
How to Withstand Mobile Virus Attacks, Revisited

Joshua Baron1 Karim El Defrawy1 Joshua Lampkins2∗

Rafail Ostrovsky2,3

{jwbaron,kmeldefrawy}@hrl.com, jdlampkins@math.ucla.edu, rafail@cs.ucla.edu
1 HRL Laboratories, LLC, Malibu, CA

2 Department of Mathematics, UCLA, Los Angeles, CA
3 Departments of Computer Science, UCLA, Los Angeles, CA

Abstract

Secure Multiparty Computation (MPC) protocols allow a set of distrusting participants to securely
compute a joint function of their private inputs without revealing anything but the output of the
function to each other. In 1991 Ostrovsky and Yung introduced the proactive security model, where
faults spread throughout the network, analogous to the spread of a virus or a worm. More specifically,
in the proactive security model, the adversary is not limited in the number of parties it can corrupt
but rather in the rate of corruption with respect to a “rebooting” rate. In the same paper, Ostrovsky
and Yung showed that constructing a general purpose MPC protocol in the proactive security model is
indeed feasible when the rate of corruption is a constant fraction of the parties. Their result, however,
was shown only for stand-alone security and incurred a large polynomial communication overhead for
each gate of the computation. In contrast, protocols for “classical” MPC models (where the adversary
is limited to corrupt in total up to a fixed fraction of the parties) have seen dramatic progress in
reducing communication complexity in recent years.

The question that we consider in this paper is whether continuous improvements of communication
overhead in protocols for the “classical” stationary corruptions model in the MPC literature can lead
to communication complexity reductions in the proactive security model as well. It turns out that
improving communication complexity of proactive MPC protocols using modern techniques encoun-
ters two fundamental roadblocks due to the nature of the mobile faults model: First, in the proactive
security model there is the inherent impossibility of “bulk pre-computation” to generate cryptographic
material that can be slowly consumed during protocol computation in order to amortize communi-
cation cost (the adversary can easily discover pre-computed values if they are not refreshed, and
refreshing is expensive); second, there is an apparent need for double-sharing (which requires high
communication overhead) of data in order to achieve proactive security guarantees. Thus, techniques
that were used to speed up classical MPC do not work, and new ideas are needed. That is exactly
what we do in this paper: we show a novel MPC protocol in the proactive security model that can
tolerate a 1

3 − ϵ (resp. 1
2 − ϵ) fraction of moving faults, is perfectly (resp. statistically) UC-secure,

and achieves near-linear communication complexity for each step of the computation. Our results
match the asymptotic communication complexity of the best known results in the “classical” model of
stationary faults [DIK10]. One of the important building blocks that we introduce is a new near-linear
“packed” proactive secret sharing (PPSS) scheme, where the amortized communication and computa-
tional cost of maintaining each individual secret share is just a constant. We believe that our PPSS
scheme might be of independent interest.

Keywords: Proactive security, secure multiparty computation, secret sharing.

1 Introduction

Secure multiparty computation (MPC) is a notion central to cryptography. MPC protocols allow a set
of distrusting parties P1, ..., Pn, with private inputs x1, ..., xn, to jointly compute a function f while

∗The work of this author was performed while at HRL Laboratories, LLC.

1

guaranteeing correctness of its evaluation and privacy of inputs for honest parties. The study of secure
computation was initiated by [Yao82] for two parties and [GMW87] for many parties. The information-
theoretic setting was introduced by [BGW88] and [CCD88], where assuming private channels MPC
protocols were shown to tolerate less than 1/3 of malicious parties. Assuming a broadcast channel,
[RB89] shows how protocols can tolerate less than 1/2 of malicious parties. Fixed bounds on adversary’s
corruption limit can be viewed as unrealistic for protocols that have very long execution times, especially
when considering so-called “reactive” functionalities that never stop executing, e.g., continuously running
control loops. Constructing MPC protocols that guarantee security against stronger adversary models and
at the same time satisfy low communication and computational complexity bounds has been an important
program in cryptography, and has seen significant progress, e.g., [IKOS08, DIK+08, DIK10, BFO12].

An approach to deal with an adversary’s ability to eventually corrupt all parties is the so-called
proactive security model [OY91], which introduces the notion of a mobile adversary motivated by the
persistent corruption of participants. A mobile adversary is one that can corrupt all parties in a dis-
tributed protocol during the execution but with the following limitations: (1) only a constant fraction of
parties can be corrupted during any round; (2) parties periodically get rebooted to a clean initial state,
guaranteeing small fraction of corrupted parties, assuming that the corruption rate is not more than the
reboot rate1.

We remark that we model rebooting to a clean initial state including global computation information
(e.g., the circuit to be computed, the identities of the other parties in the computation, access to perfectly
secure point-to-point channels and to a broadcast channel). The [OY91] model also assumes that an
adversary does not have the ability to predict or reconstruct the randomness used by parties in any
uncorrupted period of time, as demarcated by rebootings.

This paper’s goal is to construct an MPC protocol under the proactive security model with low
communication complexity. We specifically consider two questions (1) can we construct proactive UC-
secure MPC protocols and (2) how much can we improve the communication complexity of previous
proactive protocols, both for secret sharing and MPC?

1.1 Related Work

Ostrovsky and Yung introduced the proactive security model in [OY91]. The same paper also contains
the first proactive secret sharing (PSS) scheme and proactive MPC (PMPC) protocol. Following [OY91],
there has been significant follow up work on PSS schemes, both in the synchronous and asynchronous
models (see Table 1 for a comparison). The most efficient scheme is [HJKY95], which has O(n2) com-
munication complexity per secret share. By contrast, our work has O(1) (amortized) communication
complexity per secret share. Further, we are not aware of any UC-secure PSS scheme until this work.
We note that our work is in the synchronous model; extending our work to the asynchronous model is
an interesting open question.

In addition to proactive secret sharing, there has also been substantial research on proactively secure
threshold encryption and signature schemes (e.g., [FGMY97a, FGMY97b, Rab98, CGJ+99, FMY01,
Bol03, JS05, JO08, ADN06]).

The only known PMPC protocol is due to [OY91]. The protocol is proven secure in the stand-alone
corruption model and requires at least O(Cn3) communication complexity. By contrast, the PMPC
protocol in this paper is UC-secure and has near-linear communication complexity.

1Deciding which parties to reboot is outside the scope of this paper; this paper only requires that the corruption rate
is not exceeded. One option is that that parties are rebooted when anti-virus and/or intrusion detection systems detect a
compromise. Another option is to periodically select a set of parties at random and reboot them. However, if parties are
randomly rebooted, perfect security is unattainable because with (very) low probability the same set of parties may always
be rebooted.

2

Paper Network Security Threshold Communication Complexity
[WWW02] synch. cryptographic t/n < 1/2 exp(n)
[ZSvR05] asynch. cryptographic t/n < 1/3 exp(n)
[CKLS02] asynch. cryptographic t/n < 1/3 O(n4)
[Sch07] asynch. cryptographic t/n < 1/3 O(n4)
[HJKY95] synch. cryptographic t/n < 1/2 O(n2)
This Paper synch. perfect t/n < 1/3−ϵ O(1)
This Paper synch. statistical t/n < 1/2−ϵ O(1)

Table 1: Comparison of Proactive Secret Sharing (PSS) Schemes. Threshold is for each reboot phase.
Our communication complexity is amortized per bit.

1.2 Roadblocks to Proactive MPC (PMPC) with Low Communication

Naively, one might think that constructing a PMPC protocol would be a simple matter of starting with
an existing MPC protocol that relies on secret sharing and replacing the secret sharing scheme with a
PSS scheme, i.e., a scheme that has “proactivized” the original secret sharing scheme. While this simple
strategy may work, i.e., MPC combined with PSS yields PMPC, it is not the case that simply combining
PSS and MPC protocols leads to an efficient PMPC protocol due to the following roadblocks:

PSS Communication Complexity: A typical construction for (honest majority) MPC protocols com-
putes arithmetic gates on secret-shared inputs. Since there exist PSS schemes (see Table 1), a naive
attempt to construct a PMPC protocol would be to use a PSS scheme instead of a standard secret
sharing protocol for an honest majority MPC protocol. However, such a construction results in high
communication complexity. A far more efficient PSS scheme is needed that incurs constant (amortized)
communication complexity per secret shared to yield a more efficient PMPC protocol.

Efficient Proactive Share Redistribution: Related to the issue of high communication complexity,
since a mobile adversary can eventually corrupt all parties, if a normal secret sharing scheme is used,
then the adversary would eventually recover all shares of all secrets, compromising the security of the
computation. To mitigate this, PSS schemes such as [HJKY95] and [Sch07] have a renewal procedure
by which sharings of secrets are re-randomized so that old shares “expire.” Additionally, once parties
are rebooted, since they no longer have the state required to participate in the computation, such state
must be jointly reconstructed for them by the rest of the parties. To remedy this, the PSS schemes
in [HJKY95] and [Sch07] incorporate a recovery procedure by which rebooted parties can recover the
required state shares to continue the computation. Since data recovery occurs over the course of the
computation, the repeated communication cost of redistribution contributes significantly to the overall
communication complexity of the PMPC protocol. All of the PSS schemes listed in Table 1 have a
communication complexity for redistribution of at least O(n2) per secret, where n is the number of
parties. The redistribution protocol described in this paper is much more efficient, with an amortized
communication complexity of O(1) per secret.

MPC Pre-computation: A common technique utilized in recent MPC literature [DIK10, DIK+08,
BFO12] to reduce communication complexity is the use of a pre-computation phase to distribute input-
independent information for use throughout the rest of the protocol. A challenge facing constructing
a PMPC protocol is that any pre-processed data generated at the outset of the protocol must be peri-
odically redistributed throughout the computation until it is used. Therefore, “proactivizing” existing
pre-computation techniques naively would greatly increase the communication complexity of the PMPC
protocol. Therefore, a different approach to distribute input-independent shares is required.

Per-Round Corruption Rate: Round complexity in a PMPC protocol must be carefully managed in
order to obtain a maximal per-round corruption rate. More specifically, one must assume some limitation
on how quickly a mobile adversary can corrupt new parties. To make this assumption concrete, one
assumes that there is some threshold fraction of parties the adversary can corrupt per communication
round. In order to asymptotically maximize the per-round corruption rate, one must construct a PMPC

3

protocol with only a constant number of rounds between share redistributions.
Handling Corruption: In the non-proactive case, the total communication complexity in an MPC

protocol due to verifying party corruption is low because the number of corrupted parties over the course
of the protocol is bounded and therefore the communication complexity is independent of the circuit size.
However, in the proactive security model, the number of corrupted parties over the course of the entire
protocol is O(Dn) (where D is the depth of the circuit) and therefore care must be taken in ensuring
that the communication complexity to handle corrupt parties is low.

1.3 Main Ideas Behind Our Protocols

In this paper, we construct the first perfectly UC-secure proactive MPC protocol with near-linear com-
munication complexity using the following new ideas.

Packed Proactive Secret Sharing (PPSS). This paper presents the first “packed” proactive secret
sharing (PPSS) scheme. In particular, we construct the perfectly UC-secure PPSS scheme by extending
techniques presented in [DIK10, FY92] to the proactive security model. The new scheme allows one to
share many secrets with constant (amortized) communication complexity per secret. In order to renew,
i.e., re-randomize, sharings of secrets, the parties generate random masking polynomials. To renew a
polynomial f that stores a block of secrets via the evaluation points (f(β1), . . . , f(βℓ)), parties generate
a random polynomial R which evaluates to zero at β1, . . . , βℓ and set the renewed polynomial to be
f +R. In contrast to previous schemes (such as [HJKY95] and [Sch07]), our protocol amortizes random
polynomial generation by using hyper-invertible matrices to more efficiently construct batches of random
polynomials in a new way.

The process of reconstructing new shares for rebooted parties is a major communication bottleneck
in previous work [Sch07, HJKY95]. Our redistribution protocol combines double sharing with packed
sharing (the first protocol to do so) to achieve an O(1) per-secret amortized communication complexity,
improving upon previous protocols by a factor of n. In order to use these double sharings, it is necessary
to verify that the players shared their shares correctly. This is accomplished using hyper-invertible ma-
trices in a novel way. Previous protocols [BTH08, DIK+08] have used hyper-invertible matrices for error
correction by multiplying a vector of data structures by a hyper-invertible matrix and having each party
check one entry/data structure in the resultant vector for errors. In [DIK+08], the data structures are
packed sharings; in [BTH08], the data structures are pairs of Shamir-sharings that share the same value.
In our protocol, each data structure is a collection of sharings and corresponding double sharings.2 After
multiplication by a hyper-invertible matrix, each player checks one entry in the resultant vector to make
sure that the double sharings contain the correct shares. By using hyper-invertible matrices with these
larger data structures, which is a technique unique to this paper, we are able to check the correctness of
the double sharings without asymptotically increasing the communication complexity of the protocol.

Proactive MPC (PMPC) Techniques. The main approach for our PMPC protocol is to compute
the circuit layer by layer, while proactively redistributing the parties’ secret shares after each layer.
Therefore, if each layer is computed using subprotocols that are secure in the non-proactive setting up to
a threshold t, and our PPSS share redistribution protocol is also secure up to threshold t, then the overall
PMPC protocol is proactively secure up to a threshold t between proactive refreshes. The approach to
construct our PMPC protocol is realized as follows:

During initialization of the protocol, the circuit is transformed so that each layer contains either
only addition gates or only multiplication gates; each gate has two inputs, multiplication gates have one
output, and addition gates have either one or two outputs. This transformation is necessary in order to
do arithmetic with block-shared secrets, and it does not asymptotically increase the size of the circuit
(measured as the number of gates plus the number of wires).

2[BTH08] uses the phrase “double sharing” differently than in this paper.

4

Each party then shares their inputs using the PPSS scheme. The circuit is then evaluated layer by
layer. Before each layer, the secrets are permuted so that they are in the correct order for performing
the arithmetic operations for that layer. For an addition layer, the gates are computed by locally adding
shares. For a multiplication layer, the gates are computed using a standard technique.

