, 2011.

16. S. Halevi, H. Lin.: After-the-Fact Leakage in Public-Key Encryption. TCC2011,
LNCS 6597, pp.107-124, 2011.

Appendix A: Proof of Claim 2.2

Proof. Equivalently, we redefine the advantage of an adversary as follows:

AdvRandomLeakageCCA′

CSF,A (k) = 2
∣∣∣Pr[ExptRandomLeakageCCA′

CSF,A (k) = 1]− 1

2

∣∣∣,
where ExptRandomLeakageCCA′

CSF,A is as follows:

13

– A random function H is chosen. Let LH denotes the hash list of H. Initial-
ization: LH ← ⊥

– Challenger chooses (PK,UK,SK)← KeyGen(1k).
– The adversary may ask for the following four queries:

Leakage query: Each such query consists of a function Leak : {0, 1}∗ →
{0, 1}L with L bits output. On the ith such query Leaki, the challenger gives

the value Leaki(URi) to A, where URi
∗← Zn×5

q and is sampled uniformly
at random.
Hash query: For a hash query ai to H, behave as follows:
If ai ∈ LH , then find bi corresponding to ai from LH and output bi as the
answer to the hash query.
If ai /∈ LH , then choose bi randomly, add pair (ai, bi) to LH and output bi
as the answer to the hash query.
Leak hash query: For a leak hash query to H, output all contents of the
hash list LH .
Decryption query: For a decryption query with a ciphertext CT , decrypts
CT with the secret key SK and sends Decrypt(SK,CT) to the adversary
A.

– At some point A gives the challenger two messages M0,M1 and |M0| =
|M1|. The challenger chooses b ∈ {0, 1} uniformly at random and computes
CT ∗ ← Encrypt(PK,Mb). Then the challenger sends CT ∗ as the challenge
ciphertext to the adversary A.

– The adversary A can not ask leakage query after he gets CT ∗. The adversary
A can also ask the hash query and the leak hash query. The adversary A
can also ask the decryption query. But he cannot ask the decryption query
with CT ∗.

– The adversary A outputs a bit b′. If b′ = b, the experiment outputs 1,
otherwise, the experiment outputs 0.

If AdvRandomLeakageCCA′

CSF,A (k) is negligible, then Claim 2.2 can be proved. We

will prove that AdvRandomLeakageCCA′

CSF,A (k) is negligible in the following.

Assume that AdvRandomLeakageCCA′

CSF,A (k) is non-negligible and the hash family
is universal one-way. Then there exists an adversary A that can break the scheme
CSF. We will show how to use the adversary A to construct an adversary B for
the GDDH assumption.

Define the set D as follows
{({g1, . . . , gn}, {gn+1, . . . , g2n}, {gr1, . . . , grn}, {grn+1, . . . , g

r
2n})|g1, . . . , g2n

∗← G,

r
∗← Zq}

and the set R as follows
{({g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g

r2
n+1, . . . , g

r2
2n})|g1, . . . , g2n

∗←
G, r1, r2

∗← Zq}.
We will show that if the input of the adversary B comes from D, the simula-

tion of B will be nearly perfect, and so the adversary A will have a non-negligible
advantage in guessing the hidden bit b. We will also show that if the input of
B comes from R, then the adversary A’s view is essentially independent of b,

14

and therefore the adversary A’s advantage is negligible. Therefore, B can dis-
tinguish D from R with non-negligible advantage which contradicts with the
GDDH assumption.

We now give the details of B. The input to B is

({g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}).

The adversary B chooses vectors

x1 = (x11, . . . , x1n) ∈ Zn
q ,x2 = (x21, . . . , x2n) ∈ Zn

q ,

y1 = (y11, . . . , y1n) ∈ Zn
q ,y2 = (y21, . . . , y2n) ∈ Zn

q ,

z1 = (z11, . . . , z1n) ∈ Zn
q , z2 = (z21, . . . , z2n) ∈ Zn

q

independently and uniformly at random.
Then the adversary B computes

c = gx11
1 gx12

2 · · · gx1n
n gx21

n+1g
x22
n+2 · · · g

x2n
2n ,

d = gy11

1 gy12

2 · · · gy1n
n gy21

n+1g
y22

n+2 · · · g
y2n

2n ,

h = gz111 gz122 · · · gz1nn gz21n+1g
z22
n+2 · · · g

z2n
2n .

