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ABSTRACT
We study provably secure anonymity, focusing on ultimate
anonymity - strongest-possible anonymity requirements and
adversaries. We begin with rigorous definition of anonymity
against wide range of computationally-bounded attackers,
including eavesdroppers, malicious peers, malicious destina-
tions, and their combinations. Following [15], our definition
is generic, and captures different notions of anonymity (e.g.,
unobservability and sender anonymity).

We then study the feasibility of ultimate anonymity. We
show there is a protocol satisfying this requirement, but with
absurd (although polynomial) inefficiency and overhead. We
show that such inefficiency and overhead is unavoidable for
‘ultimate anonymity’. We then present a slightly-relaxed
requirement and present feasible protocols for it.

1. INTRODUCTION
Anonymous communication is an important goal, and is also
interesting and challenging. Since the publication of the
first, seminal paper by Chaum [7], there has been a large
research effort by cryptography and security researchers to
study anonymity and develop solutions, resulting in numer-
ous publications and several systems.

Research of anonymous communication is challenging; in-
deed, it is not even easy to agree on good definitions. Much
of the research uses entropy-based definitions, e.g., the prob-
ability of identifying the sender must be lower than some
threshold. Syverson discuss in depth the limitations of this
definitional approach [24], and in particular, the fact that
it fails to capture the capabilities and limitations of the at-
tacker.

Our goal is to study rigorous definitions, capturing the strongest
possible and feasible definitions of anonymous communica-
tion. Following the approach of [24], we focus on well-defined
adversary capabilities, and present a rigorous, indistinguishability-
based definition, considering the strongest-possible adver-

saries and the strongest anonymity requirements

We note that such rigorous study of anonymous communica-
tion, may necessarily involve complex definitions; this prob-
ably explains the fact that with so much research on anony-
mous communication, not many works use rigorous models.
Specifically, our work extends the definitions of Hevia and
Micciancio [15], which are based on an indistiguishability ex-
periment: the attacker chooses two scenarios and the exper-
iment simulates one of them; the attacker should distinguish
which scenario was simulated.

In [15], the adversary was limited, and in particular was
only ‘eavesdropper’ - it could not control any participant, in
particular, not the destination. These limitations are very
significant; in fact, most of the efforts to develop and re-
search anonymous communication, in particular deployed
anonymity systems, focused on anonymity against a (mali-
cious) destination; malicious peers are also often considered.
We extend [15] to deal with such realistic threats.

Our extended definitions allow adversary to control active,
malicious peers and destination. This requires us to de-
fine precise model and experiments. These are (even) more
complex that these of [15]; however, this complexity may
be unavoidable when trying to rigorously study anonymity.
(One obvious challenge for future research is to present sim-
ple models and definitions.)

Dealing with a malicious destination is esp. challenging. In-
deed, many of the anonymity properties considered in the
common terminology of Pfitzmann and Hansen [17–19], e.g.,
unobservability, are trivially inapplicable against a malicious
destination (which can observe received traffic). We con-
clude, that the ‘ultimate’ anonymity, requires the strongest
properties achievable against malicious destination, and in
addition, the strongest properties achievable assuming a be-
nign destination.

Another challenge we had to deal with, is that a strong ad-
versary should be allowed to be adaptive. As with many
cryptographic primitives, there is a significant difference be-
tween adaptive and non-adaptive adversaries (for example
CCA1 and CCA2 encryption schemes [2]), and between pas-
sive and active attackers (for example security against semi
honest or malicious adversaries in multi party computation
protocols [13]). To deal with adaptive and active attackers,
we had to define a simulation model for the tested proto-



cols. This challenge was not relevant or addressed in previ-
ous works [15].

Using our definitions and model, it is possible to formally
prove different anonymity notions with respect to different
attacker capabilities. We define the capability of the at-
tacker by the protocol’s participants it controls, and the
participants to whom it can eavesdrop. Protocols can have
different anonymity notions against different attackers with
different capabilities.

Our definitions and adversary model are bit complex, but
we believe this is the necessary cost of giving rigorous for-
mal definition for different anonymity notions, against wide
range of attackers.

1.1 Contributions
Our main contribution is in presenting rigorous, indistin-
guishability based definitions for anonymous communication
protocols, whose anonymity is assured even against strong,
malicious, adaptive attackers, which may control nodes, pos-
sibly including the destination. Previous rigorous defini-
tions [15] were limited to eavesdropping attackers, not even
ensuring anonymity against the destination; therefore, this
is significant, critical extension.

We actually explore two variants of this definition. The
stronger requirements essentially formalizes the strongest
anonymity considered in the literature, e.g., in the common
terminology [17–19]. We show it is possible to achieve this
variant, albeit, with an inefficient protocol (more a ‘proof
of feasibility’ than a real protocol). We further show, that
this inefficiency is unavoidable, i.e., we prove that any pro-
tocol meeting this variant of the definition, would be very
inefficient. This motivates slightly relaxing the anonymity
requirements, as we do in our second definition. Indeed, we
show that this slightly-relaxed definition can be satisfied,
with reasonable efficient protocols. For example, the clas-
sical DC-net protocol [8] that fails to satisfy the stronger
requirement, does satisfy this slightly weaker requirement.
In the full version, we also present improved protocols, which
ensure this anonymity property even against multiple mali-
cious nodes.

Organization
In Section 2, we formally define the adversary model, and
present our experiment based definition. In Section 3, we
extend the definition to consider also malicious destination.
In Section 4, we discuss the feasibility of the definitions of the
previous section against strong attackers. In Section 5 we
present slightly relaxed definition for some of the anonymity
notions against malicious destination, and in the last section
we conclude and discuss future directions.

1.2 Related Works
There is a huge body of research in theory and practice
of anonymous communication, beginning with Chaum’s pa-
per [7]; see, e.g., a survey of known protocols in [21]. Even
just focusing on the closely related works, focusing on rigor-
ous definitions, would far exceed the length limitations, and
is delegated to the full version. A good overview of related
rigorous works appears in [15], where Hevia and Micciancio

presented rigorous, indistinguishability-based definitions to
most anonymity notions, limited to passive, non-destination
adversaries. Our work extends [15] to deal with strong, ac-
tive, malicious attackers, including destination.