After each layer, the parties execute the new redistribution protocol. This re-randomizes the sharings
of the secrets so that old shares are erased and leak no information about current sharings to an adversary
that obtained them. Redistribution also allows parties that have been rebooted to recover the required
shares to continue the computation. This is where our new PPSS scheme is critically utilized.

Once all the layers of the circuit have been evaluated, the parties reconstruct the shares to obtain
their outputs.

The initial PMPC protocol that is constructed has a corruption rate threshold less than (1/3−ϵ)n and
subsequently uses Bracha committees [Bra87] to obtain a protocol with the desired threshold. However,
one must overcome an additional difficulty because using Bracha committees might violate the need to
have a constant number of rounds between share redistributions. More specifically, we construct a new
constant-round multiparty Berlekamp-Welch protocol to satisfy the constant round requirement.

We remark that our techniques can be used to also construct a proactive, statistically UC-secure
MPC scheme with similar communication and computational complexity that tolerates up to (1/2− ϵ)n
corruptions between refreshments. See Appendix E for further discussion.

1.4 Contributions

The main contribution of this paper is a new proactive MPC (PMPC) protocol with communication
complexity on par with the most efficient non-proactive MPC protocol in the literature today [DIK10].
The constructed PMPC protocol greatly improves on the communication complexity of the only other
known PMPC protocol in [OY91]. The newly constructed PMPC protocol has communication complexity
O(C log2(C)polylog(n) +D poly(n) log2(C)) with perfect UC-security in the synchronous model against
an adversary that can corrupt up to (1/3 − ϵ)n parties between refreshments for any constant ϵ > 0.
The PMPC protocol can also be modified to be statistically UC-secure and tolerate up to (1/2 − ϵ)n
corruptions between refreshments with similar communication and computational complexity and as in
the perfectly secure case.

A second contribution of this paper is a “packed” proactive secret sharing (PPSS) scheme that is
instrumental in achieving the low communication complexity in the new PMPC protocol. The PPSS
scheme has an amortized communication complexity of O(1) per shared secret and is perfectly UC-
secure in the synchronous model against an adversary that can corrupt up to (1/3 − ϵ)n parties per
fixed period of time for any constant ϵ > 0. The PPSS protocol can also be modified to be statistically
UC-secure and tolerate up to (1/2 − ϵ)n corruptions between refreshments. We believe that our PPSS
protocol may be of independent interest.

2 Definitions and Preliminaries

This section outlines the main techniques required for constructing the proactive MPC protocol. It also
contains a brief discussion of the proactive security model under the UC framework (for further details,
see Appendix A).

2.1 The Proactive Model under the UC Framework

Security of PMPC is proven in the Universal Composability (UC) framework introduced in [Can01] and
revised in [Can05]. Specifically, the proactive UC model considered in this paper considers parties that
can perform erasures; in the proactive model, parties must be able to erase their states so that when
they are compromised, an adversary only learns their current state and not all their previous ones.

5

Parties communicate synchronously and have access to secure point-to-point channels and a broadcast
channel; how this would be implemented is beyond the scope of this paper.3 Similar to the definition of
proactive UC security in [ADN06], the execution of a proactive protocol, π, proceeds in communication
rounds, denoted by ri,l, and the initial round is round r0,0. A proactive protocol proceeds in phases. A
phase, denoted ph consists of a number of consecutive rounds ri,l, ..., ri+j,l, and every round rj,l belongs
to exactly one phase phl. Each phase of π is either a refreshment or an operation phase. The phases of
π alternate between refreshment and operation phases. Each refreshment phase phl consists of rounds
ri,l, ..., ri+j,l, such that there exists a k, 0 ≤ k < j where rounds ri,l, ..., ri+k,l are denoted the closing
period of refreshment phase phl while ri+k+1,l, ..., ri+j,l denote the opening period of refreshment phase
phl. Finally, a stage st (starting at stage 0) consists of an opening refreshment period, an operation phase
and then a closing refreshment period, therefore including a full (operation) phase and two sequences of
two refreshment stages; each refreshment is the closing of one stage and the opening of the other. An
adversary in the proactive model is limited to corrupting a certain threshold of parties per stage. At the
end of each stage (i.e., at the refreshment phase) corrupted parties are rebooted to a pristine state and
sent the shares to continue the computation. We note that, as in [ADN06], a party corrupted during
the refreshment phase is considered to be corrupted in both stages associated with that phase. We refer
the reader to Section 1 for a discussion of rebooting. Appendix A contains the exact details of the the
proactive UC model as well as definitions of security.

2.2 Preliminaries

Packed Secret Sharing. Our protocol relies on a generalization of Shamir’s polynomial-based secret
sharing scheme [Sha79]. In particular, we start with a variant of the packed secret sharing scheme due
to [FY92] which was utilized in an MPC protocol by [DIK+08, DIK10]. The scheme works as follows:
for n parties and d ∈ N, fix a finite field Zq for q > 2n as well as a generator α ∈ Z∗

q . Set β = α−1; the

field Zq is large enough so that β1, ..., βd, α, ..., αn are distinct for d ≤ n. A vector (x1, ..., xℓ) of secrets
is shared simultaneously as a block by extending the vector to (x1, ..., xℓ, rℓ+1, ..., rd+1) for rℓ+1, .., rd+1

chosen uniformly and independently at random and constructing the unique degree d polynomial p such
that p(βi) = xi for 1 ≤ i ≤ ℓ and p(βj) = rj for ℓ+1 ≤ j ≤ d+1. Each party Pi receives the share p(α

i).
We denote the sharing in this fashion of x = (x1, ..., xℓ) as [x]d, where [x]d is the ordered n-length vector
consisting of the respective shares for each Pi. The reader can verify that c[x]d = [cx]d for any c ∈ Fp,
[x]d + [y]d = [x+ y]d, and [x]d[y]d = [xy]2d, where addition and multiplication here are element-wise. We
refer the reader to [DIK+08, DIK10] for further details.

In what follows, we will require that ℓ is the highest power of 2 not greater than n/4, that the
maximal corruption rate is t = n/8 and4 that is d = t + ℓ − 1. We will rely on the constant-round
protocol RobustShare in [DIK+08] to implement this sharing; it is perfectly UC-secure with the above
parameters. We stress, however, that the techniques above have never been adopted to the proactive
setting before; in particular, one of the main contributions of this paper is to perform a new proactive
packed secret share redistribution with low amortized overhead.

Hyper-Invertible Matrices. Many of the subprotocols that we use require a publicly agreed upon
hyper-invertible matrix [BTH08]. A hyper-invertible matrix is a matrix where any square sub-matrix
formed by removing rows and columns is invertible. It is shown in [BTH08] that one can construct an
a×b hyper-invertible matrix M as follows: Pick a+b distinct field elements θ1, . . . , θa, ϕ1, . . . , ϕb ∈ F, and
let M be the matrix be such that if (y1, . . . , ya)

T = M(x1, . . . , xb)
T ; then the points (θ1, y1), . . . , (θa, ya)

lie on the polynomial of degree ≤ b−1 which evaluates to xj at ϕj for each j = 1, . . . , b. (In other words,
M interpolates the points θ1, . . . , θa on a polynomial given the points ϕ1, . . . , ϕb on that polynomial.)

3This could be implemented using proactive PKI or by using a TPM to perform encryption/decryption.
4Our MPC protocol without additional party virtualization will therefore have a maximal per-stage corruption rate

of t = n/8. Only after using Bracha committee-based [Bra87] techniques will our protocol have a corruption rate of
t = (1/3− ϵ)n for perfect security and t = (1/2− ϵ)n for statistical security.

6

Many of the sub-protocols assume the existence of a publicly known hyper-invertible matrix, and these
may be efficiently constructed during pre-processing.

Polynomial Interpolation. One algorithm relied upon for our proactive share redistribution pro-
tocol is the classic Berlekamp-Welch algorithm [Ber84]. If a party is given points on a polynomial (such
as shares of a block of secrets) and some of the points have been corrupted (such as when corrupted
parties alter their shares), the Berlekamp-Welch algorithm allows correct interpolation of the polynomial
despite the corrupted points.

Recall that the basic outline of the Berlekamp-Welch algorithm is as follows: A party Pk receives a
vector of shares (y1, . . . , yn) where each honest Pi sent yi = p(αi) for the degree d polynomial p that
Pk is trying to interpolate. Denote the set of all i such that yi ̸= p(αi) by I. We define a polynomial
g(x) =

∏
i∈I(x − αi), and define another polynomial h = p · g. Note that the relation h(αi) = yig(αi)

holds for all i = 1, . . . , n. These n relations are used to construct a matrix equation for the coefficients of
h and g which the party solves and computes p by dividing h by g. This matrix equation can be solved
efficiently using Fast Fourier Transform (FFT).

3 PMPC Protocol Details

This section describes the details of our efficient proactively secure MPC protocol. We first give a
more detailed overview of the protocol construction and the techniques and subprotocols required. We
then construct an efficient packed proactive secret sharing (PPSS) scheme. Next, we discuss the circuit
transformations that are required to perform required operations on packed secret shares, with full details
given in Appendix C. Finally, we construct the full protocol secure with per-stage corruption threshold
n/8. In order to obtain a corruption threshold of (1/3−ϵ)n for perfect security or (1/2−ϵ)n for statistical
security, we use a Bracha committee construction; due to lack of space, we discuss the construction in
Appendix E.

3.1 Required Subprotocols

To perform basic operations such as secret sharing, generating random sharings, and multiplying shared
secrets, we use three protocols from [DIK+08] (RobustShare, RanDouSha, and Reco) and three from [DIK10]
(RandomPairs, PermuteWithinBlocks, and Multiply). We refer the reader to those works for protocol spec-
ifications and corresponding ideal functionalities. Each of these protocols is constant-round and is proven
secure in their respective papers, though in the standard, non-proactive model with a corruption threshold
of at least n/8. The sharings used in these protocols are all block sharings as described in Section 2.2.

• RobustShare(d): Allows a set of parties to verifiably share Θ(n) secrets in blocks with polynomials
of degree d.

• RanDouSha(d): Generates random sharings of blocks of secrets r(i) and shares each of them with a
degree d sharing [r(i)]d and a degree 2d sharing [r(i)]2d.

• RandomPairs(L,π,d): For a permutation π, this protocol generates L pairs of random block-sharings
([r(i)]d, [π(r

(i))]d) for 1 ≤ i ≤ L such that the secret stored in location j in the sharing [r(i)]d is
stored in location π(j) in [π(r(i))]d.

• PermuteWithinBlocks: Using random masks ([r]d, [π(r)]d) generated with RandomPairs, this protocol
applies a permutation to a block [x]d of already-shared secrets, resulting in a sharing [π(x)]d.

• Multiply([x]d, [y]d, ([r]d, [r]2d)): Multiplies two blocks of secrets [x]d and [y]d element-wise using the
random pair ([r]d, [r]2d). In the output sharing, the secret in location j is the product of the secret
in location j in [x]d and the secret in location j in [y]d.

• Reco(Pi, d): Reveals an already-shared block of secrets [x]d to a party Pi.

7

3.2 PMPC Protocol Overview

We first provide an overview of how we construct the PMPC protocol. As discussed in Section 3.1, we
rely upon several subprotocols already in the MPC literature.

We first construct our efficient PPSS scheme. We do so using the packed secret sharing subprotocol
RobustShare, which shares packed secrets in the non-proactive model [DIK+08, DIK10]. We construct
the subprotocol Block-Restribute to perform proactive secret redistribution to complete the PPSS scheme.
See Section 3.3 for details.

We stress that each of the subprotocols that we use, including Block-Redistribute, are proven secure
individually in the non-proactive security model. However, by composing them properly, namely by
applying Block-Redistribute after each layer of the computation, we obtain proactive security. This is
because by construction at each stage, the number of corrupted parties is at most the stage corruption
threshold; executing Block-Redistribute ensures that corruptions in one stage cannot be carried over to
break security of another future stage.

During initialization of the PMPC protocol, the circuit is transformed so that all addition and mul-
tiplication gates have only two inputs and either one or two outputs and are arranged in such a way
that each layer consists of only addition gates or multiplication gates. This increases the circuit size by
a constant factor, and increases circuit depth by a log C multiplicative factor.

In the first step of the protocol, parties share their inputs using RobustShare. Over the course of the
protocol, whenever random shares are needed, either by RanDouSha or RandomPairs, they are generated
within a constant number of circuit layers from use; this “dynamic” preprocessing is so that Block-
Redistribute does not have to be executed unnecessarily to maintain these shares, thereby increasing the
asymptotic communication complexity.

Before each layer of the circuit is computed, the secrets are permuted (or re-arranged) to facilitate the
process of computation. This is because the secrets are shared in blocks and they must be rearranged to
compute on them per circuit specification. This rearrangement is performed by decomposing the required
permutation into sub-permutations and then performing each of the sub-permutations in succession; this
adds another log C multiplicative factor to the communication complexity. See Section 3.4 and Appendix
C for details.

After the permutation has been executed, addition gates are evaluated via locally adding shares,
while multiplication gates are evaluated by creating pairs of random sharings using RanDouSha (through
dynamic preprocessing) and then executing Multiply.

After each layer of the circuit is evaluated, where we now include each sub-permutation execution to
constitute a layer, the parties run Block-Redistribute to re-randomize all stored secrets, thereby preserving
proactive privacy of all stored values.

Once a sharing for an output gate has been computed, the parties invoke Reco to reveal it to the
intended recipient. Once all the outputs have been revealed, the protocol is complete.

3.3 Proactive Share Redistribution

The share redistribution protocol Block-Redistribute forms the core of our PPSS scheme, and forms the
redistribution phase of PMPC. It is constructed to redistribute shares for W secrets shared among the
parties P (some of whom may be recently rebooted and do not actually have any shares). The subprotocol
consists of three consecutive phases. First, the parties rerandomize their shares so that secret shares in
the next proactive stage are independently distributed from previous stages. The parties then perform
verifiable double sharing in order to correctly and privately distribute party share information to all
parties without actually revealing the shares. Finally, the parties perform share reconstruction to restore
the current state of the computation to newly rebooted parties who do not have shares to continue the
computation. We will give an overview of each phase in Section 3.3.1 and then specify Block-Redistribute
in Section 3.3.2. The ideal functionality FBR that the protocol is designed to emulate is described in

8

Figure 3 in Appendix B, where the security proof for Block-Redistribute is also given.

