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Abstract. In this paper we present a parallel approach to compute interleaved Montgomery multi-
plication. This approach is particularly suitable to be computed on 2-way single instruction, multiple
data platforms as can be found on most modern computer architectures in the form of vector in-
struction set extensions. We have implemented this approach for tablet devices which run the x86
architecture (Intel Atom Z2760) using SSE2 instructions as well as devices which run on the ARM
platform (Qualcomm MSM8960, NVIDIA Tegra 3 and 4) using NEON instructions. When instanti-
ating modular exponentiation with this parallel version of Montgomery multiplication we observed
a performance increase of more than a factor of 1.5 compared to the sequential implementation in
OpenSSL for the classical arithmetic logic unit on the Atom platform for 2048-bit moduli.
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1 Introduction

Modular multiplication of large integers is a computational building block used to imple-
ment public-key cryptography. For schemes like RSA [34], ElGamal [11] or DSA [36], the
most common size of the modulus for parameters in use is large; 1024 bits long [28, 20].
The typical modulus size will increase to 2048 and 3072 bits over the coming years, in order
to comply with the current 112- and 128-bit security standard (cf. [31]). When computing
multiple modular multiplications, Montgomery multiplication [30] provides a speed up to
this core arithmetic operation. As RSA-based schemes are arguably the most frequently
computed asymmetric primitives today, improvements to Montgomery multiplication are
of immediate practical importance.

Many modern computer architectures provide vector instruction set extensions in order
to perform single instruction, multiple data (SIMD) operations. Example platforms include
the popular x86 architecture as well as the ARM platform that can be found in almost all
modern smartphones and tablets. The research community has studied ways to reduce the
latency of Montgomery multiplication by parallelizing this computation. These approaches
vary from using the SIMD paradigm [10, 23, 8, 18] to the single instruction, multiple threads
paradigm using a residue number system [14, 29] as described in [4, 19] (see Section 2.3 for
a more detailed overview).

In this paper we present an approach to split the Montgomery multiplication into two
parts which can be computed in parallel. We flip the sign of the precomputed Montgomery
constant and accumulate the result in two separate intermediate values that are computed
concurrently. This avoids using a redundant representation, for example suggested in the
recent SIMD approach for Intel architectures [18], since the intermediate values do not
overflow to an additional word. Moreover, our approach is suitable for implementation



using vector instruction set extensions which support 2-way SIMD operations, i.e., a single
instruction that is applied to two data segments simultaneously. We implemented the
sequential Montgomery multiplication algorithm using schoolbook multiplication on the
classical arithmetic logic unit (ALU) and the parallel approach on the 2-way SIMD vector
instruction set of both the x86 (SSE2) and the ARM (NEON) processors. Our experimental
results show that on both 32-bit x86 and ARM platforms, widely available in a broad range
of mobile devices, this parallel approach manages to outperform our classical sequential
implementation.

Note, that the approach and implementation used in the GNU multiple precision arith-
metic library (GMP) [13], is faster than the one presented in this paper and the one used in
OpenSSL [32] on some Intel platforms we tested. This approach does not use the interleaved
Montgomery multiplication but first computes the multiplication, using asymptotically fast
method like Karatsuba [25], followed by the Montgomery reduction. GMP uses dedicated
squaring code which is not used in our implementation. Note, however, that GMP is not
a cryptographic library and does not strive to provide constant-time implementations. See
Section 3.1 for a more detailed discussion of the different approaches.

2 Preliminaries

In this section we recall some of the facts related to SIMD instructions and Montgomery
multiplication. In Section 2.3 we summarize related work of parallel software implementa-
tions of Montgomery multiplication.

2.1 SIMD Instruction Set Extensions

Many processors include instruction set extensions. In this work we mainly focus on ex-
tensions which support vector instructions following the single instruction, multiple data
(SIMD) paradigm. The two platforms we consider are the x86 and the ARM, and the
instruction set extensions for these platforms are outlined below. The main vector instruc-
tions used in this work (on both processor types) are integer multiply, shift, bitwise AND,
addition, and subtraction.

The x86 SIMD Instruction Set Extensions. SIMD operations on x86 and x64 proces-
sors have been supported in a number of instruction set extensions, beginning with MMX
in 1997. This work uses the streaming SIMD extensions 2 (SSE2) instructions, introduced
in 2001. SSE2 has been included on most Intel and AMD processors manufactured since
then. We use “SSE” to refer to SSE2. SSE provides 128-bit SIMD registers (eight registers
on x86 and sixteen registers on x64) which may be viewed as vectors of 1-, 8-, 16-, 32-,
or 64-bit integer elements operating using 128-, 16-, 8-, 4-, or 2-way SIMD respectively.
Vector operations allow multiple arithmetic operations to be performed simultaneously, for
example PMULLUDQ multiplies the low 32-bits of a pair of 64-bit integers and outputs a pair
of 64-bit integers. For a description of SSE instructions, see [22].

The ARM NEON SIMD Engine. Some ARM processors provide a set of additional
SIMD operations, called NEON. The NEON register file can be viewed as either sixteen



Algorithm 1 The radix-r interleaved Montgomery multiplication [30] method.