Few recent works extend [15] in different ways, e.g., applying
the UC framework [6] for anonymous communication [25],
and further studying relations among the notions [5, 16].
However, these works do not address our goals of studying
the strongest anonymity notions (against strongest adver-
saries).

The latest version of the common terminology [18] contains
comparison between the terminology to the anonymity no-
tions in [15].

A framework for formalizing and comparing identity-related
properties is offered in [26], however, differently from our
approach, they ignore the confidentially of the messages con-
tent, and therefore cannot capture many of the anonymity
notions our definition captures (e.g., see section 6.2 there).

Other works, offer formal analysis that is limited to specific
protocols. In [1] and [10] the Onion-Routing (OR) [20] pro-
tocol is discussed; the authors present definitions for OR in
the UC framework [6]. In [1] the authors further discuss
the security properties required for OR cryptographic prim-
itives, needed to achieve provable security.

2. DEFINITIONS
Following Hevia and Micciancio [15], we offer definition that
is based on an experiment that simulates protocol run over
some network. We let the adversary choose between two
scenarios. The “relation” between the scenarios is restricted
by the anonymity notion N that is tested in the experiment
and by the capability of the attacker. The adversary con-
trols the scenarios, by controlling the application level of all
the protocol participants: who sends what to whom in both
scenarios. This is done by periodically choosing two matri-
ces of messages, M (0) and M (1), one for each scenario. We
define two experiments. The first simulates the protocols by
the M (0) matrices, and the second by M (1) matrices. The
adversary, that gets information about the protocol simula-
tion by its capability (for example: global eavesdropper gets
all the traffic), has to distinguish between the experiments,
by guessing which world was simulated.

2.1 Network model, adversary and peers
Since our goal is to study anonymity against adaptive and
active attackers, we need a rigorous communication and ex-
ecution model. In this work, we adopt the simplest model:
fully synchronous (‘rounds/iterations’) communication with
instantaneous computation, allowing direct communication
between every two participants (clique).

Peers. We let the adversary control the ‘application layer’
of all peers, i.e., deliver requests to the protocol layer, to
send messages to particular destination(s). In the protocol
layer, the honest peers follow the protocol and are simulated
by the experiment, while the attacker controls the ‘malicious
peers’.



Different peers can have different roles in the protocol; for
example, protocols that use mixes [7, 22] or routers [9] to
assist anonymous communication by other peers, often have
two types of peers: client and mix (or router). The roles of
the participants are determined by the protocol.

Adversary. The attacker controls the application layer of
all the peers. Namely, the attacker chooses, for every peer
and at every round, a matrix of messages (from each peer,
and to each peer). The anonymity requirements are defined
by an indistinguishability game, where the attacker selects
two sets of matrices (for each round) and the game selects
one of them, and the adversary tries to detect which of the
two sets was selected. Different anonymity notions, are rep-
resented by different restrictions on the matrices. In peers
that it controls, the attacker can also deviate arbitrarily from
the protocol (i.e., act in a malicious/byzantine manner).

The power to select the entire sequence of messages to be
sent (the matrices) might seem excessive. However, this
follows the same ‘conservative’ approach applied in experi-
ments of cryptographic primitives such as encryption [3] [2].
As mentioned in [15], in reality, the attacker might have
some influence on the application level of its victims. We
conservatively give the attacker the whole control, as we can-
not predict the attacker’s influence about the application in
different real scenarios.

2.2 Experiment: parameters, notations and se-
curity notions

Notations. We use the following common cryptographic and
mathematical notations: PPT is the set of probabilistic
polynomial time algorithms. For n ∈ N, we use [n] to denote
the set {1, 2, ..., n}. We use P(S) to denote the power set of
set S. Consider two sets, S1 and S2, then S1 ∈ S2* if and
only for every s ∈ S1, s ∈ S2.

We use V = {0, 1}l to denote the messages space. A col-
lection of messages between n parties is represented by an
n × n matrix, M = (mi,j)i,j∈[n]. Each element mi,j ∈ V *
is the multiset of messages from the i-th party to the j-th
party 1.

2.2.1 The experiment parameters: π, n,A and Cap.
The first two parameters of the experiment, π and n, repre-
sent the protocol. π is a PPT algorithm that represents the
tested protocol, and n is the number of participants in the
protocol simulation, n < l(k) when l(·) is some polynomial,
and k is the security parameter of the experiment. To ini-
tialize the parties, e.g., establish shared (or public/private)
keys, we use π’s setup method, which receives the number
of participants n and the identity i of a specific participant
as parameter, and outputs the initial state of i (denoted by
STATE i); this follows the ‘common reference string’ model.
In practice, ths simply means that we assume the parties
have appropriate keys (shared or public/private). The π’s
simulate method receives the current state of a participant,

1We replaced [15]’s notation P(V ) with V *, because a pow-
erset does not contains multisets

together with its incoming traffic and new messages from the
application layer, and returns its next state and its outgoing
traffic.

The last two experiment’s parameters, A and Cap, define
the attacker. A is the attacker PPT algorithm. The Cap
parameter defines the attacker capabilities, and consists of
two sub-parameters, i.e., Cap ∈ P([n])2, which we denote
Cap = (H, EV ). The H parameter specifies the machines
controlled by adversary A, and the EV parameter identi-
fies machines to which the attacker can eavesdrop (e.g., all
machines, for a global eavesdropper). To refer to a specific
parameter of Cap we use the notation Cap[H] and Cap[EV ]
respectively. An attacker with capability Cap = (H, EV ),
controls the machines with indexes in Cap[H] and eaves-
drops the traffic of the machines with indexes in Cap[EV ].

