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Abstract

Koblitz curves are a class of computationally efficientpiti curves where scalar multiplications
can be accelerated usin®NAF representations of scalars. However conversion frorimger scalar to
a shortrNAF is costly and thus restricts speed. In this paper we ptesmeceleration techniques for the
recently proposed scalar conversion hardware based ogiativiby 72. Acceleration is achieved in two
steps. First we perform computational optimizations taisedthe number of long subtraction operations
during the conversion of scalar. This helps in reducing thmlper of integer adder/subtracter circuits
from the critical paths of the conversion architecture.Ha second step, we perform pipelining in the
conversion architecture in such a way that the pipelineestage always utilized. Due to bubble free
nature of the pipelining, clock cycle requirement of the \e@msion architecture remains same, while
operating frequency increases drastically. We preseailddtexperimental results to support our claims

made in this paper.

. INTRODUCTION

Elliptic curve cryptography (ECC) is the modern standamdafeymmetric key cryptography as
it provides more security per key bit compared to other asginimkey cryptography standards.
Security in ECC based cryptosystems is based on the diffiafltsolving discrete logarithm
problems over the elliptic curve groups (ECDLP). Elliptieree scalar multiplication is the soul
of any ECC processor. In scalar multiplication, a pathtn an elliptic curve is multiplied by a
large scalalk to getkP. The standard way to perform scalar multiplication is to theedouble

and addalgorithm [1], [2], [3] where, point doubling operationsegperformed for every key bit
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and point additions are performed for every nonzero keyBwoth point addition and doubling
operations are computation intensive due to the presermangpblicated finite field operations. As
the number of point additions is determined by the Hammingykteof the scalar, computation
time of the scalar multiplication depends on the scalddumerous works are present in literature
on improving the scalar multiplication time by applying iars acceleration techniques such
as efficient representation of scalars, optimization oipedl curve group operations, use of
projective coordinate systems, and use of special compntiiendly class of elliptic curves etc.
Architectural optimizations depending on the implemeataplatforms add further acceleration
[4], [5]. [6], [7].

Koblitz curves [8] are a special class of elliptic curves,enhthe Frobenius endomorphism
can be utilized to represent an integer scalar im-aadic form. With this special type of
representation of a scalar, costly point doubling openstare replaced by cheaper point squaring
operations. Solinas extended the work and propaseadic non-adjacent-form known atNAF
[9]. However, the length of both—adic andrNAF representations of a scalar are almost twice
the length of a binary representation of the integer scilarease in the length (thus increase
in the number of point additions) becomes a negating faatoaghieving the acceleration
offered by the Frobenius endomorphism. Length reductidreses were first introduced by
Meier and Staffelback in [10] and were later improved by &adi in [9]. The length reduction
algorithms proposed by Solinas are efficient on softwarefglas, but are not amiable to
hardware implementations due to the presence of multiigioec integer multiplications and
divisions.

On the hardware side, very few research work exists in tiieeaon designing efficient scalar
conversion algorithms. In [11], [12], the conversions aef@rmed in a software processor,
while only the scalar multiplications are performed on datéd hardwares. Such an approach
is well suited when the scalar multiplier architecture masIHowever, the present speed records
for scalar multiplications on hardware platforms have msuleh an approach a bottleneck [13],
[7]. The first hardware implementation of conversion amttiire was presented in [14]. In [15],
[16], the implementations of Koblitz curve processors k#epconversion units in the hardware
along with the scalar multipliers. Still the hardware vers of the converters are slow and have
a large area count.

Brumley and Jarvinen in [17] proposed efficient conversamohitecture for hardware plat-



forms. Their algorithm repeatedly divides the scalar7oyor m number of times infy. to
generate the length reduced scalar. Due to its sequentialendahe authors call the algorithm
lazy reduction The algorithm uses only integer addition/subtraction anifting operations. No
multi-precision divisions or multiplications are used.eTéuthors present a hardware architecture
for the lazy reduction [17] and then reuse the architectugenerate theNAF from the reduced
scalar.

An accelerated version of the lazy reduction, known agithéble lazy reductiomwas proposed
in [18] by Adikari, Dimitrov, and Jarvinen. The authors ebge that division by-? is also cheap
on hardware platforms. Repeated divisionsrByare used instead of divisions byto reduce the
number of iterations fromn to nearlym /2 in Fy.. Similar to [17], the hardware architecture for
reduction is also reused to generate tiMAF from the reduced scalar. As divisions by are
performed, the hardware architecture is able to generatectwmsecutiverNAF digits in every
clock cycle.

In this paper we propose acceleration techniques for thelddazy reduction algorithm [18].
We observe that several addition and subtraction opesatian be eliminated during the scalar
reduction and theNAF generation operations. Subtraction or addition of thezero remainders
are replaced by alteration of the low order bits in the op#saruse of one’s complement
of the operands and by considering borrow/carry inputs iotragter and adder circuits. We
eliminate unnecessary subtractions from zero using iergiroperty of the conversion steps.
Such optimizations help in reducing the number of integateachnd subtracter circuits from
the critical paths of the conversion architecture withoifécing the clock cycle requirement.
With the proposed acceleration techniques, we achieveowepnents in the computation time
by atleast 12.5% and 17.9% compared to [18] for the fidlgls: and Fy2s: respectively

Next we perform efficient pipelining in the proposed coni@rsarchitecture. Using the itera-
tive property of the conversion steps, we pipeline the cmsiga architecture in such a way that
the pipelined stages are always utilized. Due to bubbleriegare of the pipelined architecture,
almost no clock cycles are wasted to satisfy the data deperetebetween different pipeline
stages. Our pipelined conversion architecture achievesdeation by 35.5% and 40% compared
to [18] for the fieldsFiy23s and Fihess respectively.