Input:
{
A,B,M, µ such that A =

∑n−1
i=0 air

i, 0 ≤ ai < r, 0 ≤ A,B < M, 2 -M,
rn−1 ≤M < rn, gcd(r,M) = 1, µ = −M−1 mod r.

Output: C ≡ A ·B · r−n modM such that 0 ≤ C < M .
1: C ← 0
2: for i = 0 to n− 1 do
3: C ← C + ai ·B
4: q ← µ · C mod r
5: C ← (C + q ·M)/r
6: if C ≥M then
7: C ← C −M
8: return C

128-bit registers or 32 64-bit registers. The NEON registers can contain integer vectors, as
in SSE. The operations provided by NEON are comparable to those provided by SSE. For
example, the vector multiply instruction vmul takes two pairs of 32-bit integers as input
and produces a pair of 64-bit outputs. This is equivalent to the SSE2 instruction PMULUDQ,
except the inputs are provided in 64-bit registers, rather than 128-bit registers. Another
example, but without an SSE equivalent is the vmlal instruction which performs a vmull
and adds the results to a 128-bit register (treated as two 64-bit integers). For a complete
description of the NEON instructions, see [3].

2.2 Montgomery Arithmetic

Montgomery arithmetic [30] consists of transforming operands into a Montgomery repre-
sentation, performing the desired computations on these transformed numbers, then con-
verting the result (also in Montgomery representation) back to the regular representation.
Due to the overhead of changing representations, Montgomery arithmetic is best when used
to replace a sequence of modular multiplications, since the overhead is amortized.

The idea behind Montgomery multiplication is to replace the expensive division opera-
tions required when computing the modular reduction by cheap shift operations (division
by powers of two). Let w denote the word size in bits. We write integers in a radix r
system, for r = 2w where typical values of w are w = 32 or w = 64. Let M be an
n-word odd modulus such that rn−1 ≤ M < rn. The Montgomery radix rn is a con-
stant such that gcd(rn,M) = 1. The Montgomery residue of an integer A ∈ Z/MZ is
defined as Ã = A · rn modM . The Montgomery product of two residues is defined as
M(Ã, B̃) = Ã · B̃ · r−n modM . Algorithm 1 outlines interleaved Montgomery multiplica-
tion, denoted as coarsely integrated operand scanning in [26], where the multiplication and
reduction are interleaved. Note that residues may be added and subtracted using regular
modular algorithms since Ã± B̃ ≡ (A · rn)± (B · rn) ≡ (A±B) · rn (mod M).

2.3 Related Work

There has been a considerable amount of work related to SIMD implementations of cryp-
tography. The authors of [6, 12, 35] propose ways to speed up cryptography using the NEON



vector instructions. Intel’s SSE2 vector instruction set extension is used to compute pairings
in [15] and multiply big numbers in [21]. Simultaneously, people have studied techniques
to create hardware and software implementations of Montgomery multiplication. We now
summarize some of the techniques to implement Montgomery multiplication concurrently
in a software implementation. A parallel software approach describing systolic (a specific
arrangement of processing units used in parallel computations) Montgomery multiplication
is described in [10, 23]. An approach using the vector instructions on the Cell micropro-
cessor is considered in [8]. Exploiting much larger parallelism using the single instruction
multiple threads paradigm, is realized by using a residue number system [14, 29] as de-
scribed in [4]. This approach is implemented for the massively parallel graphics processing
units in [19]. An approach based on Montgomery multiplication which allows one to split
the operand into two parts, which can be processed in parallel, is called bipartite mod-
ular multiplication and is introduced in [24]. More recently, the authors of [18] describe
an approach using the soon to be released AVX2 SIMD instructions, for Intel’s Haswell
architecture, which uses 256-bit wide vector instructions. The main difference between the
method proposed in this work and most of the SIMD approaches referred to here is that
we do not follow the approach described in [21]. We do not use a redundant representation
to accumulate multiple multiplications. We use a different approach to make sure no extra
words are required for the intermediate values (see Section 3).

Another approach is to use the SIMD vector instructions to compute multiple Mont-
gomery multiplications in parallel. This can be useful in applications where many compu-
tations need to be processed in parallel such as batch-RSA. This approach is studied in [33]
using the SSE2 vector instructions on an Pentium 4 and in [7] on the Cell processor.

3 Montgomery Multiplication using SIMD Extensions

Montgomery multiplication, as outlined in Algorithm 1, does not lend itself to paralleliza-
tion directly. In this section we describe an algorithm capable of computing the Montgomery
multiplication using two threads running in parallel which perform identical arithmetic
steps. Hence, this algorithm can be implemented efficiently using common 2-way SIMD
vector instructions. For illustrative purposes we assume a radix-232 system, but this can
be adjusted accordingly to other choices of radix.

