
Catena: A Memory-Consuming Password Scrambler

Christian Forler, Stefan Lucks, and Jakob Wenzel

Bauhaus-Universität Weimar, Germany
{Christian.Forler, Stefan.Lucks, Jakob.Wenzel}@uni-weimar.de

Abstract. It is a common wisdom that servers should better store the one-way hash
of their clients’ passwords, rather than storing the password in the clear. This paper
introduces Catena, a new one-way function for that purpose. Catena is memory-hard,
which can hinder massively parallel attacks on cheap memory-constrained hardware,
such as recent “graphical processing units”, GPUs. Furthermore, Catena has been
designed to resist cache-timing attacks. This distinguishes Catena from scrypt, which
may be sequentially memory-hard, but which we show to be vulnerable to cache-
timing attacks.

Additionally, Catena supports (1) client-independent updates (the server can increase
the security parameters and update the password hash without user interaction or
knowing the password), (2) a server relief protocol (saving the server’s resources at
the cost of the client), and (3) a variant Catena-KG for secure key derivation (to se-
curely generate many cryptographic keys of arbitrary lengths such that compromising
some keys does not help to break others).

Keywords: password, memory-hard, cache-timing attack, pebble game

1 Introduction

Passwords are user-memorizable secrets, commonly used for user authentication and
cryptographic key derivation.1 Typical (user-chosen) passwords often suffer from
low entropy and can be attacked by trying out all possible password candidates in
likelihood-order until the right one has been found. In some scenarios, when a pass-
word is used to open an interactive session, the security of password-based authen-
tication and key derivation can be enhanced by dedicated cryptographic protocols
defeating “off-line” password guessing, see, e.g., [1] for an early example. Otherwise,
the best protection are cryptographic password scramblers, performing “key stretch-
ing”. The basic idea of such schemes is using an intentionally slow one-way function
for hashing the password. Therefore, the password processing take some time for
both kinds of users legitimate ones and attackers. A good password scrambler P has
to satisfy at least the following basic conditions:

(1) Given a password pwd , computing P (pwd) should be “fast enough” for the user.

(2) Computing P (pwd) should be “as slow as possible”, without contradicting con-
dition (1).

1 In our context, “passphrases” and “personal identification numbers” (PINs) are also “pass-
words”.

(3) Given y = P (pwd), there must be no significantly faster way to test q password
candidates x1, x2, . . . , xq for P (xi) = y than by actually computing P (xi) for
each xi.

Traditionally, most password scramblers realize “as slow as possible” by iterating
a cryptographic primitive (a block cipher or a hash function) many times. How-
ever, an adversary who happens to have c computing units (“cores”) can easily try
out c different passwords in parallel. With recent technological trends, such as the
availability of “graphical processing units” (GPUs) with hundreds of cores [23], the
question of how to slow down such adversaries becomes a pressing one. Memory is
expensive; so, a typical GPU or other cheap massively-parallel hardware with lots of
cores can only have a limited amount of memory for each single core. More impor-
tantly, each core will have only a very limited amount of fast (“cache”) memory. So
the way to prevent c-core adversaries from gaining some close-to-c-times speed-up
is by making P not only intentionally slow on standard sequential computers, but
also intentionally memory-consuming. In the spirit of the basic condition (3), any
adversary using c cores in parallel with less than about c times the memory of a
sequential implementation must experience a strong slow-down. The first password
scrambler that took this condition into account was scrypt [28]. To the best of our
knowledge, it is also the only one – up to now.

A memory-consuming password scrambler may suffer from a new problem, though.
If the memory-access pattern depends on the password, and the adversary can ob-
serve that pattern, this may open the way to another kind of shortcut attack. For
example, a spy process, running on the same machine as the password scrambler
(without access to the password scrambler’s internal memory) may gather informa-
tion about the password scrambler’s memory-access pattern by measuring cache-
timings. This information can be used to greatly speed-up massively parallel attacks
with low memory for each core. In this paper we will first show that this is ac-
tually an issue for scrypt, and then present a fix by introducing Catena, a new
password scrambler which consumes lots of memory (like scrypt), but does not
have a password-defined memory-access pattern. We formally analyze the security
of Catena and its memory consumption using the “pebble game” approach, that
dates back to the early days of Theoretical Computer Science [5,11,26,17,13].

Background. As observed by Wilkes in the late 1960s [40], storing plain authen-
tication passwords is insecure. About 10 years later, the UNIX system integrated
some of Wilkes ideas [21] by deploying the DES-based one-way encryption function
crypt, to “encrypt” a given password. Actually, there is no efficient way to recover
the original password from the result of the “encryption”, i.e., crypt is a one-way
hash function, or a password scrambler, as we call it. Since the introduction of crypt,
storing the hash of a password and avoiding to store the plain password itself has
become the minimum standard for secure password-based user authentication, but
even as late as 2012, major players like Yahoo and CSDN (China Software Developer
Network) seem to store plain user-passwords [18].

2

Two important innovations from crypt were key stretching and salts. Key stretch-
ing is the answer to the typically low entropy of user-chosen passwords: The pass-
word scrambler is intentionally slow, but not too slow for the regular operation,
e.g., a password-based log-in. This makes exhaustively searching through all likely
passwords more expensive.

A salt refers to an additional random input value for the password scrambler,
stored together with the password hash. It enables a password scrambler to derive
lots of different password hashes from a single password as an initialization vector
enables an encryption scheme to derive lots of different ciphertexts from a single
plaintext. Since the salt must be chosen uniformly at random, it is most likely that
different users have different salts. Thus, it defends against attacks where password
hashes from many different users are known to the attacker, e.g., against the usage
of rainbow tables [24].

There are different ways to perform key stretching. One is to keep p bits of the
salt secret, turning them into pepper [19]. Both attackers and legitimate users have
to try out all 2p values the pepper can have (or 2p−1 on the average). Note that
a careless implementation of this approach could leak a few bits of the pepper via
timing information, when trying out all possible values in a specific order. A better
approach would be to start at a random value and wrap around at 2p. Kelsey et
al. [14] analyzed another key stretching approach where a cryptographic operation
is iterated n times. Boyen proposed in [4] a user-defined implicit choice for n by
iterating until the user presses a “halt” button.

According to Moore’s Law [20], the available resources of an adversary increase
continually over time – and so do the legitimate user’s resources. Thus, a security
parameter chosen once may be too weak after some time and needs to be updated.
This can easily be done immediately after the user has entered its password the next
time. However, in many cases, a significant amount of user accounts is inactive or
rarely used, e.g., 70.1% of all Facebook accounts experience zero updates per month
[22] and 73% of all Twitter accounts do not have at least one tweet per month [31].
It is desirable to be able to compute a new password hash (with some higher security
parameter) from the old one (with the old and weaker security parameter), without
having to involve user interaction or otherwise having to know the password. We
call this feature a client-independent update of the password hash.

When using pepper for key-stretching, client-independent updates are straight-
forward. When the key stretching is done by iterating an operation, client-independent
updates may or may not be possible, depending on the details of the operation,
e.g., when the original password is one of the inputs for every operation, client-
independent updates are impossible.

