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Accelerating Scalar Conversion for Koblitz

Curve Cryptoprocessors on Hardware Platforms

Sujoy Sinha Roy, Junfeng Fan and Ingrid Verbauwhede

Abstract

Koblitz curves are a class of computationally efficient elliptic curves where scalar multiplications

can be accelerated usingτNAF representations of scalars. However conversion from aninteger scalar to

a shortτNAF is costly and thus restricts speed. In this paper we present acceleration techniques for the

recently proposed scalar conversion hardware based on division byτ
2. Acceleration is achieved in two

steps. First we perform computational optimizations to reduce the number of long subtraction operations

during the conversion of scalar. This helps in reducing the number of integer adder/subtracter circuits

from the critical paths of the conversion architecture. In the second step, we perform pipelining in the

conversion architecture in such a way that the pipeline stages are always utilized. Due to bubble free

nature of the pipelining, clock cycle requirement of the conversion architecture remains same, while

operating frequency increases drastically. We present detailed experimental results to support our claims

made in this paper.

I. INTRODUCTION

Elliptic curve cryptography (ECC) is the modern standard for asymmetric key cryptography as

it provides more security per key bit compared to other asymmetric key cryptography standards.

Security in ECC based cryptosystems is based on the difficulty of solving discrete logarithm

problems over the elliptic curve groups (ECDLP). Elliptic curve scalar multiplication is the soul

of any ECC processor. In scalar multiplication, a pointP on an elliptic curve is multiplied by a

large scalark to getkP . The standard way to perform scalar multiplication is to usethe double

and addalgorithm [1], [2], [3] where, point doubling operations are performed for every key bit
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and point additions are performed for every nonzero key bit.Both point addition and doubling

operations are computation intensive due to the presence ofcomplicated finite field operations. As

the number of point additions is determined by the Hamming weight of the scalar, computation

time of the scalar multiplication depends on the scalark. Numerous works are present in literature

on improving the scalar multiplication time by applying various acceleration techniques such

as efficient representation of scalars, optimization of elliptic curve group operations, use of

projective coordinate systems, and use of special computation friendly class of elliptic curves etc.

Architectural optimizations depending on the implementation platforms add further acceleration

[4], [5], [6], [7].

Koblitz curves [8] are a special class of elliptic curves, where the Frobenius endomorphism

can be utilized to represent an integer scalar in aτ−adic form. With this special type of

representation of a scalar, costly point doubling operations are replaced by cheaper point squaring

operations. Solinas extended the work and proposedτ−adic non-adjacent-form known asτNAF

[9]. However, the length of bothτ−adic andτNAF representations of a scalar are almost twice

the length of a binary representation of the integer scalar.Increase in the length (thus increase

in the number of point additions) becomes a negating factor in achieving the acceleration

offered by the Frobenius endomorphism. Length reduction schemes were first introduced by

Meier and Staffelback in [10] and were later improved by Solinas in [9]. The length reduction

algorithms proposed by Solinas are efficient on software platforms, but are not amiable to

hardware implementations due to the presence of multi-precision integer multiplications and

divisions.

On the hardware side, very few research work exists in literature on designing efficient scalar

conversion algorithms. In [11], [12], the conversions are performed in a software processor,

while only the scalar multiplications are performed on dedicated hardwares. Such an approach

is well suited when the scalar multiplier architecture is slow. However, the present speed records

for scalar multiplications on hardware platforms have madesuch an approach a bottleneck [13],

[7]. The first hardware implementation of conversion architecture was presented in [14]. In [15],

[16], the implementations of Koblitz curve processors keepthe conversion units in the hardware

along with the scalar multipliers. Still the hardware versions of the converters are slow and have

a large area count.

Brumley and Järvinen in [17] proposed efficient conversionarchitecture for hardware plat-
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forms. Their algorithm repeatedly divides the scalar byτ for m number of times inF2m to

generate the length reduced scalar. Due to its sequential nature, the authors call the algorithm

lazy reduction. The algorithm uses only integer addition/subtraction andshifting operations. No

multi-precision divisions or multiplications are used. The authors present a hardware architecture

for the lazy reduction [17] and then reuse the architecture to generate theτNAF from the reduced

scalar.

An accelerated version of the lazy reduction, known as thedouble lazy reductionwas proposed

in [18] by Adikari, Dimitrov, and Järvinen. The authors observe that division byτ 2 is also cheap

on hardware platforms. Repeated divisions byτ 2 are used instead of divisions byτ to reduce the

number of iterations fromm to nearlym/2 in F2m . Similar to [17], the hardware architecture for

reduction is also reused to generate theτNAF from the reduced scalar. As divisions byτ 2 are

performed, the hardware architecture is able to generate two consecutiveτNAF digits in every

clock cycle.

In this paper we propose acceleration techniques for the double lazy reduction algorithm [18].

We observe that several addition and subtraction operations can be eliminated during the scalar

reduction and theτNAF generation operations. Subtraction or addition of the nonzero remainders

are replaced by alteration of the low order bits in the operands, use of one’s complement

of the operands and by considering borrow/carry inputs in subtracter and adder circuits. We

eliminate unnecessary subtractions from zero using iterative property of the conversion steps.

Such optimizations help in reducing the number of integer adder and subtracter circuits from

the critical paths of the conversion architecture without affecting the clock cycle requirement.

