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Abstract

Helper data schemes are a security primitive used for
privacy-preserving biometric databases and Physical Un-
clonable Functions. One of the oldest known helper data
schemes is the Code Offset Method (COM). We propose an
extension of the COM: the helper data is accompanied by
many instances of fake helper data that is drawn from the
same distribution as the real one. While the adversary has
no way to distinguish between them, the legitimate party
has more information and can see the difference. We use
an LDPC code in order to improve the efficiency of the le-
gitimate party’s selection procedure.
Our construction provides a new kind of trade-off: more
effective use of the source entropy, at the price of increased
helper data storage. We give a security analysis in terms of
Shannon entropy and order-2 Rényi entropy.

1 Introduction

1.1 Helper Data Systems

The past decade has seen a lot of interest in a field that can
be characterized as ‘security with noisy data’. In several
security applications it is necessary to reproducibly extract
secret data from noisy measurements on a physical system.
One such application is the privacy-preserving storage of
biometric data. Analogously to password hashing, one can
store biometric data in hashed form in order to prevent
inside attackers from learning what the enrolled biometric
features look like. Another application is read-proof storage
of cryptographic keys using Physical Unclonable Functions
(PUFs) [16, 17, 14]. Many types of digital memory can be
considered insecure because of the large inbuilt redundan-
cies needed to ensure reliable readout. PUFs provide an
alternative way to store keys, namely in analog form, which
allows the designer to exploit the inscrutability of analog
physical behavior. Keys stored in this way are sometimes
referred to as Physically Obfuscated Keys (POKs) [8].
In both the biometrics and the PUF/POK application, one
faces the problem that some form of error correction has
to be done, but under the constraint that the redundancy
data, which is considered to be visible to attackers, does
not reveal too much information about the secret extracted
from the physical measurement. The problem is solved by a
special security primitive, the Helper Data System (HDS).
A HDS in its most general form is shown in Fig. 1. The
Enroll procedure takes as arguments a measurement X
and (optionally) a random value R. It outputs a secret S
and Helper Data W . The helper data is stored. In the
reconstruction phase, a fresh measurement X ′ is obtained.
Typically X ′ is a noisy version of X, i.e. close to X but not
necessarily identical. The Rec (reconstruction) procedure
takes X ′ and W as input. It outputs Ŝ, an estimate of S.
If X ′ is not too noisy then Ŝ = S.

Two special cases of the general HDS are the Secure Sketch
(SS) and the Fuzzy Extractor (FE) [6].

• The Secure Sketch has S = X (and Ŝ = X̂, an estima-
tor for X). If X is not uniformly distributed, then S is
not uniform. The SS is suitable for privacy-preserving
biometrics, where high entropy of S (given W ) is re-
quired, but not uniformness.

• The Fuzzy Extractor has a (nearly) uniform S given
W . The FE is typically used for extracting keys from
PUFs and POKs.

There exists a generic construction to create a FE out of
a SS: hashing the output of the SS using a Universal Hash
Function (UHF) [3, 15, 11].
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Figure 1: Data flow in a generic Helper Data System.
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Figure 2: The Code Offset Method employed as a Secure
Sketch.

1.2 The Code Offset Method

One of the oldest known SS constructions is the Code Off-
set Method (COM) [10, 6]. Here X is a binary string, say
of length n, with probability distribution ρ. The construc-
tion uses a linear error-correcting code that encodes k-bit
messages as n-bit codewords. The encoding and decod-
ing operations are denoted as Enc and Dec respectively. In
Fig. 1 we take R uniformly drawn from {0, 1}k and

W = X ⊕ Enc(R) ; X̂ = W ⊕ Enc(Dec(W ⊕X ′)). (1)

This is depicted in Fig. 2.
If X is uniformly distributed on {0, 1}n then the scheme is
not only a SS but in fact also a FE; this holds because a
uniform X gives rise to helper data W that leaks nothing
about R. The formulas for the FE are: S = R and W =
X ⊕ Enc(R); R̂ = Dec(X ′ ⊕W ). Note that for uniform X
the W reveals the syndrome of X, but nothing about R.
Hence R can then be used as a cryptographic key.
In this paper we study the case where X is not uniformly
distributed. A non-uniform X appears naturally, e.g. in the
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case of Coating PUFs [16], where Gray-coded capacitance
measurements are concatenated to form X. Typically not
all the Gray code words are represented, which leads to
non-uniformity.