The organization of the paper is : Section Il has a brief mattiecal background on the

Koblitz curves and scalar conversion techniques. In Sedlilp computational optimizations



for the double lazy reduction algorithm are discussed.i@edl/ shows optimizations during

the TNAF generation process. A hardware architecture for théasanversion is designed
in Section V. Efficient pipeline strategy for the conversemchitecture is presented in Section
VI. The section also describes a two stage pipelined athite for the conversion hardware.

Experimental results are presented in Section VII. The fseation draws the conclusions.

[1. PRELIMINARIES

The Koblitz curves are a class of binary field elliptic cunae®l are of the following form.
E, :y*+ay = 2°+a-2°+1, ac{01}

An elliptic curve group over a binary field,~ is the union of all pointsP(z,y) satisfying
the curve equation and the point at infini€). We denote the group by, (Fy-). The group
operations are elliptic curve point addition and point dowp In scalar multiplication, a base
point P(x,y) on an elliptic curve is multiplied by an integer scalar Scalar multiplication
can be performed using the well knowdouble and add algorithnfil] which uses the elliptic
curve group operations (point addition and doubling). Claxipy of the scalar multiplication is

determined by the number of group operations required.

A. Frobenius Endomorphism

On Koblitz curves, the Frobenius map can be applied to rethiearumber of elliptic curve
group operations significantly during scalar multiplicat. The Frobenius map: E,(Fon) —
E,(Fym) is defined below.

7(0)=0,  7P(z,y)=Q(z* vy

Application of the mapr on any pointP squares the coordinates and gives another pQint
on the curve. Computing the Frobenius map is an easy operasiat involves only squaring,
which is cheap over binary fields [1], [19]. The map operateatisfies the relation® +2 = pur,
wherey = (—1)'~* depends on the elliptic curve.

Ring of polynomials int with integer coefficients is denoted [#/r]. For any polynomial
w T+ u T +ug € Z[7) with u; € {0, 1}, and any base poin® on a Koblitz curve, we

see the following relation.

[ ™ 4w P = [u T TP A [ug) P (1)



In the above equation, the base paintis multiplied by a scalar which is an element Bfr|.
The scalar multiplication involves only point addition apdint squaring operations. No point
doubling operations are required.

Solinas in [9] proposed algorithms to convert integer gealato polynomials int with
coefficientsu; € {0,1} (r—adic form). He also showed that number of point additions can
be reduced using non-adjacent form which is known as7iAF of a scalar. Calculation of
the TNAF from a scalar requires iterative divisions by Here are two theorems related to the

division by 7.

Theoreml : Any elementa = (dy + dy7) € Z[7] is divisible by 7 if and only if d, is even.

The result of the division when stored {dy, d,), becomes

(do, d1) — (pdo/2 + dv, —do/2).

Theorem2 : Any elementa = (dy + di7) € Z[7] is divisible by 7% if and only if

do = 2d; (mod 4). The result of the division when stored (t,, d;), becomes

(do, dv) < ((—do + 2udy) /4, —(udo + 2dy) /4).

B. Length ofrNAF and Reduction Schemes

The lengthl of the TNAF (or 7—adic) for any integer scaldr is approximately2logsk, which
is almost double the length of the binary representatiomefsicalar. Expansion in length of the
TNAF increases the number of point additions during scaldtiphication and thus restricts the
acceleration achieved using the Frobenius endomorphism.

Length reduction schemes proposed by Solinas in [9] aredb@se¢he observation that™ —

1)P(z,y) = O. For any scalak, one can get the following relation.
E=Xr"—=1)+~

Thus, for any pointP(z,y) on the Koblitz curve, we havéP(z,y) = vP(x,y). In the length

reduction scheme [9], an integer scalais first reduced td: (mod §), wherej = 1 and

7—1

TNAF is generated from the reduced scalar. The maximum lenftine 7NAF generated is

m + a in Fyn. Computation of the reduced scalar involves multi-precisnteger division. In



another reduction scheme [9], scalar is partially reduceabid multi-precision integer division
at the cost of multiplication. Since multi-precision dieis and multiplication operations are

complicated, implementations of the conversion algorglon hardware platform are inefficient.