With the proposed acceleration techniques, we achieve improvements in the computation time

by atleast 12.5% and 17.9% compared to [18] for the fieldsF2233 andF2283 respectively

Next we perform efficient pipelining in the proposed conversion architecture. Using the itera-

tive property of the conversion steps, we pipeline the conversion architecture in such a way that

the pipelined stages are always utilized. Due to bubble freenature of the pipelined architecture,

almost no clock cycles are wasted to satisfy the data dependencies between different pipeline

stages. Our pipelined conversion architecture achieves acceleration by 35.5% and 40% compared

to [18] for the fieldsF2233 andF2283 respectively.

The organization of the paper is : Section II has a brief mathematical background on the

Koblitz curves and scalar conversion techniques. In Section III, computational optimizations
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for the double lazy reduction algorithm are discussed. Section IV shows optimizations during

the τNAF generation process. A hardware architecture for the scalar conversion is designed

in Section V. Efficient pipeline strategy for the conversionarchitecture is presented in Section

VI. The section also describes a two stage pipelined architecture for the conversion hardware.

Experimental results are presented in Section VII. The finalsection draws the conclusions.

II. PRELIMINARIES

The Koblitz curves are a class of binary field elliptic curvesand are of the following form.

Ea : y2 + xy = x3 + a · x2 + 1, a ∈ {0, 1}

An elliptic curve group over a binary fieldF2m is the union of all pointsP (x, y) satisfying

the curve equation and the point at infinityO. We denote the group byEa(F2m). The group

operations are elliptic curve point addition and point doubling. In scalar multiplication, a base

point P (x, y) on an elliptic curve is multiplied by an integer scalark. Scalar multiplication

can be performed using the well knowndouble and add algorithm[1] which uses the elliptic

curve group operations (point addition and doubling). Complexity of the scalar multiplication is

determined by the number of group operations required.

A. Frobenius Endomorphism

On Koblitz curves, the Frobenius map can be applied to reducethe number of elliptic curve

group operations significantly during scalar multiplications. The Frobenius mapτ : Ea(F2m)→

Ea(F2m) is defined below.

τ(O) = O, τP (x, y) = Q(x2, y2)

Application of the mapτ on any pointP squares the coordinates and gives another pointQ

on the curve. Computing the Frobenius map is an easy operation as it involves only squaring,

which is cheap over binary fields [1], [19]. The map operatorτ satisfies the relationτ 2+2 = µτ ,

whereµ = (−1)1−a depends on the elliptic curve.

Ring of polynomials inτ with integer coefficients is denoted byZ[τ ]. For any polynomial

ul−1τ
l−1 + . . .+ u1τ + u0 ∈ Z[τ ] with ui ∈ {0, 1}, and any base pointP on a Koblitz curve, we

see the following relation.

[ul−1τ
l−1 + . . . + u0]P = [ul−1]τ

l−1P + . . . + [u0]P (1)
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In the above equation, the base pointP is multiplied by a scalar which is an element ofZ[τ ].

The scalar multiplication involves only point addition andpoint squaring operations. No point

doubling operations are required.

Solinas in [9] proposed algorithms to convert integer scalars into polynomials inτ with

coefficientsui ∈ {0, 1} (τ−adic form). He also showed that number of point additions can

be reduced using non-adjacent form which is known as theτNAF of a scalar. Calculation of

the τNAF from a scalar requires iterative divisions byτ . Here are two theorems related to the

division by τ .

Theorem1 : Any elementα = (d0 + d1τ) ∈ Z[τ ] is divisible by τ if and only if d0 is even.

The result of the division when stored in(d0, d1), becomes

(d0, d1)← (µd0/2 + d1,−d0/2).

Theorem2 : Any elementα = (d0 + d1τ) ∈ Z[τ ] is divisible by τ 2 if and only if

d0 ≡ 2d1 (mod 4). The result of the division when stored in(d0, d1), becomes

(d0, d1)← ((−d0 + 2µd1)/4,−(µd0 + 2d1)/4).

B. Length ofτNAF and Reduction Schemes

The lengthl of theτNAF (or τ−adic) for any integer scalark is approximately2log2k, which

is almost double the length of the binary representation of the scalar. Expansion in length of the

τNAF increases the number of point additions during scalar multiplication and thus restricts the

acceleration achieved using the Frobenius endomorphism.

Length reduction schemes proposed by Solinas in [9] are based on the observation that(τm−

1)P (x, y) = O. For any scalark, one can get the following relation.

k = λ(τm − 1) + γ

Thus, for any pointP (x, y) on the Koblitz curve, we havekP (x, y) = γP (x, y). In the length

reduction scheme [9], an integer scalark is first reduced tok (mod δ), whereδ = τm−1
τ−1

and

τNAF is generated from the reduced scalar. The maximum lengthof the τNAF generated is

m + a in F2m . Computation of the reduced scalar involves multi-precision integer division. In
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another reduction scheme [9], scalar is partially reduced to avoid multi-precision integer division

at the cost of multiplication. Since multi-precision division and multiplication operations are

complicated, implementations of the conversion algorithms on hardware platform are inefficient.