Similarly, a biometric feature vector is often split up into
near-inependent components which each yield a small num-
ber of non-uniform bits.

1.3 Zero Leakage

For some sources X it is possible to define helper data that
reveals nothing about S. This is sometimes called Zero
Secrecy Leakage (ZSL) helper data. The information con-
tained in X is split into two independent parts, one of which
serves for error correction, and one for making the secret S.

As we saw above, the COM with uniform X has the ZSL
property. Another example is the quantile partitioning
scheme [18] of Verbitskiy et al. for continuous X, and its
generalization to non-uniform S [5].

1.4 Contributions and outline

In this paper we propose a simple modification of the Code
Offset Method SS. The basic idea is to add a number (say
m−1) of dummy helper data instances to the publicly stored
enrollment data, and to randomly permute the list. All the
instances are a priori indistinguishable from the point of
view of the adversary, but the legitimate party possesses X ′,
which allows for efficient selection of the correct helper data
instance. This workload asymmetry improves the security.
For small m, the attacker may simply try out all possibil-
ities, which leads to an average attack effort of (m + 1)/2
times the original one. For very large m this brute force
attack is no longer feasible, and the attacker is forced to ig-
nore the public data; in this way a new kind of ‘zero leakage’
is achieved, distinct from the ZSL of Section 1.3, namely
public data that reveals practically nothing about X (as
opposed to S).

The concept of ‘spamming’ the attacker in this way is very
general and is applicable whenever there exists an efficient
way of recognizing the correct W using X ′. In this paper
we show how the ‘spamming’ concept can be applied to
the Code Offset Method. Our scheme requires the use of
a linear error-correcting code with low-density parity check
matrix (LDPC) in order to keep the legitimate party’s work-
load low.

In Section 2 we introduce the notation and assumptions
that we work with. In Section 3 we analyze the leak-
age of the ordinary Code Offset Method and briefly re-
view the Leftover Hash Lemma. In Section 4 we present
our new scheme, which we call the Spammed Code Offset
Method (SCOM). Section 5 contains a security analysis of
our scheme and a brief discussion of memory requirements.
A discussion and conclusions are given in Section 6.

2 Notation and attacker model

Random variables are written with capitals, and their re-
alizations in lower case. Vectors are in boldface; sets in
calligraphic font. Concatenation is denoted as ||. The nota-
tion dHamm(x, y) stands for the Hamming distance between

x and y. The logarithm ‘log’ is defined in base 2. The
natural logarithm is ln.
The Code Offset Method works with a linear code C that
has n-bit code words and k-bit messages. The encoding and
decoding algorithms associated with this code are denoted
as Enc and Dec respectively. The algorithm for computing
the syndrome is denoted as Syn.
We consider a POK whose output at enrollment is a bit
string X ∈ {0, 1}n. The probability distribution of X is
called ρ, and ρ is not necessarily uniform. The string R in
Fig. 2 has length k. The helper data is called W . In the
FE setting, the cryptographic key that is ultimately derived
from the POK is denoted as K ∈ {0, 1}`.
We will use shorthand notation pxw = Pr[X = x,W = w],
pw = Pr[W = w] and px|w = Pr[X = x|W = w], when it
does not cause ambiguity. We define qz = Pr[Syn(X) = z].
The public data stored in nonvolatile memory is P .
The outcome of the POK measurement in the reconstruc-
tion phase is denoted as X ′ ∈ {0, 1}n. The X ′ is a noisy
version of X, and in general does not have the same proba-
bility distribution as X. The estimator for K, derived from
X ′ and the public data, is denoted as K̂.
We will rely on a cryptographic hash function f . Further-
more we will use a Universal Hash Function g(x, a), where
the second argument is public auxiliary randomness.
The attacker model is summarized as follows. We distin-
guish between two scenarios:

1. Biometric database for authentication.
The adversary can read but not manipulate the public
data P . His aim is to learn as much about X as he
can.1

2. Secure key storage with a POK.
The adversary has access to the device which contains
the POK. He cannot re-activate the device’s enrollment
mode of operation. The opacity of the POK, and the
embedding of the POK in the device, prevent the ad-
versary from reading out K from the POK. Further-
more, physical tampering with the POK is unerringly
detected by the device at the reconstruction phase.
The public data P is stored on the device in insecure
nonvolatile memory. The adversary is able to read and
to manipulate P . There is no Public Key Infrastruc-
ture that would allow the device to verify the authen-
ticity of the public data. The adversary’s main aim is
to learn the POK key K. A secondary goal is to cause
the device to accept a key other than K as the correct
key.

In both scenarios the adversary is able to discern whether
reconstruction is successful. No other side channels exist.

3 Analysis of the Code Offset Method

We consider the general case of a non-uniform distribution
ρ, and review what is known about the leakage of the COM.
We briefly discuss the required amount of compression in
case one wants to build a FE based on the COM.

1He may exploit this knowledge in various ways: (i) Some part of
X may reveal information about medical conditions. This is a privacy
risk. (ii) Construct a fake biometric in order to pass authentication.
This is a security risk. (iii) Cross-linking of people across different
databases. This is a privacy risk.
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Lemma 1 The Code Offset Method has the following prob-
abilities,

prw = 2−kρ(w ⊕ Enc(r)) (2)

pw =
1

2k

X
r∈{0,1}k

ρ(w⊕Enc(r)) =
1

2k
Pr[SynX=Synw] (3)

pr|w =
ρ(w ⊕ Enc(r))P

t∈{0,1}k ρ(w ⊕ Enc(t))
(4)

pxw = 2−kρ(x)δSyn(w),Syn(x) (5)

px|w =
ρ(x)δSyn(w),Syn(x)P

t∈{0,1}k ρ(w ⊕ Enc(t))
. (6)

Proof: The R is drawn uniformly and thus each r has prob-

ability 2−k of occurring. The probability Pr[W = w|R = r]
is given by ρ(w ⊕ Enc(r)). Multiplication of these two
gives (2). Equation (3) follows by computing pw as the
marginal of prw by summing over r. Eq. (4) follows from
pr|w = prw/pw. Finally, (5) and (6) follow from (2) and (4)
by setting x = w ⊕ Enc(r), which is only possible if x and
w have the same syndrome. �
Eq. (4) shows that in general pr|w 6= pr. Thus, W leaks
information not only about Syn(X), but also about R.

Lemma 2 In the Code Offset Method it holds that

H(W ) = k + H(SynX) (7)

H(X,W ) = H(X) + k (8)

I(X;W ) = H(SynX). (9)

Proof: H(W ) follows directly from (3), and H(X,W ) from
(5). The I(X;W ) is computed as H(X)+H(W )−H(X,W ).
�
In order to obtain a nearly uniform key K from X (or,
equivalently, from R), one has to hash down to a smaller size
(say `): K = g(X,A) ∈ {0, 1}`. Here A is public auxiliary
randomness that serves as a ‘catalyst’ for the UHF g.
Let U be a uniform variable on {0, 1}`. The relation be-
tween ` and the uniformity of K is given by the Leftover
Hash Lemma (LHL) [9] and can be formulated as

` ≤ Lε(X,W ) =⇒ Ew[∆(U ;K|W = w)] ≤ ε (10)

with Lε(X,W ) = H2(X|W ) + 1− 2 log
1

ε
. (11)

Eq. (10) states that the non-uniformity of K given W does
not exceed ε as long as X has been sufficiently hashed down.
The ` must not exceed the ‘ε-extractable randomness’ Lε.
The notation H2 in (11) stands for the conditional Rényi
entropy of order two and is defined as [7]