3.3.1 Outline of Block-Redistribute

We refer the reader to Section 2 for the notation used in this section. For simplicity, we assume that
the number of secrets, W , to be used as input for Block-Redistribute is a multiple of ℓ2(n − 3t) (e.g.,
W = Bℓ2(n − 3t) for some B), where secrets are shared5 in blocks of size ℓ. We can then arrange the
polynomials Ĥ corresponding to these shares as{

Ĥ(k,m)
a

}m = 1, . . . , B
k = 1, . . . , n− 3t
a = 1, . . . , ℓ

, (1)

where W = Bℓ2(n − 3t). We think of B as the number of groupings of secret shares, and operations
will be performed on each group in parallel throughout the protocol. We first provide some intuition
for this arrangement of polynomials as well as for the parameters a, k, and m, before further outlining
Block-Redistribute.

We will require a particular structure of secrets in order to perform share reconstruction in an efficient
fashion. The idea is that we want to be able to allow rebooted parties to reconstruct their shares in such
a way that corrupt parties cannot learn any information about honest parties’ shares. We accomplish
this by having parties distribute shares of their shares. The parameter a is bounded by ℓ because every ℓ
shares (each corresponding to ℓ secrets) will form the basis for a single polynomial for the double sharing.
One can perform computations on these double sharings using Lagrange coefficients to perform share
reconstruction for the rebooted parties.

In order to verify that these double sharings are correct, the parties arrange their shares and double
shares in B vectors of length n− 3t, with an additional t elements chosen at random to further mask the
inputs; this is why k is bounded by n− 3t. A hyper-invertible matrix M will be applied to each of these
B vectors to obtain B vectors of length n, corresponding to the n parties. Each party Pi will check the
double sharings by each checking the ith entry of the B output vectors; in this fashion, we completely
distribute double sharing verification. Because M is hyper-invertible, the outputs that each party checks
will be immune from corrupt parties trying to skew the verification. We now explain the three phases of
Block-Redistribute in more detail.

Share Rerandomization. This component comprises the closing period of the redistribution phase

(see Section 2.1). We mask the shares by constructing ℓ(n− 3t)B polynomials Q
(k,m)
a that correspond to

0ℓ, [0]d, using a slight variant of RanDouSha and then computing H
(k,m)
a ← Ĥ

(k,m)
a +Q

(k,m)
a . All parties

then erase all their shares for Ĥ
(k,m)
a and Q

(k,m)
a . By the additive property of our secret sharing scheme,

the new shares correspond to the same secrets but are now distributed uniformly at random from all
past shares.

Verifiable Double Sharing. This component together with Share Reconstruction below comprises
the opening period of the redistribution phase. LetM be a (publicly agreed upon) hyper-invertible matrix
with n rows and n− 2t columns. As was noted in [DN07], if y = Mx, then we can also use Berlekamp-
Welch to “interpolate” x from y if no more than t coordinates of y are in error (via adversarial corruption
in this context).

The first step is to construct random padding in the form of additional polynomials{
H

(k,m)
a

}m = 1, . . . , B
k = n− 3t+ 1, . . . , n− 2t
a = 1, . . . , ℓ

using RanDouSha. Now all parties hold shares for the set of polynomials{
H

(k,m)
a

}m = 1, . . . , B
k = 1, . . . , n− 2t
a = 1, . . . , ℓ

. Each party Pi then shares all of his shares; that is, each Pi constructs polyno-

mials U (i,k,m) for 1 ≤ k ≤ n − 2t, 1 ≤ m ≤ B such that U (i,k,m)(βa) = H
(k,m)
a (αi). Note that for each i

5If W is not a multiple of ℓ2(n − 3t), we can generate random sharings of blocks to make it so; using RanDouSha, this
can be done with poly(n) communication complexity, and since it adds only a poly(n) amount of data to W , this does not
asymptotically affect the overall communication complexity of redistributing W secrets.

9

and m, the last t polynomials of the U (i,k,m) correspond with the t random padding polynomials. Each
Pi then secret shares the U (i,k,m) with P. Therefore, every party has their own share of every U (j,k,m).

Next, for each m, each party uses their local shares of the group of polynomials Hk,m
a and U (i,k,m)

(each of length n − 2t) to construct shares for new polynomials H̃
(k̃,m)
a and Ũ (i,k̃,m) for k̃ = 1, . . . , n by

applying M to each group, respectively (see step 2.3 below). Each Pi then sends their share for H̃
(k̃,m)
a

and Ũ (i,k̃,m) to P
k̃
, who can interpolate the polynomials via Berlekamp-Welch.

The new polynomials H̃ and Ũ perfectly hide the values of H and U used to construct them because
of the t random padding inputs used to construct each polynomial via M ; in other words, there is a degree
of freedom in the random padding for each potential corruption that can occur. Further, since at most t

shares of the H̃
(k̃,m)
a and Ũ (i,k̃,m) can be corrupted, by the error correction properties of hyper-invertible

M , P
k̃
is able to reconstruct H̃

(k̃,m)
a and Ũ (i,k̃,m).

Therefore, P
k̃
can verify that Ũ (i,k̃,m)(βa) = H̃

(k̃,m)
a (αi); if not, P

k̃
broadcasts an accusation of Pi

and both parties are viewed as corrupted. While this strategy lowers the corruption threshold from n/4
to n/8, it is an efficient way to handle dispute resolution, and increasing the threshold later can be
accomplished using Bracha committees (see Appendix E).

Share Reconstruction. Now that each party has verified double shares of all the other parties’
shares, share reconstruction for a newly rebooted6 party Pj can be accomplished by applying the appropri-
ate Lagrange coefficients λj,i to the double sharings U (i,k,m) and then having Pj apply Berlekamp-Welch
to interpolate her own share. This is because, for indices z1, ..., zn−2t of parties with correct double

shares, λj,1U
(z1,k,m)(βa) + · · ·+ λj,n−2tU

(zn−2t,k,m)(βa) = λj,1H
(k,m)
a (αz1) + · · ·+ λj,n−2tH

(k,m)
a (αzn−2t) =

H
(k,m)
a (αj).

3.3.2 Specification of Block-Redistribute

Our protocol requires a slightly altered version of RanDouSha for the first step. In [DIK+08], RanDouSha
calls on a subprotocol SemiRobustShare, and in that protocol, step 2(a) (see page 6 in [DIK+08]) is altered
so that the parties check that the polynomials evaluate to zero at βj for j = 1, . . . , ℓ, and an accusation
is broadcast if they do not. Security for this slightly modified protocol easily follows.

Block-Redistribute
({

Ĥ
(k,m)
a

}
m = 1, . . . , B
k = 1, . . . , n− 3t
a = 1, . . . , ℓ

)
We assume that the secrets have been stored in blocks of size ℓ (as described in Section 2) using polynomials

Ĥ
(k,m)
a .

1. Share Rerandomization

1.1 The parties in P invoke RanDouSha to generate polynomials Q
(k,m)
a for 1 ≤ a ≤ l, 1 ≤ k ≤ n− 3t

and 1 ≤ m ≤ B, satisfying Q
(k,m)
a (βj) = 0 for j = 1, . . . , ℓ.

1.2 The parties locally compute H
(k,m)
a ← Ĥ

(k,m)
a +Q

(k,m)
a .

1.3 All parties erase their shares of each Ĥ
(k,m)
a and Q

(k,m)
a .

2. Verifiable Double Sharing

2.1 The parties use RanDouSha to generate polynomials H
(k,m)
a for 1 ≤ a ≤ l, 1 ≤ m ≤ B and

k = n− 3t+ 1, . . . , n− 2t.

2.2 Each Pi selects polynomials U (i,1,m), . . . , U (i,(n−2t),m) of degree ≤ d such that U (i,k,m)(βa) =

H
(k,m)
a (αi) for a = 1, . . . , ℓ, k = 1, . . . , n− 2t, and m = 1, . . . , B and shares them via RobustShare.

6Asymptotically, there is no cost to executing share redistribution for all, rather than rebooted, parties.

10

2.3 Define H̃
(k̃,m)
a and Ũ (i,k̃,m) for k̃ = 1, . . . , n by(

H̃(1,m)
a , . . . , H̃(n,m)

a

)T

= M
(
H(1,m)

a , . . . ,H(n−2t,m)
a

)T

and (
Ũ (i,1,m), . . . , Ũ (i,n,m)

)T

= M
(
U (i,1,m), . . . , U (i,n−2t,m)

)T

.

Each party in P locally computes their shares of these polynomials.

2.4 Each party in P sends all their shares of H̃
(k̃,m)
a and Ũ (i,k̃,m) to party Pk̃ for each a, i, and m.

2.5 Each Pk̃ uses Berlekamp-Welch on the shares of each Ũ (i,k̃,m) to interpolate Ũ (i,k̃,m)(βa) for each
a = 1, . . . , ℓ.

2.6 Each Pk̃ uses Berlekamp-Welch on the shares of each H̃
(k̃,m)
a to interpolate H̃(k̃,m)(αi) for each

i = 1, . . . , n.

2.7 Each Pk̃ checks if Ũ (i,k̃,m)(βa) = H̃
(k̃,m)
a (αi) for each a = 1, . . . , ℓ. If not for some Ũ (i,k̃,m), then

Pk̃ broadcasts (Pk̃, J’accuse, Pi). All parties add Pi and Pk̃ to Corr. (After a party is added to
set of nodes marked as corrupted, Corr, any further accusations from that party are ignored.)

2.8 Each party erases all their shares of each H̃
(k̃,m)
a and Ũ (i,k̃,m) for k̃ = 1, . . . , n and H

(k,m)
a and

U (i,k,m) for k = n− 3t+ 1, . . . , n− 2t.

3. Share Redistribution

3.1 Pj : Define G to be the set of the first n − 2t parties in P − Corr. Let {z1, . . . , zn−2t} denote
the set of indices of parties in G. Let λj,i denote the Lagrange coefficients for interpolating Pj ’s
share of a secret from the shares of parties in G (i.e. for a polynomial f of degree ≤ d, f(αj) =
λj,1f(α

z1) + · · ·+ λj,n−2tf(α
zn−2t).)

3.2 For each k = 1, . . . , n − 3t, each m = 1, . . . , B, and each j = 1, . . . , n, each party in G sends his
share of λj,1U

(z1,k,m) + · · ·+ λj,n−2tU
(zn−2t,k,m) to Pj .

3.3 Each Pj uses Berlekamp-Welch to interpolate the polynomials received in the previous step to

obtain all H
(k,m)
a (αj).

3.4 Each party erases all their shares of each U (i,k,m) (retaining the shares of H
(k,m)
a).

The protocol Block-Redistribute has communication complexity O(W +poly(n)) for redistributing W
secrets.

Theorem 1 Assuming perfectly secure point-to-point channels and a secure broadcast channel, protocol
Block-Redistribute perfectly UC-realizes FBR in the synchronous, adaptive corruption model with corrup-
tion threshold n/8.

We note that this theorem is in the standard, rather than proactive, security model. For the proof of
Theorem 1, see Appendix B.

3.4 Circuit Transformation and Share Permutation

Since the circuit computes on individual values but secrets are shared in blocks, care must be taken to
actually implement the circuit on secret-shared blocks of data because addition and multiplication of
blocks occurs element-wise according to position within the blocks, which therefore must be rearranged
to perform arbitrary addition and multiplication of the shares per the circuit instructions. To remedy
this, we first transform the circuit itself in the same manner as Appendices A.5 and A.6 of the full version
of [DIK10]. Again, this increases the circuit size by a constant factor, and increases circuit depth by a log C
multiplicative factor. Then, at each layer of computation of the circuit we will perform a permutation

11

on all the secrets to make sure that the secrets are arranged in the correct order for whatever arithmetic
operations that layer requires.

In order to perform the permutations, we use Beneš networks [Ben64], also known as Waksman
networks [Wak68]. These networks were used in the context of multiparty computation in [DIK10], and
also in the context of fully homomorphic encryption in [GHS12]. Let the layer of the circuit have width
w, where each gate has fan-in 2. The main idea is that an arbitrary permutation on the O(w/ℓ) blocks of
secrets needed to compute the layer can be performed using O(log(w)) constant-round subprotocols that
execute the decomposition of the permutation into O(log(w)) sub-permutations. We denote this protocol
PermuteLayer, which has as inputs the permutation π as well as all the secret shares of each of the parties.
We defer the construction of PermuteLayer to the Appendix due to lack of space; see Appendix C.

3.5 The Full PMPC Protocol

Figure 1 outlines the protocol that uses all the sub-protocols described above to securely compute the
circuit. We note that step 4.1 below is abbreviated; in the full implementation, we invoke RanDouSha to
pad to a multiple of ℓ2(n− 3t) sharings.

PMPC:
1. The circuit is transformed so that each layer of computation contains only one type of gate (addition or

multiplication) and each gate has fan-in 2 and fan-out 1 or 2.

2. Each party shares their inputs using RobustShare.

3. Execute Block-Redistribute to redistribute all the currently stored secrets.

4. For each layer of the circuit, the following steps are performed.

4.1 Suppose we have W input secrets for this layer where W is a multiple of ℓ2(n−3t). Let σ denote the
permutation to be performed on the first W secrets before the computation for this layer. Execute
PermuteLayer using σ on the W secrets.

4.2 If this is an addition layer, then compute the additions locally. If this is a multiplication layer, then
the parties invoke RanDouSha to generate random sharings, and then use these random sharings
to invoke Multiply for each block to multiply.