In the next section, we extend the capability to deal also
with malicious destination, by adding to Cap another bit,
Cap[MD]; the definition of this section is the same as that
definition, using MD = 0.

2.2.2 Security notions
Following [15], the unprotected data (the attacker assumed
knowledge), is defined by the functions f∪, fΣ and f# that
map matrices from Mn×n(V *) into V *, Nn and N respec-
tively:

f∪(M)
def
= (]j∈[n]mi,j)i∈[n]

fΣ(M)
def
= (

∑
j∈[n]

|mi,j |)i∈[n]

f#(M)
def
=

∑
i,j∈[n]

|mi,j |

Additionally, we define fT∪ (M)
def
= f∪(MT ) and similarly

fTΣ (M)
def
= fΣ(MT ). For a given function f ∈ {f∪, fT∪ , fΣ, f

T
Σ , f#},

the relation Rf onMn×n(V *)2 is defined by (M (0),M (1)) ∈
Rf if and only if f(M (0)) = f(M (1)).

In the experiment for some anonymity notions N (see Table
1), the attacker should choose two scenarios (as sequences of
matrices) and distinguish between them. To prevent the at-
tacker from distinguishing between the scenarios according
to information that the anonymity notion does not aim to
hide (unprotected data), [15] define for the different anonymity
notions, relations on the scenario’s matrices. Every relation
enforces both the matrices to contain the same unprotected
data. The relations appear in Table 1.

While all of these notions are applicable to our experiment,
in this paper we focus on the strongest relations could be
achieved against the different attackers: unobservability (UO)
and sender anonymity (SA).

The unobservability relation RUO simply holds for all ma-
trices pairs, i.e., does not restrict the matrices at all. The
sender anonymity relation RSA requires that for every (re-
cipient) i, in both the matrices the i-th column contains the



N Notion Definition of RN

SUL Sender Unlinkabilitiy RSUL
def
= RfΣ ∩RfT∪

RUL Receiver Unlinkabilitiy RRUL
def
= Rf∪ ∩RfTΣ

UL Unlinkabilitiy RUL
def
= RfΣ ∩RfTΣ

SA Sender Anonymity RSA
def
= RfT∪

RA Receiver Anonymity RRA
def
= Rf∪

SA* Strong Sender Anonymity RSA∗
def
= RfTΣ

RA* Strong Receiver Anonymity RRA∗
def
= RfΣ

SRA Sender-Receiver Anonymity RSRA
def
= Rf#

UO Unobservability RUO
def
= Mn×n(V *)2

Table 1: Hevia and Micciancio’s [15] table for anonymity variants defines each variant N and its associated relation RN

same messages. Namely, every participant receives the same
messages (the attacker cannot learn information by what the
recipients received). That way, the attacker can distinguish
between the scenarios only by the senders.

2.2.3 The RHN relation
The RN relations are applicable only for passive adversaries.
If the attacker controls a peer in the protocol, it can just
inspect the messages in the peer’s application queue and
check whether they are from M (0) or from M (1). It can
do the same also with the messages that the controlled peer
receives. Consequently, the RN relations, cannot be used for
active adversaries. We address this by defining new relations
family, named RHN ⊆Mn×n(V *)2.

Definition 1. For a given n ∈ N, consider a pair of ma-
trices, (M (0),M (1)) ∈Mn×n(V *)2, H ⊆ [n], and a relation

RN ⊆ Mn×n(V *)2. We say that (M (0),M (1)) ∈ RHN if and
only if

1. (M (0),M (1)) ∈ RN.

2. For every i ∈ [n] − H and j ∈ [n], M
(0)
i,j = M

(1)
i,j =

M
(0)
j,i = M

(1)
j,i = ∅.

The case when messages are sent from honest peers to cor-
rupted, is the case of malicious destination that is discussed
in Section 3. RHN extends the demand of identical unpro-
tected data in both the matrices, to active attackers. Figure
1 depicts the relation.

2.2.4 Experiment additional notations
STATEi is the state of the i-th participant. The experiment
saves and manages the states of the honest participants.

STATEA is the state of the attacker A. The experiment
gets and saves the attacker state after every action of A,
and sends it as a parameter for every action A should do.
The initial information for A is the initial state of the peers
it controls.

We use Ci,j,t to denote the set of the elements (possibly
ciphertexts), that were sent from the i-th participant to the

Figure 1: Example of RHN, for H = [h] ⊂ [n]. (M (0),M (1)) ∈
RHN if and only if (M (0),M (1)) ∈ RN and B0 and B1 con-
tain only empty messages multisets. Notice that (A0, A1) ∈
RN ⊆M|H|×|H|(V *)2.

j-th participants (the participants that are represented by
STATEi and STATEj) during the t-th iteration.

2.3 The Experiment ExptComp−N−b
π,n,A,Cap (k)

The experiment (see Algorithm 1) simulates the protocol,
π, over one of two scenarios that the attacker, A, chooses
and manages adaptively. The simulated scenario is chosen
by the b bit. At the beginning of the experiment, π’s setup
produces a sequence of initial states for all the simulation
participants. The set of the participants’ indexes that A
gets their incoming and outgoing traffic is denote by EV ,
and the honest peers indexes set is denoted by H. Both the
sets are determined by the Cap and n parameters. A is then
initialized with the states of the participants it controls, and
decides the maximal number of iterations that the experi-
ment will run (rounds ∈ poly(k), as A is a PPT algorithm,
and it writes 1rounds).

During the simulation, the attacker receives all the incom-
ing and outgoing traffic of the controlled and eavesdropped
participants. Every experiment’s iteration, begins with an
option for A, to choose two messages matrices, M (0) and
M (1). The experiment verifies that the matrices have iden-
tical unprotected data by the tested anonymity notion, N
(verifies that (M (0),M (1)) ∈ RHN).



If the matrices are valid, the experiment passes only the
messages in the M (b) matrix to the application queues of
the participants and simulates the honest participants by π.
A simulates the participants it controls (unnecessarily by
the protocol).