H2(X|W ) = −2 logQ2(X|W )

Q2(X|W ) = Ew
qP

xp
2
x|w =

X
w

qP
xp

2
xw, (12)

where Ew stands for the expectation value over W .
Note that the ‘penalty’ term 2 log 1

ε
in (11) depends only

on ε, i.e. it depends not on the improvement of the unifor-
mity but on the final uniformity. Because of this fact, the
approach using UHFs can be quite wasteful.
Remark: Under some conditions [1] the factor 2 in the
penalty term can be replaced by 1. Furthermore, the LHL
can be sharpened a bit by considering smooth Rényi en-
tropy [12, 13, 19]. Such details are beyond the scope of the
current paper.

4 Our construction: the Spammed Code
Offset Method

We first show a naive spamming approach, without efficient
de-spamming at the reconstruction phase. Then we propose
an efficient scheme, in two variants: one in the privacy-
preserving biometrics context, the other in the secure key
storage context.
The efficient scheme requires a linear block code with a low-
density parity check matrix. The security and the storage
requirements are analyzed in Section 5.

4.1 Naive approach

Algorithm E0: Enrollment, the naive way

1. Measure X ∈ {0, 1}n.

2. Draw R ∈ {0, 1}k uniformly at random.

3. Compute helper data W = X ⊕ Enc(R).

4. For j ∈ {1, . . . ,m− 1} do:

(a) Uniformly draw Σj ∈ {0, 1}k.

(b) Draw Dj ∈ {0, 1}n from the distribution ρ.

(c) Compute Ωj = Dj ⊕ Enc(Σj).

5. Draw a random permutation π.

6. Construct a vector Ω = π(Ω1, · · · ,Ωm−1,W ).

7. Compute G = f(Ω||X).

8. Store public data P = (Ω, G).

Algorithm R0: Reconstruction, the naive way

1. Read P ′ = (Ω′, G′).

2. Measure X ′.

3. Set L1 = ∅. For j ∈ {1, . . . ,m} do:

(a) Try to compute Rj = Dec(X ′ ⊕ Ω′j).

(b) If the decoding succeeds then add j to L1.

4. If L1 = ∅ then abort.

5. Set L2 = ∅. For i ∈ L1 do:

(a) X̂i = Ω′i ⊕ Enc(Ri)

(b) Compute Gi = f(Ω′||X̂i).
(c) If Gi = G′ then add i to the list L2.

6. If |L2| 6= 1 then abort; else X̂ = XL2 .

Enrollment steps 2 and 3 represent the construction of the
ordinary COM helper data W . The Dj in step 4b are decoy
measurements. They follow the same distribution as X and
are therefore statistically indistinguishable from a real POK
measurement. The Ωj is the COM helper data associated
with the decoy Dj . The purpose of the random permutation
in step 6 is to hide from the adversary which entry of Ω is
the actual helper data. Here it is crucial that the adversary
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cannot ‘see inside’ the hash G. Since the entries of Ω are
distributed exactly in the way real helper data should be,
his knowledge about the statistics ofW does not help him to
decide which entry is the real one. This intuitive statement
is made more precise in Section 5.

Note that in step 7 the hash is computed over the whole
vector Ω. This ensures that any manipulation of the pub-
lic data will be detected, be it in the hash, in W or in
the decoys. This way of protecting the helper data against
manipulation was introduced by [2]. Alternatively, one may
use a Message Authentication Code with Key Manipulation
Security [4].

At reconstruction the public data may have been altered,
which is why we use the notation P ′, Ω′, G′ in step 1 of
algorithm R0. A list L1 is made of Ω′ entries that lead to
successful decoding. The whole set L1 has to taken into ac-
count, since some of the decoys may by chance decode, and
the order of the entries is random. The list of candidates
is further narrowed down to a list L2 of entries whose Xj
generates the correct hash. If P ′ = P and X ′ ≈ X then
typically there is only one candidate left in L2. If P ′ 6= P
or X ′ is too far away from X to be error-corrected, then
typically L2 = ∅. (Algorithm R0 continues the search after
having found its first match. Alternatively, we could stop.)