The adversary B also chooses a hash function H at random. The adversary B
sends {(g1, . . . , gn), (gn+1, . . . , g2n), c, d, h,H} as the public key to A. The secret
key is [x1,x2,y1,y2, z1, z2]

T .
Note that the adversary B’s key generation algorithm is slightly different

from the key generation algorithm of the actual cryptosystem; in the latter, we
essentially fix z2 = 0.

The adversary B answers the leakage query as follows: chooses URi ∈ Zn×5
q

uniformly at random, and sends Leaki(URi) to A. Note that, due to URi is
sampled uniformly at random from Zn×5

q , it has no relation with the actual
secret key. Therefore, Leaki(URi) leaks no information about the actual secret
key [x1,x2,y1,y2, z1, z2]

T .
The adversary B answers the hash query and leaky hash query normally.

Note that leaky hash query in ULROM cannot be advantage of adversaries. The
reason is that all inputs and outputs of hash function H are publicly known be-
cause a ciphertext contains (u1, u2, e) which are the inputs to the hash function.
Naturally, adversaries can know the input and the output in each session.

The adversary B answers the decryption query as follows: For a decryp-

tion query ((g
r′1
1 , . . . , g

r′1
n), (g

r′2
n+1, . . . , g

r′2
2n), e

′, v′)1 from A, asks the hash query

(g
r′1
1 g

r′1
2 · · · g

r′1
n , g

r′2
n+1g

r′2
n+2 · · · g

r′2
2n, e

′, v′) to H, obtain α′ and verify whether

g
r′1x11

1 · · · gr
′
1x1n

n g
α′r′1y11

1 · · · gα
′r′1y1n

n g
r′2x21

n+1 · · · g
r′2x2n

2n g
α′r′2y21

n+1 · · · gα
′r′2y2n

2n = v′

1 If r′1 = r′2, then the ciphertext is valid.

15

holds or not by using [x1,x2,y1,y2]. If the verification holds, then output the

message m = e′/(g
r′1z11
1 g

r′1z12
2 · · · gr

′
1z1n

n g
r′2z21
n+1 g

r′2z22
n+2 · · · g

r′2z2n
2n) by using [z1,z2].

Else if, reject the decryption as an invalid ciphertext ⊥.
When the adversary B obtains two message m0 and m1 from A, he chooses

b ∈ {0, 1} at random, and computes

e = gr1z111 gr1z122 · · · gr1z1nn gr2z21n+1 gr2z22n+2 · · · g
r2z2n
n+2 mb,

α = H(gr11 gr12 · · · gr1n , gr2n+1g
r2
n+2 · · · g

r2
n+2, e),

v = gr1x11
1 · · · gr1x1n

n gαr1y11

1 · · · gαr1y1n
n gr2x21

n+1 · · · g
r2x2n
2n gαr2y21

n+1 · · · gαr2y2n

2n ,

and sends ({gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}, e, v) as the challenge ciphertext to A.

Let g be the generator of the group G. We know that there exist ti ∈
Zq such that gi = gti , i = 1, . . . , n. There exist si ∈ Zq such that gi+n =
gsi , i = 1, . . . , n. Let

∑n
i=1 ti mod q = t and

∑n
i=1 si mod q = s, there also exist

x1, x2, y1, y2, z1, z2 ∈ Zq such that

t1x11+ t2x12+ · · ·+ tnx1n ≡ tx1 mod q, s1x21+ s2x22+ · · ·+ snx2n ≡ sx2 mod q
t1y11 + t2y12 + · · ·+ tny1n ≡ ty1 mod q, s1y21 + s2y22 + · · ·+ sny2n ≡ sy2 mod q
t1z11 + t2z12 + · · ·+ tnz1n ≡ tz1 mod q, s1z21 + s2z22 + · · ·+ snz2n ≡ sz2 mod q.