Algorithm 1: Double Lazy Reduction
Input: integerk

Output: reduced scalay

1 begin
2 (ao,a1) < (1,0), (bo,b1) < (0,0), (do,dr) < (k,0)
3 for i =1to (m —1)/2 do
4 u «— (do — 2d1) mod 4
5 ug «— u mod 2, ui — |u/2]
6 do — do —ug, di — di —u1
7 (do,d1) — ((=do + 2ud1)/4, —(pudo + 2d1)/4)
8 if w> 0 then
9 bo < (bo + uoao — 2uiay)
10 b1 — b1 +uopar + ui(ao + par)
11 end
12 (ao,a1) < (—2(ao + pa1), pao —ai)
13 end
14 if do = 1(mod 2) then
15 w1, dop «—do—1
16 (bo, b1) — (bo + ag, by + a1)
17 end
18 (do, d1) « (pdo/2 + di, —do/2)
19 v+ (bo +do, b1 + d1)
20 end

In [17], Brumley and Jarvinen presented tlagy reductionalgorithm, where the scaldr is

repeatedly divided by for m number of times to get the following relation.
k= (do+dim)™™ + (b + b17)
= (do+di)(T™ = 1)+ (by + do) + (b1 + dy)T
= N1 —=1)+7

The authors use as the reduced scalar and show that th&AF generated fromy has length
at mostm + 4 in Fywm. Since division byr is a simple operation (Theorem 1), the algorithm is

suitable for hardware platforms.



In [18], Adikari, Dimitrov and Jarvinen proposed an accated version of the lazy reduction
which is called thedouble lazy reductionThe authors observe that division by is also easy
to perform (Theorem 2). In the double lazy reduction, thelascis iteratively divided byr?
for (m — 1)/2 number of times. At the end, one division byis performed to obtain the
reduced scalar. Clock cycle requirement for the scalarateslu scheme reduces to nearly half
compared to the lazy reduction. The computational stepardbuble lazy reduction are shown
in Algorithm 1. We advise the readers of this paper to stu@ydbuble lazy reduction algorithm

from [18], as this will be helpful to understand the accelieratechniques proposed in our paper.

[1l. 1 MPROVED REDUCTION ALGORITHM

In this section, we propose computational optimizatiomstie double lazy reduction algorithm
to reduce the number of long addition and subtraction oeraturing the scalar reduction steps.
Improvements are achieved following the steps discussknvb&hroughout the discussion we

considery = —1. Similar techniques can also be applied whes 1 (shown in the appendix).

A. Elimination of Long Subtractions for Nonzero Remainders

In line 6 of Algorithm 1, remainders, andu; € {0, 1} are subtracted from, andd;. We
observe that the subtractions aasyin some cases. For example, whén= 1 (mod 4) and
2d; = 0 (mod 4) (i.e. ug = 1 andu; = 0), the subtraction of., from d, is equivalent to
changing the least significant bit @f, from 1 to 0. Hence, in this case the long subtraction
can be replaced by a bit alteration. However, when carry ggapons are involved with long
subtractions, alteration of few specific bits do not work agplacement. For example, when
do = 3 (mod 4) and2d; = 0 (mod 4) (i.e. whenuy, = 1 andu; = 1), a long subtraction appears.
Use of signed remainder sef andu; € {0, +1} helps to a certain extent in eliminating the long
subtractions of nonzero remainders for such cases. Tablewsshow the signed remainders are
generated during the reduction steps depending on the l®wobil, and2d;. It can be noticed
from the table that, except Case 4, subtractions ofusthendu, from dy andd; involve no carry
propagation and thus can be replaced by alterations of théits in d, and d;.

For Case 4, if we perform the subtractionwgf= —1 in line 7 of Algorithm 1 instead of line



TABLE |

SIGNED REMAINDERS DURING REDUCTION OF SCALAR

Cases| do (mod 4) | 2d1 (mod 4) | uo | w1
1 0 0 0 0
2 1 0 1 0
3 2 0 0 —1
4 3 0 -11 0
5 0 2 0 1
6 1 2 -1 0
7 2 2 0 0
8 3 2 1 0

6 (i.e. we putd, + 1 in place ofd,), then we have the following observation.
_2d1 -+ (do -+ 1)

do 4
2d, — (d, 1
d1 <— ——dl (40 + )

This is equivalent to taking carry/borrow inputs in the adsigbtracter circuits during the
computations ofl, andd;. This is shown below.

2dy + dy + (Carry input = 1)

do 1
2d; — dy — (Borrow input = 1)
d1 — - 4

From the observations presented in this subsection, we thawconclusion that the long
subtractions of the nonzero remainders can be eliminatechbyging the low order bits af,

andd; or by considering carry/borrow inputs to the adder/sulbéracircuits.

B. Elimination of Subtractions from Zero

In line 7 of Algorithm 1, a subtraction from zero is requiremt f/, after computing2d; + d,
(Equation 2).

2dy +dy  2dy — do)
4 7 4

(do, dl) — ( (2)



We eliminate the subtraction from zero using the followimpeme. Instead of Equation 2, we

compute Equation 3.

2d; + do 2d; — dy
4 7 4

The results from Equation 2 and 3 have opposite signs, bug saagnitudes. So, when Equations

(do,dr) «— ( ) (3

2 and 3 are applied iteratively for an even number of timesyésults of the equations are same.
For an odd number of iterations, the results only have op@@sjns.