Algorithm 1: Double Lazy Reduction
Input: integerk

Output: reduced scalarγ
begin1

(a0, a1)← (1, 0), (b0, b1)← (0, 0), (d0, d1)← (k, 0)2

for i = 1 to (m − 1)/2 do3

u← (d0 − 2d1) mod 44

u0 ← u mod 2, u1 ← ⌊u/2⌋5

d0 ← d0 − u0, d1 ← d1 − u16

(d0, d1)← ((−d0 + 2µd1)/4,−(µd0 + 2d1)/4)7

if u > 0 then8

b0 ← (b0 + u0a0 − 2u1a1)9

b1 ← b1 + u0a1 + u1(a0 + µa1)10

end11

(a0, a1)← (−2(a0 + µa1), µa0 − a1)12

end13

if d0 ≡ 1(mod 2) then14

u← 1, d0 ← d0 − 115

(b0, b1)← (b0 + a0, b1 + a1)16

end17

(d0, d1)← (µd0/2 + d1,−d0/2)18

γ ← (b0 + d0, b1 + d1)19

end20

In [17], Brumley and Järvinen presented thelazy reductionalgorithm, where the scalark is

repeatedly divided byτ for m number of times to get the following relation.

k = (d0 + d1τ)τm + (b0 + b1τ)

= (d0 + d1τ)(τm − 1) + (b0 + d0) + (b1 + d1)τ

= λ(τm − 1) + γ

The authors useγ as the reduced scalar and show that theτNAF generated fromγ has length

at mostm + 4 in F2m . Since division byτ is a simple operation (Theorem 1), the algorithm is

suitable for hardware platforms.
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In [18], Adikari, Dimitrov and Järvinen proposed an accelerated version of the lazy reduction

which is called thedouble lazy reduction. The authors observe that division byτ 2 is also easy

to perform (Theorem 2). In the double lazy reduction, the scalar is iteratively divided byτ 2

for (m − 1)/2 number of times. At the end, one division byτ is performed to obtain the

reduced scalar. Clock cycle requirement for the scalar reduction scheme reduces to nearly half

compared to the lazy reduction. The computational steps in the double lazy reduction are shown

in Algorithm 1. We advise the readers of this paper to study the double lazy reduction algorithm

from [18], as this will be helpful to understand the acceleration techniques proposed in our paper.

III. I MPROVED REDUCTION ALGORITHM

In this section, we propose computational optimizations for the double lazy reduction algorithm

to reduce the number of long addition and subtraction operations during the scalar reduction steps.

Improvements are achieved following the steps discussed below. Throughout the discussion we

considerµ = −1. Similar techniques can also be applied whenµ = 1 (shown in the appendix).

A. Elimination of Long Subtractions for Nonzero Remainders

In line 6 of Algorithm 1, remaindersu0 andu1 ∈ {0, 1} are subtracted fromd0 andd1. We

observe that the subtractions areeasyin some cases. For example, whend0 ≡ 1 (mod 4) and

2d1 ≡ 0 (mod 4) (i.e. u0 = 1 and u1 = 0), the subtraction ofu0 from d0 is equivalent to

changing the least significant bit ofd0 from 1 to 0. Hence, in this case the long subtraction

can be replaced by a bit alteration. However, when carry propagations are involved with long

subtractions, alteration of few specific bits do not work as areplacement. For example, when

d0 ≡ 3 (mod 4) and2d1 ≡ 0 (mod 4) (i.e. whenu0 = 1 andu1 = 1), a long subtraction appears.

Use of signed remainder setu0 andu1 ∈ {0,±1} helps to a certain extent in eliminating the long

subtractions of nonzero remainders for such cases. Table I shows how the signed remainders are

generated during the reduction steps depending on the low bits of d0 and2d1. It can be noticed

from the table that, except Case 4, subtractions of theu0 andu1 from d0 andd1 involve no carry

propagation and thus can be replaced by alterations of the low bits in d0 andd1.

For Case 4, if we perform the subtraction ofu0 = −1 in line 7 of Algorithm 1 instead of line
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TABLE I

SIGNED REMAINDERS DURING REDUCTION OF SCALAR

Cases d0 (mod 4) 2d1 (mod 4) u0 u1

1 0 0 0 0

2 1 0 1 0

3 2 0 0 −1

4 3 0 −1 0

5 0 2 0 1

6 1 2 −1 0

7 2 2 0 0

8 3 2 1 0

6 (i.e. we putd0 + 1 in place ofd0), then we have the following observation.

d0 ← −
2d1 + (d0 + 1)

4

d1 ← −
2d1 − (d0 + 1)

4

This is equivalent to taking carry/borrow inputs in the adder/subtracter circuits during the

computations ofd0 andd1. This is shown below.

d0 ← −
2d1 + d0 + (Carry input = 1)

4

d1 ← −
2d1 − d0 − (Borrow input = 1)

4

From the observations presented in this subsection, we drawthe conclusion that the long

subtractions of the nonzero remainders can be eliminated bychanging the low order bits ofd0

andd1 or by considering carry/borrow inputs to the adder/subtracter circuits.

B. Elimination of Subtractions from Zero

In line 7 of Algorithm 1, a subtraction from zero is required for d0 after computing2d1 + d0

(Equation 2).

(d0, d1) ← (−
2d1 + d0

4
,−

2d1 − d0

4
) (2)
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We eliminate the subtraction from zero using the following scheme. Instead of Equation 2, we

compute Equation 3.

(d0, d1) ← (
2d1 + d0

4
,
2d1 − d0

4
) (3)

The results from Equation 2 and 3 have opposite signs, but same magnitudes. So, when Equations

2 and 3 are applied iteratively for an even number of times, the results of the equations are same.

For an odd number of iterations, the results only have opposite signs.