4.3 All secrets no longer needed for the rest of the computation are erased.

4.4 Invoke Block-Redistribute to redistribute all W secrets.

5. For the output layer, invoke Reco to reconstruct all the outputs toward the intended recipients.

Figure 1: PMPC Protocol Outline

To analyze the communication complexity of PMPC, note that the communication complexity of
performing multiplications on a layer, performing additions on a layer, permuting a layer, and redis-
tributing a layer are all the same, namely O(W + poly(n)) if the circuit width is W . In the worst case,
W = C, so it is O(C + poly(n)). The number of layers is initially D, the depth of the circuit. After
the circuit is transformed so that no gate has fan-in or fan-out more than 2, the depth is D log(C).
Furthermore, if there are C secrets to permute at each layer, than this would take log(C) permuta-
tions. So if we think of the operation of permutation as a layer in the circuit, the final depth of the
circuit would be D log2(C). Thus the communication complexity is O((C + poly(n)) · D log2(C)), or
O(DC log2(C) + Dpoly(n) log2(C)). The same reasoning shows that the computational complexity is
O(DC log2(C)polylog(n) +Dpoly(n) log2(C)).

For circuits that are “layered” in such a way that each output from a gate is used in the next
layer and no other layers, we no longer assume that W = C; instead, we denote the widths of layers 1
through D′ := D log2(C) by W1, . . . ,WD′ , and we have C =

∑D′

i=1Wi. The communication complexity

12

is therefore
∑D′

i=1Wi + poly(n) = O(C log2C + Dpoly(n) log2C) with a computational complexity of
O(C log2Cpolylog(n) +Dpoly(n) log2C).

In terms of broadcast complexity, our protocol uses O(1) broadcasts per dispute. Since the number
of disputes that can arise between secret redistributions is at most t, the total number of broadcasts is
O(Dn).

Theorem 2 For n parties and an arithmetic circuit C that is at least Ω(n) gates wide, the protocol PMPC
realizes FC with perfect security in the proactive UC model against an active and adaptive adversary
corrupting up to t < n/8 parties per stage.

Using the party virtualization techniques of [Bra87] (see Appendix E), we can increase the corrup-
tion threshold as to t < (1/3 − ϵ)n. We denote PMPC-pv as the protocol that executes PMPC using
the techniques in Appendix E. The communication complexity of PMPC-pv is O(C log2Cpolylogn +
Dpoly(n) log2C), which is sum of the communication complexity and the computation complexity of
PMPC. However, the communication complexity of Block-Redistribute is not affected by player virtual-
ization.

Theorem 3 For any 0 < δ < 1/3, for n parties and an arithmetic circuit C that is at least Ω(n) gates
wide, the protocol PMPC-pv realizes FC with perfect security in the proactive UC model against an active
and adaptive adversary corrupting up to t < δn parties per stage.

Theorem 3 can also be extended so that, with statistical security, 0 < δ < 1/2; see Appendix E for
further details.

Acknowledgements

We would like to thank Ivan Damg̊ard, Yuval Ishai and Jonathan Katz for helpful discussions about this
work.

References

[ADN06] Jesús F. Almansa, Ivan Damg̊ard, and Jesper Buus Nielsen. Simplified threshold rsa with
adaptive and proactive security. In Proceedings of the 24th annual international conference
on The Theory and Applications of Cryptographic Techniques, EUROCRYPT’06, pages
593–611, Berlin, Heidelberg, 2006. Springer-Verlag.

[AHU74] Alfred V. Aho, John E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[Ben64] Václav E. Beneš. Optimal rearrangeable multistage connecting networks. The Bell System
Technical Journal, 43(4):1641–1656, July, 1964.

[Ber84] Elwyn R. Berlekamp. Algebraic Coding Theory. Aegean Park Press, 1984.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In CRYPTO, pages 663–680, 2012.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages
1–10, 1988.

13

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In Proceedings of the 6th International
Workshop on Theory and Practice in Public Key Cryptography: Public Key Cryptography,
PKC ’03, pages 31–46, London, UK, UK, 2003. Springer-Verlag.

[Bra87] Gabriel Bracha. An o(log n) expected rounds randomized byzantine generals protocol. J.
ACM, 34(4):910–920, 1987.

[BTH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure mpc with linear communi-
cation complexity. In TCC, pages 213–230, 2008.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145, 2001.

[Can05] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2005.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure
protocols. In Proceedings of the twentieth annual ACM symposium on Theory of computing,
STOC ’88, pages 11–19, New York, NY, USA, 1988. ACM.

[CGJ+99] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Adap-
tive security for threshold cryptosystems. In Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’99, pages 98–115, London,
UK, UK, 1999. Springer-Verlag.

[CKLS02] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous
verifiable secret sharing and proactive cryptosystems. In ACM Conference on Computer
and Communications Security, pages 88–97, 2002.

[DIK+08] Ivan Damg̊ard, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam Smith.
Scalable multiparty computation with nearly optimal work and resilience. In CRYPTO,
pages 241–261, 2008.

[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation
and the computational overhead of cryptography. In EUROCRYPT, pages 445–465, 2010.

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty
computation. In CRYPTO, pages 572–590, 2007.

[FGMY97a] Y. Frankel, P. Gemmell, P. D. MacKenzie, and Moti Yung. Optimal-resilience proactive
public-key cryptosystems. In Proceedings of the 38th Annual Symposium on Foundations of
Computer Science, FOCS ’97, pages 384–, Washington, DC, USA, 1997. IEEE Computer
Society.

[FGMY97b] Yair Frankel, Peter Gemmell, Philip D. MacKenzie, and Moti Yung. Proactive rsa. In Pro-
ceedings of the 17th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’97, pages 440–454, London, UK, UK, 1997. Springer-Verlag.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive
consistency. Inf. Process. Lett., 14(4):183–186, 1982.

[FMY01] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Adaptive security for the additive-
sharing based proactive rsa. In Proceedings of the 4th International Workshop on Practice
and Theory in Public Key Cryptography: Public Key Cryptography, PKC ’01, pages 240–263,
London, UK, UK, 2001. Springer-Verlag.

14

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation
(extended abstract). In STOC, pages 699–710, 1992.

[Gao02] Shuhong Gao. A new algorithm for decoding reed-solomon codes. In Communications,
Information and Network Security, V.Bhargava, H.V.Poor, V.Tarokh, and S.Yoon, pages
55–68. Kluwer, 2002.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog
overhead. In EUROCRYPT, pages 465–482, 2012.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pages
218–229, New York, NY, USA, 1987. ACM.

[HJKY95] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret sharing
or: How to cope with perpetual leakage. In CRYPTO, pages 339–352, 1995.

[HMQ05] Dennis Hofheinz and Jorn Muller-Quade. A synchronous model for multi-party computation
and the incompleteness of oblivious transfer. Cryptology ePrint Archive, Report 2004/016,
2005.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with con-
stant computational overhead. In STOC, pages 433–442, 2008.

[JO08] Stanislaw Jarecki and Josh Olsen. Financial cryptography and data security. chapter Proac-
tive RSA with Non-interactive Signing, pages 215–230. Springer-Verlag, Berlin, Heidelberg,
2008.

[JS05] Stanislaw Jarecki and Nitesh Saxena. Further simplifications in proactive rsa signatures.
In Proceedings of the Second international conference on Theory of Cryptography, TCC’05,
pages 510–528, Berlin, Heidelberg, 2005. Springer-Verlag.

[KMTZ13] Jonathan Katz, Ueli Maurer, Bjoern Tackmann, and Vassilis Zikas. Universally composable
synchronous computation. In TCC, 2013.

[Lei92] Frank Thomson Leighton. Introduction to parallel algorithms and architectures: arrays,
trees, hypercubes. Morgan Kaufmann, 1992.

[Nie03] Jesper Buus Nielsen. On protocol security in the cryptographic model. PhD Thesis. Uni-
versity of Aarhus., 2003.

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended ab-
stract). In PODC, pages 51–59, 1991.

[Rab98] Tal Rabin. A simplified approach to threshold and proactive rsa. In Proceedings of the
18th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO
’98, pages 89–104, London, UK, UK, 1998. Springer-Verlag.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
STOC ’89, pages 73–85, New York, NY, USA, 1989. ACM.

[Sch07] David Schultz. Mobile Proactive Secret Sharing. PhD thesis, Massachusetts Institute of
Technology, 2007.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

15

[Wak68] Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, 1968.

[WWW02] Theodore M. Wong, Chenxi Wang, and Jeannette M. Wing. Verifiable secret redistribution
for archive system. In IEEE Security in Storage Workshop, pages 94–106, 2002.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, FOCS ’82, pages 160–164, Washington,
DC, USA, 1982. IEEE Computer Society.

[ZSvR05] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. Apss: proactive secret sharing
in asynchronous systems. ACM Trans. Inf. Syst. Secur., 8(3):259–286, 2005.

A The Proactive Security Model

Security of the developed protocols is proven using the Universal Composability (UC) framework intro-
duced in [Can01] and revised in [Can05]. There are two major challenges that face casting the proactive
security model considered in this paper into the UC framework. First, this paper considers a synchronous
communication model, while communication in the original UC framework is inherently asynchronous.
Second, the proactive security model requires parties to be able to securely erase their memory; such
erasure capability guarantees that once parties are compromised only their current state is revealed to
the adversary.

Synchronous UC: The latest revision of the UC framework in [Can05] describes an ideal functionality
(FSY N) that models synchronous communication. The authors in [Nie03, HMQ05] also propose mod-
ifications to the UC framework that allow it to model synchronous communication. The most recent
proposal to model synchronous communication in the UC framework is that of [KMTZ13], where two
new ideal functionalities are proposed (one capturing a bounded delay channel, FBD, and one capturing
loose synchronization, FCLOCK). [KMTZ13] demonstrates that these two ideal functionalities are enough
to capture synchronous communication and also model previous attempts in [Can05] and [Nie03]. For
concreteness, this paper uses the synchronous UC model using FBD and FCLOCK from [KMTZ13].

UC with Erasures: The latest revision of the UC framework allows modeling of erasures, i.e., allowing
parties to only leak current internal states when corrupted by an adversary. Capturing erasures is essential
to model proactive security as parties are periodically rebooted. As shown in [Can05] composability still
holds when allowing erasures in the UC framework.

A.1 UC Computation Model

All entities (parties, ideal functionalities, adversary, and environment) in the considered UC framework
are interactive Turing machines (ITM). A protocol π executed between n parties in the F ′-hybrid model
consists of a set of n ITMs. The identities of the n ITMs, i.e., P1, ..., Pn, are unique. In addition, the
parties have access to an ideal functionality F ′. Note that, in general, the ideal functionality F ′ =
(F ′

1,F ′
2, ...,F ′

m), 1 < m, may consist of several ideal functionalities. The protocol in this paper uses
the following ideal functionalities: F ′

SMT for secure message transmission (from [Can05]), F ′
auth for

authenticated broadcast (from [Can05]), F ′
BD and F ′

CLOCK to capture bounded delay channels and loosely
synchronized parties which are required to model synchronous communication (both from [KMTZ13]).

A.2 Real-World Execution of a Proactive Protocol

A protocol in the UC framework runs while interacting with an adversary, an ITM denoted by A, and
an environment, another ITM denoted by Z. The execution is initiated by Z, which provides inputs
to and obtains outputs from parties involved in the protocol and also communicates with A. A has
access to the ideal functionalities in the hybrid model and also functions as a network between machines

16

of different parties. During execution, the ITMs are activated sequentially where the exact order of
activation depends on the considered model.

Similar to previous definitions of proactive protocols [ADN06], the execution of a proactive protocol,
π, proceeds in communication rounds, denoted by ri,l, and the initial round is round r0,0. A proactive
protocol proceeds in phases. A phase, denoted ph consists of a number of consecutive rounds ri,l, ..., ri+j,l,
and every round rj,l belongs to exactly one phase phl. Each phase of π is either a refreshment or an
operation phase. The phases of π alternate between refreshment and operation phases. Each refreshment
phase phl consists of rounds ri,l, ..., ri+j,l, such that there exists a k, 0 ≤ k < j where rounds ri,l, ..., ri+k,l

are denoted the closing period of refreshment phase phl while ri+k+1,l, ..., ri+j,l denote the opening period
of refreshment phase phl. Finally, a stage st (starting at stage 0) consists of an opening refreshment
period, an operation phase and then a closing refreshment period, therefore including a full (operation)
phase and two sequences of two refreshment stages; each refreshment is the closing of one stage and the
opening of the other.

Stages are executed consecutively, and the number of stages is equal to the number of operation
phases, which corresponds to the depth of a circuit. One exception to the alternating configuration of
refreshment and operational stages is that the first stage starts with an operation phase, and the last stage
ends with an operation phase. The intuition is that during the operation phases, the protocol computes
the functionality (layers of the arithmetic circuit) that it was designed for, whereas refreshment phases
are used to rerandomize the data.

The environment Z decides when a new stage sti begins by sending a special command refreshi to
each party. Refreshment ends when all honest parties have output a special symbol ζi indicating end of
stage sti. Further, A may corrupt parties adaptively throughout the protocol, subject to the limitation
that no more than t parties can be simultaneously corrupted during any stage. In particular, this means
that if a party is corrupt during a refreshment phase (either opening or closing period), she is considered
to be corrupt in both of the two stages to which the phase belongs. After corruption, A acts on behalf of
the corrupted party. Corruption may be either passive (where the adversary only learns a party’s current
state) or active (where adversary may arbitrarily control behavior of a party).

If party Pi is corrupted during an operation phase of stage stj , A is given the view of Pi starting
from her state at the beginning of the current stage. This models the assumption that all randomness
and data used in the previous refreshment phase is erased except for the information that the protocol
specifies should be used afterwards.

If the corruption of Pi is made during a refreshment phase which belongs to stages stj and stj+1, A
receives the view of Pi starting from her state at the beginning of stage stj , and Pi is assumed to be
corrupt for stage stj+1.

If Pi is corrupt during the closing period of a refreshment phase in stage stj , A may decide to leave
her, which may allow A to corrupt new parties, subject to the bound on t corruptions per stage. In this
case, we say Pi is decorrupted. The intuition for this is that so long is a party is not corrupted by the
opening period of a refreshment stage, she can then receive a new version of her shares and participate
in subsequent stages.

A decorrupted party immediately starts taking part in the protocol as an honest party. In the passive
corruption case, she starts from the correct state specified by the protocol at this point. In the active
corruption case, she starts from a default state after round r. This state is application-dependent in
general.