We use the iterative property (for-loop) present in the otidn algorithm to eliminate the
subtractions from zero. We replace the computation in lin®y Equation 3. Thusd,, d;) has
wrong sign after any odd number of iterations and correct after any even number of iterations
of the for-loop. The loop iterates farn — 1)/2 number of times. So, whefm — 1)/2 is odd,
only one subtraction from zero is required at the end to m@ked;) of correct sign. We can
also compensate this subtraction in line 18 or 19 by perfognsubtractions in place of additions
or vice-versa.

The same trick is applied to eliminate the subtractions fe®ro during the computation of

(ap,ap) in line 12 of Algorithm 1. Instead of computing Equation 4

(ao,a1) < (—=2(ap — a1), —(ao + a1)) 4)

we compute Equation 5.

(ao, a1) « (2(ap — a1), (ao +a1)) ()

After completion of the for-loop, one subtraction from zé&aequired to make the signs correct
for (ap, a;) when(m —1)/2 is odd. This subtraction from zero can be eliminated if we pota

Equation 6
(50, bl) — (bo — ag, by — al) (6)

in line 16 of Algorithm 1.
Since the remainders are generated by observing the low bitdeof d, and d; (Table 1),
use of (dy, d;) which has wrong sign should be justified for the correctndsthe reduction

algorithm. Let after any odd number of iterations of the lfmyp in Algorithm 1, we have the
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pairs (a; o, ai1), (bio,bi1) and(d;o,d;1). Since wrong sign is assigned {d, o, d; ;) after any

odd number of iterations, we have the following relation.
k= _(di,O + Tdi71)7'2i + (bi,o + Tbi,l) (7)

In the next iteration, remaindets andw; are generated frond, , andd; ; (instead of the correct
values d;, and ;). If (di;10,di11,1) are the quotients after the division by, then we have

the following relation betweel\d; o, d; 1) and (d; 11,0, dis1.1)-
(dio + 7di1) — (uo + Tur) = —(dig1,0 + Tdi+1,1)72 (8)
After plugging in Equation 8 in Equation 7, we get the follogiequation.
k= (diy10+ 7diz11)7 2 — (ug + 7ur) 7 + (bip + 7bi1) 9)

From Equation 9, we find that the actual remainders(are,, —u;). Interestingly, after any odd
number of iterations, wrong sign is also assignedd@ a;). So, we have(a;g,a;;) = —72.
Since, both(ug,u;) and (ag, a;) are of same sign in any iteration, computation(&f, b;) is

insensitive to the wrong sign of operands. This,, o, b;11,1) has the following relation.
(bit1,0, bit11) «— (uo + Tur)(@io + 7a;1) + (bio + 7bi1)

This justifies correctness of the proposed reduction algoriduring assignment of wrong sign
to the variablegdy, d1) and (ag, a1).

Throughout this section we have discussed how the numbeoraf kddition/subtraction
operations can be reduced during the scalar reduction. Slepgproposed improvements over the
double lazy reduction are described in Algorithm 2. We se ¢imly one addition or subtraction
operations are performed during the computationg,ptl;, ag, a; andb, in every iterations. For
b, at most two addition/subtraction operations are perforper iteration. Thus, if implemented
on hardware platform, critical path contains only one atidatracter circuit of widthn + 1 bit.

In the previous reduction architectures [17], [18], catipaths are through two cascaded adder
and subtracter circuits of data width+ 1. Since integer adder and subtracter circuits have large
delay due to carry propagation, removal of such circuitenfraritical paths help in improving
the delay of conversion architecture.

In the next section, we further look intaNAF generation algorithm and discuss how long

subtractions of nonzero remainders can be eliminated gluheTNAF generation steps.



Algorithm 2: New Reduction Algorithm

Input: integerk

Output: reduced scalay
1 begin

2 (ap,a1) « (1,0), (bo,b1) < (0,0), (do,d1) < (k,0)

3 /* Iterative divisions byr? start here */

4 for i =1to (m —1)/2 do

5 u — (do — 2d1) mod 4

6 (ug,u1) « Table 1

7 (do,d1) < Alter LowBits(do, d1)

8 if Case 4 is True then

9 (B,C) «— (1,1) I* Borrow and Carry Inputs */

10 end

11 else

12 (B,C) « (0,0)

13 end

14 (do,d1) < ((2d1 + do + C)/4,(2dr — do — B)/4)
15 if w> 0 then

16 bo < (bo + uoap — 2uiay)

17 by — (b1 + uoa1 + ui(ag — a1))

18 end

19 (ap,a1) < (2(a0 —a1), ap + a1) ;

20 end

21 [* Iterative divisions byr? finish here */
22 if do = 1(mod 2) then

23 do <« Alter LeastBit(do)

24 if =1 = 0(mod 2) then

25 (bo,b1) — (bo + ao, b1 + a1)

26 end

27 ese

28 (bo, b1) «— (bo — ag, b1 — a1)

29 end

30 end

31 (do,dy) — ((2d1 — do)/2,do/2) I* Final division by 7 */
32 if =L = 0(mod 2) then

33 7y + (bo +do, b1 —d1)

34 end

35 ese

36 v+ (bo — do, b1 +d1)