The adversary B does not know t1, . . . , tn, s1, . . . , sn, t, s, x1, x2, y1, y2, z1, z2.
However, these values are really existent. The adversary B can answer A’s all
queries correctly without knows these values. Due to vectors x1,x2,y1,y2, z1, z2
are chosen independently and uniformly at random from Zn

q , the values {x1, x2, y1
, y2, z1, z2} are chosen independently and uniformly at random from Zq.

As we will see, when the input to adversary B comes from D, the challenge
ciphertext is a perfectly legitimate ciphertext; however, when the input to ad-
versary B comes from R, the challenge ciphertext will not be legitimate, in the
sense that r1 ̸= r2.

Claim 2.2 now follows immediately from the following two lemmas.
Lemma 4 When the adversary B’s input comes from D, the joint distribution
of the adversary A’s view and the hidden bit b is statistically indistinguishable
from that in the actual attack.
Proof. Consider the joint distribution of the adversary A’s view and the bit b
when the input comes from D. In this case, the challenge ciphertext is correct,
because grx11

1 · · · grx1n
n grx21

n+1 · · · g
rx2n
2n = cr, gry11

1 · · · gry1n
n gry21

n+1 · · · g
ry2n

2n = dr, and
grz111 · · · grz1nn grz21n+1 · · · g

rz2n
2n = hr; indeed, these equations imply that e = hrmb

and v = crdrα, and α itself is already of the right from.
To complete the proof, we will show that the output of the decryption oracle

has the right distribution. We call ((g
r′1
1 , g

r′1
2 , . . . , g

r′1
n), (g

r′2
n+1, g

r′2
n+2, . . . , g

r′2
2n), e

′, v′)
a valid ciphertext if r′1 = r′2 (an invalid ciphertext if r′1 ̸= r′2). Note that if a
ciphertext is valid, with (gr

′

1 , gr
′

2 , . . . , gr
′

n) and (gr
′

n+1, g
r′

n+2, . . . , g
r′

2n), then hr′ =

gr
′z11

1 gr
′z12

2 · · · gr′z1nn gr
′z21

n+1 gr
′z22

n+2 · · · g
r′z2n
2n ; therefore, the decryption oracle outputs

e/hr′ , just as it should. Consequently, the lemma follows immediately from the
following:

16

Claim A.1 The decryption oracle in both an actual attack against the cryptosys-
tem and in an attack against simulator B rejects all invalid ciphertexts, except
with negligible probability.
Proof. We now prove this claim by considering the distribution of the point
P = (x1, x2, y1, y2) ∈ Z4

q, conditioned on the adversary’s view. We know that
there exists w ∈ Zq such that gs = gwt. Let log() deonte loggt().

From the adversary’s view, P is a random point on the plane P formed by
intersecting the hyperplanes

log(c) = x1 + wx2 (1) and log(c) = y1 + wy2 (2).

These two equations come from the public key. The challenge ciphertext dose
not constrain P any further, as the hyperplane defined by

log(v) = rx1 + wrx2 + αry1 + αrwy2 (3)

contains P.
Now suppose the adversary A submits an invalid ciphertext

((g
r′1
1 , g

r′1
2 , . . . , g

r′1
n), (g

r′2
n+1, g

r′2
n+2, . . . , g

r′2
2n), e

′, v′)

to the decryption oracle, where r′1 ̸= r′2. The decryption oracle will reject, unless
P happens to lie on the hyperplane H defined by

log(v′) = r′1x1 + wr′2x2 + α′r′1y1 + α′r′2y2, (4)

where α′ = H(g
r′1
1 g

r′1
2 · · · g

r′1
n , g

r′2
n+1g

r′2
n+2 · · · g

r′2
2n, e

′). Note that the equations (1),
(2), and (4) are linearly independent, and so H intersects the plane P at a line.

It follows that the first time the adversary submits an invalid ciphertext,
the decryption oracle rejects with probability 1 − 1/q. This rejection actually
constrains the point P, puncturing theH at a line. Therefore, for i = 1, 2, . . . , the
ith invalid ciphertext submitted by the adversary will be rejected with probability
at least 1− 1/(q − i+ 1). From this it follows that the decryption oracle rejects
all invalid ciphertexts, except with negligible probability.
Lemma 5 When adversary B’s input comes from R, the distribution of the
hidden bit b is (essentially) independent from the adversary A’s view.
Proof. The input of the adversary B is

({g1, . . . , gn}, {gn+1, . . . , g2n}, {gr11 , . . . , gr1n }, {g
r2
n+1, . . . , g

r2
2n}).