Shifting the Burden. A slow and – even worse – memory-demanding password-
based log-in process may be too much of a burden for many service providers. So we
came up with the idea to split the password-scrambling process into two parts: (1) a
slow (and possibly memory-demanding) one-way function H and (2) an efficient one-

3

way function h. By default, the server computes the password hash h(H(pwd || s))
from the password pwd and a salt s. Alternatively, the server sends s to the client
who responds x = H(pwd || s). Finally, the server just computes h(x). We denote
this as server relief. While it is probably easy to write a generic server relief protocol
using any password scrambler, none of the existing password scramblers has been
designed to naturally support this property.

Key Derivation. Beyond authentication, passwords are also used to derive sym-
metric keys. Obviously, one can just use the ouput of the password scrambler as
a symmetric key – perhaps after truncating it to the required key size. This is a
disadvantage if one either needs a key longer than the password or has to derive
more than one key. Thus, it is prudent to consider a key derivation function (KDF)
as a tool of its own right – with the option to derive more than one key and with
the security requirement that compromising some of the keys does not endanger the
other ones.

Contribution. Our primary contribution is a novel password scrambler called
Catena (Latin for “chain”, due to its sequential structure). In the random oracle
model, we prove Catena to be memory-hard (see Section 2.2, Definition 1). Catena
thus thwarts back massively-parallelized attacks using GPUs and similar hardware.
Furthermore, Catena has been designed to be resistant against cache-timing attacks.

The need to address this issue has been inspired by the cache-timing attacks we
present in Section 3 against scrypt [28]. To the best of our knowledge, such attacks
for scrypt have not been known before.

We enhance Catena by integrating several useful and novel features for password
scramblers. Catena supports client-independent updates by increasing the garlic or
by turning salt bits into pepper. The notion of garlic reflects the property that an
incrimination of this parameter by ’1’ doubles the memory usage and at least doubles
the computational time. Furthermore, Catena has built-in support for server relief.

Finally, we extend Catena towards a password-based key derivation function
Catena-KG.

Outline. Section 2 briefly overviews modern password scramblers and their prop-
erties. Section 3 describes scrypt and cache-timing attacks against it. Section 4
introduces Catena, a new memory-demanding password scrambler. Section 5 analy-
ses and formally proves the main security parameters of Catena. Section 6 presents
Catena-KG, an adaption of Catena especially designed to derive a secret key from a
password. Finally, Section 7 concludes the paper.

2 Practical Password Scramblers and their Properties

Table 2.1 provides an overview of password scramblers that are or have been in
frequent use, compared with Catena. It indicates whether the password scrambler
supports salt, server relief, and client-independent updates. Furthermore, the table

4

lists all possible values of cost factor (security parameter) including the default
values, the memory usage, and issues from which the considered password scrambler
may suffer from.

2.1 Frequently used Password Scramblers

Hash Function Based Password Scramblers. Not long ago, md5crypt has
been used in nearly all Free-BSD and Linux-based systems to scramble user pass-
words. It is based on the well-known MD5 hash function with a fixed number of
1,000 iterations. Due to the fact that CPUs and GPUs become more and more
powerful, md5crypt can now be computed too fast, e.g., over 5 million times per
second on a AMD HD 6990 graphic card [36]. Additionally, its own author does
not consider md5crypt secure any more [12]. Common Linux distributions nowadays
employ sha512crypt, e.g., Debian, Ubuntu, or Fedora. It provides similar features
as md5crypt, but uses SHA-512 instead of MD5. Furthermore, the number of iter-
ations can be chosen by the user. NTLMv1 [9] is a fast password scrambler, which
is deployed to generate hash values for several versions of Microsoft Windows pass-
words. It is very efficient to compute: one can check over nine billion password
candidates per second on a single COTS graphic card [36]. For this and other rea-
sons, we recommend that NTLMv1 should not be used anymore. The “Password-Based
Key Derivation Function 2” (PBKDF2) has been specified by the National Institute
of Standards and Technology (NIST) [39]. It is widely used either as a KDF (e.g.,
in WPA, WPA2, OpenOffice, or WinZip) or as a password scrambler (e.g., in Mac
OS X, LastPass). The security of PBKDF2 is based on c iterations of HMAC-SHA-1,
where c is a user-chosen value which is given by default with c = 1, 000.

bcrypt. The bcrypt algorithm is built upon the Blowfish block cipher [34]. Inter-
nally, Blowfish uses a slow key scheduler to generate an internal state of 4,168 bytes
for the key-dependent S-boxes (4 × 1, 024 bytes) and the round keys (72 bytes).
Thus, while bcrypt has not been designed with the intention to thwart parallelized
attackers by exhaustive memory usage, the state is sufficiently large to slow down
bcrypt significantly on current GPUs, e.g., it can only computed about 4,000 times
per second on a AMD HD 7970 graphic card [36]. However, the state size is fixed
– so if future GPUs have a larger cache, it may actually run much faster. There is
no tunable parameter to increase the memory requirement of this password scram-
bler. For key stretching, bcrypt invokes the Blowfish key scheduler 2c times, e.g.,
OpenBSD uses c = 6 for users and c = 8 for the superuser.

scrypt. Occupying a lot of memory hinders attacks using special-purpose hardware
(storage is expensive) and GPUs. We are aware of one single password-scrambler
that has been designed to occupy a lot of memory: scrypt. (There was HEKS [30],
but it has been broken by the author of scrypt [28].) As its core, scrypt uses the
sequentially memory-hard function ROMix, which can take G units of memory and
performs 2G operations. With only G/K units of memory, the number of operations

5

Algorithm Cost Factor Memory Server Client-Indep. Issues
(default) Relief Updates

crypt [21] 25 small - - “too fast”
md5crypt [12] 1,000 small - - “too fast”
sha512crypt [6] 1,000–999,999 (5,000) small - - (small memory)
NTLMv1 [9] 1 small - - “too fast”
PBKDF2 [39] 1–∞ (1,000) small - - (small memory)
bcrypt [29] 24–299 (26, 28) 4,168 bytes - - (constant memory)
scrypt [28] 1–∞ (214, 220) flexible, big - - cache-timing attacks

Catena (this paper) 21–∞ (216, 220) flexible, big X X -

Table 1. Comparison of state-of-the-art password scramblers and Catena. Note that all of the
mentioned algorithms support salt values.

goes up to 2G ·K. In [28] Percival recommends G = 214 and G = 220 for password
hashing and key derivation, respectively. We will describe and analyze scrypt and
ROMix in the next chapter.

2.2 Memory-Related Properties

Memory-Hardness. To describe memory requirements, we adopt and slightly
changed the notion from [28]. The intuition is that for any parallelized attack, using
c cores, the required memory per core is decreased by a factor of 1/c, and vice versa.

Definition 1 (Memory-Hard Function).
For all α > 0, a memory-hard function f can be computed on a Random Access
Machine using S(n) space and T (n) operations, where S(n) ∈ Ω(T (n)1−α).

Thus, for S · T = N2, using c cores, we have

1

c
· S + c · T = N2.