We use the iterative property (for-loop) present in the reduction algorithm to eliminate the

subtractions from zero. We replace the computation in line 7by Equation 3. Thus(d0, d1) has

wrong sign after any odd number of iterations and correct sign after any even number of iterations

of the for-loop. The loop iterates for(m− 1)/2 number of times. So, when(m− 1)/2 is odd,

only one subtraction from zero is required at the end to make(d0, d1) of correct sign. We can

also compensate this subtraction in line 18 or 19 by performing subtractions in place of additions

or vice-versa.

The same trick is applied to eliminate the subtractions fromzero during the computation of

(a0, a1) in line 12 of Algorithm 1. Instead of computing Equation 4

(a0, a1)← (−2(a0 − a1), −(a0 + a1)) (4)

we compute Equation 5.

(a0, a1)← (2(a0 − a1), (a0 + a1)) (5)

After completion of the for-loop, one subtraction from zerois required to make the signs correct

for (a0, a1) when(m−1)/2 is odd. This subtraction from zero can be eliminated if we compute

Equation 6

(b0, b1)← (b0 − a0, b1 − a1) (6)

in line 16 of Algorithm 1.

Since the remainders are generated by observing the low order bits of d0 and d1 (Table I),

use of (d0, d1) which has wrong sign should be justified for the correctness of the reduction

algorithm. Let after any odd number of iterations of the for-loop in Algorithm 1, we have the
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pairs (ai,0, ai,1), (bi,0, bi,1) and (di,0, di,1). Since wrong sign is assigned to(di,0, di,1) after any

odd number of iterations, we have the following relation.

k = −(di,0 + τdi,1)τ
2i + (bi,0 + τbi,1) (7)

In the next iteration, remaindersu0 andu1 are generated fromdi,0 anddi,1 (instead of the correct

values -di,0 and -di,1). If (di+1,0, di+1,1) are the quotients after the division byτ 2, then we have

the following relation between(di,0, di,1) and (di+1,0, di+1,1).

(di,0 + τdi,1)− (u0 + τu1) = −(di+1,0 + τdi+1,1)τ
2 (8)

After plugging in Equation 8 in Equation 7, we get the following equation.

k = (di+1,0 + τdi+1,1)τ
2i+2 − (u0 + τu1)τ

2i + (bi,0 + τbi,1) (9)

From Equation 9, we find that the actual remainders are(−u0,−u1). Interestingly, after any odd

number of iterations, wrong sign is also assigned to(a0, a1). So, we have(ai,0, ai,1) = −τ 2i.

Since, both(u0, u1) and (a0, a1) are of same sign in any iteration, computation of(b0, b1) is

insensitive to the wrong sign of operands. Thus,(bi+1,0, bi+1,1) has the following relation.

(bi+1,0, bi+1,1)← (u0 + τu1)(ai,0 + τai,1) + (bi,0 + τbi,1)

This justifies correctness of the proposed reduction algorithm during assignment of wrong sign

to the variables(d0, d1) and (a0, a1).

Throughout this section we have discussed how the number of long addition/subtraction

operations can be reduced during the scalar reduction steps. Our proposed improvements over the

double lazy reduction are described in Algorithm 2. We see that only one addition or subtraction

operations are performed during the computations ofd0, d1, a0, a1 andb0 in every iterations. For

b1, at most two addition/subtraction operations are performed per iteration. Thus, if implemented

on hardware platform, critical path contains only one adder/subtracter circuit of widthm+1 bit.

In the previous reduction architectures [17], [18], critical paths are through two cascaded adder

and subtracter circuits of data widthm+1. Since integer adder and subtracter circuits have large

delay due to carry propagation, removal of such circuits from critical paths help in improving

the delay of conversion architecture.

In the next section, we further look intoτNAF generation algorithm and discuss how long

subtractions of nonzero remainders can be eliminated during theτNAF generation steps.
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Algorithm 2: New Reduction Algorithm
Input: integerk

Output: reduced scalarγ
begin1

(a0, a1)← (1, 0), (b0, b1)← (0, 0), (d0, d1)← (k, 0)2

/* Iterative divisions byτ2 start here */3

for i = 1 to (m − 1)/2 do4

u← (d0 − 2d1) mod 45

(u0, u1)← Table 16

(d0, d1)← AlterLowBits(d0, d1)7

if Case 4 is True then8

(B, C)← (1, 1) /* Borrow and Carry Inputs */9

end10

else11

(B, C)← (0, 0)12

end13

(d0, d1)← ((2d1 + d0 + C)/4, (2d1 − d0 −B)/4)14

if u > 0 then15

b0 ← (b0 + u0a0 − 2u1a1)16

b1 ← (b1 + u0a1 + u1(a0 − a1))17

end18

(a0, a1)← (2(a0 − a1), a0 + a1) ;19

end20

/* Iterative divisions byτ2 finish here */21

if d0 ≡ 1(mod 2) then22

d0 ← AlterLeastBit(d0)23

if m−1

2
≡ 0(mod 2) then24

(b0, b1)← (b0 + a0, b1 + a1)25

end26

else27

(b0, b1)← (b0 − a0, b1 − a1)28

end29

end30

(d0, d1)← ((2d1 − d0)/2, d0/2) /* Final division by τ */31

if m−1

2
≡ 0(mod 2) then32

γ ← (b0 + d0, b1 − d1)33

end34

else35

γ ← (b0 − d0, b1 + d1)36

end37

end38



12

TABLE II

NAF GENERATION FORµ = −1

Cases d0(mod4) 2d1(mod4) d0(mod8) 2d1(mod8) r0 r1

1 0 0 0 0

2 1 0 1 0

3.A 2 0 2 0 0 1

3.B 2 0 6 0 0 −1

3.C 2 0 2 4 0 −1

3.D 2 0 6 4 0 1

4 3 0 −1 0

5.A 0 2 0 2 0 1

5.B 0 2 4 2 0 −1

5.C 0 2 0 6 0 −1

5.D 0 2 4 6 0 1

6 1 2 −1 0

7 2 2 0 0

8 3 2 1 0

IV. I MPROVED DOUBLE DIGIT τNAF GENERATION

In [18], two consecutiveτNAF digits are generated in a single step from the reduced scalar