As can be seen from Algorithm 1 there are two 1 × n → (n + 1) limb (aiB and
qM) and a single 1 × 1 → 1 limb (µC mod r) multiplications per iteration. These three
multiplications depend on each other, preventing concurrent computation. In order to
remove this dependence, note that for the computation of q only the first limb c0 of C =∑n−1

i=0 ci2
32i is required. Hence, if one is willing to compute the updated value of c0 twice

then the two larger 1×n→ (n+1) limb multiplications become independent of each other
and can be computed in parallel. More precisely, lines 3, 4, and 5 of Algorithm 1 can be
replaced with

q← ((c0 + ai · b0)µ) mod r

C ← (C + ai ·B + q ·M)/r



Algorithm 2 A parallel radix-232 interleaved Montgomery multiplication algorithm. Ex-
cept for the computation of q, the arithmetic steps in the outer for-loop performed by both
Computation 1 and Computation 2 are identical. This approach is suitable for 32-bit 2-way
SIMD vector instruction units. Note that the value of the precomputed Montgomery inverse
µ is different (µ =M−1 mod 232) than the one used in Algorithm 1 (µ = −M−1 mod 232).

Input:


A,B,M, µ such that A =

∑n−1
i=0 ai2

32i, B =
∑n−1

i=0 bi2
32i,

M =
∑n−1

i=0 mi2
32i, 0 ≤ ai, bi < 232, 0 ≤ A,B < M,

232(n−1) ≤M < 232n, 2 -M, µ =M−1 mod 232.

Output: C ≡ A ·B · 2−32n modM such that 0 ≤ C < M .

Computation 1 Computation 2
di = 0 for 0 ≤ i < n ei = 0 for 0 ≤ i < n
for j = 0 to n− 1 do for j = 0 to n− 1 do

q ← ((µ · b0) · aj + µ · (d0 − e0)) mod 232

t0 ← aj · b0 + d0 t1 ← q ·m0 + e0 // Note that t0 ≡ t1 (mod 232)

t0 ←
⌊
t0
232

⌋
t1 ←

⌊
t1
232

⌋
for i = 1 to n− 1 do for i = 1 to n− 1 do
p0 ← aj · bi + t0 + di p1 ← q ·mi + t1 + ei

t0 ←
⌊ p0
232

⌋
t1 ←

⌊ p1
232

⌋
di−1 ← p0 mod 232 ei−1 ← p1 mod 232

dn−1 ← t0 en−1 ← t1
↘ ↙

C ← D − E // where D =

n−1∑
i=0

di2
32i, E =

n−1∑
i=0

ei2
32i

if C < 0 do C ← C +M

ensuring that the two larger multiplications do not depend on each other.
The second idea is to flip the sign of the Montgomery constant µ: i.e. instead of using

−M−1 mod 232 (as in Algorithm 1) we use µ =M−1 mod 232 (the reason for this choice is
outlined below). When computing the Montgomery product C = A ·B · 2−32n modM , for
an odd modulusM such that 232(n−1) ≤M < 232n, one can compute D, which contains the
sum of the products aiB, and E, which contains the sum of the products qM , separately.
Due to our choice of the Montgomery constant µ we have C = D − E ≡ A · B · 2−32n

(mod M), where 0 ≤ D,E < M : the maximum values of both D and E fit in an n-limb
integer, avoiding a carry that might result in an (n+1) limb long integer as in Algorithm 1.
This approach is outlined in Algorithm 2.

At the start of every iteration of j the two separate computations need some commu-
nication in order to compute the new value of q. In practice, this communication requires
extracting the values d0 and e0, the first limb of D and E respectively, from the SIMD vec-
tor. No such extracting is required in the inner-most loop over the i values in Algorithm 2.
The value of q is computed as

q = ((µ · b0) · aj + µ · (d0 − e0)) mod 232 = µ(aj · b0 + c0) mod 232

since c0 = d0 − e0. Note that one can compute (µ · b0) mod 232 at the beginning of the
algorithm once and reuse it for every iteration of the for-loop.



Table 1. A simplified comparison, only stating the number of arithmetic operations required, of the expected
performance of Montgomery multiplication when using a 32n-bit modulus for a positive even integer n. The left side
of the table shows arithmetic instruction counts for the sequential algorithm using the classical ALU (Algorithm 1)
and when using 2-way SIMD instructions with the parallel algorithm (Algorithm 2). The right side of the table
shows arithmetic instruction counts when using one level of Karatuba’s method [25] for the multiplication as
analyzed in [17].

Instruction classical 2-way SIMD Karatsuba Instruction
32-bit 64-bit 32-bit 32-bit

add - - n 13
4
n2 + 8n+ 2 add

sub - - n 7
4
n2 + n mul

shortmul n n
2

2n

muladd 2n n -
muladdadd 2n(n− 1) n(n

2
− 1) -

SIMD muladd - - n

SIMD muladdadd - - n(n− 1)

Except for the computation of q, all arithmetic computations performed by Computa-
tion 1 and Computation 2 are identical but work on different data. This makes Algorithm 2
suitable for implementation using 2-way 32-bit SIMD vector instructions. This approach
benefits from 2-way SIMD 32×32→ 64-bit multiplication and matches exactly the 128-bit
wide vector instructions as present in SSE and NEON. Changing the radix used in Algo-
rithm 2 allows implementation with larger or smaller vector instructions. For example, if
a 64 × 64 → 128-bit vector multiply instruction is provided in a future version of AVX,
implementing Algorithm 2 in a 264-radix system with 256-bit wide vector instructions could
potentially speed-up modular multiplication by a factor of up to two on 64-bit systems (see
Section 3.1).