At the end of every iteration, A has an opportunity to guess
which scenario was simulated. If the attacker does not want
to guess, it just returns NULL into b′. When A chooses
the bit b′, the experiment is ended with the output b′. The
experiment might be ended in returning 0 if the attacker
chooses invalid pair of matrices (6∈ RHN), or after rounds
iterations.

Algorithm 1 ExptComp−N−b
π,n,A,Cap (k)

1: for i = 1 to n do Si←π.Setup(1k, i, n) end for
2: EV = Cap[H] ∪ Cap[EV]
3: H = [n]− Cap[H]
4: < SA, 1

rounds >← A.Initialize(1k, {Si}i∈Cap[H])
5: for t = 1 to rounds do
6: < SA,M

(0),M (1) >← A.InsertMessages(1k,SA)

7: if (M (0),M (1)) 6∈ RHN then
8: return 0
9: end if

10: for all i ∈ H do
11: < Si, {Ci,j,t}nj=1 >←

π.Simulate(1k,Si, {Cj,i,t−1}nj=1, {m
(b)
i,j }

n
j=1)

12: end for
13: < SA, {Ci,j,t}i∈Cap[H]

1≤j≤n
>←

A.Simulate(1k,SA, {Ci,j,t−1}i∨j∈EV )

14: < SA, b
′ >← A.GuessB(1k,SA)

15: if b′ 6= NULL return b′ end if
16: end for
17: return 0

Definition 2. The Comp-N-advantage of an attacker
A that runs with k as a parameter, is defined as:

AdvComp−N
π,n,A,Cap(k) =

|Pr[ExptComp−N−1
π,n,A,Cap (k) = 1]− Pr[ExptComp−N−0

π,n,A,Cap (k) = 1]|

Definition 3. Protocol π is Comp-N-anonymous, when
N ∈ {SUL,RUL,UL, SA,RA, SA*, RA*, SRA,UO}, against
attackers with capability Cap ∈ P ([n])2, if for all PPT algo-
rithms, A, there exists a negligible function negl such that,

AdvComp−N
π,n,A,Cap(k) ≤ negl(k)

2.4 Experiment Run Time is O(poly(k))
The total runtime of the experiment (Alg 1) is critical for
the proof of the anonymity notions. Using our definition, it
is possible to formally prove anonymity notions by a poly-
nomial time reduction to cryptographic primitives. The re-
duction contains simulation of the above experiment, and
therefore its runtime must be polynomial in the security pa-
rameter k.

All the actions during the simulation take O(poly(k)), and
all the loops run for O(poly(k)) iterations: The algorithms

π and A are polytime, and all the other actions in the exper-
iment take constant time. The main loop in the experiment
does no more iterations than the length of a parameter that
A outputs in poly(k) time (during the Initialize method
with 1k as the first argument), such that the loop’s itera-
tions can be bounded by some polynomial in k. The inner
loop does no more than n iterations, and n is poly(k). The
attacker’s total runtime is also polynomial in k, as the at-
tacker’s total runtime is bounded by the experiment’s total
runtime.

3. ANONYMITY AGAINST MALICIOUS
DESTINATION

The Comp-N-anonymity definition of the previous section
covers the following attackers: eavesdroppers, malicious peers,
and any combination of them that controls the application
adaptively. However, due to the restrictions of the RHN re-
lation, the definition cannot be used for testing anonymity
properties when the attacker controls destinations of mes-
sages from honest peers. Such an attacker model is relevant
for anonymous mail services and anonymous web surfing.
Namely, this is the main goal of peer to peer networks like
Tor [9] and services like Anonymizer 2.

In this section we extend Definition 3 to deal also with ma-
licious destination. This extension is relevant only for two
Comp-N-anonymity notions: N ∈ {SUL, SA} (see Table 1).
The other anonymity notions are aimed to hide information
that the destination has, and therefore they are irrelevant in
such an attacker model.

To extend the definition also against malicious destination,
we apply the RN relation also on the messages from honest
peers to malicious. We enforce this new restriction by defin-

ing a new relation, R̂HN. Figure 2 depicts the new relation.

Definition 4. (R̂HN) For a given n ∈ N, consider a pair

of matrices, (M (0),M (1)) ∈ Mn×n(V *)2, a relation RN for

N ∈ {SUL, SA}, and H ⊆ [n]. We say that (M (0),M (1)) ∈
R̂HN if and only if

1. (M (0),M (1)) ∈ RN.

2. For every i ∈ [n]−H and j ∈ [n], M
(0)
i,j = M

(1)
i,j = ∅.

3.1 Comp-N-Anonymity Against Malicious Des-
tination

We extend the definition to deal with malicious destination,
by extending the capability and the Comp-N-b experiment
(Alg 1).

3.1.1 Extending the attacker’s capability
We add a bit MD to the attacker’s capability. This bit
indicates whether the attacker is treated as malicious desti-
nation or not. After the addition, Cap = (H,EV,MD) ∈
P([n])2 × {0, 1}. Like the other Cap’s elements, we denote
Cap’s MD by Cap[MD].

2www.anonymizer.com.



Figure 2: Example of R̂HN, for H = [h] ⊂ [n]. (M (0),M (1)) ∈
RH,τN if and only if (M (0),M (1)) ∈ RN, and B0 and B1

contain only empty messages multisets.

The default value of Cap[MD] is 0, so when testing pro-
tocol’s anonymity notion not against malicious destination,
the capability could be written as before the extension.

3.1.2 Extending the Comp-N-b experiment (Alg 1)
. The messages matrices verification should be done either

by RHN or by R̂HN, according to the attacker capability. The
change is in line 7:

if (Cap[MD] = 0 and (M (0),M (1)) 6∈ RHN) or (M (0),M (1)) 6∈
R̂HN then.

4. FEASIBILITY OF COMP-N-ANONYMITY
AGAINST STRONG ATTACKERS

We say that protocol ensures ultimate anonymity if it ensures
both the strongest anonymity notions we can require from
a protocol:

1. Comp-SA-anonymity (sender anonymity) against ma-
licious destination that is a global eavesdropper and
controls additional participants (in short: strong ma-
licious destination).