d0 + τd1 by performing divisions byτ 2. The authors call the NAF asdoubleτNAF. Table II

shows how the consecutiveτNAF digits r0 andr1 are generated by observing the low order bits

of d0 andd1. Similar to Section III, we eliminate the subtractions of nonzero remainders from

d0 andd1 during theτNAF generation process.

From Table II, we see that for the cases 2, 3.B, 3.C, 3.D, 5.A, 5.B, 5.D, 6 and 8, the subtractions

of nonzero remainders fromd0 or d1 affect only the low order bits ofd0 andd1. For the above

cases, the long subtractions are replaced by cheaper bit alterations ind0 andd1. Subtraction of

r0 = −1 in Case 4 in Table II can be handled in the same way we did for Case 4 in Table I

(Section III-A).

In Case 3.A, the subtraction ofr1 = 1 from d1 involves borrow propagation and thus may

affect all the bits ofd1. If we incorporate this subtraction in the next step where weperform

the division byτ 2, then by puttingd1 − 1 in place ofd1 in Equation 2, we have the following
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observation.

(d0, d1) ← (−
2(d1 − 1) + d0

4
,−

2(d1 − 1)− d0

4
)

← (−
2d1 + (d0 − 2)

4
,−

2d1 − (d0 + 2)

4
) (10)

Thus we find that the subtraction ofr1 from d1 is equivalent to the addition or subtraction of

two with d0. As d0 ≡ 2 (mod 8), the subtraction or addition of 2 changes only the three low

bits of d0.

In Case 5.C, the subtraction ofr1 = −1 from d1 involves carry propagation. When we put

d1 + 1 in place ofd1 in Equation 2, we have the following observation.

(d0, d1) ← (−
2(d1 + 1) + d0

4
,−

2(d1 + 1)− d0

4
)

← (
2d̄1 − d0

4
,
2d̄1 + d0

4
) (11)

So, using one’s complement ofd1 in Case 5.C, we eliminate the long subtraction ofr1 from d1.

Computing one’s complement in hardware platform is easy as all the bits of d1 can altered in

parallel.

Algorithm 3 describes the steps of the newτNAF generation technique. Only one addition or

subtraction operations are performed ond0 andd1 during division byτ 2 in any iteration. Thus,

for the τNAF generation part of the scalar conversion, presence of only one adder/subtracter

circuits in the critical paths ofd0 andd1 is sufficient.

V. HARDWARE ARCHITECTURE

The hardware architecture for performing scalar conversion using the proposed acceleration

techniques is shown in Figure 1. The architecture is constructed for the curve parameterµ = −1.

Similar to [17], [18], our conversion architecture is designed to be used for the scalar reduction

and the double digitτNAF generation. Such resource sharing helps to keep the design compact.

In any iteration of Algorithm 2 and 3, the variablesa0, a1, b0, b1, d0 and d1 have data

dependencies on their values in the previous iteration. So,storage registers are used in the

architecture for each of the variables. Data paths of the variables are kept in parallel to each

other as there are no immediate data dependencies between them in any particular iteration.
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Algorithm 3: New τNAF Generation Algorithm
Input: Reduced Scalarγ = d0 + τd1

Output: τNAF(γ)
begin1

S ←
〈〉

/* Used to storeτNAF */2

Sign← 0 /* Used to keep sign of(d0, d1) */3

while d0 6= 0 or d1 6= 0 do4

(r0, r1)← Table 25

(d0, d1)← AlterLowBits(d0, d1) in Section IV6

(B, C)← (0, 0) /* Borrow and Carry Inputs */7

if Sign = 1 then8

(r0, r1)← (−r0,−r1)9

end10

Prepend (r1, r0) to S /* τNAF digits */11

if Case 4 True then12

(B, C)← (1, 1)13

end14

if Case 5.C True then15

(d0, d1)← ( 2d̄1−d0

4
, 2d̄1+d0

4
)16

Sign← Sign17

end18

else19

(d0, d1)← ( 2d1+d0+C

4
, 2d1−d0−B

4
)20

Sign← 1⊕ Sign21

end22

end23

end24

The componentBit Alteration and Remainder Generationis a combinational circuit which

scans the low order three bits ofd0 and two bits ofd1. Remainder digits are generated as per

Table I and II during the reduction and theτNAF generation phases of the scalar conversion.

This component also performs the subtractions of the nonzero remainders fromd0 and d1

using the bit alteration technique discussed in Section IIIand IV. Input signalmode is used

to distinguish between the scalar reduction and theτNAF generation phases of the conversion.