At the end of Algorithm 2, there is a conditional addition, as opposed to a conditional
subtraction in Algorithm 1, due to our choice of µ. The condition is whether D − E is
negative (produces a borrow), in this case the modulus must be added to make the result
positive. This conditional addition can be converted into straight-line code by creating
a mask depending on the borrow and selecting either D − E (if there is no borrow) or
D − E +M (if there is a borrow) so that the code runs in constant-time (an important
characteristic for side-channel resistance [27]).

3.1 Expected Performance

The question remains if Algorithm 2, implemented for a 2-way SIMD unit, outperforms
Algorithm 1, implemented for the classical ALU. This mainly depends on the size of the
inputs and outputs of the integer instructions, how many instructions can be dispatched
per cycle, and the number of cycles an instruction needs to complete. In order to give
a (simplified) prediction of the performance we compute the expected performance of a
Montgomery multiplication using a 32n-bit modulus for a positive even integer n. Let
muladdw(e, a, b, c) and muladdaddw(e, a, b, c, d) denote the computation of e = a × b + c
and e = a × b + c + d, respectively, for 0 ≤ a, b, c, d < 2w and 0 ≤ e < 22w as a basic



operation on a compute architecture which works on w-bit words. Some platforms have
these operations as a single instruction (e.g., on some ARM architectures) or they must be
implemented using a multiplication and addition(s) (as on the x86 platform). Furthermore,
let shortmulw(e, a, b) denote e = a× b mod 2w: this only computes the lower word of the
result and can be done faster (compared to a full product) on most platforms.

Table 1 summarizes the expected performance of Algorithm 1 and 2 in terms of arith-
metic operations only (e.g., the data movement, shifting and masking operations are omit-
ted). Also the operations required to compute the final conditional subtraction or addition
have been omitted. When solely considering the muladd and muladdadd instructions it
becomes clear from Table 1 that the SIMD approach uses exactly half of the number of
operations compared to the 32-bit classical implementation and almost twice as many op-
erations compared to the classical 64-bit implementations. However, the SIMD approach
requires more operations to compute the value of q every iteration and has various other
overhead (e.g., inserting and extracting values from the vector). Hence, when assuming
that all the characteristics of the SIMD and classical (non-SIMD) instructions are identi-
cal, which will not be the case on all platforms, then we expect Algorithm 2 running on a
2-way 32-bit SIMD unit to outperform a classical 32-bit implementation using Algorithm 1
by at most a factor of two while being roughly twice as slow when compared to a classical
64-bit implementation.

Inherently, the interleaved Montgomery multiplication algorithm (as used in this work)
is not compatible with asymptotically faster integer multiplication algorithms like Karat-
suba multiplication [25]. We have not implemented the Montgomery multiplication by first
computing the multiplication using such faster methods, and then computing the modular
reduction, using SIMD vector instructions in one or both steps. In [17], instruction counts
are presented when using the interleaved Montgomery multiplication, as used in our base-
line implementation, as well as for an approach where the multiplication and reduction are
computed separately. Separating these two steps makes it easier to use a squaring algo-
rithm. In [17] a single level of Karatsuba on top of Comba’s method [9] is considered: the
arithmetic instruction counts are stated in Table 1. For 1024-bit modular multiplication
(used for 2048-bit RSA decryption using the CRT), the Karatsuba approach can reduce the
number of multiplication and addition instructions by a factor 1.14 and 1.18 respectively
on 32-bit platforms compared to the sequential interleaved approach. When comparing
the arithmetic instructions only, the SIMD approach for interleaved Montgomery multipli-
cation is 1.70 and 1.67 times faster than the sequential Karatsuba approach for 1024-bit
modular multiplication on 32-bit platforms. Obviously, the Karatsuba approach can be
sped up using SIMD instructions as well.

The results in Table 1 are for Montgomery multiplication only. It is known how to
optimize (sequential) Montgomery squaring [16], but as far as we are aware, not how to
optimize squaring using SIMD instructions. Following the analysis from [17], the cost of
a Montgomery squaring is 11n+14

14n+8
and 3n+5

4n+2
the cost of a Montgomery multiplication when

using the Karatsuba or interleaved Montgomery approach on n-limb integers. For 1024-bit
modular arithmetic (as used in RSA-2048 with n = 32) this results in 0.80 (for Karatsuba)



and 0.78 (for interleaved). For RSA-2048, approximately 5/6 of all operations are squarings:
this highlights the potential of an efficient squaring implementation.

4 Implementation Results

We have implemented interleaved Montgomery modular multiplication (Algorithm 1) as a
baseline for comparison with the SIMD version (Algorithm 2). In both implementations,
the final addition/subtraction was implemented using masking such that it runs in constant
time, to resist certain types of side-channel attacks using timing and branch prediction.
Since the cost of this operation was observed to be a small fraction of the overall cost, we
chose not to write a separate optimized implementation for operations using only public
values (such as signature verification).

Benchmark Hardware. Our implementations were benchmarked on recent Intel x86-32,
x64 and ARM platforms. On the Intel systems, Windows 7 and Windows 8 were used,
and on ARM systems Windows RT was used. The Microsoft C/C++ Optimizing Com-
piler Version 16.10 was used for x86 and x64, and version 17.00 was used for ARM.1 Our
benchmark systems are the following:

Intel Xeon E31230 A quad core 3.2 GHz CPU on an HP Z210 workstation. We used
SSE2 for Algorithm 2 and also benchmark x86-32 and x86-64 implementations of Al-
gorithm 1 for comparison.