Client-Independent Update. Modifying a password scrambler to allow client-
independent updates to increased security parameters (i.e., cost factors) may some-
times be quite straightforward: turn some of the salt bits into pepper, or take the
current password hash and apply some additional iterations. If we have garlic, i.e.,
if the required memory is a adjustable security parameter, this is a little bit tricky.
When the garlic factor is increased from g to, say, g + 1, our password scrambler
follows the following approach: suppose Hg(x) denotes an invocation of the main
function which uses 2g units of storage (and time), and h denotes the invocation
of a memory- and time-efficient one-way hash function. Then we implement the
password scrambler Catena as

Catena(pwd , s) = h(Hg+1(h(Hg(h(. . . h(H1(pwd , s))))))),

where pwd and s denote password and salt, respectively. This sequential structure
does not only enable Catena to provide client-independent updates, but also support
server-relief by computing all steps except the last call of h on client side.

6

Cache-Timing Attacks. Consider the implementation of a password scrambler,
where data are read from or written to a password-dependent address a = f(pwd).
If, for another password pwd ′, we would get f(pwd ′) 6= a and the adversary could
observe whether we access the data at address a or not, then the adversary could use
this to filter out certain passwords. Under certain circumstances, timing information
related to a given machine’s cache behavior may enable the adversary to observe
which addresses have been accessed.

3 The scrypt Password Scrambler

Algorithm 1 describes the scrypt password scrambler and its core operation ROMix.
For pre- and post-processing, scrypt invokes the one-way function PBKDF2 to sup-
port inputs and outputs of arbitrary length. ROMix uses a hash function H with n
output bits, where n is the size of a cache line (at current machines, often 512 bit).
To support hash functions with smaller output sizes, [28] proposes to instantiate
H by a function called BlockMix, which we will not elaborate on. For our security
analysis of ROMix, we modelled H as a random oracle.

ROMix takes two inputs: an initial state x, which depends on both salt and
password, and the array size G that defines the required storage. One can in-
terpret log2(G) as the garlic factor of scrypt. In the first phase (lines 20–23),
ROMix initializes an array v, namely the array variables v0, v1 . . . , vG−1 are set to
x,H(x), . . . H(. . . (H(x))), respectively. In the second phase (lines 24–27), ROMix
updates x depending on vj . The sequential memory hardness comes from the way
how the index j is computed, depending on the current value of x, i.e., j ← x mod G.
After G updates, the final value of x is returned and undergoes the post-processing.

A minor issue is that scrypt uses the password pwd as one of the inputs for post-
processing. Thus, it has to stay in storage during the entire password scrambling
process. This is risky if there is any chance that the memory can be compromised
during the time scrypt is running. Compromising the memory should not happen,

Algorithm 1 The scrypt algorithm and its core operation ROMix [28].
scrypt

Input:
pwd {Password}
s {Salt}
G {Cost Parameter}

Output: x {Password Hash}
10: x← PBKDF2(pwd , s, 1, 1)
11: x← ROMix(x,G)
12: x← PBKDF2(pwd , x, 1, 1)
13: return x

ROMix

Input: x {Initial State} , G {Cost Parameter}
Output: x {Hash value}
20: for i = 0, . . . , G− 1 do
21: vi ← x
22: x← H(x)
23: end for
24: for i = 0, . . . , G− 1 do
25: j ← x mod G
26: x← H(x⊕ vj)
27: end for
28: return x

7

Algorithm 2 The algorithm ROMixMC, performing ROMix with K/G storage.
Input:

x {Initial State},
G {1st Cost Parameter},
K {2nd Cost Parameter}

Output: x {Hash Value}
1: for i = 0, . . . , G− 1 do
2: if i mod K = 0 then
3: vi ← x
4: end if
5: x← H(x)
6: end for

7: for i = 0, . . . , G− 1 do
8: j ← x mod G
9: ℓ← K(j/K) { “/” is the integer division }

10: y ← vℓ
11: for m = ℓ+ 1, . . . , j do
12: y ← H(y) { invariant: y ← vm }
13: end for
14: x← H(x⊕ y)
15: end for
16: return x

anyway, but this issue could easily be fixed without any bad effect on the security of
scrypt, e.g., one could replace Line 12 of Algorithm 1 by x← PBKDF2(x, s, 1, 1).

3.1 Brief Analysis of ROMix

In the following we introduce a way to run ROMix with less than G units of storage.
Suppose we only have S < G units of storage for the values in v. For convenience,
we assume G is a multiple of S and set K ← G/S. As it will turn out, the memory-
constrained Algorithm ROMixMC (cf. Algorithm 2) generates the same result as ROMix
with less than G storage places and is Θ(K) times slower than ROMix. From the array
v, we will only store the values v0, vK , v2k, . . . , v(S−1)K – using all the S memory
units available.

At Line 9, the variable ℓ is assigned the biggest multiple of K less or equal j. By
verifying the invariant at Line 12, one can easily see that ROMixMC computes the same
hash value as the original ROMix, except that vj is computed on-the-fly, beginning
with vℓ. These computations call the random oracle on the average (K−1)/2 times.
That means that the second phase of ROMixMC is about Θ(K) times slower than the
second phase of ROMix, and this dominates the workload for ROMixMC.

Next, we briefly discuss why ROMix is sequentially memory-hard (for the full
proof see [28]). The intuition is as follows. The indices j are determined by the
output of the random oracle H and thus, essentially, uniformly distributed random
values over {0, . . . , G− 1}. With no way to anticipate the next j, the best approach
is to minimize the size of the “gaps”, i.e., the number of consecutively unknown vj .
This is indeed what ROMixMC does, by storing one vi every K’th step.

3.2 Cache-Timing Attacks

Algorithm 1 (scrypt/ROMix) revisited. What could possibly go wrong?

The Spy Process. As it turns out, the idea to compute a “random” index j and
then ask for the value vj , which is so useful for sequential memory-hardness, is also

8

an issue. Consider a spy process, running on the same machine as scrypt. This spy
process cannot read the internal memory of scrypt. But, as it is running on the
same machine, it shares its cache memory with ROMix. The spy process interrupts
the execution of ROMix twice:

1. When ROMix enters the 2nd phase (Line 24), the spy process reads from a bunch
of addresses, to force out all the vi that are still in the cache. Thereupon, ROMix
is allowed to run for another very short time.

2. Now the spy process interrupts ROMix again. By measuring access times when
reading from different addresses, the spy process can figure out which of the vi
have been read by ROMix, in between.

So, the spy process can tell us the indices j for which vj has been read, and with
this information, we can mount the following cache-timing attack.

The Preliminary Cache-Timing Attack. Let x be the output of PBKDF2(p′,salt,1,1),
where p′ denotes the current password candidate. Then, we can apply the following
password candidate sieve.

1. Run the first phase of ROMix, without storing the vi (i.e., skip Line 21 of Algo-
rithm 1).

2. Compute the index j ← x mod G.

3. If vj is one of the values that have been read by ROMix, then store p′ in a list.

4. Else conclude that p′ is a wrong password.

This sieve can run in parallel on any number of cores, where each core tests another
password candidate p′. Note that each core needs only a small and constant amount
of memory – the data structure to decide if j is one of the indices being read with vj ,
can be shared between all the cores. Thus, we can use exactly the kind of hardware,
that scrypt has been designed to hinder.