After a subtraction ofu0 from d0 as bit alteration, two different outputsd0#A1 and d0#A2

are generated for the two different data paths through A1 andA2 adder/subtracter circuits. This

happens because of Case 3.A in Table II, where 2 is subtractedand added for the two different

data paths through A1 and A2 respectively.
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Fig. 1. Koblitz Curve Scalar Conversion Architecture forµ = −1

A finite state machine (FSM) is used to drive the conversion hardware according to Algorithm

2 during the scalar reduction and Algorithm 3 during the double digit τNAF generation parts.

During the reduction phase, all data paths in the conversionhardware remain active. A counter is

used to perform division byτ 2 for (m−1)/2 number of times. After completion of the iterative

divisions byτ 2, the FSM moves to the state where only one division byτ is performed. In the

next state, the final step of reduction (Line 33 or 36 of Algorithm 2) is performed using the data

paths ford0 andd1. The reduced scalar is kept ind0 andd1.

After completion of the scalar reduction, the FSM moves to the double digitτNAF generation

state. During this process, only the data paths ford0 andd1 remain active. The sign ofd0 and

d1 are taken into account in a one-bit registersign (Algorithm 3). When the sign ofd0 andd1

are correct, the remainders generated by theBit Alteration and Remainder Generationunit are

the two consecutiveτNAF digits. For, the other case, sign of the remainders are changed and

then expressed as the two consecutiveτNAF digits.
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A controller is used to generate the control signals for the multiplexers and the adder/subtracter

circuits. The control block also generates the carry and borrow inputs for the adder/subtracter

circuits A1 and A2 when required. In the figure, T1 and T2 are special categories of multiplexers

which producex, x̄ andy from the inputsx andy as per equation((x⊕ s0) · s̄1)|(y · s1) when

the selection inputs(s1, s0) are 00, 01 and 10 respectively. For LUT base FPGA platforms, this

special construction for T1 and T2 achieves better LUT utilization [20] and thus saves area. The

counter circuit is used to calculate the number ofτNAF digits generated. Completion of the

τNAF generation is indicated whenm + 4 number ofτNAF digits are generated.

The critical path of the conversion architecture is indicated by the dotted line. The delay of

the architecture is determined by a singlem + 1 bit integer adder/subtracter circuit present in

the critical path. Since the integer adders are slow, even after the computational optimizations

mentioned in this paper, the proposed conversion architecture do not match the speed of the

binary field primitives used in a Koblitz curve processor. Toincrease speed of the conversion

architecture, we implement pipelines in the conversion architecture. The next section discusses

how pipeline helps in achieving high operating frequency without affecting the clock cycle

requirement.

VI. PIPELINING THE CONVERSION HARDWARE

When we integrate the conversion architecture with the binary field primitives of a Koblitz

curve scalar multiplier, large delay of the integer adders restricts the operating frequency of the

scalar multiplier. Use of faster adder circuits increase frequency at the cost of area. However for

long operand size, such adders are also slower compared to the binary field primitives specially

when pipelining is applied over the field primitives. It should be noted that pipelining is a

common practice in designing fast elliptic curve scalar multipliers over binary fields [21], [22],

[23], [6]. In this section, we propose a solution to this problem by applying pipeline strategy in

the conversion architecture.

A. Pipelining Iterative Addition and Subtraction Operations

The central operations in the scalar conversion hardware are additions and subtractions. To

pipeline the conversion hardware, we focus on pipelining the addition and subtraction operations

in every iterations. Before pipelining the complicated conversion hardware, we discuss pipelining
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of the iterative addition and subtraction operations with asimple example. Let two variablesc0

andc1 have some initial values and are later updated iteratively as per the following equations.

c0 ← c0 + c1

c1 ← c0 − c1 (12)

Let the data width for bothc0 and c1 are maximumm. Thus, to perform iterative addition and

subtraction operations as per the above equations, one adder and one subtracter of widthm bits

are required. The two stage pipelined architecture for computation of c0 and c1 is shown in

Figure 2. The adder and subtracter circuits are split in two equal stages of widthm/2 by putting

registers in the carry and borrow propagation paths.

m3 m2:[ ]1c m3 m2:[ ]0c 0c m1 0:[ ] m1 0:[ ]1c m3 m2:[ ]0c m3 m2:[ ]1c m1 0:[ ]1c 0c m1 0:[ ]

reg c 0 m1 0:[ ]reg c 0 m3 m2:[ ] reg c 1 m1 0:[ ]reg c 1 m3 m2:[ ]

c1
c0

m =m − 13m =m/22m =m/2 − 11

borrowcarry

Stage 1Stage 2 Stage 2 Stage 1

Data path forData path for

Fig. 2. Two stage pipelined data path for iterative additionand subtraction

Computations in the stage 2 have data dependencies on the stage 1 by the carry and borrow

outputs from the stage 1. Due to this dependency, computations in the stage 2 are delayed by

one clock cycle. Timing diagram of the computational steps in the two stages are described

in Figure 3 for the first five clock cycles. Iteration numbers are indicated by the superscripts.