2. Comp-UO-anonymity (unobservability) against global
eavesdropper and malicious peers (strong attacking peers).

In order to exclude the trivial solution of the protocol that
does not send any message, we limit the discussion to proto-
cols that ensure the liveness property; informally, protocols
that while the attacker does not deviate from the protocol,
ensure messages delivery.

Stronger property we would like to get is t-liveness; infor-
mally, a protocol satisfies t-liveness if it ensures messages
delivery in the presence of up to t malicious participants.

While ensuring unobservability against strong attacking peers
is almost trivial, it is complicated to ensure sender anonymity
against strong malicious destination and both the demands
together (ultimate anonymity).

4.1 Ensuring Comp-UO-Anonymity Against
Strong Attacking peers

It is possible to ensure any anonymity notion N, against
any combination of malicious participants and eavesdrop-
pers (without malicious destination).

We now present a simple protocol that ensures Comp-UO-
anonymity against strong attacking peers (and therefore en-
sures all the other anonymity notions; see the technical re-
port [11]). In this protocol, every round, every participant
sends a message (real or dummy) to every other participant;
the communication is semantically secure encrypted [3].

As in this protocol honest peers communicate with each
other directly, no information can be learned about the sce-
narios without learning information from the encrypted con-
tent. Formal proof of this protocol could be done by reduc-
ing the Comp-UO-anonymity to the security of the encryp-
tion scheme.

Protocols that ensure Comp-UO-anonymity and yet pro-
vides some anonymity (although not Comp-SA-anonymity;
see below) are DC-net [8] and mixnet [7] based protocols [22]
that use constant rate sending.

4.2 Known Protocols are Not Comp-SA-
Anonymous Against Strong Malicious Des-
tination

None of the known protocols [21] is a Comp-SA-anonymous
protocol against strong malicious destination (especially when
the attacker controls any minority of the participants). In
Theorem 6 we show that such a protocol exists; Theorem 7
shows that any Comp-SA-anonymous protocol against mali-
cious destination that is also global eavesdropper, must have
high overhead.

As example to hardness of the demand, we bring the DC-net
protocol [8] that ensures sender anonymity against the des-
tination by every definition we encountered. We disprove
DC-net’s Comp-SA-anonymity even against passive desti-
nation alone in Appendix A.2. Briefly, DC-net fails to hide
whether two messages are sent by the same peer or by dif-
ferent two peers.

Similar attack works also against a scheme of many peers
that sends via mix or mixes cascade [7]. When the destina-
tion controls also some mixes, other attacks are possible [23].

4.3 Ensuring Ultimate Anonymity Against
Strong Attackers

It was shown that it is feasible for n parties to compute
a polynomially-computable functionality f , without any of
them learning anything but the result of the computation,
even if some minority of them are malicious. This is possi-
ble using techniques of secure multi-party computation [13].
There has been many results in this area, where the most
basic ones are of BGW [4, Theorem 3] with malicious mi-
nority of less than n

3
, and of GMW [14] with any malicious

minority. In Theorem 6 we prove that although none of the
known protocols [21] satisfies ultimate anonymity, there ex-
ists a protocol that satisfies both ultimate anonymity and
t-liveness for every t < n

2
. The proof relies on the GMW’s

theorem [14] (informally in Theorem 5) although for the pur-
pose of feasibility proof, other protocols would be useful as



well.

Theorem 5. (Informal): Consider a synchronous net-
work with pairwise semantically secure encrypted channels.
Then:

For every polynomially-computable n-ary functionality f , there
exists a polynomial time protocol for computing f with com-
putational security in the presence of a malicious adversary
corrupting up to n

2
of the parties. Namely, every party learns

no more than its own inputs and outputs.

Theorem 6. There exists protocol Π such that that:

1. For every t < n
2

, Π satisfies t-liveness.

2. Π ensures ultimate anonymity; i.e., for every S ⊂ [n],

|S| < t, and every PPT attacker A, AdvComp−SA
Π,n,A,(S,[n],1)(k)

and AdvComp−UO
Π,n,A,(S,[n],0)(k) are negligible.

Proof. We presents n-ary functionality that given a trusted
party, satisfies both the anonymity demands of ultimate
anonymity and t-liveness. Relying Theorem 5, this trusted
party can be replaced with the n participants such that
t < n

2
of them are malicious. The functionality is aimed

to send up to some S ∈ poly(k) messages.

For simplicity, we consider a simple scheme of n participants,
such that all the participants send anonymous messages only
to one of them (the destination).

The n-functionality f is described in Algorithm 2. As an
input to the secure computation, every peer chooses the
lexicographically-first message in its application queue (or
a dummy message if the application queue is empty), and as
output the destination receives the lexicographically-lowest
message, and the other peers receives empty output.

f has a state that saves all the real messages lexicographically-
sorted; we refer this state as a priority queue by lexico-
graphic order, PQ. Because the state must be of constant
size (otherwise, the attacker can learn about the number of
real messages that were sent), we choose |PQ| = S, and to
prevent learning from overflows, we limit the number of the
delivered messages by the protocol to S (we could do better,
but for the feasibility proof S is enough). f is polynomially-
computable in the security parameter k (the inputs length
and |PQ| are ∈ poly(k), and the f is polynomial time algo-
rithm).

Our experiment is synchronous, and pairwise semantically
secure encrypted channels can be ensured during the setup
stage of the experiment (Alg 1). Therefore, from Theorem
5 it is enough to prove that a protocol with trusted party
that gets n inputs satisfies both the theorem requirements,
when some minority of the inputs is completely controlled
by the attacker, and the other (the ones that represent the
honest peers) are restricted by the relevant relations.