Next, we discuss the gain of this attack. Let r denote the number of iterations
the loop in lines 24–27 of ROMix has performed, before the second interrupt by the
spy process. So, there are at most r indices j with vj being read. That means, we
expect this approach to sort out all but r/G candidates. If our spy process manages
to interrupt very soon, after allowing it to run again, we have r ≪ G. This may
enable us to use conventional hardware to run full ROMix to search for the correct
password among the candidates on the list.

The Final Cache-Timing Attack. In this attack we allow the second interrupt
to arrive very late – maybe even as late as the termination time of ROMix. So, the
loop in lines 24–27 of ROMix has been run r = G times. As it seems, each vi has
been read once. But actually, this is only true on the average; some vi have been
read more then once, and we expect about (1/e)G ≈ 0.37G array elements vi not
to have been read at all. So applying the basic attack allows us to eliminate about
37% of all password candidates – a rather small gain for such hard work.

9

In the following, we introduce a way to push the attack further, inspired by
Algorithm 2, the memory-constrained ROMixMC. Our final cache-timing attack on
scrypt only needs the smallest possible amount of memory: S = 1,K = G/S = G
and thus, we only have to store the single value v0. Like the second phase of ROMixMC,
we will compute the values vj on-the-fly when needed. Unlike ROMixMC, we will stop
execution whenever one of our values j is such that vj has not been read by ROMix

(according to the info from our spy process).

Thus, if the first j has not been read, we immediately stop the execution without
any on-the-fly computation; if the first j has been read, but not the second, we need
one on-the-fly computation of vj , and so forth.

Since a fraction (i.e., 1/e) of all values vi has not been read, we will need about
1/(1 − 1/e) ≈ 1.58 on-the-fly computations of some vj , each at the average price
of (G − 1)/2 times calling H. Additionally, each iteration needs one call to H for
computing x ← H(x ⊕ vj). Including the work for the first phase, with G calls to
H, the expected number of calls to reject a wrong password is about

G+ 1.58 ∗
(

1 +
G− 1

2

)

≈ 1.79G.

As it turns out, rejecting a wrong password with constant memory is faster then
computing ordinary ROMix with all the required storage, which actually makes 2G
calls to H, without computing any vi on-the-fly. We stress that the ability to abort
the computation, thanks to the information gathered by the spy process, is crucial.
Meanwhile, we are working on an implementation to verify this attack.

3.3 Discussion

At the current point of time, our cache-timing attacks are theoretical. Even if one
manages to run some spy process on a machine using scrypt, the requirement to
interrupt ROMix twice at the right points of time is demanding. Nevertheless, even the
theoretical ability of mounting such attacks should be taken into account seriously.

The idea of attacking cryptographic algorithms from hardware side (side-channel
attacks) is not new [15], neither is the usage of a spy process for theoretical cache-
timing attacks [27]. In [2] Bernstein demonstrated practically how to recover AES
keys by using cache-timing information: “The problem lies in AES itself: it is ex-
tremely difficult to write constant-time high-speed AES software [...]. Constant time
low-speed AES software is fairly easy to write but is also unacceptable for many
applications.” Meanwhile, this claim can be denoted as obsolete, since Käsper and
Schwabe have shown in [8], that it is possible to write a fast and constant-time
AES-GCM implementation, which is resistant against timing-attacks. Moreover, the
AES New Instructions (AES-NI) can be a helpful tool to write constant-time imple-
mentations.

Nevertheless, we argue that there is a problem in scrypt itself. One can certainly
implement scrypt such that cache-timings leak no information about the password.

10

V0 V1 V2 V3 V4 V5 V6 V7

W0 W1 W2 W3 W4 W5 W6 W7

Output

Input

Fig. 1. A sequential bit-reversal graph (SBRG) with g = 3 (eight input and eight output nodes).

But, we believe this would drastically reduce the performance of scrypt. As a com-
pensation – recall that password scramblers are intentionally slow, but must be “fast
enough” for the user – one would have to set the cost parameter G to some smallish
value, but this would only make regular attacks more efficient, since attackers can
use faster implementations. At the end of the day, this may defeat the entire point
of using scrypt at all.

The core of the problem is the fact that ROMix reads a value vj , where the index
j ← x mod G depends on x and thus, on the password. It would be very compelling
to have a password scrambler which is at least memory-hard and computes j in
some password-independent way, i.e., only depending on the loop index i. In the
next section we actually present such a password scrambler, Catena, which uses
a minor variation of the bit-reversal function to compute j from i – a very simple
function, indeed. Note that Catena’s proof of memory hardness is very different from
the proof in [28] for ROMix.

4 The Catena Password Scrambler

In this section we introduce Catena, our new and sustainable password scrambling
algorithm with high resilience against cache-timing attacks.

4.1 Preliminaries

The core of Catena is the Sequential Bit-Reversal Hashing (SBRH) operation. The
origin of this operation is the sequential bit-reversal graph which is then again de-
duced form the bit-reversal permutation which is defined next.

Definition 2 (Bit-Reversal Permutation τ). Fix a natural number g and rep-

resent i ∈ Z2g as a binary g-bit number, (i0, i1, . . . , ig−1), i.e., i =
g−1
∑

j=0
2jij. The

bit-reversal permutation τ : Z2g → Z2g is defined by

τ(i0, i1, . . . , ig−1) = (ig−1, . . . , i1, i0).

11

Algorithm 3 Catena
Input: pwd {Password}, t {Tweak} s {Salt}, g {Garlic} ≥ g0 {Initial Garlic Value}, H {Hash

Function}
Output: x {hash of the password}
1: x← t || pwd || s
2: for c = g0, . . . , g do
3: x← SBRH(c, x,H)
4: x← H(c || 2c+1 || x)
5: end for
6: return x

Algorithm 4 SBRH (Sequential Bit-Reversal Hashing)

Input: c {Garlic}, x {Value to Hash}, H {Hash Function}
Output: x {Hash Value}
1: v0 ← H(c || 0 || x)
2: for i = 1, . . . , 2c − 1 do
3: vi ← H(c || i || vi−1)
4: end for
5: x← H(c || 2c || v0 || v2c−1)
6: for i = 1, . . . , 2c − 1 do
7: j ← τ(i) {set j to the reverse bit order of i}
8: x← H(c || 2c + i || x || vj)
9: end for
10: return x

With the help of the bit-reversal permutation τ , we introduce the Sequential Bit-
Reversal Graph (SBRG), which is a Directed Acyclic Graph (DAG) and almost
identical to the Bit-Reversal Graph (BRG) presented by Lengauer and Tarjan in
[16].

Definition 3 (BRG and SBRG). Fix a natural number g. The BRG has 2g+1

vertices, namely 2g input vertices v0, . . . v2g−1 and 2g output vertices w0, . . .w2g−1,
and the following edges:

– 2g − 1 edges from vi−1 to vi for i ∈ {1, . . . , 2g − 1},
– 2g − 1 edges from wi−1 to wi for i ∈ {1, . . . , 2g − 1},
– 2g edges from vi to wτ(i) for i ∈ {0, . . . , 2g − 1}, where τ is the bit-reversal

permutation.

The SBRG is the BRG with one additional edge from v2g−1 to w0.