Intel Atom Z2760 A dual core 1.8 GHz system-on-a-chip (SoC), on an Asus Vivo Tab
Smart Windows 8 tablet.

NVIDIA Tegra T30 A quad core 1.4 GHz ARM Cortex-A9 SoC, on an NVIDIA devel-
oper tablet.

Qualcomm MSM8960 A quad core 1.8 GHz Snapdragon S4 SoC, on a Dell XPS 10
tablet.

NVIDIA Tegra 4 A quad core 1.91 GHz ARM Cortex-A15 SoC, on an NVIDIA devel-
oper tablet.

We chose to include the Xeon processor to confirm the analysis of Section 3.1, that the
x64 implementation should give the best performance, and to compare it with the SIMD
implementation. The other processors are common in tablets and smartphones, and on
these platforms, the SIMD implementation should be the best available. The performance
of 32-bit code is also of interest on 64-bit systems, since 32-bit crypto libraries are included
on 64-bit systems (e.g., on 64-bit Windows), to allow existing x86 applications to run on
the 64-bit system without being ported and recompiled.

On the Xeon system, Intel’s Turbo Boost feature will dynamically increase the frequency
of the processor under high computational load. We found Turbo Boost had a modest
impact on our timings. Since it is a potential source of variability, all times reported here
were measured with Turbo Boost disabled.
1 These were the newest versions available for each architecture at the time of writing.



Benchmarks. We chose to benchmark the cost of modular multiplication for 512-bit,
1024-bit and 2048-bit moduli, since these are currently used in deployed cryptography.
The 512-bit modular multiplication results may also be interesting for usage in elliptic
curve and pairing based cryptosystems. We created implementations optimized for these
“special” bitlengths as well as generic implementations, i.e., implementations that operate
with arbitrary length inputs. For comparison, we include the time for modular multipli-
cation with 1024- and 2048-bit generic implementations. Our x64 baseline implementation
has no length-specific code (we did not observe performance improvements).

We also benchmark the cost of RSA encryption and decryption using the different
modular multiplication routines. We do not describe our RSA implementation in detail,
because it is the same for all benchmarks, but note that: (i) decryption with an n-bit
modulus is done with n/2-bit arithmetic using the Chinese remainder theorem approach,
(ii) this is a “raw” RSA operation, taking an integer as plaintext input, no padding is
performed, (iii) no specialized squaring routine is used, and (iv) the public exponent in our
benchmarks is always 216+1. We compute the modular exponentiation using a windowing
based approach. As mentioned in (iii), we have not considered a specialized Montgomery
squaring algorithm for the sequential or the SIMD algorithms. Using squaring routines can
significantly enhance the performance of our code as discussed in 3.1.

All of our benchmarks are average times, computed over 105 runs for modular multi-
plication, and 100 runs for RSA operations, with random inputs for each run. With these
choices the standard deviation is three percent or less. Note that the performance results
for RSA-1024 are stated for comparison’s sake only, this 80-bit secure scheme should not
be used anymore (see NIST SP 800-57 [31]).

x86/x64 Results. In the first 32-bit benchmark (Xeon x86), our implementation using
SIMD instructions is 1.6 to 2.5 times faster than the serial version (see Table 2). The
speed-up of the length-specific SIMD implementation over the generic implementation is
on average a factor 1.4, noticeably more than the factor 1.2 for the baseline. Algorithm 2
results in faster RSA operations as well, which are roughly sped-up by a factor of two. Our
second 32-bit benchmark (Atom x86) was on average 1.69 times faster than our baseline.
This makes our SIMD algorithm the better option on this platform. However, the speed-up
observed was not as large as our Xeon x86 benchmark. This may be because the Atom
has an in-order instruction scheduler. The 64-bit implementation of Algorithm 1 is roughly
four times as fast as the 32-bit implementation and the SIMD algorithm (also 32-bit) is
right in the middle, roughly twice as slow as the 64-bit algorithm. This agrees with our
analysis from Section 3.1. On all platforms the performance ratio between baseline and
SIMD is slightly worse for 512-bit moduli due to the overhead of using SIMD instructions.
Algorithm 2 is still faster than the baseline for 512-bit moduli on the Xeon x86, Atom and
the Snapdragon S4.

ARM Results. On ARM our results are more mixed (see Table 3). First we note that on
the Tegra 3 SoC, our NEON implementation of Algorithm 2 is consistently worse than the
baseline, almost twice as slow. Going back to our analysis in Section 3.1, this would occur
if the cost of a vector multiply instruction (performing two 32-bit multiplies) was about



Table 2. Implementation timings in microseconds and cycles for x86/x64 based processors. The “ratio” column is
baseline/SIMD. The 512g, 1024g and 2048g rows are generic implementations that do not optimize for a specific
bitlength.