We may assume that r1 ̸= r2, because this occurs except with negligible
probability. The lemma follows immediately from the following two claims.
Claim A.2 If the decryption oracle rejects all invalid ciphertexts during the
attack, then the distribution of the hidden bit b is independent of the adversary’s
view.
Proof. To see this, consider the point Q = (z1, z2) ∈ Z2

q. At the beginning of
the attack, this is a random point on the line

log(h) = z1 + wz2, (5)

17

determined by the public key. Moreover, if the decryption oracle only decrypts
valid ciphertext ((gr

′

1 , gr
′

2 , . . . , gr
′

n), (gr
′

n+1, g
r′

n+2, . . . , g
r′

2n), e
′, v′), then the adver-

sary obtains only linearly dependent relations r′log(h) = r′z1 + r′wz2. Thus, no
further information about Q is leaked.

Consider now the challenge ciphertext sent by adversary B to adversary A.
We have that e = γ ·mb, where γ = gr1z111 gr1z122 · · · gr1z1nn gr2z21n+1 gr2z22n+2 · · · g

r2z2n
n+2 .

Now, consider the equation

log(γ) = r1z1 + wr2z2 (6)

Clearly, equation (5) and equation (6) are linearly independent, and so the
conditional distribution of γ conditioning on b and everything in the adversary’s
view other than e is uniform. In other words, γ is a perfect one-time pad. It
follows that b is independent of the adversary A’s view.
Claim A.3 The decryption oracle will reject all invalid ciphertexts, except with
negligible probability.
Proof. We study the distribution of P = (x1, x2, y1, y2) ∈ Z4

q, conditioned on
the adversary A’s view. From the adversary A’s view, this is a random point on
the line L formed by intersecting the hyperplanes (1), (2), and

log(v) = r1x1 + wr2x2 + αr1y1 + αwr2y2. (7)

Now assume that the adversary submits an invalid ciphertext

((g
r′1
1 , . . . , g

r′1
n), (g

r′2
n+1, . . . , g

r′2
2n), e

′, v′) ̸= ((gr11 , . . . , gr1n), (gr2n+1, . . . , g
r2
2n), e, v),

where r′1 ̸= r′2. Let α
′ = H(g

r′1
1 · · · g

r′1
n , g

r′2
n+1 · · · g

r′2
2n, e

′).
There are three cases we consider.

Case 1. ((g
r′1
1 , . . . , g

r′1
n), (g

r′2
n+1, . . . , g

r′2
2n), e

′) = ((gr11 , . . . , gr1n), (gr2n+1, . . . , g
r2
2n), e) In

this case, the hash values are the same, but v′ ̸= v implies that the decryption
oracle will certainly reject.

Case 2. ((g
r′1
1 , . . . , g

r′1
n), (g

r′2
n+1, . . . , g

r′2
2n), e

′) ̸= ((gr11 , . . . , gr1n), (gr2n+1, . . . , g
r2
2n), e)

and α′ ̸= α.
The decryption oracle will reject unless the point P lies on the hyperplane

H defined by (4). However, the equations (1), (2), (7), and (4) are linearly
independent. This can be verified by observing that

det


1 w 0 0
0 0 1 w
r1 wr2 αr1 αwr2
r′1 wr′2 α′r′1 α′wr′2

 = w2(r2 − r1)(r
′
2 − r′1)(α− α′) ̸= 0.

Thus, H intersects the line L at a point, from which it follows (as in the proof of
Lemma 4) that the decryption oracle rejects, except with negligible probability.

Case 3. ((g
r′1
1 , . . . , g

r′1
n), (g

r′2
n+1, . . . , g

r′2
2n), e

′) ̸= ((gr11 , . . . , gr1n), (gr2n+1, . . . , g
r2
2n), e)

and α′ = α. We argue that if this happens with non-negligible probability, then
in fact, the family of hash functions is not universal one-way. Therefore, there
exists a contradiction.

Therefore, Claim 2.2 holds. 2

18