The edges of the SBRG define the information flow of the “Sequential Bit-Reversal
Hashing” operation (cf. Algorithm 4). An illustration of the sequential bit-reversal
graph for g = 3 is given in Figure 1.

4.2 Catena

12

Algorithm 3 describes the Catena password scrambler and Algorithm 4 its core
operation SBRH. Both algorithms employ a cryptographic hash function H. In both
algorithms, the password-dependent input of H is appended to a prefix tuple (c,i),
where c denotes the iteration counter or the actual garlic factor and i denotes the
hash function invocation counter. After each iteration (lines 2–5 of Algorithm 3) the
invocation counter is reset to zero (cf. Line 1 of Algorithm 4). This position encoding
guarantees the uniqueness of inputs for H within a run of Catena. This becomes
handy in the security analysis of Catena. We recommend to encode the values c and
i as 8-bit values and 32-bit values, respectively.

For our security analysis, we will model H as a random oracle. For practical
purposes, we recommend Keccak-512 [3] – the winner of the SHA-3 competition2.
The 512-bit output length suits Catena quite well, since it often complies with the
size of a cache line on common CPUs. In any case, we assume that both the output
size of H and the cache line size are powers of two, so if they are not equal, the
bigger number is a multiple of the smaller one.

When the output size of H is equal to the size of a cache line (or a multiple)
each time a value is written to (or read from) a location vi, the time to access vi is
the same.

Now, assume the output size of H (i.e., the number of bits for each of the vi) is k
times the cache line size. In this case the adversary may try to optimize the memory
layout (the order in which the vi are stored in memory) to minimize the number of
cache misses. However, a nice property of the bit-reversal permutation τ is, that one
just cannot gain much from such an optimization. If the values are stored in their
natural order: v0, v1, . . . , v2g−1, then, the adversary drastically reduces its cache
misses in the first phase (lines 2–5 of Algorithm 4) to 2g/k cache misses, but in the
second phase (lines 6–8 of Algorithm 4) , the number of cache misses is 2g. If the
adversary stores the vi in their bit reversal order, the number of cache misses in the
second phase is 2g/k, but in the first it is now 2g. A more complex mixture between
natural and bit-reversal order would allow 2g/

√
k cache misses in each of phase 1

and phase 2. If k is not really huge, the benefit from such an optimization would
remain small.

Tweak. The parameter t is an additional multi-byte value which is given by:

t← 0x00 || n || |s| || H(AD),

where the first byte denotes the mode (0x00 for password hashing and 0x01 when
Catena is used as a key derivation function). The second 16-bit value n denotes the
output length of the underlying hash function H in bits, and the third 16-bit value
|s| denotes the total length of the salt in bits. The last n-bit value H(AD) is the hash
of the associated data AD, which can contain additional information like hostname,
user-ID, name of the company, or the IP of the host, with the goal to customize

2 http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html

13

http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html

the password hashes. The tweak is processed together with the salt and the secret
password (see Line 1 of Algorithm 3). Thus, t can be seen as a weaker version of
a salt increasing the additional computational effort for an adversary when using
different values. Furthermore, it allows to differentiate between password hashing
and key derivation.

Garlic. Catena employs a graph-based structure, where the memory requirement
highly depends on the number of input nodes of the permutation graph. If enough
memory is available (either for an adversary or an honest entity), all input nodes
(plus one for the output path – see Section 5 for details) can be stored in the cache.
As the goal is to hinder an adversary to make a reasonable number of parallel
password checks using the same memory, we have to consider a minimal number
of input nodes. In general, we use G = 2g input nodes, e.g., we tested that g =
16 and g = 17 are suitable values on a Lenovo Thinkpad T430 (Intel Core i5-
3210M) for Catena-Keccak-512. But, as the available memory for GPU’s and CPU’s
is continually growing, this recommendation will change in the future. Thus, for
Catena, the parameter garlic specifies the number of input nodes G, and can be
adapted in the future. For the initial deployment of Catena, we recommend to set
the initial garlic value g0 to g to achieve the best ratio between running time and
memory usage.

Server Relief. In the last iteration of the for-loop in Algorithm 3, the client has
to omit the last invocation of the hash function H (see Line 4) and transmit the
output of Catena to the server. Then, the server computes the password hash by
applying the hash function H. Thus, the vast majority of the effort (memory usage
and computational time) for computing the password hash is handed over to the
client side, exonerating the server. This enables someone to deploy Catena even
under restricted environments or when using constrained devices – or when a single
server has to handle a huge amount of authentication requests.

5 Security Analysis of Catena

We denote a password scrambling algorithm to be secure if it provides at least
memory-hardness and preimage security. Furthermore, it should be resistant against
cache-timing attacks. In the following we show that the memory-hardness is inherited
from the underlying SBRG function, and the preimage security is guaranteed by the
usage of the cryptographic hash function H. Since the memory access pattern of
Catena is static and therefore, independent from the password, it provides resistance
against cache-timing attacks. Finally, we show that Catena behaves like a good
random function, which is useful for enhancing Catena for secure key derivation.

5.1 Memory-Hardness

Hellman presented in [10] a possibility to trade memory/space S against time T in at-
tacking cryptographic algorithms, i.e., he has introduced the idea of a time-memory

14

trade-off in terms of generic attacks. Hence, we can assume that an adversary with
access to this algorithm and restricted resources is always looking for a sweet spot
to optimize S · T . To analyze the effort for a given adversary, one needs to choose a
certain model for studying the time-memory trade-off. In 1970, Hewitt and Pater-
son introduced a method for analyzing time-memory trade-offs on directed acyclic
graphs (DAG, see Definition 4) [25]. As the workflow of our password scrambling
scheme Catena can be represented as a DAG, i.e., the nodes of the graph represent
the inputs and outputs of the hash function and an edge denotes a hash function
invocation, we adapt the model from [25] to analyze our scheme. In the following,
we introduce this model, which is also called pebble game. It has been occasionally
used in cryptographic context, see, e.g. [7] for a recent example.

Definition 4 (Directed Acyclic Graph (DAG)). Let Π(V , E) be a graph con-
sisting of a set of vertices V = (v0, v1, . . . , vn−1) and a set of edges E = (e0, e1, . . . , eℓ−1),
where E = ∅ is a valid variant. Π(V , E) is a directed acyclic graph, if every edge in
E consists of a starting vertex vi and an ending vertex vj, with i 6= j. A path through
Π(V , E) beginning at vertex vi must never reach vi again (else, there would be a
cycle). If there exists a path from a vertex vi to a vertex vj in the graph with i 6= j,
we will write vi ≤ vj.

Pebble Game. This model is restricted to DAGs with bounded in-degree and can
be seen as a one player game. Let Π(V , E) be a DAG with bounded in-degree and let
G be the number of nodes within Π(V , E). For our scheme, we restrict the in-degree
to g, where g = log2(G). In the setup phase of the game, the player gets S pebbles
(tokens) with S ≤ G. A pebble can be placed on a node (mark) or be removed from
a node (unmark) under certain requirements (where v ∈ V denotes a node within
the set V of all nodes of Π(V , E)):
1. A pebble may be removed from a vertex v at any time.
2. A pebble can be placed on a node v if all predecessors of the node v are marked.
3. If all immediate predecessors of an unpebbled node v are pebbled, a pebble may

be moved from a predecessor of v to v.