37 end

38 end
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TABLE Il

NAF GENERATION FORy = —1

Cases| do(mod4) | 2di(mod4) | do(mod8) | 2di(mod8) | ro | m1
1 0 0 0 0
2 1 0 1 0

3.A 2 0 2 0 0 1
3.B 2 0 6 0 0 —1
3.C 2 0 2 4 0 —1
3.D 2 0 6 4 0 1
4 3 0 —1 0
5A 0 2 0 2 0 1
5.B 0 2 4 2 0 -1
5.C 0 2 0 6 0 -1
5.D 0 2 4 6 0 1
6 1 2 —1 0
7 2 2 0 0
8 3 2 1 0

V. IMPROVED DOUBLE DIGIT TNAF GENERATION

In [18], two consecutiverNAF digits are generated in a single step from the reducelhrsca
doy + 7d; by performing divisions byr?. The authors call the NAF adouble 7NAF. Table Il
shows how the consecutivéNAF digits v, andr; are generated by observing the low order bits
of dy andd;. Similar to Section Ill, we eliminate the subtractions ohmero remainders from
dy and d, during therNAF generation process.

From Table Il, we see that for the cases 2, 3.B, 3.C, 3.D, 5B,,%D, 6 and 8, the subtractions
of nonzero remainders fromh, or d; affect only the low order bits ofl, andd,. For the above
cases, the long subtractions are replaced by cheaper dnatabins ind, andd;. Subtraction of
ro = —1 in Case 4 in Table Il can be handled in the same way we did foe @as Table |
(Section IlI-A).

In Case 3.A, the subtraction of = 1 from d; involves borrow propagation and thus may
affect all the bits ofd,. If we incorporate this subtraction in the next step wherepggorm

the division by72, then by puttingd; — 1 in place ofd; in Equation 2, we have the following



13

observation.
2(dy — 1) +dy  2(dy — 1) —do

(do,dy) — (~=m T )
(2 (4d0 —2) _2di- (4d0 +2), (10)

Thus we find that the subtraction of from d; is equivalent to the addition or subtraction of
two with dy. As dy = 2 (mod 8), the subtraction or addition of 2 changes only the three low
bits of dj.

In Case 5.C, the subtraction of = —1 from d; involves carry propagation. When we put
d, + 1 in place ofd; in Equation 2, we have the following observation.

2(di+1)+do 2(di+1) - do)
4 ' 4
2dy — dy 2d; + do)
4 ’ 4
So, using one’s complement df in Case 5.C, we eliminate the long subtraction-pfrom d;.

(do,dr) « (

—

(11)

Computing one’s complement in hardware platform is easyllathe bits of d; can altered in
parallel.

Algorithm 3 describes the steps of the nelNAF generation technique. Only one addition or
subtraction operations are performed &ynandd; during division by7? in any iteration. Thus,
for the TNAF generation part of the scalar conversion, presence bf @me adder/subtracter

circuits in the critical paths ofl; andd, is sufficient.

V. HARDWARE ARCHITECTURE

The hardware architecture for performing scalar convarsising the proposed acceleration
techniques is shown in Figure 1. The architecture is coasdufor the curve parametgr= —1.
Similar to [17], [18], our conversion architecture is desd to be used for the scalar reduction

and the double digitNAF generation. Such resource sharing helps to keep thgrdesmpact.

In any iteration of Algorithm 2 and 3, the variables, ai, by, b1, dy and d; have data
dependencies on their values in the previous iteration.sBwage registers are used in the
architecture for each of the variables. Data paths of thebis are kept in parallel to each

other as there are no immediate data dependencies betwaranrthany particular iteration.
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Algorithm 3: New 7NAF Generation Algorithm

Input: Reduced Scalay = dy + 7d;
Output: TNAF(7)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 end

end

1 begin

2 S — <> /* Used to storerNAF */

3 Sign «— 0 /* Used to keep sign ofdo, d1) */

4 while dp # 0 or d1 # 0 do

5 (ro,m1) < Table 2

6 (do,d1) < Alter LowBits(do,d1) in Section IV

7 (B,C) < (0,0) * Borrow and Carry Inputs */
8 if Sign =1 then

9 (ro,r1) < (=70, —71)

end
Prepend (r1,70) to S /* TNAF digits */
if Case 4 True then
(B,C) — (1,1)
end
if Case 5.C True then
(do,dr) — (2e, 2ke)
Sign — Sign
end

ese

2d+do+C 2d;—do—B
(do,d1) — ( 1+4o+ , 24 40 )

Sign «— 1 & Sign
end

The componenBit Alteration and Remainder Generatiog a combinational circuit which

scans the low order three bits d§ and two bits ofd,. Remainder digits are generated as per

Table | and Il during the reduction and th&AF generation phases of the scalar conversion.

This component also performs the subtractions of the noneemainders fromd, and d,

using the bit alteration technique discussed in Sectioramid V. Input signalmodeis used

to distinguish between the scalar reduction andtNAF generation phases of the conversion.