A.3 Ideal World Model for PMPC

In Figure A.3, we specify the ideal functionality FPMPC , for PMPC. In the specification, we use the
following notation:

• Z: Environment

17

• A: Adversary

• FPMPC : Ideal functionality

• n: The number of parties in the protocol

• t: Threshold for corruption. Note that the adversary may corrupt no more than t parties at any
stage.

• H ⊆ [n]: Set of Honest Parties

• R ⊂ [n]: Set of Corrupted Parties

• Pi: Party with index i, where for honest parties i ∈ H and for corrupted parties i ∈ R

• z: Auxiliary input to the adversary

• f : The function to be computed by FPMPC on n inputs

We note that the ideal world specification for FPMPC is very similar to the ideal world specification
for honest-majority MPC except that it allows for decorruption and recorruption up to the specified
threshold.

A.4 UC Security

Security is defined by comparing protocol π’s real world execution with that of the ideal world execution.
In the ideal world an ideal functionality F is used to specify the desired input and output behavior of
π. F also specifies the information allowed to be leaked from π to A and Z. Informally, security is
demonstrated by showing that whatever A can achieve by attacking π in the real world, can also be
achieved by an ITM acting as a simulator, S, interacting with F in the ideal world. The goal of the S is
to simulate A’s view of π, based only on the information F exchanges with A. π is considered secure in
the F ′-hybrid model if no Z can distinguish interactions with π from those with F and S. More formally:
Z at the end of an execution of π outputs a bit guessing whether it had interacted with A and π (real
world) or F and S (ideal world).

View in the Real World: When Z interacts with A and π in the F ′-hybrid model, on security
parameter k, auxiliary input z to Z, and when the random coins of all machines are uniformly chosen,
the content of the output tape of Z is a random variable denoted HYBF ′

π,Z,A(k, z). HYB
F ′
π,Z,A denotes the

ensemble {HYBF ′
π,Z,A(k, z)}k∈N,z∈{0,1}∗ .

View in the Ideal World: When Z interacts with S and F in the ideal world model, on security
parameter k, auxiliary input z to Z, and when the random coins of all machines are uniformly chosen,
the content of the output tape of Z is a random variable denoted IDEALF ,S,Z(k, z). IDEALF ,S,Z denotes
the ensemble {IDEALF ,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Definition 4 (UC Security) A protocol π proactively t-realizes a functionality F in the F ′-hybrid
model if for all adversaries A corrupting at most t parties per stage there exists a simulator S such that for

every environment Z the IDEALF ,S,Z and HYBF ′
π,Z,A ensembles are indistinguishable, i.e., IDEALF ,S,Z

c
≈

HYBF ′
π,Z,A.

B Security of Block-Redistribute (Proof of Theorem 1)

We present a proof of Theorem 1 by carefully specifying a simulator S for Block-Redistribute and demon-
strating how the views of the adversary in the real and ideal worlds are independently distributed. First,
recall the theorem; then we specify the ideal functionality before giving the full proof.

18

1. Input Phase:

(a) The environment Z invokes the adversary, A, with auxiliary input z.

(b) Z invokes each of the n parties Pi with input xi, such that (without loss of generality) |xi| = |xj |
for i, j ∈ {1, . . . , n}.

(c) Each Pi sends xi to FPMPC .

2. Initial Corruption Phase:

(a) A sends (corr?, Pi) to Z
(b) Z sends either yes or no; Z never sends yes when |R| ≥ t. If Z sends no to A, proceed to step 2f.

If Z sends yes, Z updates R to include Pi.

(c) A sends (corr, Pi) to FPMPC .

(d) FPMPC sends xi to A and adds Pi to R.
(e) A sends (input, Pi, x

′
i) to FPMPC .

(f) A either returns to step 2a or sends proceed to FPMPC and proceeds to step 3a.

3. Computation Phase:

(a) FPMPC computes f on inputs either xi if Pi ∈ H or x′
i if Pi ∈ R. Denote this input vector x⃗.

4. Decorruption Phase:

(a) A sends (decorr, Pi) to Z for any Pi ∈ R, in parallel; Z removes the Pi from R.
(b) A sends (decorr, Pi) to FPMPC for the same Pi as in the above step; FPMPC removes the Pi from
R.

5. Output Corruption Phase:

(a) A sends (corr?, Pi) to Z.
(b) Z sends either yes or no; Z never sends yes when |R| ≥ t. If Z sends no to A proceed to step

5e.

(c) If Z sends yes, A sends (corr, Pi) to FPMPC and updates R to include Pi.

(d) FPMPC sends fi(x⃗) to A and add Pi to R.
(e) A either returns to step 5a or sends proceed to FPMPC and proceeds to step 6a.

6. Output Phase:

(a) For every Pj ∈ H, FPMPC sends fj(x⃗) to Pj .

Figure 2: The FPMPC functionality

Theorem 5 Assuming perfectly secure point to point channels and a secure broadcast channel, protocol
Block-Redistribute perfectly UC-realizes FBR in the synchronous, adaptive corruption model with corrup-
tion threshold n/8.

We now describe the simulator S for Block-Redistribute. We use lowercase lettered polynomials to
denote the simulated version of real-world execution polynomials, which are denoted by the corresponding
uppercase letter.

Correctness. Correctness of share rerandomization follows from the correctness of RanDouSha and
by construction. Correctness of verifiable double sharing follows from the construction of the U (i,k,m)

polynomials as well as the error correction properties of the hyper-invertible matrix M . Correctness of

19

Let R be the set of corrupted parties, initially ∅. FBR receives t, d, and n as input (via the parties, who
received from Z).
1. Z instantiates each party with their shares of each of m polynomials Ĥ1, . . . , Ĥm. Z instantiates A with

auxiliary input z.

2. All parties send their shares to FBR. If parties sent different numbers of shares, then FBR outputs abort
and aborts.

3. Input Corruption Phase

3.1 A sends (corr?, Pi) to Z
3.2 Z sends either yes or no; Z never sends yes when |R| ≥ t. If Z sends no to A, proceed to step

3.6. If Z sends yes, Z updates R to include Pi.

3.3 A sends (corr, Pi) to FPMPC .

3.4 FBR sends Pi’s shares of Ĥ1, . . . , Ĥm to A and adds Pi to R.
3.5 A provides new inputs for Pi to FBR.

3.6 A either returns to step 3.1 or sends proceed to FPMPC and proceeds to step 4.

4. FBR interpolates the secrets Ĥk(β
j) for j = 1, . . . , ℓ and k = 1, . . . ,m from the received shares.

5. FBR sends m and (Request Shares) to the adversary.

6. The adversary sends shares Hk(α
i) for k = 1, . . . ,m and Pi ∈ R to FBR.

7. For each k = 1, . . . ,m, FBR chooses a polynomial Hk of degree ≤ d that corresponds to the shares
broadcast in the previous step and satisfies Hk(β

j) = Ĥk(β
j) for j = 1, . . . , ℓ. FBR selects the points

Hk(β
ℓ+j) uniformly and independently at randomly for j = 1, . . . , t− |R|.

8. Output Corruption Phase

8.1 A sends (corr?, Pi) to Z
8.2 Z sends either yes or no; Z never sends yes when |R| ≥ t. If Z sends no to A, proceed to step

8.6. If Z sends yes, Z updates R to include Pi.

8.3 A sends (corr, Pi) to FBR.

8.4 FBR sends Hk(α
i) to A for each k = 1, . . . ,m and adds Pi to R.

8.5 A provides new inputs for Pi to FBR.

8.6 A either returns to step 8.1 or sends proceed to FBR and proceeds to step 9.

9. FBR sends Hk(α
i) to each Pi for each k = 1, . . . ,m.

Figure 3: The FBR functionality.

share redistribution follows from Lagrange interpolation of polynomials and the correct construction of
the U (i,k,mz) polynomials.

Security. We prove security for the corresponding protocol Block-Redistribute constructed in the
(Fdouble,FRobustShare)-hybrid model, with each call to RanDouSha replaced by a call to Fdouble

7 and each
call to RobustShare replaced by a call to FRobustShare. The simulator S is therefore designed to emulate
the adversary A interacting with these functionalities.

It is worth noting that RanDouSha as described in [DIK+08] generates pairs of sharings of random
blocks of data, one with degree d and one with degree 2d. In Block-Redistribute, we only use the degree
d sharings, ignoring the 2d sharings.

While we use Corr to denote the set of parties that are known (by all parties in the real-world
execution) to be corrupt, we use Evil to denote the set of parties that are actually corrupt.

Finally, without loss of generality, whenever the (internally executed) adversary asks S to corrupt a
party, S always forwards the message to Z and forwards Z’s response back to A, who then acts according

7Fdouble is the ideal functionality defined in [DIK10] for the protocol RanDouSha defined in [DIK+08].

20

to Z’s message (through S).

The Simulator S

1. Share Rerandomization

1.1 The simulator internally executes the adversary A with a uniformly randomly chosen auxiliary
input z.

1.2 The simulator generates uniformly random polynomials ĥ
(k,m)
a of degree ≤ d subject to the

constraint that ĥ
(k,m)
a (αi) = Ĥ

(k,m)
a (αi) for each i ∈ Evil.

1.3 The simulator (emulating Fdouble) sends the message (Shares?) to A.
1.4 The adversary sends shares Q

(k,m)
a (αi) for a = 1, . . . , ℓ, k = 1, . . . , n − 3t, and m = 1, . . . , B

for each i ∈ Evil to S.
1.5 The simulator generates uniformly random polynomials q

(k,m)
a of degree ≤ d subject to the

constraints that q
(k,m)
a (αi) = Q

(k,m)
a (αi) for each i ∈ Evil and q

(k,m)
a (βj) = 0 for each j =

1, . . . , ℓ.

1.6 The simulator sets h
(k,m)
a ← ĥ

(k,m)
a +q

(k,m)
a for a = 1, . . . , ℓ, k = 1, . . . , n−3t, and m = 1, . . . , B.

2. Verifiable Double Sharing

2.1 The simulator (emulating Fdouble) sends the message (Shares?) to A.
2.2 The adversary sends shares H

(k,m)
a (αi) to S for each i ∈ Evil, where a and m range over the

same values as before, but k = n− 3t+ 1, . . . , n− 2t.

2.3 For k = n − 3t + 1, . . . , n − 2t, the simulator generates uniformly random polynomials h
(k,m)
a

of degree ≤ d subject to the constraint that h
(k,m)
a (αi) = H

(k,m)
a (αi) for each i ∈ Evil.

2.4 The simulator (emulating FRobustShare) sends the message (Shares?) to A, along with the
identities of the dealers (all parties act as dealer) and the number of sharings to generate
(which is n(n− 2t)B).

2.5 The adversary sends polynomials U (i,k,m) to S for each i ∈ Evil, k = 1, . . . , n − 2t, and
m = 1, . . . , B.

2.6 The adversary sends U (j,k,m)(αi) to S for each j /∈ Evil, i ∈ Evil, k = 1, . . . , n − 2t, and
m = 1, . . . , B.

2.7 The simulator defines u(i,k,m) = U (i,k,m) for each i ∈ Evil.
2.8 The simulator generates uniformly random polynomials u(j,k,m) of degree ≤ d for each j /∈ Evil,

subject to the constraint that u(j,k,m)(αi) = U (j,k,m)(αi) for each i ∈ Evil and u(j,k,m)(βa) =

h
(k,m)
a (αj) for all a = 1, . . . , ℓ.

2.9 The simulator defines h̃
(k̃,m)
a and ũ(i,k̃,m) for k̃ = 1, . . . , n by(

h̃(1,m)
a , . . . , h̃(n,m)

a

)T
= M

(
h(1,m)
a , . . . , h(n−2t,m)

a

)T

and (
ũ(i,1,m), . . . , ũ(i,n,m)

)T
= M

(
u(i,1,m), . . . , u(i,n−2t,m)

)T
.

2.10 For each corrupt P
k̃
, S sends h̃

(k̃,m)
a (αj) and ũ(i,k̃,m)(αj) to A for each j /∈ Evil.

2.11 The adversary may at this point send (corrupt, Pw) to S for some w /∈ Evil, corresponding to
step 3.3 of FBR.

2.12 If the adversary did not request to corrupt in the previous step, then S proceeds to step 2.13.
Otherwise, the following steps are performed:

21

(a) The simulator relays the message (corrupt, Pw) to FBR.

(b) The functionality FBR sends the internal state of Pw (which includes Pw’s shares of each

Ĥ
(k,m)
a for a = 1, . . . , ℓ, k = 1, . . . , n− 3t, and m = 1, . . . , B) to S.

(c) The simulator now updates each h
(k,m)
a and u(i,k,m) to reflect the state of Pw while re-

maining consistent with the shares of h
(k,m)
a , u(i,k,m), h̃

(k̃,m)
a , and ũ(i,k̃,m) already sent to

A. Precisely how this is done is explained immediately after this specification.

(d) The simulator sends the simulated internal state of Pw to A. This includes all Pw’s shares

of each h
(k,m)
a , u(i,k,m), h̃

(k̃,m)
a , and ũ(i,k̃,m), as well as all shares of each h̃

(w,m)
a and ũ(i,w,m).

(e) Return to step 2.11.

2.13 The simulator sends (proceed) to FBR.

2.14 The adversary may now instruct the corrupt parties to send (or not send) all of their purported

shares of each h̃
(k̃,m)
a and ũ(i,k̃,m) to each k̃ /∈ Evil according to the specification of Block-

Redistribute.

2.15 The simulator emulates the honest parties broadcasting accusations in this step if any accu-
sations are needed (according to the specification of Block-Redistribute), and the adversary
may instruct corrupt parties to broadcast accusations. Any accusations S needs to emulate
(according to the protocol specification) are sent to A, and S receives from A any accusations
it wishes to make.

2.16 Based on the accusations sent in the previous step, S determines which parties (if any) need
to be added to Corr as described in step 2.7 of Block-Redistribute.

3. Share Redistribution

3.1 Upon receiving (Request Shares) from FBR, the simulator sends to FBR the shares h
(k,m)
a (αj)

defined by

h(k,m)
a (αj) = λj,1u

(z1,k,m)(βa) + · · ·+ λj,n−2tu
(zn−2t,k,m)(βa)

for each j ∈ Evil, a = 1, . . . , ℓ, k = 1, . . . , n− 3t, and m = 1, . . . , B.