A move is the application of either the second or the third action stated above.
The goal of the game is to pebble all nodes of a graph Π(V , E) at least once. The
time-memory trade-off is then defined by counting the minimum number of moves
(T) and the maximum simultaneously placed pebbles on the graph (S) which are
necessary to reach the goal. Based on the following two trivial observations (see
[16]), we can define a lower and an upper bound for the time-memory trade-off S ·T .
On the one hand, any graph of size G can be pebbled with G pebbles in time G (in
topological order). On the other hand, if a graph Π(V , E) of size G can be pebbled
with S pebbles at all, it can be pebbled with S pebbles in time

T ≤
∑

0≤k≤S

(

G

i

)

≤ 2G.

15

Therefore, the interest of T is bounded to the range G ≤ T (S) ≤ 2G, where T (S) has
to increase if S decreases. In general, a pebble game is a common model to derive
and analyze time-memory trade-offs as shown in [32,33,35,37,38].

Sequential Bit-Reversal Graph. Obviously, an SBRG consists of a sequential
structure, since each node within the graph is at least derived from its predecessor.
An SBRG can be pebbled in time T = 2G using at least S = G pebbles. Therefore,
the first G pebbles are placed sequentially on the input vertex v0, . . . , vG−1 (see
Figure 1, where G = 8). Then, moving the pebble placed on v0 to w0, and finally
moving the pebble sequentially from w0 to wG−1. As the memory requirement for
S = G pebbles is usually too large, we also consider scenarios with S < G pebbles.
As the smallest number of pebbles an SBRG can be pebbled with is S = 2, we
consider this case first. An SBRG can be pebbled with only two pebbles in time
T ≥ G2/2. Therefore, we denote one of the pebbles as input pebble y, and the
other one as output pebble y. We start by placing x on v0 and using y to pebble
v1, . . . , vG−1 in sequential order, and then move y from vG−1 to w0. Lets denote p
as the current position of x, starting with p = 0. Now, we have to repeat G− 1 time
the following step to pebble the SBRG: Use x to pebble vτ(p), move y from wp to
wp+1, and increase p by one. Note that in average we have to move x about G/2
times to reach vτ(p). Hence, we need at least G2/2 pebble movements to pebble the
SBRG. Now, we analyze the non-trivial case of 3 ≤ S ≤ G− 1.

Theorem 1. For pebbling a sequential bit reversal graph Πg(V , E) with G = 2g

input nodes and S pebbles with 3 ≤ S ≤ G− 1 we have

ST = O(G2).

The proof follows from Lemma 1 and 2 (see Appendix A).

Lemma 1. The sequential bit reversal graph Πg(V , E) can be pebbled with 3 ≤ S ≤
G− 1 pebbles in time

T ≤
⌊

(S − 3)G

(S − 2)

⌋

+ 1 +
G2

2(S − 2)
+G+

G

(S − 2)
≤ G2

2(S − 2)
+ 3G.

Proof. We divide the input nodes (v0, . . . , vG−1) into (S − 2) disjunct intervals
I0, . . . IS−3 of size ⌊G/(S − 2)⌋ with Ii = [vx, vy] with x = ⌊iG/(S − 2)⌋ and
y = ⌊(i + 1)G/(S − 2)⌋ − 1. Then, we place a pebble on the first element (vx)
of each interval. This can be done in time ⌊(S − 3)G/(S − 2)⌋ + 1. We denote the
set of all points vx as U . Note that since we use (S − 2) pebbles to allocate the first
points of each interval, we have two pebbles left. We denote one of them as runner
pebble and the other one as jumper pebble. Lets denote vz with z = (S−3)G

(S−2) the first
element within the last interval IS−3. We set the runner pebble to the element vz+1.
Now, we can move the runner pebble in a sequential order from vz+1 to vG−1 using

16

at most G/(S − 2) steps. As the element v0 is already pebbled, we can move the
runner pebble from vG−1 to w0. After placing the runner pebble on w0, we set p = 1
and repeat the following (final) step G − 1 times: Let vτ(p) be an element of Ii. If
vτ(p) /∈ U , the node vτ(p) is pebbled using the jumper pebble starting at v⌊iG/(S−2)⌋.
If vτ(p) ∈ U , the jumper pebble does not have to be moved and the corresponding
output node can be pebbled using the pebble which was already placed on vτ(p) in
the first step, i.e., when creating the intervals. Then move the runner pebble to wp

and increase p by one.
Note that we have to move the runner pebble G + G/(S − 2) times, and the

jumper pebble at least G2

2(S−2) times. By adding up the summands of the individual
steps, we proof our claim. ⊓⊔

Note: space and time to compute the SBRH operation (cf. Algorithm 4) are
similar to pebble the SBRG, since the SBRH operation computes the last output
vertex of an SBRG using a hash function H.

Corollary 1. Assuming H to be an atomic function, Catena is a memory-hard
function.

5.2 Pseudorandomness

Obviously, one can break Catena by trying out all possible (or likely) password-
candidates. In the following we show that there is essentially no faster way to attack
Catena, even when it comes to distinguishing Catena from a random function. We
measure the quality of a password population by the min-entropy, log2(max{Pr[pwd]}),
the base-2 logarithm of the largest probability of any password from that popula-
tion. As above, we model the hash function H : {0, 1}∗ → {0, 1}n as a random
oracle. In the following we show that there exists no adversary which can distin-
guish CatenaH(·) from a random function $(·) significantly better than by trying
out password candidates in likelihood order.

Theorem 2. Let m denote the min-entropy of passwords, q the number of queries
made by the adversary, h the given hash value of a password, and model H as a
random oracle. Then we have

Adv$
CatenaH

(A) =
∣

∣

∣
Pr[ACatenaH ,h ⇒ 1]− Pr[A$,h ⇒ 1]

∣

∣

∣
≤ q

2m
+

q2

2n−g−1
.

Proof. It is easy to see that the success probability for trying out likely password
candidates can be upper bounded by q

2m . Now suppose that ai = (pi||si||ti) represents
the i-th query, where pi denotes the password, si denotes the salt, and ti the tweak
of the i-th query. For this proof, we impose the reasonable condition that all queries
of an adversary are distinct, i.e., ai 6= aj for i 6= j.

Suppose that yj denotes the output of SBRH(g, x,H) of the j-th query (Line 3
of Algorithm 3). Then, H(g || 2g+1 || yj) is the output of CatenaH(aj). In the

17

case that y1, . . . , yq are pairwise distinct, A can not distinguish CatenaH(.) from
$(.), since both functions are modeled as random oracles, returning a value chosen
uniformly at random from the set {0, 1}n. Therefore, we have to upper bound the
probability of the event yi = yj with i 6= j. Due to the assumption that A′s queries
are pairwise distinct, there must be at least one collision for H, i.e., z 6= z′ with
H(z) = H(z′). More precisely, we need a collision inside a specific domain repre-
sented by the counter-index tuple (c, b), i.e., H(c || b || x) = H(c || b || x′) for x 6= x′

(lines 3,5, and 8 of Algorithm 4 and Line 3 of Algorithm 3). We call such a collision
a bad event.

