
A Three-Level Sieve Algorithm for the Shortest
Vector Problem ⋆

Feng Zhang, Yanbin Pan, and Gengran Hu

Key Laboratory of Mathematics Mechanization,
Academy of Mathematics and Systems Science, NCMIS
Chinese Academy of Sciences, Beijing, China, 100190

{zhangfeng,panyanbin}@amss.ac.cn, hudiran10@mails.ucas.ac.cn

Abstract. In AsiaCCS 2011, Wang et al. proposed a two-level heuris-
tic sieve algorithm for the shortest vector problem in lattices, which
improves the Nguyen-Vidick sieve algorithm. Inspired by their idea, we
present a three-level sieve algorithm in this paper, which is shown to have
better time complexity. More precisely, the time complexity of our algo-
rithm is 20.3778n+o(n) polynomial-time operations and the corresponding
space complexity is 20.2833n+o(n) polynomially many bits.

Keywords. Lattice, Shortest Vector Problem, Sieve Algorithm, Sphere Covering

1 Introduction

Lattices are discrete subgroups of Rn and have been widely used in cryptology.
The shortest vector problem(SVP) refers the question to find a shortest non-zero
vector in a given lattice, which is one of the most famous and widely studied
computational problems on lattices.

It is well known that SVP is NP-hard under random reductions [2], so no
polynomial time exact algorithms for it are expected to exist. Up to now, only
approximation algorithms, such as [14, 26, 8, 9], are efficient and all known exact
algorithms are proven to cost exponential time. However, almost all known ap-
proximation algorithms (such as [26, 9]) invoke some exact algorithm for solving
SVP on some low dimensional lattices to improve the quantity of their outputs.
Therefore, it is important to know how fast the best exact algorithm can be.
What’s more, algorithms for SVP play a very important role in cryptanalysis
(see [20] for a survey). For example, nearly all knapsack-based public-key cryp-
tosystems have been broken with a lattice algorithm (see [1, 15, 28]) and many
lattice-based public-key cryptosystems can be broken by solving some SVP, in-
cluding the famous NTRU [11]. Hence, better exact algorithm for SVP can also
help us to know the security of these lattice-based public-key cryptosystems
better, and choose more appropriate parameters for these cryptosystems.

⋆ This work was supported in part by the NNSF of China (No.11071285, No.11201458,
and No.61121062), in part by 973 Project (No. 2011CB302401) and in part by the
National Center for Mathematics and Interdisciplinary Sciences, CAS.

The exact algorithms for SVP can be classified into two classes by now:
deterministic algorithms and randomized sieve algorithms.

The first deterministic algorithm to find the shortest vector in a given lattice
was proposed by Fincke, Pohst [6, 7] and Kannan [12], by enumerating all lattice
vectors shorter than a prescribed bound. If the input is an LLL-reduced basis,
the running time is 2O(n2) polynomial-time operations. Kannan [12] also showed
the running time can reach 2O(nlogn) polynomial-time operations by choosing a
suitable preprocessing algorithm. Schnorr and Euchner [27] presented a zig-zag
strategy for enumerating the lattice vectors to make the algorithm have a better
performance in practice. In 2010, Gama, Nguyen and Regev [10] introduced an
extreme pruning technique and improved the running time in both theory and
practice. All enumeration algorithms above require a polynomial space complex-
ity. Another deterministic algorithm for SVP was proposed by Micciancio and
Voulgaris [16] in 2010. Different from the previous algorithms, it is based on
Voronoi cell computation and is the first deterministic single exponential time
exact algorithm for SVP. The time complexity is 22n+o(n) polynomial-time op-
erations. One drawback of the algorithm is that its space requirement is not
polynomial but 2O(n).

The randomized sieve algorithm was discovered by Ajtai, Kumar and Sivaku-
mar (AKS) [3] in 2001. The running time and space requirement were proven to
be 2O(n). Regev’s alternative analysis [23] showed that the hidden constant in
O(n) was at most 16, and it was further decreased to 5.9 by Nguyen and Vidick
[21]. Blömer and Naewe [4] generalized the results of AKS to lp norms. Miccian-
cio and Voulgaris [17] presented a provable sieving variant called the ListSieve
algorithm, whose running time is 23.199n+o(n) polynomial-time operations and
space requirement is 21.325n+o(n) polynomially many bits. Subsequently, Pujol
and Stehlé [22] improved the theoretical bound of the ListSieve algorithm to
running time 22.465n+o(n) and space 21.233n+o(n) by introducing the birthday at-
tack strategy. In the same work [17], Micciancio and Voulgaris also presented
a heuristic variant of the ListSieve algorithm, called the GaussSieve algorithm.
However, no upper bound on the running time of the GaussSieve Algorithm is
currently known and the space requirement is provably bounded by 20.41n. In
[24], Schneider analyzed the GaussSieve algorithm and showed its strengths and
weakness. What’s more, a parallel implementation of the GaussSieve algorithm
was presented by Milde and Schneider [18]. Recently, Schneider [25] presented
an IdealListSieve algorithm to improve the ListSieve algorithm for the shortest
vector problem in ideal lattices and the practical speed up is linear in the degree
of the field polynomial. He also proposed a variant of the heuristic GaussSieve
algorithm for ideal lattice with the same speedup.