3.2 Defining zi and λj,i as in Block-Redistribute, S sends to A each honest party’s (simulated) share
of

λj,1u
(z1,k,m) + · · ·+ λj,n−2tu

(zn−2t,k,m)

for each j ∈ Evil, a = 1, . . . , ℓ, k = 1, . . . , n− 3t, and m = 1, . . . , B.

3.3 The adversary may at this point send (corrupt, Pw) to S for some w /∈ Evil, corresponding to
step 8.3 of FBR.

3.4 If the adversary did not request to corrupt in the previous step, then S proceeds to step 3.5.
Otherwise, the following steps are performed:

(a) The simulator relays the message (corrupt, Pw) to FBR.

(b) The functionality FBR sends the internal state of Pw (which includes Pw’s shares of each

Ĥ
(k,m)
a for a = 1, . . . , ℓ, k = 1, . . . , n− 3t, and m = 1, . . . , B) to S.

(c) The simulator now updates each h
(k,m)
a and u(i,k,m) to reflect the state of Pw while re-

maining consistent with the shares of h
(k,m)
a , u(i,k,m), h̃

(k̃,m)
a , and ũ(i,k̃,m) already sent to

A. Precisely how this is done is explained immediately after this specification.

(d) The simulator sends the simulated internal state of Pw to A. This includes all Pw’s shares

of each h
(k,m)
a and u(i,k,m).

(e) Return to step 3.3.

3.5 The simulator sends (proceed) to FBR.

22

Description of steps 2.12(c) and 3.4(c) of the simulator and completing the proof. Assuming
the ability of the simulator to execute steps 2.12(c) and 3.4(c), statistical independence of the environ-
ment’s views follows, even for active corruptions (indeed, it is for active corruptions that steps 2.12(c)
and 3.4(c) are needed, in order to ensure consistency of the internal states that the adversary obtains
by corruption). Therefore, if we can show how the simulator can always execute these steps correctly,
the statistically independent outputs (between real and ideal world executions) of these steps yields the
proof.

We now describe how S updates the polynomials in steps 2.12(c) and 3.4(c) to account for the

newly corrupted party Pw. The simulator must re-choose the polynomials ĥ
(k,m)
a that were constructed

in step 1.2 subject to the same constraints, but with the added constraint that ĥ
(k,m)
a (αw) = Ĥ

(k,m)
a (αw)

for each a = 1, . . . , ℓ, k = 1, . . . , n − 3t, and m = 1, . . . , B. Then S re-defines each h
(k,m)
a defined in

step 1.6 to correspond to each new ĥ
(k,m)
a , setting h

(k,m)
a ← ĥ

(k,m)
a + q

(k,m)
a (using the same q

(k,m)
a).

The simulator must now re-choose h
(k,m)
a for k = n − 3t + 1, . . . , n − 2t in order to correspond to

the polynomials h̃
(k̃,m)
a already sent to the adversary for k̃ ∈ Evil. Let E ⊂ {1, . . . , n} be a set of size t

containing the indices of the parties in Evil (including w). Let ME denote the rows of M corresponding
to the indices in E (i.e., if k̃ ∈ E, then the k̃th row of M is in ME). Let MF

E denote the first n − 3t

columns of ME , and let ML
E denote the last t columns. If k̃1, . . . , k̃t is an enumeration of the indices in

E, then for each a = 1, . . . , ℓ and m = 1, . . . , B, the real adversary knows(
h̃(k̃1,m)
a , . . . , h̃(k̃t,m)

a

)T
= MF

E

(
h(1,m)
a , . . . , h(n−3t,m)

a

)T
+ML

E

(
h(n−3t+1,m)
a , . . . , h(n−2t,m)

a

)T
.

Since M in hyper-invertible, ML
E is invertible. So S computes h

(k,m)
a for k = n − 3t + 1, . . . , n − 2t by

setting (
h(n−3t+1,m)
a , . . . , h(n−2t,m)

a

)T

= (ML
E)

−1

[(
h̃(k̃1,m)
a , . . . , h̃(k̃t,m)

a

)T
−MF

E

(
h(1,m)
a , . . . , h(n−3t,m)

a

)T
]
.

After computing h
(n−3t+1,m)
a , . . . , h

(n−2t,m)
a , the simulator re-defines h̃

(k̃,m)
a for k̃ ∈ EC (where EC is the

set complement of E) by re-computing the matrix multiplication in step 2.9.

We still need to verify that A’s shares of the polynomials in
(
h
(n−3t+1,m)
a , . . . , h

(n−2t,m)
a

)T
have not

changed from what A specified in step 2.2. However, this follows immediately from the fact that A’s
shares of the polynomials in

(
h
(1,m)
a , . . . , h

(n−3t,m)
a

)T
were not changed when S re-chose them, and S did

not change any share of the polynomials in
(
h̃
(k̃1,m)
a , . . . , h̃

(k̃t,m)
a

)T

.

The simulator re-chooses u(w,k,m) for k = 1, . . . , n − 3t and m = 1, . . . , B as in step 2.8, but using

the updated h
(k,m)
a . Then u(w,k,m) for k = n − 3t + 1, . . . , n − 2t are defined as were the h

(k,m)
a for

k = n− 3t+ 1, . . . , n− 2t, namely:(
u(w,n−3t+1,m), . . . , u(w,n−2t,m)

)T

= (ML
E)

−1

[(
ũ(w,k̃1,m), . . . , ũ(w,k̃t,m)

)T
−MF

E

(
u(w,1,m), . . . , u(w,n−3t,m)

)T
]
.

We still need to verify that u(w,k,m)(βa) = h
(k,m)
a (αw) for k = n−3t+1, . . . , n−2t. However, this follows

immediately from the fact that ũ(w,k̃,m)(βa) = h̃
(k̃,m)
a (αw) for k̃ ∈ E and u(w,k,m)(βa) = h

(k,m)
a (αw) for

k = 1, . . . , n − 3t. Also, A’s shares of u(w,k,m) for k = n − 3t + 1, . . . , n − 2t have not changed (because

the same argument that applied to the h
(k,m)
a for k = n− 3t+ 1, . . . , n− 2t applies here).

23

C Permuting Circuit Layers

In this section, we expand upon the manner in which permutations are executed on the block-shared
secrets in order to perform the required computations as specified by the circuit. In order to perform the
permutations, we use Beneš networks [Ben64], also known as Waksman networks [Wak68].

The following lemma captures the behavior of Beneš networks.8 The proof can be found in any
computer science text that deals with Beneš networks (such as [Lei92]). A more general version of this
lemma can be found in [GHS12, Lemma 2].

Lemma 6 Let σ be a permutation on L elements, where L is a power of 2. Each element is given an
index for its location represented as a binary integer of length logL (where the elements are indexed 0
through L− 1). Then σ can be decomposed into σ = π1 ◦ π2 ◦ · · · ◦ π2 logL−1 sub-permutations such that
πk only swaps elements whose index differs in bit k for k ≤ logL and only swaps elements whose index
differs in bit 2 logL− k for k ≥ logL.

In particular, each sub-permutation is a product of disjoint two-cycles9 where the distance between
the two elements in each of the two elements in the two-cycles is the same and, moreover, is a power of 2.
More specifically, if π is a sub-permutation as constructed in Lemma 6, we denote by sh(π) the distance
between any two elements in one of π’s 2-cycles (which will be the same for each 2-cycle). For example,
sh ((4 6)(5 7)) = 2. Further, let L be constructed of consecutive blocks of ℓ elements, where ℓ is also a
power of 2. Then if sh(πi) < ℓ, then πi is a permutation within blocks, and if sh(πi) ≥ ℓ, then πi is a
permutation between blocks.

As an example with L = 8, consider the permutation σ = (0 6 5 3 4 2). This can be decomposed into
σ = π1 ◦π2 ◦π3 ◦π4 ◦π5 with π1 = (2 6)(3 7), π2 = (4 6)(5 7), π3 = (6 7), π4 = (0 2), and π5 = (3 7). One
can see that each permutation satisfies the property stated in the lemma. For instance, if we write π1 in
binary, it becomes (010 110)(011 111), and it is clear that each 2-cycle only permutes elements that differ
in the first (leftmost) bit. In binary, π2 = (100 110)(101 111), and it is clear that only elements that
differ in the second bit are permuted, etc. (note also that sh(π1) = 4, sh(π2) = 2, sh(π3) = 1, sh(π4) = 2,
and sh(π5) = 4).

C.1 Implementing Circuit Reformatting Via Beneš Networks

At each layer of the circuit, we will perform some permutation σ to make sure the secrets, in blocks, are
in the correct order to compute on. This requires us to assume that the number of secrets, in addition
to the number of blocks, is a power of 2, which may require generating extra random secrets (which
does not affect the asymptotic complexity of the protocol). We will use Lemma 6 to decompose the
permutation. Because the block size is always a power of 2, each sub-permutation in the decomposition
either permutes between blocks, such that elements get mapped to the same location in different blocks,
or the sub-permutation permutes within blocks, such that locations in any one block must be mapped back
into that same block. Using the example permutation above, and assuming the block size ℓ = 4, then the
secrets would be stored in two blocks, (a, b, c, d) and (e, f, g, h), where we say a is in location 0 and h is
in location 7. Then π1 from above switches c with g and d with h; note that each of these pairs are in
the same location in their respective blocks. The result is (a, b, g, h) and (e, f, c, d). Then π2 switches e
with c and f with d; note that each of these pairs are in the same block.

As we have seen so far in this section, in order to perform an arbitrary permutation σ on W secrets
so that the secrets are correctly arranged for computation at a given layer in the circuit, we first de-
compose the permutation into sub-permutations, and then perform each sub-permutation individually.

8Beneš networks can capture what we wish to accomplish in two different ways: One in which the paths used are
edge-disjoint, and one in which the paths are node-disjoint. The lemma is for the node-disjoint version.

9Recall that a two-cycle is a permutation where exactly two elements are switched with each other; a product of permu-
tations is disjoint if each element is affected by at most one of the permutations.

24

We describe two different protocols for performing permutations: one for permuting between blocks,
denoted PermuteBetweenBlocks, and one for permuting within blocks, denoted PermuteIndividualBlocks.
Executing these protocols sequentially, per the decomposition in Lemma 6 yields the final protocol Per-
muteLayer which performs the necessary arbitrary permutation for performing arithmetic operations on
block-shared secrets at a given layer of the circuit. We note that the protocols we describe here are not
the same as in [DIK10] because their subprotocols do not exactly meet our requirements; rather, our
protocols more related to those from [GHS12]. We will prove correctness and perfect privacy for each of
these protocols; simulation security will be proved as part of the larger MPC protocol (see the proof of
Theorem 2 in Appendix D).

C.2 Permuting Between Blocks

For the protocol PermuteBetweenBlocks, we assume the secrets are stored in polynomials10 {Hm}m=1,...,A,
where each polynomial holds ℓ secrets and both ℓ and A are powers of 2. We refer to the sub-permutation
being used as π.

We will need the following notation: For I ⊆ {1, . . . , ℓ}, let fI denote the polynomial of degree ≤ d
satisfying fI(β

i) = 1 for i ∈ I, fI(β
i) = 0 for i ∈ I, and fI(β

i) = 0 for i = ℓ + 1, . . . , ℓ + t. We note
again that PermuteBetweenBlocks is executed for sub-permutations. In particular, PermuteBetweenBlocks
is only executed when sh(π) ≥ ℓ; since both sh(π) and ℓ are powers of 2, this implies that ℓ divides sh(π).

PermuteBetweenBlocks(π, {Hm}m=1,...,A)
1. Invoke RanDouSha to generate 2A pairs of random polynomials (r,R), where r is of degree d, R is of

degree 2d, and both polynomials share the same block of secrets.

2. The following is done in parallel for each pair of polynomials (Hm,Hm+sh(π)/ℓ) such that m− 1 is zero in
the log(sh(π)) bit. (We look at the binary expansion of m − 1 instead of m because the indexing of the
integers permuted by π starts at zero, whereas the indexing for m starts at 1.)

2.1 We define a set I ⊆ {1, . . . , ℓ} as follows: i ∈ I if and only if the 2-cycle ((m− 1)ℓ+ (i− 1), (m−
1)ℓ+ (i− 1) + sh(π)) is contained in π.

2.2 Using the random polynomials generated in step 1, the parties invoke Multiply and then perform
local additions to compute (and relabel)

Hm ← fI ·Hm + fI ·Hm+sh(π)/ℓ

Hm+sh(π)/ℓ ← fI ·Hm+sh(π)/ℓ + fI ·Hm.

The protocol PermuteBetweenBlocks has round complexityO(1) and communication complexityO(W+
poly(n)) for permuting W secrets. Correctness follows from Lemma 6 as well as the correctness of Ran-
DouSha and Multiply, and perfect privacy follows directly from the perfect privacy of RanDouSha and
Multiply.

C.3 Permuting Within Blocks

Recall that if sh(πi) < ℓ, then πi is a permutation within blocks, and if sh(πi) ≥ ℓ, then πi is a permutation
between blocks. We will need the following notation: If sh(π) < ℓ (i.e., π is a permutation within blocks),
we can decompose π into π1◦. . .◦πA, where each πm permutes only the block stored in Hm. We know that
πm is a permutation of ℓ consecutive integers, so we may define π∗

m to be πm “shifted” so that it permutes
the integers 1 through ℓ. More concretely, if πm is a permutation of the integers x through x + ℓ, then
π∗
m contains the 2-cycle (q, q+sh(π)) if and only if πm contains the 2-cycle (q+ x− 1, q+ x− 1+ sh(π)).

10For simplicity, we index the polynomials as Hm rather than H
(k,m)
a in the rest of the paper.

25

PermuteIndividualBlocks(π, {Hm}m=1,...,A)
If sh(π) < ℓ, then the following steps are performed for each Hm in parallel.

1. Invoke RanDouSha to generate 3A pairs of random polynomials (r,R), where r is of degree d, R is of
degree 2d, and both polynomials share the same block of secrets.