We can exploit our observations to define a new game Catena′H which works
as follows. Firstly, it calls CatenaH and stores all inputs and outputs of H in a
query list Q. Secondly, returns a random value R and finally let an adversary win
iff Q contains bad event. Remark, the advantage of winning the game Catena′H is
higher than the advantage to distinguish CatenaH(.) from $(.), since there are bad

events that most likely lead to a list of unique values y1, . . . , yq, e.g., a collision for
w2g−2 without another collision in v2g−1 will only cause a collision for w2g−1 with a
probability of 1/2n (cf. Figure 1).

Below we upper bound the probability that Q contains bad event. Note that the
probability that Q contains a collision at some position (c, b) is at most q2/2n+1. The
probability that Q contains a bad event at any position (c, b), for the c-th iteration

of the for loop (lines 2–5 of Algorithm 3) is at most q2 2c+1

2n+1 . Thus, we can upper
bound the probability that Q contains a bad event by

g
∑

c=g0

q2
2c+1

2n+1
<

g
∑

c=0

q2
2c+1

2n+1
<

q2

2n−g−1
.

Our claim follows from the union bound. ⊓⊔

6 The Catena-KG Key Derivation Function

In this section, we introduce Catena-KG – a mode of operation based on Catena

which can be used to generate different keys of different sizes (even larger than the

Algorithm 5 Catena-KG
Input: pwd {Password}, t′ {Tweak}, s {Salt}, g {Garlic} ≥ g0 {Initial Garlic Value},

ℓ {Length of the Output Key}, I {Key Identifier}
Output: k {ℓ-bit key derived from the password}
1: x← Catena(t′, p, s, g, g0)
2: k ← ∅
3: for i = 1, . . . , ⌈ℓ/|n|⌉ − 1 do
4: k ← k || H(0 || i || I || ℓ || x)
5: end for
6: return Truncate(k, ℓ) {truncate k to the first ℓ bits}

18

natural output size of Catena), see Algorithm 5. The core idea is to apply Catena

using a slightly different tweak:

t′ ← 0x01 || n || |s| || H(AD),

followed by an output transform, that takes the output of Catena, a key identifier I
and a parameter ℓ for the key length as the input, and generates key material of the
desired output size. Catena-KG is even able to handle the generation of extra-long
keys (longer than the output size of H), by applying H in counter mode. Note that
longer keys don’t imply improved security, in that context.

The Key Identifier I is supposed to be used when different keys are generated
from the same password. E.g., when Alice and Bob set up a secure connection, they
may need four keys: an encryption and a message authentication key for messages
from Alice to Bob, and another two keys for the opposite direction. One could argue
that the key identifier should also become a part of the associated data. But actually,
this would be a bad move. Setting up the connection would require legitimate users to
run Catena several (e.g., four) times. But the adversary can search for the password
for one key, and just derive the other keys, once that password has been found. For
a given budget for key derivation, one should rather employ on single call to Catena

with larger security parameters and then run the output transform for each key.
In contrast to the password hashing scenario, where a user want to log-in without

noticeable delay, users may tolerate a delay of several seconds to derive an encryption
key from a password process [39], e.g., when setting up a secure connection, or when
mounting a cryptographic file system. Based on tests on a Lenovo Thinkpad T430
(Intel Core i5-3210M) for Catena-KG-Keccak-512, we consider g = 20 and g = 21 as
suitable values for Catena-KG-Keccak-512.

Brief Security Analysis. For any reasonable choice of keys and key sizes, the time
for the output transform is negligible, compared to the time for running Catena.
Furthermore, the output transform is just calling H, which we model as a random
oracle. Thus, Catena-KG inherits its security features from Catena.

Consider a password pwd which’s min-entropy is at least m, a “real” case, where
the adversary is given a couple of keys of any length, all derived from pwd , and
also the password-hash of pwd using the original Catena. And consider a “random”
case, where the adversary is given uniformly distributed random strings of the same
length as in the “real” case. Distinguishing “real” from “random” takes at least time
2m. For the proof it is useful that the first byte of the input for the output transform
is 0 (cf. Line 4 in Alg. 5), while, when calling the hash function H in Alg. 3, the first
byte is a value c 6= 0. A detailed proof will be given in the full version of the paper.

7 Conclusion and Outlook

In this paper we have presented Catena, a novel, provable secure, and memory-
demanding password scrambler which is resistant to cache-timing attacks. To the

19

best of our knowledge, Catena is the first password scrambler that naturally supports
(1) client-independent updates, to ease switching to stronger security parameters if
required and (2) server relief, where almost all the effort for password scrambling is
left to the client. Furthermore, we introduced the new notion of the security param-
eter garlic, which reflects the memory usage and computation cost of a password
scrambler.

The research of this work and the design of Catena have been inspired by the
discovery of the cache-timing attacks on scrypt, which we presented in Section 3. In
contrast to scrypt, our design is based on a sequential bit-reversal graph (SBRG),
which we proved to be memory-hard, which implies a quadratic time-memory trade-
off (i.e., for time T and space S, we have S · T = Θ(22g) for the garlic security
parameter g). The proof is based on the once common pebble game. Furthermore,
we prove the resistance of Catena against indistinguishably-attacks under chosen
passwords in the random oracle model.

Based on its high flexibility and security properties, Catena seems to be the
reasonable choice for current and future applications in comparison with existing
algorithms (see Section 2). Finally, we expect that future password scrambler designs
will borrow the two novel features of Catena, i.e., client-independent updates and
server relief.

References

1. S.M. Bellovin and M. Merrit. Encrypted key exchange: Password-based protocols secure against
dictionary attacks. Proceedings of the I.E.E.E. Symposium on Research in Security and Privacy
(Oakland), 1992.

2. Daniel J. Bernstein. Cache-timing attacks on AES, 2005.
3. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak SHA-3 submission.

Submission to NIST (Round 3), 2011.
4. Xavier Boyen. Halting Password Puzzles – Hard-to-break Encryption from Human-memorable

Keys. In 16th USENIX Security Symposium—SECURITY 2007, pages 119–134. Berkeley: The
USENIX Association, 2007. Available at http://www.cs.stanford.edu/~xb/security07/.

5. Stephen A. Cook. An Observation on Time-Storage Trade Off. J. Comput. Syst. Sci., 9(3):308–
316, 1974.

6. Ulrich Drepper. Unix crypt using SHA-256 and SHA-512.
http://www.akkadia.org/drepper/SHA-crypt.txt. Accessed May 16, 2013.

7. Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. Key-evolution schemes resilient to
space-bounded leakage. In CRYPTO, pages 335–353, 2011.

8. Emilia Käsper and Peter Schwabe. Faster and Timing-Attack Resistant AES-GCM. In CHES,
pages 1–17, 2009.

9. Eric Glass. The NTLM Authentication Protocol and Security Support Provider.
http://davenport.sourceforge.net/ntlm.html. Accessed May 16, 2013.

10. Martin E. Hellman. A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions on Infor-
mation Theory, 26(4):401–406, 1980.