The main idea behind the scheme is that the adversary
cannot distinguish between the true helper data and the
decoys, while the device’s knowledge of X ′ helps it to see
the difference.

It may happen that the choice of system parameters is such
that R0 has a long running time. For instance, the process-
ing time in step 3 is linear in m, where m may be a large
number. Furthermore, the choice of n, k, and m may give
rise to a long list L1, and the number of hashes that has to
be computed in step 5 is linear in |L1|. In the schemes be-
low we aim to reduce the running time of the reconstruction
algorithm.

4.2 Scheme #1: Secure Sketch for biometrics
database

Below we show a more efficient pair of algorithms, in the
biometrics scenario. The main difference with the naive ap-
proach is the use of the syndromes Φ. Note that Syn(X) =
Syn(W ). Hence revealing F conveys no extra information
to the adversary; he could already compute F from W un-
aided.

The idea behind scheme #1 is that comparing Syn(X ′) to
Syn(X) and the other syndromes allows the device to heuris-
tically re-order Ω′ in such a way that the most likely can-
didates are tried out first. Here it is crucial that the parity
check matrix of the code has low density: then a small Ham-
ming distance between X and X ′ leads to a small Hamming
distance between Syn(X) and Syn(X ′).

The running time of the reconstruction algorithm R1 is
practically independent of the number of dummies, except
for steps 4–6 which are lightweight. Most importantly, due
to the sorting R1 does not have to compute many decodings
and hashes.

Algorithm E1:
enrollment for biometrics database

1. Measure the biometric X ∈ {0, 1}n.

2. Draw R ∈ {0, 1}k uniformly at random.

3. Compute the syndrome F = Syn(X).
Compute helper data W = X ⊕ Enc(R).

4. For j ∈ {1, . . . ,m− 1} do:

(a) Uniformly draw Σj ∈ {0, 1}k.

(b) Draw Dj ∈ {0, 1}n from the distribution ρ.

(c) Compute Φj = Syn(Dj).
Compute Ωj = Dj ⊕ Enc(Σj).

5. Choose a random permutation π.

6. Construct a vector Φ = π(Φ1, · · · ,Φm−1, F ).
Construct a vector Ω = π(Ω1, · · · ,Ωm−1,W ).

7. Compute G = f(Φ||Ω||X).

8. Store public data P = (Φ,Ω, G).

Algorithm R1: efficient biometric verification

1. Read P ′ = (Φ′,Ω′, G′).

2. Measure the fresh biometric X ′.

3. Compute F ′ = Syn(X ′).

4. For j ∈ {1, . . . ,m} do: dj = dHamm(F ′,Φ′j).

5. Make a permutation λ that sorts (dj)
m
j=1 in ascend-

ing order.

6. Let Ω̃ = λ(Ω′).

7. Let j = 0.

8. Increase j. If j = m+ 1 then abort.

9. Try to compute Rj = Dec(X ′ ⊕ Ω̃j).
If the decoding fails then goto 8.

10. X̂j = Ω̃j ⊕ Enc(Rj).

11. If G′ 6= f(Φ′||Ω′||X̂j) then goto 8.

12. Accept.

Remark 1: In step 7 of E1, the Φ and Ω also serve as salt
for the hashing of X.

Remark 2: There are many alternative ways to organize the
steps in (R1,E1). For instance, in step 6 of R1 the vector
Ω′ does not have to be physically permuted; permutation
of the indices {1, · · · ,m} is more efficient.

4.3 Scheme #2: Fuzzy Extractor

Below we present the Fuzzy Extractor version of algorithms
(E1, R1), in the POK scenario.
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Algorithm E2: enrollment for POK

1. Measure the POK output X ∈ {0, 1}n.

2. Generate random A. Compute K = g(X,A).

3. Draw S ∈ {0, 1}k uniformly at random.

4. Compute the syndrome F = Syn(X).
Compute helper data W = X ⊕ Enc(S).

5. For j ∈ {1, . . . ,m− 1} do:

(a) Uniformly draw Σj ∈ {0, 1}k.