After a subtraction ofug from d, as bit alteration, two different outputg# Al and dy#A2

are generated for the two different data paths through AlAghddder/subtracter circuits. This

happens because of Case 3.A in Table I, where 2 is subtractgddded for the two different

data paths through A1 and A2 respectively.
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Mux Select Add/SubCarry in for-loop iteration control
d, #Al
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Fig. 1. Koblitz Curve Scalar Conversion Architecture foe= —1

A finite state machine (FSM) is used to drive the conversian\ware according to Algorithm
2 during the scalar reduction and Algorithm 3 during the deubgit TNAF generation parts.
During the reduction phase, all data paths in the convetsodware remain active. A counter is
used to perform division by? for (m — 1)/2 number of times. After completion of the iterative
divisions by 72, the FSM moves to the state where only one divisionrhbig performed. In the
next state, the final step of reduction (Line 33 or 36 of Alton 2) is performed using the data
paths ford, andd;. The reduced scalar is kept il andd;.

After completion of the scalar reduction, the FSM moves ®dbuble digitrNAF generation
state. During this process, only the data pathsdfpand d; remain active. The sign af, and
d, are taken into account in a one-bit registégn (Algorithm 3). When the sign ofl, and d;
are correct, the remainders generated byBHeAlteration and Remainder Generatiamit are
the two consecutive NAF digits. For, the other case, sign of the remainders asnghd and

then expressed as the two consecutiAF digits.
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A controller is used to generate the control signals for tldtiplexers and the adder/subtracter
circuits. The control block also generates the carry andooinputs for the adder/subtracter
circuits A1 and A2 when required. In the figure, T1 and T2 arecsy categories of multiplexers
which producer, z andy from the inputsz andy as per equatiof(z & s¢) - s1)|(y - s1) when
the selection inputés,, s¢) are 00, 01 and 10 respectively. For LUT base FPGA platforhis, t
special construction for T1 and T2 achieves better LUT zdtion [20] and thus saves area. The
counter circuit is used to calculate the numberr&fAF digits generated. Completion of the
TNAF generation is indicated when + 4 number ofrTNAF digits are generated.

The critical path of the conversion architecture is indechby the dotted line. The delay of
the architecture is determined by a single+ 1 bit integer adder/subtracter circuit present in
the critical path. Since the integer adders are slow, eviar #ie computational optimizations
mentioned in this paper, the proposed conversion archiealo not match the speed of the
binary field primitives used in a Koblitz curve processor. imorease speed of the conversion
architecture, we implement pipelines in the conversiomigcture. The next section discusses
how pipeline helps in achieving high operating frequencyhaut affecting the clock cycle

requirement.

VI. PIPELINING THE CONVERSION HARDWARE

When we integrate the conversion architecture with therlifield primitives of a Koblitz
curve scalar multiplier, large delay of the integer addestricts the operating frequency of the
scalar multiplier. Use of faster adder circuits increasgiency at the cost of area. However for
long operand size, such adders are also slower compareé tartary field primitives specially
when pipelining is applied over the field primitives. It sheibe noted that pipelining is a
common practice in designing fast elliptic curve scalartipliers over binary fields [21], [22],
[23], [6]. In this section, we propose a solution to this gesb by applying pipeline strategy in

the conversion architecture.

A. Pipelining Iterative Addition and Subtraction Operat

The central operations in the scalar conversion hardwareadditions and subtractions. To
pipeline the conversion hardware, we focus on pipelinirggatidition and subtraction operations

in every iterations. Before pipelining the complicated wension hardware, we discuss pipelining
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of the iterative addition and subtraction operations witsiraple example. Let two variableg

andc; have some initial values and are later updated iterativelpex the following equations.

Co < Co+Cl

Cl < Cy—(C (12)

Let the data width for botl, andc¢; are maximumm. Thus, to perform iterative addition and
subtraction operations as per the above equations, one addene subtracter of width bits
are required. The two stage pipelined architecture for agatmn of ¢, and ¢; is shown in
Figure 2. The adder and subtracter circuits are split in tquaéstages of widthn/2 by putting
registers in the carry and borrow propagation paths.

GolMa:My] CylMs:My] | Gy 20] G[me:0]

__________ - ==
i
i

i Y :
Dreg ¢, [ms:my| D reg c,[m:0]] :: preg C.[ms:my]] : preg ¢, M 0]]

[I SEEEEE U SEE S 2
| Stage 2 5 Stage 1 I : Stage 2 , Stage 1 |
- __.

Data path for Cq Data path for C;

m=m/2-1 m,=m/2 m=m -1

Fig. 2. Two stage pipelined data path for iterative additonl subtraction

Computations in the stage 2 have data dependencies on te ktay the carry and borrow
outputs from the stage 1. Due to this dependency, compuotatiothe stage 2 are delayed by
one clock cycle. Timing diagram of the computational stepghie two stages are described
in Figure 3 for the first five clock cycles. Iteration numbers &dicated by the superscripts.
Computations in the stage 1 and 2 run in parallel in any clgckec(except the first one). As per
the timing diagram, first four iterations of the consecutagglition and subtraction operations
complete after the fifth clock cycle. It is straight forwaml anderstand that fof number of
iterations (Equation 12), the two stage architecture takesl clock cycles. In comparison, a

non-pipelined architecture takédsnumber of clock cycles to finisth rounds. The advantage of
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the pipelined architecture is in the reduction of overalagieby half (ideally) compared to the
non-pipelined architecture at the cost of only two flip-flaged one clock cycle.
Clock Cycle