11. John Hopcroft, Wolfgang Paul, and Leslie Valiant. On Time Versus Space. J. ACM, 24(2):332–
337, April 1977.

12. Poul-Henning Kamp. The history of md5crypt. http://phk.freebsd.dk/sagas/md5crypt.html.
Accessed May 16, 2013.

13. Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete problems.
In ACM Annual Conference (2), pages 914–918, 1978.

20

http://www.cs.stanford.edu/~xb/security07/
http://www.akkadia.org/drepper/SHA-crypt.txt
http://davenport.sourceforge.net/ntlm.html
http://phk.freebsd.dk/sagas/md5crypt.html

14. John Kelsey, Bruce Schneier, Chris Hall, and David Wagner. Secure applications of low-entropy
keys. In Eiji Okamoto, George I. Davida, and Masahiro Mambo, editors, ISW, volume 1396 of
Lecture Notes in Computer Science, pages 121–134. Springer, 1997.

15. Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In CRYPTO, pages 104–113, 1996.

16. Thomas Lengauer and Robert Endre Tarjan. Asymptotically tight bounds on time-space trade-
offs in a pebble game. J. ACM, 29(4):1087–1130, 1982.

17. Andrzej Lingas. A PSPACE Complete Problem Related to a Pebble Game. In ICALP, pages
300–321, 1978.

18. T. Alexander Lystad. Leaked Password Lists and Dictionaries - The Password Project.
http://thepasswordproject.com/leaked_password_lists_and_dictionaries. Accessed
May 16, 2013.

19. Udi Manber. A simple scheme to make passwords based on one-way functions much harder to
crack. Computers & Security, 15(2):171–176, 1996.

20. Gordon E. Moore. Cramming more Components onto Integrated Circuits. Electronics, 38(8),
April 1965.

21. Robert Morris and Ken Thompson. Password Security - A Case History. Commun. ACM,
22(11):594–597, 1979.

22. Krishna Neelamraju. Facebook Pages: Usage Patterns | Recommend.ly.
http://blog.recommend.ly/facebook-pages-usage-patterns/. Accessed May 16, 2013.

23. Nvidia. Nvidia GeForce GTX 680 - Technology Overview, 2012.
24. Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. Advances in Cryptol-

ogyCRYPTO 2003, 3:617–630, 2003.
25. Michael S. Paterson and Carl E. Hewitt. Comparative schematology. In Jack B. Dennis, editor,

Record of the Project MAC conference on concurrent systems and parallel computation, chapter
Computation schemata, pages 119–127. ACM, New York, NY, USA, 1970.

26. Wolfgang J. Paul and Robert Endre Tarjan. Time-Space Trade-Offs in a Pebble Game. In
ICALP, pages 365–369, 1977.

27. Colin Percival. Cache Missing for Fun and Profit. BDSCan 2004.
28. Colin Percival. Stronger Key Derivation via Sequential Memory-Hard Functions. presented at

BSDCan’09, May 2009, 2009.
29. Niels Provos and David Mazières. A future-adaptable password scheme. In USENIX Annual

Technical Conference, FREENIX Track, pages 81–91. USENIX, 1999.
30. A.G. Reinhold. HEKS: A family of key stretching algorithms, 1999.
31. Semiocast SAS. Brazil becomes 2nd country on Twitter, Japan 3rd Netherlands most active

country. http://goo.gl/QOeaB. Accessed May 16, 2013.
32. J. Savage and S. Swamy. Space-time trade-offs on the FFT algorithm. Information Theory,

IEEE Transactions on, 24(5):563 – 568, sep 1978.
33. John E. Savage and Sowmitri Swamy. Space-Time Tradeoffs for Oblivious Interger Multiplica-

tions. In ICALP, pages 498–504, 1979.
34. Bruce Schneier. Description of a new variable-length key, 64-bit block cipher (blowfish). In

FSE, pages 191–204, 1993.
35. Ravi Sethi. Complete Register Allocation Problems. SIAM J. Comput., 4(3):226–248, 1975.
36. Jens Steube. oclHashcat-plus - Advanced Password Recovery.

http://hashcat.net/oclhashcat-plus/. Accessed May 16, 2013.
37. Sowmitri Swamy and John E. Savage. Space-Time Tradeoffs for Linear Recursion. In POPL,

pages 135–142, 1979.
38. Martin Tompa. Time-Space Tradeoffs for Computing Functions, Using Connectivity Properties

of their Circuits. In STOC, pages 196–204, 1978.
39. Meltem Sönmez Turan, Elaine B. Barker, William E. Burr, and Lidong Chen. SP 800-132.

Recommendation for Password-Based Key Derivation: Part 1: Storage Applications. Technical
report, NIST, Gaithersburg, MD, United States, 2010.

40. M.V. Wilkes. Time-Sharing Computer Systems. MacDonald computer monographs. American
Elsevier Publishing Company, 1968.

21

http://thepasswordproject.com/leaked_password_lists_and_dictionaries
http://blog.recommend.ly/facebook-pages-usage-patterns/
http://goo.gl/QOeaB
http://hashcat.net/oclhashcat-plus/

A Lower Bound for Pebbling a BRG

Lemma 2 ([16]). If S ≥ 2, then, pebbling the bit-reversal graph Πg(V , E) consisting
of G = 2g input nodes with S pebbles takes time

T >
G2

16S
.

Proof. The proof is trivial for S > G/4. Thus, assume that S ≤ G/4. Choose
the integer s such that 2S ≤ 2s < 4S. Let the output path be divided into 2g−s

intervals of length 2s. The j-th interval Ij (0 ≤ j < 2g−s) consists of the vertices
τj2s , . . . , τ(j+1)2s−1. Let zj be the first time (i.e., the number of the first move) that a
pebble is placed on τ(j+1)2s−1, that is, on the highest vertex in Ij . Let zj−1 = 0. Then,
zj > zj−1 for 0 ≤ j < 2g−s. In order to find a lower bound on zj − zj−1, we observe
that at time zj−1 the interval Ij is pebble-free and thus, all 2s vertices in Ij have
to be pebbled between zj−1 and zj . By definition of the bit-reversal permutation,
the immediate predecessors on the input path of the vertices in Ij divide the input
path naturally into 2s − 1 intervals of length 2g−s. (The immediate predecessor of a
vertex in Ij defines the high end of an interval. The intervals at the ends of the input
path are disregarded.) At time zj−1 at most S − 1 pebbles are on the input path.
Thus, at least 2s−1− (S−1) ≥ S intervals are pebble-free at zj−1. All of them have
to be pebbles completely before zj . This takes at least S · 2g−s > G/4 placements.
Therefore, zj − zj−1 > G/4 for 0 ≤ j < 2g−s, and thus, before time z2g−1 at least
2g−sG/4 > G2/16S placements have to occur.

⊓⊔

22

	Catena: A Memory-Consuming Password Scrambler
	Introduction
	Practical Password Scramblers and their Properties
	Frequently used Password Scramblers
	Memory-Related Properties

	The scrypt Password Scrambler
	Brief Analysis of ROMix
	Cache-Timing Attacks
	Discussion

	The Catena Password Scrambler
	Preliminaries
	Catena

	Security Analysis of Catena
	Memory-Hardness
	Pseudorandomness

	The Catena-KG Key Derivation Function
	Conclusion and Outlook
	Lower Bound for Pebbling a BRG