Benchmark Xeon x86 Xeon x64 Atom (x86)
baseline SIMD ratio baseline SIMD ratio baseline SIMD ratio

modmul 512 0.906 0.492 1.81 0.221 0.492 0.45 4.934 2.864 1.72
(cycles) 2899 1577 1.83 711 1577 0.45 8888 5168 1.72
modmul 1024 3.126 1.407 2.22 0.589 1.407 0.42 17.428 10.550 1.65
(cycles) 9989 4500 2.22 1886 4500 0.42 31342 18984 1.65
RSA enc 1024 75.459 36.745 2.05 16.411 36.745 0.45 407.835 250.285 1.63
(cycles) 241014 117419 2.05 52457 117419 0.45 733224 450092 1.63
RSA dec 1024 1275.030 656.831 1.94 278.444 656.831 0.42 6770.646 4257.838 1.59
(cycles) 4070962 2097258 1.94 889103 2097258 0.42 12167933 7652178 1.59
modmul 2048 13.371 5.000 2.67 2.263 5.000 0.45 72.320 36.880 1.96
(cycles) 42698 15972 2.67 7230 15972 0.45 129994 66299 1.96
RSA enc 2048 277.719 129.876 2.14 56.813 129.876 0.44 1437.459 891.185 1.61
(cycles) 886828 414787 2.14 181412 414787 0.44 2583643 1601878 1.61
RSA dec 2048 8231.233 3824.690 2.15 1543.666 3824.690 0.40 44629.140 28935.088 1.54
(cycles) 26280725 12211700 2.15 4928633 12211700 0.40 80204317 52000367 1.54
modmul 512g 1.011 0.606 1.67 0.221 0.606 0.36 5.309 3.376 1.57
(cycles) 3234 1941 1.67 711 1941 0.37 9561 6087 1.57
modmul 1024g 3.760 2.222 1.69 0.734 2.222 0.33 18.962 11.475 1.65
(cycles) 12012 7101 1.69 2350 7101 0.33 34099 20644 1.65
modmul 2048g 13.326 8.968 1.49 2.733 8.968 0.30 73.898 42.901 1.72
(cycles) 42555 28640 1.49 8734 28640 0.30 132831 77125 1.72

the cost of two non-vector multiply instructions. This is (almost) the case according to the
Cortex-A9 instruction latencies published by ARM.2 Our efforts to pipeline multiple vector
multiply instructions did not sufficiently pay off – the length-specific implementations give a
1.27 factor speed-up over the generic implementations, roughly the same speed-up obtained
when we optimize the baseline for a given bitlength (by fully unrolling the inner loop).

On the newer ARM SoCs in our experiments, the S4 and Tegra 4, the results are better.
On the Snapdragon S4 the SIMD implementation is consistently better than the baseline.
The NEON length-specific implementations were especially important and resulted in a
speed-up by a factor of 1.30 to 1.40 over generic implementations, while optimizing the
baseline implementation for a specific length was only faster by a factor slightly above 1.10.
This is likely due to the inability of the processor to effectively re-order NEON instructions
to minimize pipeline stalls – the main difference in our length-specific implementation was
to partially unroll the inner loop and re-order instructions to use more registers and pipeline
four multiply operations.

Performance of the SIMD algorithm on the Tegra 4 was essentially the same as the
baseline performance. This is a solid improvement in NEON performance compared to our
benchmarks on the Tegra 3, however the Tegra 4’s NEON performance still lags behind
the S4 (for the instructions used in our benchmarks). We suspect (based on informal
2 Results of the NEON vmull/vmlal instructions are available after 7 cycles, while the two 32-bit outputs of the
ARM umaal instruction become ready after 4 and 5 cycles [1, 2].



Table 3. Implementation timings in microseconds for ARM-based processors. The “ratio” column is baseline/SIMD.
The 512g, 1024g and 2048g rows are generic implementations that do not optimize for a specific bitlength.

Benchmark Snapdragon S4 Tegra 4 Tegra 3
baseline SIMD ratio baseline SIMD ratio baseline SIMD ratio

modmul 512 2.630 1.888 1.39 1.272 1.328 0.96 2.393 4.005 0.60
(cycles) 4199 3079 1.36 2373 2473 0.96 3175 5236 0.61
modmul 1024 9.127 5.452 1.67 4.709 4.624 1.02 7.854 13.556 0.58
(cycles) 14041 8467 1.66 8681 8527 1.02 10167 17464 0.58
RSA enc 1024 198.187 142.956 1.38 168.617 179.227 0.94 189.420 295.110 0.64
(cycles) 302898 219244 1.38 195212 207647 0.94 245167 379736 0.65
RSA dec 1024 3424.413 2475.716 1.38 1999.211 2303.588 0.87 3306.230 5597.280 0.59
(cycles) 5179365 3746371 1.38 3288177 3332262 0.99 4233862 7166897 0.59
modmul 2048 33.987 18.599 1.82 18.498 18.200 1.02 28.611 49.825 0.57
(cycles) 51623 28356 1.82 33961 33441 1.02 36746 63900 0.57
RSA enc 2048 716.160 467.713 1.53 593.326 617.758 0.96 679.920 1060.050 0.64
(cycles) 1087318 710910 1.53 725336 712542 1.02 872468 1358955 0.64
RSA dec 2048 22992.576 14202.886 1.62 19024.405 19797.988 0.96 21519.880 36871.550 0.58
(cycles) 34769147 21478047 1.62 23177617 22812040 1.02 27547434 47205919 0.58
modmul 512g 3.147 2.510 1.25 1.493 1.467 1.02 2.990 4.916 0.61
(cycles) 4988 4018 1.24 2777 2736 1.01 3937 6404 0.61
modmul 1024g 10.600 7.885 1.34 5.062 6.937 0.73 10.385 16.991 0.61
(cycles) 16267 12155 1.34 9327 12777 0.73 13408 21870 0.61
modmul 2048g 38.094 27.913 1.36 19.137 18.200 1.05 36.839 63.218 0.58
(cycles) 57833 42441 1.36 35139 33441 1.05 47279 81048 0.58

experiments) that an implementation of Algorithm 2 specifically optimized for the Tegra
4 could significantly outperform the baseline, but still would not be comparable to the S4.