Computations in the stage 1 and 2 run in parallel in any clock cycle (except the first one). As per

the timing diagram, first four iterations of the consecutiveaddition and subtraction operations

complete after the fifth clock cycle. It is straight forward to understand that forI number of

iterations (Equation 12), the two stage architecture takesI + 1 clock cycles. In comparison, a

non-pipelined architecture takesI number of clock cycles to finishI rounds. The advantage of
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the pipelined architecture is in the reduction of overall delay by half (ideally) compared to the

non-pipelined architecture at the cost of only two flip-flopsand one clock cycle.

c 0 m1[ :0 ]

c 1 m1[ :0 ]

c 0 m1[ :0 ]

c 1 m1[ :0 ]

c 0 m1[ :0 ]

c 1 m1[ :0 ]

c 0 m1[ :0 ]

c 1 m1[ :0 ]

c 0 m1[ :0 ]

c 1 m1[ :0 ]

c 1 m3 m2[ : ]

c 0 m3 m2[ : ]
c 1 m3 m2[ : ]

c 0 m3 m2[ : ]

c 1 m3 m2[ : ]
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c 0 m3 m2[ : ]

1 2 3 4 5

Clock Cycle

1

1

1

1

2

2

3

3
4

4

4

4

3

3

2

2

5

5

Computations in Stage 1

Computations in Stage 2

Fig. 3. Timing diagram of the two stage pipelined data path for iterative addition and subtraction

B. Pipelining the conversion architecture

We apply the same concept in pipelining the conversion hardware. However data dependencies

get more complicated due to the presence of shifter circuitsand due to the different data widths

of the registers present in the conversion architecture (Figure 1). Additionally, synchronization

between the parallel data paths is essential to maintain functional correctness of the conversion

hardware.

Figure 4 shows the two stage pipelined conversion architecture forµ = −1. Data paths are split

in almost symmetric stages to achieve best operating frequency for the two stage architecture. In

the figure, suffix#1 and#2 indicate the parts of different components in the first and second

stages of the pipelined architecture respectively. The registersa0, a1, b0, b1, d0 andd1 are split

into two equal halves between the two stages. The lower half of a register gets updated by the
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Fig. 4. Pipelined Conversion Architecture forµ = −1

computations in the first stage of the pipeline and the upper half gets updated by the second

stage of the pipeline. In the first stage of the data path ford0, the adder/subtracter A1#1 has

width m+1
2

+ 2 bits due to the presence of division by four and two (right shift) circuits. After

a division by four, the most significant bit, i.e, the(m+1
2

+ 2)th bit of the output from A1#1 is

written into the(m+1
2

)th bit, i.e. the most significant bit position ofd0#1. To match the data

width requirement for A1#1, the bits from positionm+1
2

+ 1 and m+1
2

+ 2 of d0 are needed.

However, these two bits belong to the upper half ofd0 register (d0#2) present in the second

stage. As the second stage lags the first stage by one clock cycle, we can not use the two least
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significant bits fromd0#2. The output from the multiplexer M1#2 leads by one clock cycle over

d0#2 (because in any positive clock cycle transition, data in theoutput of M1#2 gets written

into d0#2). We perform data forwarding of the two least significant bits from the output of the

multiplexer M1#2 to the input of A1#1. Similar data forwarding strategies are applied in the

first stage of data path ford1 register due to the presence of division by two and four circuits.

Merging of wires are indicated by the horizontal and vertical ∼ symbols in Figure 4.

Control signals for the adder/subtracter circuits and the multiplexers present in the second

stage are lagged by one clock cycle to maintain the lag of the second stage in the pipelined data

path. Data paths fora0, a1, b0 and b1 are also split in two stages to maintain synchronization

between all parallel data paths present in the conversion hardware. The second stage of the data

path forb0 has data dependency on the bit position⌈m
2
⌉ of registera1. This particular bit is the

most significant bit of the registera1#1. Due to the lag of the second stage of registerb0, we

apply data lagging of the required bit using an edge triggered flip-flop.

VII. EXPERIMENTAL RESULTS

We have evaluated the proposed acceleration techniques forthe NIST recommended Koblitz

curves [24] K-233 and K-283 on Xilinx Virtex 4 FPGA xcvlx200-11ff1513. All these curves

haveµ = −1 and support the present security standards. Table III showsperformance results

of the proposed pipelined and non-pipelined conversion architectures. Results are obtained from

Xilinx ISEv12.2 tool after place and route analysis with optimization for speed. Comparisons

with other reported conversion architectures are also presented in the table.

The conversion time is the total time required for the scalarreduction and the completeτNAF

generation. Our non-pipelined conversion architecture and the architecture in [18] have same

clock cycle requirement ofm + 6 for the complete scalar conversion inF2m . The pipelined

conversion architecture takes only two extra clock cycles and thus requiresm + 8 clock cycles

in F2m . In [17], the conversion architecture uses division byτ and takes2m + 7 clock cycles to

complete the conversion of scalar.

Frequency of the conversion architectures depend on the type of integer adders used and also

on the optimization done by the synthesis tool. The computational optimizations proposed in the

paper consider use of generic adder and subtracter circuitsin the conversion architecture. The

results shown in the table for our architectures were obtained using carry propagation adder and
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TABLE III

COMPARISON OF OUR PROPOSED CONVERSION HARDWARE WITH PUBLISHED RESULTS ONX ILINX V IRTEX 4 FPGA

Work Curve Slices Freq Reduction Conversion

MHz Time (µs) Time (µs)