2. Define sets Im, Jm,Km ⊆ {1, . . . , ℓ} as follows: For each 2-cycle (b, b+sh(π)) contained in π∗
m, b ∈ Im and

b+ sh(π) ∈ Jm, and Km is the set of fixed points of π∗
m.

3. Define νI to be the permutation of {1, . . . , ℓ} that shifts each integer to the left by sh(π), and define νJ
to be the inverse of νI .

4. Invoke RandomPairs to generate A random pairs of block-sharings (r, νI(r)) and A random pairs (r, νJ(r)).

5. Using the random pairs generated in the previous step, invoke PermuteWithinBlocks to apply νI to Hm,
and call the result Hm,I ; similarly construct Hm,J .

6. Using the random polynomials generated in step 1, the parties invoke Multiply and then perform local
additions to compute (and relabel)

Hm ← fKm ·Hm + fIm ·Hm,I + fJm ·Hm,J .

The protocol PermuteLayer has round complexityO(1) and communication complexityO(W+poly(n))
for permuting W secrets. Correctness follows from Lemma 6 as well as the correctness of Permute-
WithinBlocks, RanDouSha and Multiply, and perfect privacy follows directly from the perfect privacy of
PermuteWithinBlocks, RanDouSha and Multiply.

C.4 Permuting the Whole Circuit Layer

Utilizing PermuteBetweenBlocks and PermuteIndividualBlocks, we can now execute an arbitrary permuta-
tion π on a sequence of W secrets stored in blocks of size ℓ stored in polynomials {Hm}m=1,...,A, where
W and ℓ are both powers of 2.

PermuteLayer(π, {Hm}m=1,...,A)
Let π decompose into sub-permutations π1 ◦ . . . ◦ π2 logW−1 per Lemma 6.

1. For i = 2 logW − 1, ..., 1, do sequentially:

1.1 If sh(πi) < ℓ, execute {Hm}m=1,...,A ← PermuteIndividualBlocks(πi, {Hm}m=1,...,A). Then execute
Block-Redistribute.

1.2 Else sh(πi) ≥ ℓ, and execute {Hm}m=1,...,A ← PermuteBetweenBlocks(πi, {Hm}m=1,...,A). Then
execute Block-Redistribute.

This protocol has round complexity O(logW) and communication complexity O(W logW +(logW) ·
poly(n) for permuting W secrets. Correctness follows from Lemma 6 as well as the correctness of
PermuteIndividualBlocks and PermuteBetweenBlocks, and perfect privacy follows directly from the perfect
privacy of PermuteIndividualBlocks and PermuteBetweenBlocks.

D Security of PMPC (Proof of Theorem 2)

We present the proof of Theorem 2, but first recall the theorem to be proved.

Theorem 7 For n parties and an arithmetic circuit C that is at least Ω(n) gates wide, the protocol
PMPC realizes FPMPC with perfect security in the proactive UC model against an active and adaptive
adversary corrupting up to t < n/8 parties per stage.

26

Proof of Theorem 2. We note that every subprotocol used in PMPC has been proven correct; it then
follows from the construction of PMPC that correctness holds. We also note that the proof here follows
in large part from the proof in [DIK10] (see Appendix C there).

We now construct a simulator for PMPC and prove that it satisfies FPMPC . As in [DIK10], we
build a simulator by mathematical induction. In particular, since PMPC is constructed for C via the
transformed circuit C ′ by making consecutive calls in parallel to the required subprotocols, circuit layer
by circuit layer. Accordingly, we construct a simulator that is built layer-by-layer. We also note that we
prove security in the FBR-hybrid model as we have already proven in Appendix B that Block-Redistribute
securely realizes FBR.

Let d be the depth of C ′. Then FPMPC consists of O(d) layer-wise calls to individual subprotocols
to compute these layers, where we include calls for proactive share redistribution as a new added layer.
Including the redistribution calls, denote d′ as the number of layers to compute C ′.

We construct functionalities Fi, 1 ≤ i ≤ d′, as follows: Fi takes inputs (x1, ..., xn) from the n parties
and outputs the secret-shared state after computing layer i of C ′. For technical reasons, the adversary
must input the shares that it wishes to receive for every shared value, and Fi calculates the sharing
of the state such that it is consistent with the adversary’s shares. The base case F0 corresponds to
secret-sharing the inputs and the appropriate prepared random pairs and double sharings.

We prove that Fi+1 can be securely realized in the Fi-hybrid model for 0 ≤ i ≤ d′. Combined with
the fact that F0 can be securely realized, this implies that Fd′ can be securely realized. Finally, we show
Fd′ followed by Reco can be securely realized in the Fd′ hybrid model, which implies that FPMPC can
be securely realized and completes the proof. Proactive security follows implicitly by the timing of the
share redistribution protocol calls.

Base Case: This case consists of the functionalities Fpairs, Fdouble and FRobustShare being called; simula-
tion is trivial.

Inductive Step: We assume, by the induction hypothesis, that there exists a simulator Si−1 that securely
realizes the functionality Fi−1. We now prove that there exists a simulator Si that securely realizes Fi

in the Fi−1 hybrid model.
The simulator Si selected a set of dummy inputs x′1, ..., x

′
n for the parties. Si then executes Si−1

on these inputs through the execution of Fi−1 with adversary A. At this point, Si has computed a set
of final shares for corrupted parties; these are sent to Fi to complete the simulation (because the ideal
functionality needs the adversary to tell it which shares to output to corrupted parties).

We note that the simulation is perfect for non-adaptive corruptions because each of the subprotocols
used have perfect privacy. However, in the case of adaptive corruptions, we run into two distinct cases
that must be handled. The first case is when a party is corrupted before Fi has output shares. Here, Si
provides A the view that Si already has from its dummy run of the protocol. Due to perfect privacy, we
obtain that this new simulation must also be perfect.

The second and most involved case is when the party is corrupted after the protocol (e.g., the
functionality corresponding to computing the circuit up to layer i) has completed. In this case, all
parties have received output shares from Fi and the shares produced for the newly corrupted parties
must be consistent with this.

Any output share y′ that must be made consistent with the real share y comes from three classes
of circuit computations: basic arithmetic (e.g., linear operations and multiplications on the shares and
constants), proactive share redistribution (e.g., FBR) or circuit transformation operations (e.g., Permute-
BetweenBlocks and PermuteIndividualBlocks).

We handle linear operations first. We note that every output share is the product of some linear
equation from the outputs of Fi−1, which in aggregate yield a system of linear equations. Such a system
must not be over constrained else it would violate the correctness of Fi, which would contradict correctness
of FPMPC . Therefore, Si is able to pick a random solution for new shares output by Fi−1 that in turn

27

yield the real shares obtained by the adversary. However, some starting shares must now be reset for
some of the sharings used by Si because they correspond to the actual shares output to the adversary.

In particular, let the input sharings correspond to the polynomials f1,...,fm. In order to adjust the
appropriate shares to output to the adversary, Si adds polynomials g1, ..., gm to the original polynomials,
respectively. Each gj is of degree at most d such that they evaluate to 0 at all points corresponding to
corrupted parties and secret shares.

Moving through the simulation with these adjusted shares/polynomials, we run into no complications
until Multiply or the circuit transformation protocols must be invoked, which themselves reduce to an
instantiation of Multiply. We note that FBR does not present a challenge as the functionality rerandomizes
shares; in effect, the functionality merely adds a new zero-share to the adjusted shares. Therefore, the
challenge is how to account for executing Multiply on the adjusted shares.

The protocol Multiply is constructed by multiplying sharings locally, adding a random block and
opening. The sharings are a linear combination of the starting sharings and possibly outputs of previous
multiplications. Thus, we would originally be opening the the polynomials

p = L1(f1, ..., fm, h1, ..., hl) · L2(f1, ..., fm, h1, ..., hl) + r2d, (2)

where L1 and L2 are linear transformations and r2d is the degree 2d version of r. However, we now have

p′ = L1(f1 + g1, ..., fm + gm, h1, ..., hl) · L2(f1 + g1, ..., fm + gm, h1, ..., hl) + r2d. (3)

In order to fix this inequality, we set
r′2d = r + p− p′ (4)

through their corresponding polynomials, yielding a valid degree 2d polynomial. We then use r′2d in
equation 2. Note that for any j that became corrupted earlier, p(j) = p′(j) because p′ does not differ
from p at those points by construction. Therefore, r′2d = r2d in those same points, and we have adjusted
the view according to the share adjustments specified above.

It still remains to show how to adjust the final output shares if they come from a multiplication, FBR,
or a circuit transformation. However, the reasoning so far shows how one can add adjustment polynomials
and “fix” the remaining shares via the Multiply subprotocol, which covers the reasoning necessary for ad-
justing all the output shares from every protocol but FBR. To see how to adjust the outputs for FBR, we
note that the ideal functionality there specifies the output of the ideal functionality to be completely in-
dependent from the inputs; Si therefore simply selects the real output shares as the output shares of FBR.

Step d′ + 1: Having proven that Fd′ can be securely realized via mathematical induction, it remains
to show that FPMPC can be securely realized. There is only one round in the corresponding protocol
here: it consists of calling Fd′ to receive sharings and then reconstructing those sharings towards the
corresponding parties. Simulation here follows immediately from the UC-security of Reco.

E Party Virtualization in a Constant Number of Rounds

The PMPC protocol constructed in Section 3 has a lower per-stage corruption threshold t < n/8, than
we desire. In order to increase the threshold (1/3 − ϵ)n for a positive constant ϵ, we use the party
virtualization techniques initially described in [Bra87]. At a high level, the parties in the above protocol
are replaced with committees of parties in such a way that a greater number of parties can actually be
corrupted while still maintaining security. More precisely, n virtual parties are constructed from among
the n real parties. The virtual parties compute PMPC, which we term the outer protocol. The committee
making up a virtual party must securely compute the functionalities that the corresponding virtual party

28

must compute to execute PMPC; we call the committee protocol the inner protocol. See [DIK+08, DIK10]
for a proof that this composition maintains (perfect UC) security11 as well as further details.

The result of [Bra87] is non-constructive in that the committees are chosen randomly, which will
not work for perfect security. In order to enable perfect security, the technique of [Bra87] was made
constructive by [DIK+08].

We call a committee corrupt if 1/3 or more of the parties belonging to the committee are corrupt.
The following is implicit from [DIK10] using the proof of Lemma 5 in [DIK+08].

Lemma 8 For any 0 < ϵ, δ < 1, and n parties, there exists a construction of n committees of size
s = O(1/δϵ2) such that if no more than (13 − ϵ)n of the parties are corrupt, then no more than δ · n
committees will be corrupt. The members of the committees can be computed in time n · polylog n.

Since PMPC is secure with a per-stage corruption threshold of t < n/8, we set δ = 1/8. We also
set c = ⌈s/3⌉. Because PMPC-pv must have perfect security, where all subprotocols are constant-round,
executions of the the inner protocol must have perfect security and be constant-round. We use the BGW
MPC protocol [BGW88] for the inner protocol, since it satisfies both of these properties for the required
functionalities, as we now describe.

There are numerous functionalities that the committees need to be able to compute to carry out
PMPC-pv. Communication between two parties is now replaced by communication between two commit-
tees. In addition, internal computations by parties in PMPC must now be computed by the committees
emulating those parties in PMPC-pv using multiparty computation among the committee. Examining
PMPC for all the computations that each party must execute, the types of computations that need to
be performed by the committees using MPC throughout the entire protocol are: addition, multiplication
of two private values, multiplication of a vector of shares by a publicly known hyper-invertible matrix,
and the Berlekamp-Welch algorithm. We now discuss how each of these functionalities is computed by
committee.

Broadcasts. In order to reduce the number of broadcasts used in the main protocol, all the broadcasts
in the multiplication subprotocol will be implemented with point-to-point channels using a broadcast
protocol. The minimum number of rounds to implement a (deterministic) broadcast protocol for a
committee with at most s corrupt parties is s+ 1 (see [FL82]). Since s is a constant that depends on ϵ,
our protocol will work in a constant number of rounds. Any broadcast protocol that achieves the s + 1
lower bound on the number of rounds and has communication and computational complexity polynomial
in the number of committee members will work for our purposes.

Communication between Committees. We describe here how committees emulate secure point-to-
point channels for the virtual parties. Suppose one committee wants to send a secret value to another
committee. Denote the parties in the sending committee by psend1 , . . . , psends and the parties in the receiving
committee by prec1 , . . . , precs . Denote the evaluation point of psendj and precj by γj .

12 So each psendj holds
a share f0(γj) of some polynomial f0, where f0(0) is the secret to be transmitted. The sending parties
generate c random polynomials of degree ≤ c, which we label f1, . . . , fc. (The description of how to
generate these polynomials is given in [BGW88].) Then each party in the sending committee sends his
share of f0+ γjf1+ · · ·+ γcjfc to party precj , who then uses the Berlekamp-Welch algorithm to interpolate
the polynomial. The constant term of this polynomial is recorded as precj ’s share of the secret. Each
party in the receiving committee now holds a share of the polynomial f0(0)+ xf1(0)+ · · ·+ xcfc(0), and
the constant term of this polynomial is the secret. Thus the transmission is complete.

11Proactive security is also clearly maintained as the committees jointly execute that subprotocols, with no carry over
from one subprotocol to the next that might violate share storage restrictions.

12The assumption that they have the same evaluation point is not necessary, but simplifies exposition.

29

Internal Addition. Additions are performed by adding shares as specified in the BGW protocol.

Multiplication of Two Private Values. The only situation in which a committee needs to multiply
two private values is when the committee needs to multiply two of its shares; this only occurs in the
Multiply protocol. These multiplications will be handled as specified in the BGW protocol. Since the
committee size is constant, this only requires a constant amount of computation per multiplication.
Examining the BGW protocol, each multiplication requires 7 communication rounds and 6 broadcast
rounds.

Multiplication by Hyper-Invertible Matrices. Matrix multiplication involves both multiplications
and additions. Every hyper-invertible matrix in PMPC has dimension Θ(n) by Θ(n). Normally, such a
computation would require Θ(n2) multiplications. However, since the hyper-invertible matrices model
polynomial interpolation and evaluation, we can use efficient algorithms from the computer science
literature (see, for instance, [AHU74]) to do these computations with only O(npolylogn) multiplications.