There is a slight difference between the cycle count measurement and the microsecond
measurement for the 2048-bit ARM benchmarks on the Tegra 4. To measure cycles on
ARM we read the cycle count register (PMCCNTR), and time is measured with the Win-
dows QueryPerformanceCounter function. Since these are different time sources, a small
difference is not surprising.

4.1 Comparison to Previous Work

Comparison to eBACS and OpenSSL. We have compared our SIMD implementation
of the interleaved Montgomery multiplication algorithm to our baseline implementation of
this method. To show that our baseline is competitive and put our results in a wider context,
we compare to benchmark results from eBACS: ECRYPT Benchmarking of Cryptographic
Systems [5] and to OpenSSL [32]. Table 4 summarizes the cycle counts from eBACS on
platforms which are close to the ones we consider in this work, and also includes the results
of running the performance benchmark of OpenSSL 1.0.1e [32] on our Atom device. As can
be seen from Table 4, our baseline implementation results from Table 2 and Table 3 are
similar (except for 1024-bit RSA decryption, which our implementation does not optimize,
as mentioned above).



Table 4. Performance results expressed in cycles of RSA 1024-bit and 2048-bit encryption (enc) and decryption
(dec). The first four performance numbers have been obtained from eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems [5] while the fifth row corresponds to running the performance benchmark suite of OpenSSL [32]
on the same Atom device used to obtain the performance results in Table 2. The last two rows correspond to
running GMP on our Atom and Xeon (in 32-bit mode).

Platform RSA 1024 RSA 2048
Enc Dec Enc Dec

ARM – Tegra 250 (1000 MHz) 261677 11684675 665195 65650103
ARM – Snapdragon S3 (1782 MHz) 276836 7373869 609593 39746105
x86 – Atom N280 (1667 MHz) 315620 13116020 871810 81628170
x64 – Xeon E3-1225 (3100 MHz) 49652 1403884 103744 6158336
x86 – Atom Z2760 (1800 MHz) 610200 10929600 2323800 75871800
x86 – Atom Z2760 (1800 MHz) 305545 5775125 2184436 37070875
x86 – Xeon E3-1230 (3200 MHz) 106035 1946434 695861 11929868

Comparison to GMP. The implementation in the GNU multiple precision arithmetic
library (GMP) [13] is based on the non-interleaved Montgomery multiplication. This means
the multiplication is computed first, possibly using a asymptotically faster algorithm than
schoolbook, followed by the Montgomery reduction (see Section 3.1). The last two rows
in Table 4 summarize performance numbers for our Atom and Xeon (in 32-bit mode)
platforms. The GMP performance numbers for RSA-2048 decryption on the Atom (37.1
million) are significantly faster compared to OpenSSL (75.9 million), our baseline (80.2
million) and our SIMD (52.0 million) implementations. On the 32-bit Xeon the perfor-
mance of the GMP implementation, which uses SIMD instructions for the multiplication
and has support for asymptotically faster multiplication algorithms, is almost identical to
our SIMD implementation which uses interleaved Montgomery multiplication. Note that
both OpenSSL and our implementations are designed to resist side-channel attacks, and
run in constant time, while both the GMP modular exponentiation and multiplication are
not, making GMP unsuitable for use in many cryptographic applications. The multiplica-
tion and reduction routines in GMP can be adapted for cryptographic purposes but it is
unclear at what performance price. From Table 2, it is clear that our SIMD implementation
performs better on the 32-bit Xeon than on the Atom. The major difference between these
two processors is the instruction scheduler (in-order on the Atom and out-of-order on the
Xeon).

4.2 Engineering Challenges

In this section we discuss some engineering challenges we had to overcome in order to use
SIMD in practice. Our goal is an implementation that is efficient and supports multiple
processors, but is also maintainable. The discussion here may not be applicable in other
circumstances.

ASM or intrinsics? There are essentially two ways to access the SIMD instructions
directly from a C program. One either writes assembly language (ASM), or uses compiler
intrinsics. Intrinsics are macros that the compiler translates to specific instructions, e.g., on
ARM, the Windows RT header file arm_neon.h defines the intrinsic vmull_u32, which the



compiler implements with the vmull instruction. In addition to instructions, the header also
exposes special data types corresponding to the 64 and 128-bit SIMD registers. We chose
to use intrinsics for our implementation, for the following reasons. C with intrinsics is easier
to debug, e.g., it is easier to detect mistakes using assertions. Furthermore, while there is a
performance advantage for ASM implementations, these gains are limited in comparison to
a careful C implementation with intrinsics (in our experience). In addition ASM is difficult
to maintain. For example, in ASM the programmer must handle all argument passing and
set up the stack frame, and this depends on the calling conventions. If calling conventions
are changed, the ASM will need to be rewritten, rather than simply recompiled. Also, when
writing for the Microsoft Visual Studio Compiler, the compiler automatically generates
the code to perform structured exception handling (SEH), which is an exception handling
mechanism at the system level for Windows and a requirement for all code running on
this operating system. Incorrect implementation of SEH code may result in security bugs
that are often difficult to detect until they are used in an exploit. Also, compiler features
such as Whole Program Optimization and Link Time Code generation, that optimize code
layout and time-memory usage tradeoffs, will not work correctly on ASM.