1 1 2 1 3 1 4 | 5
| 1 ‘ ‘ ‘
1 C[My:0]™

I Cymyo)t ‘ | o :
it S 5 ! 'Computations in Stage 1
—l : : :
Locm,i012 !
" cim,:0]° |

¢ my:op3 | :
— cymuo? |
| n - Cam;i0t | |
P ColMg:my]™ | 0 cimy:0®
P imgmy : P ——
i co[m3:m2]2}
I CIMyim,)2! |
| Colmyim,13 |
| CyiMgimyp3 !
— ol Mg M4 |

i Cmy:015
—

' Computations in Stage 2 :

i C1[m3:m2]4i

Fig. 3. Timing diagram of the two stage pipelined data pathitiErative addition and subtraction

B. Pipelining the conversion architecture

We apply the same concept in pipelining the conversion harewHowever data dependencies
get more complicated due to the presence of shifter ciraumtsdue to the different data widths
of the registers present in the conversion architecturgu(€i 1). Additionally, synchronization
between the parallel data paths is essential to maintaictibmal correctness of the conversion
hardware.

Figure 4 shows the two stage pipelined conversion archited¢or . = —1. Data paths are split
in almost symmetric stages to achieve best operating frexyuer the two stage architecture. In
the figure, suffix#1 and#2 indicate the parts of different components in the first antbsd
stages of the pipelined architecture respectively. Thst@sa,, ai, by, b1, dy andd; are split

into two equal halves between the two stages. The lower liafregister gets updated by the
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Fig. 4. Pipelined Conversion Architecture far= —1

computations in the first stage of the pipeline and the uppdfrdets updated by the second
stage of the pipeline. In the first stage of the data pathdforthe adder/subtracter A1#1 has
width ’”T“ + 2 bits due to the presence of division by four and two (righftyluircuits. After

a division by four, the most significant bit, i.e, tli&z + 2)™ bit of the output from A1#1 is
written into the (1) bit, i.e. the most significant bit position af,#1. To match the data
width requirement for A1#1, the bits from positidﬁj—l + 1 and ’”T“ + 2 of dy are needed.
However, these two bits belong to the upper halfdgfregister (,#2) present in the second

stage. As the second stage lags the first stage by one clotk @ye can not use the two least
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significant bits fromd,#2. The output from the multiplexer M1#2 leads by one clock eyaver
do#2 (because in any positive clock cycle transition, data indbgut of M1#2 gets written
into do#2). We perform data forwarding of the two least significans fiom the output of the
multiplexer M1#2 to the input of A1#1. Similar data forwandi strategies are applied in the
first stage of data path fat; register due to the presence of division by two and four discu
Merging of wires are indicated by the horizontal and vettisasymbols in Figure 4.

Control signals for the adder/subtracter circuits and thdtiplexers present in the second
stage are lagged by one clock cycle to maintain the lag ofébersl stage in the pipelined data
path. Data paths fot, a1, by andb; are also split in two stages to maintain synchronization
between all parallel data paths present in the conversioiwaae. The second stage of the data
path forb, has data dependency on the bit positjgh| of registera;. This particular bit is the
most significant bit of the register;#1. Due to the lag of the second stage of regigtgrwe

apply data lagging of the required bit using an edge trigdydéiip-flop.

VII. EXPERIMENTAL RESULTS

We have evaluated the proposed acceleration techniquekdddIST recommended Koblitz
curves [24] K-233 and K-283 on Xilinx Virtex 4 FPGA xcvIx2Qff1513. All these curves
have ;s = —1 and support the present security standards. Table lll slp@M®rmance results
of the proposed pipelined and non-pipelined conversiohitctures. Results are obtained from
Xilinx ISEv12.2 tool after place and route analysis with iopzation for speed. Comparisons
with other reported conversion architectures are alsoepted in the table.

The conversion time is the total time required for the scaedduction and the completeNAF
generation. Our non-pipelined conversion architecturé @@ architecture in [18] have same
clock cycle requirement ofn + 6 for the complete scalar conversion ... The pipelined
conversion architecture takes only two extra clock cycled thhus requiresn + 8 clock cycles
in Fym. In [17], the conversion architecture uses divisionsbgnd take2m + 7 clock cycles to
complete the conversion of scalar.

Frequency of the conversion architectures depend on tleedfmteger adders used and also
on the optimization done by the synthesis tool. The compmrtat optimizations proposed in the
paper consider use of generic adder and subtracter ciricuttsee conversion architecture. The

results shown in the table for our architectures were obthusing carry propagation adder and
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TABLE 1lI