Brumley [17] 1380 76 3 6

Adikari [18] K-233 1777 75.3 1.55 3.1

Non-pipelined∗ 1661 81.5 1.4 2.8

Pipelined∗ 1582 119 1.0 2.0

Brumley [17] 1671 65.9 4.3 8.6

Adikari [18] K-283 1998 65.1 2.2 4.4

Non-pipelined∗ 1910 70.2 2.0 4.1

Pipelined∗ 1814 107 1.3 2.6

subtracter circuits. However, no description about the type of adder and subtracter circuits were

found in [17] and [18]. For fare comparison of the operating frequencies, we have implemented

a small circuit which is same as the data path ford0 register in [18] and uses carry propagation

subtracter circuits1. With the same optimization parameters, we achieved frequencies 72MHz

and 59.5MHz for the fieldsF2233 andF2283 respectively. When we consider implementation of

the conversion hardware in [18] using carry propagation adder and subtracter circuits, operating

frequencies will be limited by the above mentioned values due to the increased circuit com-

plexities. Thus, under this fare comparison, our non-pipelined conversion architectures achieve

improvement in frequencies by atleast 12.5% and 17.9% for the mentioned fields respectively.

Area requirements of the non-pipelined conversion architectures are slightly lesser than the

architectures in [18]. The proposed computational optimizations reduce the number of adder and

subtracter circuits but increase the number of multiplexers (T1 and T2).

Use of the pipeline strategy helps in improving operating frequency drastically. Absence of

bubbles in the pipelined data path keeps the clock cycle requirement almost same as the non-

pipelined architecture. We achieve 35.5% and 40% improvements in the overall conversion time

compared to [18] for the curves K-233 and K-283 respectively. It is interesting to observe

that the pipelined architectures have lesser area comparedto the non-pipelined architectures.

1The circuit has inputsu0, u1, k and d1. The most significant bit ofd0 register is the output from the circuit. The critical

path consists of twom + 1 bit subtracter circuits and one 4:1 multiplexer.
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The pipelines are implemented by placing only one flip-flop between the two stages of any

data path. Thus, the pipelined architecture requires 10 extra flip-flops compared to the non-

pipelined architecture. With this small extra cost, the critical paths of the pipelined conversion

architecture are nearly nearly half of the non-pipelined architecture. Due to shorter critical

paths, the optimization tool performs lesser number of logic replications during synthesis of

the pipelined design to meet timing constraints [25]. This results in lesser area requirement for

the pipelined architectures.

VIII. C ONCLUSION

The paper presents acceleration techniques for scalar conversions required in the Koblitz curve

based cryptoprocessors. Acceleration is achieved by reducing the number of costly addition and

subtraction operations during the reduction and theτNAF generation steps. Optimization in

the number of addition and subtraction operations reduces the critical paths of the conversion

architecture and thus helps in achieving higher operating frequency. Further, the paper proposes

architecture level improvements using pipeline strategy.Efficient pipelines are implemented for

the conversion architecture which are free from bubbles. This improves the operating frequency

of the architecture without affecting the clock cycle requirement.

With the improvements proposed in this paper, the conversion architecture achieves high

operating frequency and thus becomes suitable for integration with the binary field components

of a Koblitz curve scalar multiplier. Due to cost effectiveness of the proposed pipeline strategy,

it is expected that more number of pipelined stages will increase the operating frequency from

the present values. The number of stages in the conversion architecture should be fixed to match

the speed of the binary field primitives present in the Koblitz curve processor.
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APPENDIX A

Here we present computational optimizations for the curve parameterµ = 1. We compute

(d0, d1) as per Equation (13) to avoid long subtractions from zero (Section III-B).

(d0, d1)←
(2d1 + d0

4
,
2d1 − d0

4

)

(13)

During the iterative divisions byτ 2, wrong sign is assigned to eitherd0 or d1 in any iteration.

Assignment of the wrong sign alternates in every consecutive iteration. We find Equation 13

is same as Equation 3, only with the difference in the relative positions ofd0 and d1 in the

left-hand-side. During the reduction of scalar, the nonzero remainders are generated as per Table

I for both µ = 1 andµ = −1. Thus, the computational optimizations we followed in Section III

for µ = −1, are also applicable forµ = 1.

TABLE IV

DOUBLE DIGIT τNAF GENERATION FORµ = 1

Cases d0(mod4) 2d1(mod4) d0(mod8) 2d1(mod8) r0 r1

1 0 0 0 0

2 1 0 1 0

3.A 2 0 2 0 0 −1

3.B 2 0 6 0 0 1

3.C 2 0 2 4 0 1

3.D 2 0 6 4 0 −1

4 3 0 −1 0

5.A 0 2 0 2 0 1

5.B 0 2 4 2 0 −1

5.C 0 2 0 6 0 −1

5.D 0 2 4 6 0 1

6 1 2 −1 0

7 2 2 0 0

8 3 2 1 0
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Double digit τNAF is generated as per Table VIII forµ = 1. Comparing with Table II, we

see only the cases 3.A-3.D are different in Table VIII. For the cases which are same in both

the tables, we apply the same computational optimizations discussed in Section IV forµ = −1.

Subtractions of remainders fromd1 are performed by altering low order bits ofd1 for the cases

3.A, 3.C and 3.D. However the subtraction of remainder in case 3.B involves carry propagation.

We eliminate this long subtraction by incorporating it in the next step where we perform division

by τ 2. This is shown in Equation 14. Subtraction of 2 or addition of1 with d0 is easy as it requires

only alteration of low order bits ofd0. We also consider a borrow input to the adder/subtracter

circuit in the critical path ofd1 (Equation 14).

(d0, d1)←
(2d1 + (d0 − 2)

4
,
2d1 − (d0 + 1)− 1

4

)

(14)