Algorithm 2 The n-ary functionality f .
State: A priority queue by lexicographic order PQ, and
Counter for the incoming real messages. The initial state of
PQ is an empty priority queue, and Counter starts from 0.
Input: n messages (m1,m2, ...,mn).
Output: We denote the destination as the i-th party; the
output is (o1, o2, ..., oi, ..., on), such that oi is the first mes-
sage in the priority queue PQ (or⊥message if PQ is empty),
and for every j 6= i, oj =⊥.

1: for all message m in Sort(m1,m2, ...,mn) do
2: if m is a real message and Counter < |PQ| then
3: PQ.insert(m)
4: Counter = Counter+1
5: end if
6: end for
7: if PQ is empty then
8: m = dummy
9: else

10: m = PQ.removeHead()
11: end if
12: Output = (⊥)n

13: Output[i] = m
14: return Output

4.3.1 Comp-SA-anonymity against strong malicious
destination

We prove that given any S ⊂ [n], |S| ≤ t < n
2

, and a trusted
party that calculates the n-ary functionality f (see Alg 2),
and that the communication between the trusted party and
the peers is secure, it holds thatAdvComp−SA

Π,n,A,(S,[n],1)(k) ≤ negl(k).

Namely, given n peers, some minority of them is malicious,
a trusted party, and a global eavesdropper malicious desti-
nation that controls the malicious peers, no PPT attacker
A can distinguish between any two scenarios with identical
unprotected data with non-negligible probability.

In the proof we assume the destination of the messages is
one of the malicious peers; otherwise, the proof is as for the
unobservability case.

The only information that the attacker receives is the out-
puts to the (only) malicious destination from the trusted
party. We prove that in every two scenarios with the same
unprotected data, i.e., two scenarios that are represented by

two sequences of messages matrices {M (0)
i }

s
i=1 and {M (1)

i }
s
i=1,

such that for every 1 ≤ i ≤ s, (M
(0)
i ,M

(1)
i ) ∈ R̂HSA, the

information that the attacker gets is identical in both the
scenarios.

Every round of the protocol, the malicious destination re-
ceives one message. We claim that in both the scenarios, it
receives exactly the same messages in the same order. Every
honest peer sends the lexicographically-first message from its
application level that has not sent yet, to the trusted party.
Malicious peers might sends whatever they want. Among all
these messages, the trusted party sends to the destination
the lexicographically-first message. Therefore every round
the message with the lowest lexicographic value (from all
the application messages that have not reached the destina-
tion until this round) is sent to the destination. This hap-



pens regardless the distribution of the application messages
among the l senders, because the lexicographically-first mes-
sage among the messages from the honest peers’ application
level is always sent to the trusted party.

In both the scenarios, due to R̂HSA, every round the same
messages are inserted into the application queue of the hon-
est peers for the destination (the only possible difference is
the distribution of the messages among the honest potential
sender). The peer with the lexicographically-first message
in each scenario will send it to the trusted party.

Because the attacker receives identical information in both
the scenarios, it cannot distinguish between the scenarios.

4.3.2 Comp-UO-anonymity against strong attacking
peers

Similarly to the Comp-SA-anonymity proof, and under the
same notions, we need to prove that AdvComp−UO

Π,n,A,(S,[n],1)(k) is

not negligible in k for any A.

We assume the attacker does not control the destination;
otherwise it is impossible to ensure unobservability. From
Theorem 5, the malicious peers cannot learn more than their
own inputs and outputs. But their inputs are chosen re-
gardless of the honest peers inputs, and by f (Alg 2) the
malicious peers’ output is always ⊥. Consequently, the at-
tacker does not learn any information about the simulated
scenario.

4.3.3 t-liveness for t < n
2

According Theorem 5, Π ensures delivery of S messages
while only some minority of the participants is malicious.
We now prove that any honest peer, can ensure message de-
livery of his own bS

n
c messages. Π ensures the delivery of

the first S messages. Every round, every peer can add one
messages to PQ, therefore in the first bS

n
c rounds every peer

can add bS
n
c messages.

The attacker can limit the honest peers to this number of
messages (the relative share of the peer), and can only af-
fect the delay by sending the lexicographically-lowest mes-
sages.

4.3.4 Remarks on the protocol Π (described in the
proof)

1. Theorem 7 shows that the throughput of any proto-
col that satisfies ultimate anonymity cannot be higher
than the minimal sending rate of some sender.

2. The lexicographic order of the messages in the applica-
tion queues and in PQ is necessary. Let Π′ be identical
protocol, but such that the messages are chosen uni-
formly out of the application queues, and the trusted
party’s priority queue (by lexicographic order) is re-
placed with a multiset of messages, such that the mes-
sage to send is chosen uniformly among the messages
in the multiset.

We consider the following two scenario: In the first sce-
nario, only p1 sends the destination {m1,m1,m1,m2},
and in the second scenario p1 sends the destination

{m1,m1,m1}, and p2 sends the additional m2. Mali-
cious destination attacker can distinguish between the
scenarios by the distribution of the first message that
arrives. In the first scenario, the probability of m2

to reach the destination first is 1
4
, while in the sec-

ond scenario, the probability of the same event is 1
2
.

Consequently, Π′ is not Comp-SA-anonymous against
malicious destination.

4.4 Malicious Destination and Inefficiency
We now prove that the cost of ensuring Comp-SA-anonymity
against strong malicious destination must be low efficiency
(high communication overhead).

We define the number of messages that a peer pi sends in
the first R rounds of a run (scenario) σ of some deterministic
protocol by Li(σ,R).

Theorem 7. For every deterministic protocol, π, if π is
Comp-SA-anonymous against malicious destination that is
also global eavesdropper, then for every run (scenario) of π,
σ and R ∈ N, during the first R rounds of σ:

1. The maximal number of messages that reach the des-
tination is MaxOutσ,R = min{Li(σ,R)|pi is a honest
potential sender}.

2. The minimal number of messages that were sent during
the first R rounds of σ is ComOverσ,R ≥ MaxOutσ,R ·
|{pi is a honest potential sender}|.