The Berlekamp-Welch Algorithm. Executing the Berlekamp-Welch algorithm in committees as
part of the inner protocol requires some care, because a straightforward application of the BGW protocol
would lead to non-constant round complexity. The Berlekamp-Welch algorithm can be performed in
O(npolylog(n)) time ([Gao02]). This adds a polylog(n) factor to the communication complexity, which
is not problematic. However, it requires O(polylog(n)) rounds of communication, which is not acceptable
for our purposes.

We therefore construct a constant-round protocol Committee-BW that each committee jointly com-
putes to perform the Berlekamp-Welch algorithm. This requires generating extra masking randomness.
In fact, for each polynomial to interpolate, we must generate an additional c polynomials. Since the com-
mittee size is a fixed constant throughout the protocol (as it only depends on the constant ϵ), generating
these extra sharings does not affect the asymptotic complexity of the protocol PMPC-pv.

When parties needed to compute the Berlekamp-Welch algorithm in the outer protocol, they execute
Committee-BW in the inner protocol. Committee-BW uses RanDouSha as a subprotocol to generate ran-
dom masking polynomials. The number of polynomials generated and the degrees of the polynomials
will be different in different steps. For every polynomial the parties want to interpolate, they generate c
masking polynomials of the same degree. Again, this does not add to the overall communication com-
plexity of the protocol since c is constant for constant ϵ. Note that in some instances, a party/committee
is not interpolating a polynomial, but rather a vector generated by a hyper-invertible matrix. However,
since the hyper-invertible matrices we use model polynomial interpolation, such a vector can be seen as
a set of evaluation points on a polynomial.

The protocol Committee-BW implements a committee performing Berlekamp-Welch in a constant
number of rounds. The ideal functionality that the protocol is designed to emulate is described in Figure 4.
We use P = {Pi}ni=1 to denote the set of committees and Com = {pj}sj=1 to denote the committee that
is to perform Berlekamp-Welch. The evaluation point of Pi is αi, and the evaluation point of pj is γj . We
assume that the polynomial f to be interpolated has already been sent to the committee. This means
that each share f(αi) is Shamir-shared among the committee as a polynomial fαi of degree no more than
c such that fαi(0) = f(αi). Furthermore, the committee holds an additional c polynomials r(1), . . . , r(c),

shared with polynomials r
(k)
αi of degree no more than c such that r

(k)
αi (0) = r(k)(αi). The protocol uses an

s by c+1 hyper-invertible matrix M ′, which is publicly known and fixed throughout the PMPC protocol.

Committee-BW(c, Com, {fαi
}ni=1)

1. The committees invoke RanDouSha to generate random polynomials r(k) for k = 1, . . . , c. (In the actual
PMPC protocol, this will be parallelized for efficiency.)

30

Let CC be the set of indices of corrupt committees. Initialize S = ∅.
1. Z instantiates parties with the same set of points ξ1, . . . , ξm, and each pj receives shares fαi(γj). Z

instantiates A with auxiliary input z.

2. Each party pj sends ξ1, . . . , ξm to FCBW as well as all shares fαi(γj). If different parties send different
sets of points ξi, then FCBW broadcasts (abort) and aborts.

3. Initial Corruption Phase:

3.1 If A wishes to corrupt parties pj , A sends (corr?, pj) to Z. Z responds either yes or no. Z never
responds yes when the number of corrupt parties in the committee is greater than 1/3 (or, in the
statistical case, 1/2).

3.2 For all parties pj that Z responded yes to, A sends (corr, pj) to FCBW , who sends pj ’s inputs to
A.

3.3 FCBW sends A all inputs for all corrupted pj .

3.4 A may continue to corrupt parties by returning to step 3.1; else, A sends proceed to FCBW .

4. Computation Phase

4.1 FCBW uses all uncorrupted parties’ shares to interpolate fαi(0) = f(αi) for each i = 1, . . . , n.

4.2 FCBW interpolates f , noting which shares are inconsistent. FCBW updates S by adding to it the
indices i of shares f(αi) that were inconsistent.

4.3 Set I = {1, . . . , n}\S. Let {λ(k)
i }i∈I denote the Lagrange coefficients for interpolating the point ξk

on a polynomial using the points {αi}i∈I . For each k = 1, . . . ,m, FCBW computes

fξk(γj) =
∑
i∈I

λ
(k)
i fαi(γj).

5. Output Corruption Phase:

5.1 If A wishes to corrupt parties pj , A sends (corr?, pj) to Z. Z responds either yes or no. Z never
responds yes when the number of corrupt parties in the committee is greater than 1/3 (or, in the
statistical case, 1/2).

5.2 For all parties pj that Z responded yes to, A sends (corr, pj) to FCBW , who sends pj ’s inputs to
A.

5.3 FCBW sends fξk(γj) and S for all corrupted pj to A.
5.4 A may continue to corrupt parties by returning to step 5.1; else, A sends proceed to FCBW .

6. FCBW sends S to each party, and for each k = 1, . . . ,m, FCBW sends fξk(γj) to each honest pj .

Figure 4: The FCBW functionality.

31

2. Each committee sends its share of each r(k) to Com. Define r
(k)
αi as described above.

3. We define polynomials u(1), . . . , u(s) by (u(1), . . . , u(s))T = M ′(f, r(1), . . . , r(c))T . We similarly define

(u
(1)
αi , . . . , u

(s)
αi)

T = M ′(fαi , r
(1)
αi , . . . , r

(c)
αi)

T for each Pi. Each pj locally computes his share of each u
(k)
αi .

4. Each pj sends his share of u
(k)
αi to pk for each Pi.

5. Each pj uses Berlekamp-Welch to interpolate u
(k)
αi (and hence u(k)(αi)) from the shares received in the

previous step.

6. Each pj uses Berlekamp-Welch to interpolate u(k), noting which shares he believes to be incorrect.

7. Each pj sends to each member of Com the index of each committee Pi which he believes to have sent an
incorrect share (these are called “negative votes”).

8. For each αi that received more than c negative votes in the previous step, the committee Com concludes
that committee Pi is corrupt, and his share of f is unneeded (even if the value of f(αi) sent by Pi was
correct). Let I be the set of all i such that Pi was not deemed to be corrupt

9. Suppose the committee wants to interpolate a set of points ξ1, . . . , ξm. Let {λ(k)
i }i∈I denote the Lagrange

coefficients for interpolating the point ξk on a polynomial using the points {αi}i∈I . Each pj locally
computes his share of f(ξk) for each k = 1, . . . ,m by

fξk(γj) =
∑
i∈I

λ
(k)
i fαi(γj).

Invoking Committee-BW W/n times in parallel has communication complexity O(W + poly(n)) (as-
suming the committee wants to interpolate O(n) points per invocation, which will always be the case
in the execution of the protocol). It requires O(1) rounds of communication. We stress implement-
ing Berlekamp-Welch in a committee the “straightforward” way would lead to O(polylog(n)) rounds of
communication, as opposed to the constant-round protocol here.

In the lemma below, we use “inconsistent” to mean “inconsistent with the shares of the honest com-
mittees.” Since there are enough honest committees to perform Berlekamp-Welch, there is no ambiguity
as to what this means.

We now sketch the security of Committee-BW; we leave a full proof to the full version of this paper.

Lemma 9 In Committee-BW, if the share of at least one of the polynomials f, r(1), . . . , r(c) sent to Com
is inconsistent at point αi, then at least s − c of the polynomials u(1), . . . , u(s) will have an inconsistent
share at point αi.

Proof: Suppose by way of contradiction that at least one of the polynomials f, r(1), . . . , r(c) is incon-
sistent at point αi and that there are c+1 polynomials u(k) such that the share at point αi is consistent.
Then since M ′ is hyper-invertible, one could construct the polynomials f, r(1), . . . , r(c) as a linear combi-
nation of the c+1 polynomials u(k). But then the share at αi would be consistent for all of f, r(1), . . . , r(c),
a contradiction.

Lemma 10 Assuming that no more than c members of Com are corrupt and no more than t committees
in P are corrupt in the execution of Committee-BW:

1. The set of committees that are deemed corrupt by the honest parties in Com in step 8 is correct, in
that any committee that sent an inconsistent share is deemed corrupt, and any committee that sent
only consistent shares is deemed honest.

2. The honest parties correctly interpolate the intended points on f .

3. The adversary does not gain any information on f .

32

Proof:

1. A party needs to receive at least c+ 1 negative votes to deem a committee corrupt. By lemma 9,
if committee Pi sent at least one incorrect share, then at least s − c > c honest parties will send
out a negative vote for Pi, and all honest parties will deem Pi corrupt. If Pi sent all correct shares,
then Pi’s share of each u(k) will be correct, and only corrupt parties might cast a negative vote for
Pi; since there are at most c corrupt parties, there will not be enough negative votes to deem Pi

corrupt.

2. It follows from the previous point that the shares of f used for interpolation in step 9 of Committee-
BW are correct shares, so the interpolation using these points must be correct.

3. Consider all the data that the adversary receives in the execution of Committee-BW:

• fαi(γj) and r
(k)
αi (γj) for each corrupt pj , each i = 1, . . . , n, and each k = 1, . . . , c.

• All shares of u
(k)
αi for each i = 1, . . . , n and each corrupt pk.

• All the negative votes sent by the honest parties in step 7.

First, with respect to the negative votes, the adversary already knew before the execution of the
protocol which shares of the polynomials f and r(k) were corrupt, and since the honest parties only
cast negative votes for corrupt shares, seeing the negative votes of the honest parties does not give
the adversary any additional information.

With respect to the shares of polynomials the adversary learns, it suffices to show that for any
possible collection of values of these shares, any choice of f is equally likely to correspond to those
values. In particular, we want to show that for any collection of values of the adversary’s shares,

there is precisely one selection polynomials r(k) and r
(k)
αi and fαi that corresponds to a given f . The

proof proceeds as follows: We show that given the adversary’s shares of each fαi and the (hidden)

shares of f , there can only be one choice of the polynomials fαi ; that given f and u
(k)
αi for each

corrupt pk, there can only be one choice of polynomials r(k); and then that given each r(k) and the

adversary’s shares of r
(k)
αi , there can only be one choice of polynomials r

(k)
αi .

Since f(αi) = fαi(0) for each αi, and since each fαi has degree no more than c, it follows that the
adversary’s shares of each fαi together with the shares f(αi) are enough to uniquely determine the
polynomials fαi .

The adversary knows all shares of u
(k)
αi for each corrupt pk. In particular, the adversary knows

u(k) for each corrupt pk. Let M
′
C denote the matrix formed from all the rows of M ′ corresponding

to corrupt parties. Let M ′
C,1 denote the first column of M ′

C , and let M ′
C,2 denote the matrix

formed from all but the first column of M ′
C,2. Since M ′ is hyper-invertible, it follows that M ′

C,2

is an invertible c × c matrix. Now by definition, (u(1), . . . , u(s))T = M ′(f, r(1), . . . , r(c))T , so the
polynomials u(k) for corrupt pk are computed by M ′

C,1f + M ′
C,2(r

(1), . . . , r(c))T . Since M ′
C,2 is

invertible, it follows that there is only one choice of polynomials r(1), . . . , r(c) corresponding to the
given f and u(k) for corrupt pk.

Since each rαi has degree no more than c, and since r(k)(αi) = rαi(0) for each αi, it follows that the
adversary’s shares of each rαi together with the shares r(k)(αi) are enough to uniquely determine
the polynomials rαi .

33

E.1 PMPC with statistical security

We remark that the techniques above can be used to construct a proactively secure protocol with statistical
security and a per-stage corruption threshold of (1/2 − ϵ)n. We outline briefly how such a protocol is
possible.

Using the results in [DIK+08], we call a committee corrupt if 1/2 or more of the parties belonging to
the committee are corrupt. The following is Lemma 5 in [DIK+08].

Lemma 11 For any 0 < ϵ, δ < 1, and n parties, there exists a construction of n committees of size
s = O(1/δϵ2) such that if no more than (12 − ϵ)n of the parties are corrupt, then no more than δ · n
committees will be corrupt. The members of the committees can be computed in time n · polylog n.

For the inner protocol, instead of using the perfectly secure protocol of [BGW88] with 1/3 threshold,
we use the statistically secure protocol of [RB89] with 1/2 threshold. Communication and computation
occurs largely as above; the main subtlety is dealing with the authentication tags (e.g., information
checking), which are shared across each committee, that [RB89] requires to ensure share correctness. In
particular, committees must have a way of securely sending information with correct shared authentica-
tion tags to other committees.

Such a functionality can be accomplished as follows: Suppose the parties in one committee, con-
sisting of parties A1, ..., As, must send information with tags to another committee consisting of parties
B1, ..., Bs. Using [RB89], all 2s of these parties compute a functionality which transfers the data. There
is one input gate for each Aj and one output gate for each Bi. The input from Aj is her share and
authentication/verification tags for the piece of data that the committee {A1, . . . , As} holds. The output
for Bj is her (newly generated) share and authentication/verification tags for this same piece of data,
now held by the committee {B1, . . . , Bs}. This is done such that the new sharing is independent of
the initial sharing. Because the committee sizes are constant, this does not asymptotically increase the
communication or computational complexity.

The protocol Committee-BW must also be modified to work when [RB89] is being used as the protocol
within committees. The only change that needs to take place is in step 5. The Berlekamp-Welch
algorithm cannot be used here since the threshold of corruption (within the committee) is now one half
the committee size. So instead of using Berlekamp-Welch to correctly open that sharing, the parties
simply open the VSS sharing as specified in [RB89].

Denote PMPC-pv’ as the protocol using [RB89] as the inner protocol as discussed. We can therefore
obtain the following theorem.

Theorem 12 For any 0 < δ < 1/2, for n parties and an arithmetic circuit C that is at least Ω(n) gates
wide, the protocol PMPC-pv’ realizes FC with statistical security in the proactive UC model against an
active and adaptive adversary corrupting up to t < δn parties per stage.

34