(b) Draw Dj ∈ {0, 1}n from the distribution ρ.

(c) Compute Φj = Syn(Dj).
Compute Ωj = Dj ⊕ Enc(Σj).

6. Choose a random permutation π.

7. Construct a vector Φ = π(Φ1, · · · ,Φm−1, F ).
Construct a vector Ω = π(Ω1, · · · ,Ωm−1,W ).

8. Compute G = f(Φ||Ω||A||X).

9. Store public data P = (Φ,Ω, A,G).

Algorithm R2: efficient reconstruction of POK

1. Read P ′ = (Φ′,Ω′, A′, G′).

2. Measure the POK output X ′.

3. Compute F ′ = Syn(X ′).

4. For j ∈ {1, . . . ,m} do: dj = dHamm(F ′,Φ′j).

5. Make a permutation λ that sorts (dj)
m
j=1 in ascend-

ing order.

6. Let Ω̃ = λ(Ω′).

7. Let j = 0.

8. Increase j. If j = m+ 1 then abort.

9. Try to compute Rj = Dec(X ′ ⊕ Ω̃j).
If the decoding fails then goto 8.

10. X̂j = Ω̃j ⊕ Enc(Rj).

11. If G′ 6= f(Φ′||Ω′||A′||X̂j) then goto 8.

12. K̂ = g(X̂j , A
′).

The only difference with the biometrics scenario (E1,R1) is
the use of the auxiliary randomness A and the computation
of K and K̂.

5 Analysis of the SCOM

We investigate how much information about X is revealed
to the adversary by showing him Ω. In principle we should
be looking at the leakage from the whole public data P , but
there one hits a snag: information-theoretically there is no
such a thing as a one-way function. The hash G hides its

input in practice, but information theory gives I(X;P ) =
I(X;W ). The leakage from Ω is a better way to represent
the adversary’s actual workload.
In the biometrics scenario, the relevant quantity to look at
is Shannon entropy. (One might argue that min-entropy
is more important, but since we do not have the stringent
requirements that cryptographic keys have to satisfy2 , we
will stick to Shannon entropy.) The relevant quantity in
the POK scenario is the Rényi entropy H2, which features
in the ε-extractable randomness (11). We show results for
both scenarios.
In Section 5.3 we also briefly look at memory requirements.

5.1 Leakage in terms of Shannon entropy

We first present two lemmas that allow us to relate the leak-
age I(X; Ω) to the adversary’s ignorance about the permu-
tation Π. Then we present a result for small m and for
large m.

Lemma 3 The adversary’s ignorance about X given Ω can
be written as

H(X|Ω) = H(X|W ) + I(Π;XΩ). (13)

Proof: We write H(X|ΩΠ) in two ways: as H(X|W ) and
as H(XΠ|Ω) − H(Π|Ω) = H(XΠ|Ω) − H(Π) = H(X|Ω) +
H(Π|XΩ) − H(Π). Equating the two different expressions
yields (13). �

Lemma 4 Let t(x,ω) denote the number of entries in ω
that are consistent with x, i.e. t(x,ω) = |{j : Syn(ωj) =
Syn(x)}|. Then

H(X|Ω) = H(X|W ) + logm− Exω log t(x,ω). (14)

Proof: We write I(Π;XΩ) = H(Π)− H(Π|XΩ) = logm!−
H(Π|XΩ). For a given t(x,ω) there are t possible ways to
place w in ω; furthermore there are m−1 further entries to
be permuted, which can be done in (m−1)! ways. The total
number of permutations π consistent with x and ω is t·(m−
1)!. They are all equiprobable from the point of view of the
adversary. Hence H(Π|X = x,Ω = ω) = log[t · (m− 1)!]. It
follows that H(Π|XΩ) = Exω log[t·(m−1)!] = log(m−1)!+
Exω log t and I(Π;XΩ) = log m!