Proof. (sketch) Let π be some deterministic protocol
that ensures Comp-SA-anonymity against malicious desti-
nation that is also global eavesdropper. If some participant
pi of π, sends traffic according to the number of messages in
its application queue, a global eavesdropper attacker can de-
tect that, by choosing two different scenarios where pi sends
different amount of messages in its application queue.

Therefore, π’s participants send regardless the messages in
their application queue, and for each participant pi, for every
scenario σ and every R, Li(σ,R) is some constant.

Assume on the contrary that there are some σ′ and R′ such
that MaxOutσ′,R′≥ min{Li(σ′, R′)|pi is a honest potential
sender}. Let Li(σ

′, R′) get minimal value when i = j;
namely, pj is the participant with the lowest Li(σ

′, R′) value.

Let σ′ be described by {M (0)
i }

R′
i=1.

For every M
(0)
i matrix we define M

(1)
i as follows: for every

i ∈ [R′], l ∈ [n], Mi
(1)
j,l = ·∪nk=1Mi

(0)
k,l , i.e., pj sends all the

messages that were sent by M
(0)
i to the same destinations.

Obviously, for every i ∈ [R′], (M
(0)
i ,M

(1)
i ) ∈ R̂HSA.

We now consider the following run of the Comp-SA-b exper-
iment (Alg 1): The attacker simulates the experiment to R′

rounds such that every round it chooses (M
(0)
i ,M

(1)
i ). Dur-

ing the simulation, it acts as a honest participant, but count
the messages that reach the malicious destination in some



counter C. In the end of the R′ rounds, if C > Lj(σ
′, R′)

the attacker returns 0, and otherwise returns 1.

Because π is deterministic, if b = 0 then from the choice of
σ′ and R′, C >MaxOutσ′,R′ = Lj(σ

′, R′), and if b = 1 then
C ≤ Lj(σ

′, R′), as pj sent all the messages. Therefore the
attacker has the maximal advantage (Definition 2), 1, and π
is not Comp-SA-anonymous against malicious destination
that is also global eavesdropper. In contradiction to the
initial assumption.

This proves the first claim of the theorem. The second claim,
derived directly from the definition of Li(σ,R) and from the
first claim.

Similar theorem for probabilistic protocols will appear in the
full paper. An important observation that follows the above
theorem, is that when the peers send independently of each
other (must happen in the case of malicious peers), because
the maximal output is bounded, the number of the messages
in the protocol level increases (and therefore also the used
storage).

The above theorem is for protocols that partially satisfy
the first demand of ultimate anonymity. Against attack-
ers that satisfy the first demand, and for protocols that
satisfy ultimate anonymity, the values of efficiency metrics
like maximal output (MaxOut), communication overhead
(ComOver) and latency, are worse. We will formally state
and prove the above observations in the full paper.

5. INDISTINGUISHABILITY BETWEEN
PERMUTED SCENARIOS

The Comp-SA-anonymity definition against malicious desti-
nation (see Section 3) is very hard and expensive to achieve,
and therefore also ultimate anonymity. The power of mali-
cious destination attacker might seem extremely strong: the
attacker chooses the messages to send, affects their timing,
and in addition is able to receive these messages and learn
information from their arrival times.

This motivates us to create relaxed definition to anonymity
notions against malicious destination. Like the extension to
the definition in Section 3, this extension is relevant only for
two anonymity notions: N ∈ {SUL, SA}.

5.1 Permuted Scenarios
We now present a relaxed relation between the matrices of
the messages sent in the two scenarios. We add a restriction
on the two chosen scenarios: the only difference between
them should be the identities of the senders. We enforce
this new restriction, by verifying that for every pair of mes-
sages matrices (chosen by the attacker), the rows of the first
matrix are some constant permutation of the other.

The same permutation must be used during the whole ex-
periment (we give the attacker to choose it), otherwise some
of the problems of the extension in Section 3 arise again. We
enforce this new restriction by defining a new relation RH,τN

(Definition 8).

Matrix’s rows notation. For a matrix M ∈ Mn×m(V *),

and for H ⊆ [n], Rows(M)[H] is the set of M ’s rows with
indexes ∈ H.

Definition 8. For a given n ∈ N, consider a pair of ma-
trices, (M (0),M (1)) ∈ Mn×n(V *)2, a relation RN for N
∈ {SUL, SA}, H ⊆ [n] and a permutation τ over |H| ele-

ments. We say that (M (0),M (1)) ∈ RH,τN if and only if

1. (M (0),M (1)) ∈ R̂HN.

2. Rows(M (0))[H] = τ(Rows(M (1))[H]).

5.2 Comp-N̂-Anonymity Against Malicious Des-
tination

We denoted the relaxed anonymity notions by N̂. Relaxed
ultimate anonymity is ultimate anonymity (see Section 4),

but with Comp-ŜA-anonymity instead of Comp-SA-Anonymity.
We extend the definition to deal with malicious destination,
almost as described in Section 3.1, i.e., the capability is ex-
tended, and in the experiment (Alg 1), if Cap[MD]=1, the

matrix verification in line 7 is done by RH,τN instead of R̂HN.
Additionally, as A should choose τ , so we add τ to the out-
put arguments of the Initialize method (line 4).

5.3 Feasibility of the Permuted Comp-ŜA-
anonymity

Under the new extension, the DC-net protocol [8] in a ring

topology, ensures also Comp-ŜA-anonymity even against
malicious destination that is also a global eavesdropper that
controls another malicious destination (see Appendix A.3).
In more complex topologies, DC-net ensures anonymity even
against higher number of malicious peers [27] [12]. In spite
of that, DC-net does not ensure t-liveness.

In [11], we present a protocol with communication overhead
O(t3) that ensures relaxed ultimate anonymity when the
attacker controls t <

√
n participants, and also satisfies t-

liveness.