Despite the fact that one gets more control of the code (e.g. register usage) when
writing in ASM, using instrinsics and C can still be efficient. Specifically, we reviewed the
assembly code generated by the compiler to ensure that the run-time of this code remains
in constant time and register usage is as we expected. In short, we have found that ASM
implementations require increased engineering time and effort, both in initial development
and maintenance, for a relatively small gain in performance. We have judged that this
trade off is not worthwhile for our implementation.

simd.h abstraction layer Both SSE2 and NEON vector instructions are accessible as
intrinsics, however, the types and instructions available for each differ. To allow a single
SIMD implementation to run on both architectures, we abstracted a useful subset of SSE2
and NEON in header named simd.h. Based on the architecture, this header defines in-
line functions wrapping a processor-specific intrinsic. simd.h also refines the vector data
types, e.g., the type simd32x2p_t stores two 32-bit unsigned integers in a 64-bit register
on ARM, but on x86 stores them in a 128-bit integer (in bits 0–31 and 64–95), so that
they are in the correct format for the vector multiply instruction (which returns a value of
type simd64x2_t on both architectures). The compiler will check that the arguments to
the simd.h functions match the prototype, something that is not possible with intrinsics
(which are preprocessor macros). While abstraction layers are almost always technically
possible, we find it noteworthy that in this case it can be done without adding signifi-
cant overhead, and code using the abstraction performs well on multiple processors. With
simd.h containing all of architecture-specific code, the SIMD timings in the tables above
were generated with two implementations: a generic one, and a length-specific one that
requires the number of limbs in the modulus be divisible by four, to allow partial unrolling
of the inner loop of Algorithm 2.

Length-specific routines. Given the results from Table 2 and Table 3, it is clear that
having specialized routines for certain bitlengths is worthwhile. In a math library used to



implement multiple crypto primitives, each supporting a range of allowed keysizes, rou-
tines for arbitrary length moduli are required as well. This raises the question of how to
automatically select one of multiple implementations. We experimented with two different
designs. The first design stores a function pointer to the modular multiplication routine
along with the modulus. The second uses a function pointer to a length-specific exponen-
tiation routine. On the x86 and x64 platforms, with 1024-bit (and larger) operands, the
performance difference between the two approaches is small (the latter was faster by a
factor around 1.10), however on ARM, using function pointers to multiplication routines is
slower by a factor of up to 1.30 than when using pointers to exponentiation routines. The
drawback of this latter approach is the need to maintain multiple exponentiation routines.

SoC-specific routines. Our experiments with multiple ARM SoCs also show that per-
formance can vary by SoC. This is expected, however we were surprised by the range
observed, compared to x86/x64 processors which are more homogeneous. We also observed
that small code changes can result in simultaneous speed improvements on one SoC, and
regression on another. Our current implementation performs a run-time check to identify
the SoC, to decide whether to use Algorithm 1 or 2. Our results highlight that there is a
great deal of variability between different implementations of the ARM architecture and
that, for the time being, it is difficult to write code that performs well on multiple ARM
SoCs simultaneously. This also implies that published implementation results for one ARM
microprocessor core give little to no information on how it would perform on another. For
more information, see the ARM technical reference manuals [3].

5 Conclusions and Future Work

In this paper we present a parallel version of the interleaved Montgomery multiplication
algorithm that is amenable to implementation using widely available SIMD vector extension
instructions (SSE2 and NEON). The practical implications of this approach are highlighted
by our performance results on common tablet devices. When using 2048-bit moduli we
are able to outperform our sequential implementation using the schoolbook multiplication
method by a factor of 1.68 to 1.76 on both 32-bit x86 and ARM processors.

The performance numbers agree with our analysis that a 2-way SIMD implementation
using 32-bit multipliers is not able to outperform a classical interleaved Montgomery multi-
plication implementation using 64-bit multiplication instructions. Hence, we also conclude
that it would be beneficial for new 256-bit SIMD instruction sets to include 2-way integer
multipliers. For example, our results suggest that modular multiplication could be sped-up
by up to a factor of two on x64 systems if a future set of AVX instructions included a
64× 64→ 128-bit 2-way SIMD multiplier.

It remains of independent interest to study ways to use both asymptotically faster
integer multiplication methods (like Karatsuba) and Montgomery reduction using SIMD
instructions to reduce latency, including side-channel protections. This is left as future
work. Furthermore, as pointed out by an anonymous reviewer, another possibility might



be to compute the proposed parallel Montgomery multiplication routine using both the
integer and floating point unit instead of using vector instructions.
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