(m−1)!
−Exω log t. Finally we

substitute this expression for I(Π;XΩ) into Lemma 3. �

Theorem 1 The conditional entropy H(X|Ω) can be
bounded from below as

H(X|Ω) ≥ H(X|W ) + logm− m− 1

ln 2
ExqSyn(x). (15)

Proof: We write t(x,ω) = 1+u(x,ω) and use ln(1+u) ≤ u.

This gives Exω log t(x,ω) ≤ 1
ln 2

Exωu(x,ω). For given x,
the u is binomial-distributed with parameters m − 1 and
qSyn(x). (See Section 2 for the notation q.) Thus we have
Exωu(x,ω) = Ex(m− 1)qSyn(x). �
At first sight (15) might seem to contradict the well known
principle ‘conditioning reduces Shannon entropy’. However,
it should be borne in mind that Ω is not just W plus decoys;
Ω results from a function Π applied to W and the decoys.
The function Π reduces the leaking effect of W .

2Remember that most biometrics cannot be kept secret, since it
is possible to measure them surreptitiously.
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The probability qSyn(x) is typically of the order 1/2n−k if X
is not too strangely distributed. Hence the last term in (15)
is a small correction term if m < 2n−k. Eq. (15) confirms
the intuitive idea that the attacker’s effort increases by a
factor ≈ m/2. Note that the bound in Theorem 1 is far from
tight when m is large. For large m we have the following
result.

Theorem 2 The conditional entropy H(X|Ω) can be
bounded from below as

H(X|Ω) ≥ H(X)− 1

m
· 2n−k − 1

ln 2
. (16)

Proof: As in the proof of Theorem 1, we write t = 1 + u.
Furthermore we split u into its expectation value (at fixed
x) and a deviation: u = (m− 1)qSyn(x) + δ, where Eδδ = 0.
This gives

Exω log t = Ex log[mqSyn(x)] + Ex log[1 +
1− qSyn(x)
mqSyn(x)

]

+Exδ log(1 +
δ

1 + [m− 1]qSyn(x)
). (17)

Next we use ln(1 + z) ≤ z twice, and Eδδ = 0, to get

Exω log t ≤ logm+ Ex log qSyn(x) +
1

ln 2
Ex

1− qSyn(x)
mqSyn(x)

= logm+
X

z∈{0,1}n−k

qz log qz +
1

m ln 2
(−1+

X
z

qz
qz

)

= logm− H(SynX) +
2n−k − 1

m ln 2
. (18)

Substitution of (18) into Lemma 4 finishes the proof. �
If m is of order 2n−k or larger, then the 1

m
term in Theo-

rem 2 is a small correction term; we see that Ω then hardly
leaks anything about X, as we expected intuitively.

5.2 Leakage in terms of Rényi entropy

We present a bound on H2(X|Ω) that is useful for large m.
We observe that for the adversary each entry in ω is equally
likely to be the correct one. Thus, his knowledge about x
can be parametrized as a probability distribution that is
conditioned on each of the entries ωj with equal probability
1/m. This gives

px|ω =
1

m

mX
j=1

px|ωj
. (19)

Based on (19) we obtain the following result.

Theorem 3 The conditional Rényi entropy H2(X|Ω) can
be bounded from below as

H2(X|Ω) ≥ H2(X)− 1

m ln 2

"
Ew
P
x p

2
x|wP

x p
2
x

− 1

#
. (20)

Proof:

H2(X|Ω) = −2 log Eω

qP
xp

2
x|ω (21)

≥ −2 log
q

Eω

P
xp

2
x|ω (22)

= − log Eω

X
x

1

m2

X̀
a,b=1

px|ωapx|ωb
(23)

= − log
1

m2

X
x

24X
a

Eωp
2
x|ωa

+
X

a,b:a6=b

Eωpx|ωapx|ωb

35 (24)

= − log
X
x

»
1

m
Ewp2

x|w + [1− 1

m
]p2
x

–
(25)

= − log

"
(
X
x

p2
x)(1 +

Ew
P
x p

2
x|w−

P
x p

2
x

m
P
x p

2
x

)