COMPARISON OF OUR PROPOSED CONVERSION HARDWARE WITH PUBLIE® RESULTS ONXILINX VIRTEX 4 FPGA

Work Curve | Slices| Freq | Reduction| Conversion
MHz | Time (us) | Time (us)
Brumley [17] 1380 76 3 6
Adikari [18] K-233 | 1777 | 75.3 1.55 3.1
Non-pipelined 1661 | 81.5 1.4 2.8
Pipelined 1582 | 119 1.0 2.0
Brumley [17] 1671 | 65.9 43 8.6
Adikari [18] K-283 | 1998 | 65.1 2.2 4.4
Non-pipelined 1910 | 70.2 2.0 4.1
Pipelined 1814 | 107 1.3 2.6

subtracter circuits. However, no description about thestgpadder and subtracter circuits were
found in [17] and [18]. For fare comparison of the operatirggtiencies, we have implemented
a small circuit which is same as the data pathdgregister in [18] and uses carry propagation
subtracter circuits. With the same optimization parameters, we achieved frecjgs 72MHz
and 59.5MHz for the fieldd2:: and Fi2ss respectively. When we consider implementation of
the conversion hardware in [18] using carry propagatiorea@td subtracter circuits, operating
frequencies will be limited by the above mentioned values thu the increased circuit com-
plexities. Thus, under this fare comparison, our non-jieel conversion architectures achieve
improvement in frequencies by atleast 12.5% and 17.9% femtlentioned fields respectively.
Area requirements of the non-pipelined conversion archites are slightly lesser than the
architectures in [18]. The proposed computational optatiins reduce the number of adder and
subtracter circuits but increase the number of multipleXél and T2).

Use of the pipeline strategy helps in improving operatirggérency drastically. Absence of
bubbles in the pipelined data path keeps the clock cycleinement almost same as the non-
pipelined architecture. We achieve 35.5% and 40% improwsna the overall conversion time
compared to [18] for the curves K-233 and K-283 respectivétlys interesting to observe

that the pipelined architectures have lesser area comparéte non-pipelined architectures.

1The circuit has inputsio, w1, k andd;. The most significant bit ofly register is the output from the circuit. The critical

path consists of twen + 1 bit subtracter circuits and one 4:1 multiplexer.
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The pipelines are implemented by placing only one flip-flopween the two stages of any
data path. Thus, the pipelined architecture requires 1€adkp-flops compared to the non-
pipelined architecture. With this small extra cost, theical paths of the pipelined conversion
architecture are nearly nearly half of the non-pipelinednaecture. Due to shorter critical
paths, the optimization tool performs lesser number ofdagplications during synthesis of
the pipelined design to meet timing constraints [25]. Tleisults in lesser area requirement for

the pipelined architectures.

VIII. CONCLUSION

The paper presents acceleration techniques for scalaeroms required in the Koblitz curve
based cryptoprocessors. Acceleration is achieved by megliice number of costly addition and
subtraction operations during the reduction and thNAF generation steps. Optimization in
the number of addition and subtraction operations redueestitical paths of the conversion
architecture and thus helps in achieving higher operatieguency. Further, the paper proposes
architecture level improvements using pipeline stratédficient pipelines are implemented for
the conversion architecture which are free from bubbless Thproves the operating frequency
of the architecture without affecting the clock cycle reqment.

With the improvements proposed in this paper, the conversiehitecture achieves high
operating frequency and thus becomes suitable for integratith the binary field components
of a Koblitz curve scalar multiplier. Due to cost effectiess of the proposed pipeline strategy,
it is expected that more number of pipelined stages willease the operating frequency from
the present values. The number of stages in the conversibiteanture should be fixed to match

the speed of the binary field primitives present in the Kabtiirve processor.
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APPENDIX A

Here we present computational optimizations for the curammetery, = 1. We compute
(do,dy) as per Equation (13) to avoid long subtractions from zerct{Se I1I-B).
2dy +dy 2d; — do)
4 7 4

During the iterative divisions by?, wrong sign is assigned to eithég or d; in any iteration.

(do, i) — ( (13)

Assignment of the wrong sign alternates in every conseeutaration. We find Equation 13
is same as Equation 3, only with the difference in the redapwositions ofd, and d; in the
left-hand-side. During the reduction of scalar, the noazemainders are generated as per Table
| for both » = 1 andp = —1. Thus, the computational optimizations we followed in &sclll

for 4 = —1, are also applicable fqr = 1.

TABLE IV

DouBLE DIGIT TNAF GENERATION FORy = 1

Cases| do(mod4) | 2di(mod4) | do(mod8) | 2di(mod8) | ro | 71
1 0 0 0 0
2 1 0 1 0

3.A 2 0 2 0 0 —1
3.B 2 0 6 0 0 1
3.C 2 0 2 4 0 1
3.D 2 0 6 4 0 —1
4 3 0 —1 0
5A 0 2 0 2 0 1
5.B 0 2 4 2 0 -1
5.C 0 2 0 6 0 —1
5.D 0 2 4 6 0 1
6 1 2 -1 0
2 2 0 0
3 2 1 0
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Double digit7NAF is generated as per Table VIII for = 1. Comparing with Table II, we
see only the cases 3.A-3.D are different in Table VIIl. Fag ttases which are same in both
the tables, we apply the same computational optimizatis=udsed in Section IV fop = —1.
Subtractions of remainders fromy are performed by altering low order bits @f for the cases
3.A, 3.C and 3.D. However the subtraction of remainder ireca8 involves carry propagation.
We eliminate this long subtraction by incorporating it i thext step where we perform division
by 72. This is shown in Equation 14. Subtraction of 2 or additiod efith d, is easy as it requires
only alteration of low order bits of,. We also consider a borrow input to the adder/subtracter
circuit in the critical path of/; (Equation 14).

2, + (do — 2) 2d1—(d0+1)—1)
4 ’ 4

(do, dr) ( (14)