6. CONCLUSIONS AND DIRECTIONS
We presented modular definitions covering multiple anonymity
notions, against a variety of attackers: eavesdroppers, mali-
cious peers, malicious destination and combinations of them.
None of the known protocols [21] satisfies ultimate anonymity,
i.e., sender anonymity against strong malicious destination
and unobservability against strong attacking peers; this mo-
tivates our study of the feasibility of ultimate anonymity.
We proved that there exist a protocol that satisfies ultimate
anonymity and also ensures messages delivery, when the at-
tacker controls a minority of the participants. Because ulti-
mate anonymity implies inefficiency, we offered relaxed def-
inition to anonymity notions against the destination, that
some known protocols like DC-net [8] satisfy.

The first challenge that comes following our work, is to ex-
plore the space between protocols that fail to satisfy the
ultimate anonymity, and the extremely inefficient protocol
(although polynomial) that satisfies it. Namely, to find more
efficient protocols that satisfy ultimate anonymity, and bet-
ter bounds for the efficiency metrics of them. The second



challenge is to find the most efficient protocols that ensure
relaxed ultimate anonymity, esp., together with robustness
requirements.

Another interesting direction is to find bounds for the com-
munication overhead of protocols that satisfy anonymity no-
tions with regarding to the t-liveness property they satisfy.
Finally, it would be interesting to explore the implications
of relaxing the model, e.g., removing the synchronization
assumptions.
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[19] A. Pfitzmann and M. Köhntopp (Hansen). Anonymity,

unobservability, and pseudonymityâĂŤa proposal for
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APPENDIX
A. DC-NET’S COMP-SA-ANONYMITY

AGAINST MALICIOUS DESTINATION
A.1 DC-Net
The dining-cryptographers network protocol [8], is a multi
party computation protocol. The protocol is based on Chaum’s
solution to the dining cryptographers problem: Three cryp-
tographers gather around a table for dinner. The waiter



informs them that the meal has been paid by someone, who
could be one of the cryptographers or the National Secu-
rity Agency (NSA). The cryptographers respect each other’s
right to make an anonymous payment, but want to find out
whether the NSA paid. In the solution, every cryptographer
flips a coin (or a bit) and shows his result (1 or 0) only to the
cryptographer on his left. Now every cryptographer should
publish the XOR of his own bit with the bit of the cryptog-
rapher on his right side. The cryptographer who paid for the
meal (if any) should XOR his result with 1. Now, simply, if
the XOR between all the published bits is 0 then NSA paid
for the meal, otherwise, it is one of the cryptographers. To
send messages of length l, a random bits vector of length l
should be chosen. The protocol can be extended to n peers
in different topologies, the most common is the ring.

A.2 DC-Net is Not Comp-SA-Anonymous
Against Malicious Destination

There is something that the DC-net protocol cannot hide:
whether in a round two participant sent or only one. In the
DC-net, it takes one round to send a message, and only one
participant can send a message in a round (otherwise, there
is a collision).

We now consider the following scheme: the three cryptog-
raphers p1, p2, p3 want to send anonymous messages to a
fourth cryptographer p4 (n = 4). For that purpose, they
run the DC-net protocol in rounds between them, and every
one of them sends his output to the destination. The desti-
nation XORs the three cryptographers output and gets the
message.

We present a malicious destination attacker that has non-
negligible advantage. The attacker works as follows:

1. In the first round, choose two matrices: in the first sce-
nario p1 and p2 send m1 and m2 (such that m1⊕m2 6∈
{m1,m2}) respectively, and in the second scenario p1

sends both the messages (these matrices are legal by

R̂HSA).

2. After the three cryptographers send their first outputs
c1, c2, c3, calculate m′ = c1⊕ c2⊕ c3. If m′ ∈ {m1,m2}
return 1. Otherwise return 0.

A is a polynomial time. And additionally:

AdvComp−SA
DC−net,4,A,({4},∅,1)(k) =

|Pr[ExptComp−SA−1
DC−net,4,A,({4},∅,1)(k) = 1]−

Pr[ExptComp−SA−0
DC−net,4,A,({4},∅,1)(k) = 1]| = 1

Therefore according to the definition of Section 3 DC-net is
not Comp-SA-anonymous. We note that while the destina-
tion does not eavesdrop and does not control some of the
peers, collision detection mechanism might be useful. How-
ever, such mechanisms might hurt the unobservability of the
protocol against malicious peers.

A.3 DC-Net is Comp-ŜA-Anonymous Against
Malicious Destination

We now discuss a scheme of n > 4 participants (n − 1
potential senders and destination pn). We give a proof
sketch that in a ring topology, while the channels are pair-
wise encrypted with secure encryption scheme [3], DC-net

is Comp-ŜA-Anonymous by the malicious destination ex-
tension of Section 5, even against malicious destination and
global eavesdropper attacker that controls additional peer.
Namely, an attacker with capability Cap=({i, n}, [n], 1) for
some i ∈ [n− 1].

We omit here the proof for the following claim: given the
messages that were sent in a round, and given the final out-
put of all the participants, it is impossible to learn something
about the senders identity (unconditional anonymity). This
claim holds even if one participant is malicious: i.e., tell the
malicious destination what he sent and received [12, Ap-
pendix A]. In a ring topology (of more than three peers),
for breaking some peer’s anonymity, there is a need in both
the peers on its sides [27].

Following the above claim, it is enough to prove that if the
attacker cannot break the encryption scheme, for every two
scenarios with the same unprotected data, in every round
in both the scenarios the same messages are sent (scenarios
with the same unprotected data are defined by two matrices

sequences {M (0)
i }

s
i=1 and {M (1)

i }
s
i=1, such that for every 1 ≤

i ≤ s, (M
(0)
i ,M

(1)
i ) ∈ RH,τSA for some permutation τ over |H|

elements).

But by the RH,τSA relation, in every round, when pj sends m in
the first scenario, then pτ(j) sends m in the second scenario,
and therefore the messages that are sent are identical for
every round in both the scenarios.

Hence, the attacker cannot break the anonymity without
breaking the encryption scheme for learning additional infor-
mation. Formal proof could be done by reducing the Comp-

ŜA-anonymity to the security of the encryption scheme.