#
(26)

= H2(X)− log(1 +
Ew
P
x p

2
x|w −

P
x p

2
x

m
P
x p

2
x

). (27)

In (22) we used Jensen’s inequality. In (23) we substituted
(19). Finally (20) is obtained from (27) by using log(1+z) =
ln(1 + z)/ ln 2 ≤ z/ ln 2. �

Remark: If X is not too far from uniform, then the 1
m

-term

in Theorem 3 is of order 2n−k/m, i.e. the same order of
magnitude as the 1

m
-term in Theorem 2.

When spammed helper data Ω is used instead of W , the
entropy H2(X|W ) in the extractable randomness formula
(11) can be replaced by the (much) larger number H2(X|Ω).

5.3 Storage requirements

In the biometrics scenario there is a large amount of storage
space per enrolled person, since the public data P is usually
stored in a dedicated database. Blowing up the database
by a factor m could be feasible. Furthermore, the original
W is a very small thing to start with.

In the POK scenario, however, the public data is usually
stored on the device that contains the POK. This device
has to be cheap; hence nonvolatile memory may become an
issue.

Below we tabulate some numerical estimates. The k = 128
case corresponds to a POK with a 128-bit key. The k = 64
case represents the biometrics scenario. (We could even
have chosen k a little smaller.) The ‘err’ is the number
of errors that the LDPC code can correct. Under ‘Mem’
we list the space required to store Ω and Φ, namely m ·
(2n − k) bits. The values of n are approximate and are
meant only to give orders of magnitude. For m we list two
values: m = 2(n−k)/2, which reduces the leakage from W by
approximately half the bits, and m = 2n−k which almost
completely cancels the leakage.

k = 64 k = 128

err n logm Mem n logm Mem

1 72 4 0.2KB 138 5 0.6KB

8 2.5KB 10 19KB

2 78 7 1.4KB 146 9 10KB

14 0.2MB 18 5.1MB

3 85 10.5 19KB 154 13 0.2MB

21 27MB 26 1.4GB

Table 1: Memory required to store Ω and Φ, listed as
a function of k, the number of errors to be corrected and
logm.
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6 Discussion

We have proposed the Spammed Code Offset Method, in
which the adversary gets spammed with bogus helper data.
For small spam factor m, the security is increased by
roughly logm bits. For large m, of the order 2n−k or larger,
the leakage I(X;W ) is practically eliminated. These state-
ments are quantified in Theorems 1, 2 and 3. While the
workload of the adversary is increased, the workload of the
legitimate party (counting only calls to Dec and the hash
function f) stays almost constant as a function of m. This
is achieved by using Hamming distance in syndrome space
as a fast candidate selection criterion, where the use of an
LDPC code makes sure that a small distance between X
and X ′ translates to a small distance in syndrome space.
In the POK scenario it depends on various system parame-
ters whether it makes sense to use the SCOM. If the avail-
able nonvolatile memory in the device is limited and there
is ample entropy in X, then the ordinary COM suffices.
Table 1 illustrates that for a 128-bit key and logm compa-
rable to n− k, the size of the public data rapidly becomes
infeasibly large as the number of errors increases. However,
it should be borne in mind that a even a small m already
yields a (modest) security improvement. The SCOM pro-
vides a new kind of trade-off: a more effective use of source
entropy is achieved at the price of digital memory usage.
In the biometrics case it is especially important to elimi-
nate the leakage I(X;W ), since the entropy of X is usually
rather low and has to be maximally exploited. Fortunately
it is easier to meet the memory requirements in this sce-
nario.
As future work we will do experiments with various LDPC
codes in order to optimize the search in algorithms R1 and
R2, and in order to get more precise numbers in Table 1.
Another interesting issue to look at is the cross-linkability
between biometric templates in different databases. When
lots of decoy entries are added to the templates, it becomes
much harder for an adversary to decide if templates in dif-
ferent databases belong to the same person, since the decoys
are likely to cause false matches.
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