To give a correct analysis of its complexity, the AKS algorithm involves some
perturbations. However, getting rid of the perturbations, Nguyen and Vidick [21]
proposed the first heuristic variant of the AKS algorithm, which in practice per-
forms better and can solve SVP up to dimension 50. Its running time was proven
to be 20.415n+o(n) polynomial-time operations under some nature heuristic as-
sumption of uniform distribution of the sieved lattice vectors. By introducing

a two-level technique, Wang et al. [31] gave an algorithm (WLTB) to improve
the Nguyen-Vidick algorithm. Under a similar assumption of the distribution
of sieved lattice vectors, the WLTB algorithm has the best theoretical time
complexity so far, that is, 20.3836n+o(n). Both the heuristic assumptions can be
supported by the experimental results on low dimensional lattices.

Our contribution. Observing that the WLTB algorithm involves some da-
ta structure like skip list to reduce the time complexity, we present a three-
level sieve algorithm in this paper. To estimate the complexity of the algorith-
m, it needs to compute the volume of some irregular spherical cap, which is a
very complicated and tough work. By involving a smart technique, we simpli-
fy the complicated computation and prove that the optimal time complexity
is 20.3778n+o(n) polynomial-time operations and the corresponding space com-
plexity is 20.2833n+o(n) polynomially many bits under a similar natural heuristic
assumption.

Table 1 summarizes the complexities of the heuristic variants of AKS algo-
rithm and the GaussSieve algorithm. It can be seen that the latter two algorithms
employ the time-memory tradeoffs that decrease the running time complexity at
the cost of space complexity.

algorithm time complexity space complexity

GaussSieve Algorithm - 20.41n+o(n)

Nguyen-Vidick Algorithm 20.415n+o(n) 20.2075n+o(n)

WLTB Algorithm 20.3836n+o(n) 20.2557n+o(n)

Our Three-Level Algorithm 20.3778n+o(n) 20.2883n+o(n)

Table 1. Complexities of some heuristic algorithms for SVP

A natural question is whether we can improve the time complexity by four-
level or higher-level algorithm. It may have a positive answer. However, by our
work, it seems that the improvements get smaller and smaller, whereas the anal-
ysis of the complexity becomes more and more difficult when the number of
levels increases.

Road map. The rest of the paper is organized as follows. In Section 2 we
provide some notations and preliminaries. We present our three-level sieve algo-
rithm and the detailed analysis of its complexity in Section 3. Some experimental
results are described in section 4. Finally, Section 5 gives a short conclusion.

2 Notations and Preliminaries

Notations Bold lower-case letters are used to denote vectors in Rn. Denote by vi
the i-th entry of a vector v. Let ∥ · ∥ and ⟨·, ·⟩ be the Euclidean norm and inner
product of Rn. Matrices are written as bold capital letters and the i-th column
vector of a matrix B is denoted by bi.

Let Bn(x, R) = {y ∈ Rn | ∥y − x∥ ≤ R} be the n-dimensional ball centered
at x with radius R. Let Bn(R) = Bn(O, R). Let Cn(γ,R) = {x ∈ Rn | γR ≤
∥x∥ ≤ R} be a spherical shell in Bn(R), and Sn = {x ∈ Rn | ∥x∥ = 1} be the
unit sphere in Rn. Denote by |Sn| the area of Sn.

2.1 Lattices

Let B = {b1, b2, . . . , bn} ⊂ Rm be a set of n linearly independent vectors. The
lattice L generated by the basis B is defined as L(B) = {

∑n
i=1 xibi : xi ∈ Z} . n

is called the rank of the lattice. Denote by λ1(L) the norm of a shortest non-zero
vector of L.

2.2 The Basic Framework of Some Heuristic Sieve Algorithms

The Nguyen-Vidick algorithm and the WLTB algorithm have a common basic
framework, which can be described as Algorithm 1 [31].

Algorithm 1 Finding short lattice vectors based on sieving
Input: An LLL-reduced basis B = [b1, . . . , bn] of a lattice L, sieve factors

and a number N .
Output: A short non-zero vector of L.
1: S′ ← ∅
2: for j = 1 to N do
3: S′ ← S′∪ sampling(B) using Klein’s algorithm [13]
4: end for
5: Remove all zero vectors from S′

6: Repeat
7: S ← S′

8: S′ ← sieve(S, sieve factors) using Sieve Algorithm
9: Remove all zero vectors from S′

10: until S′ = ∅
11: Compute v0 ∈ S such that ∥v0∥ = min{∥v∥,v ∈ S}
12: Return v0

In general the Sieve Algorithm in Line 8 will output a set S′ of shorter
lattice vectors than those in S. When we repeat the sieve process enough times,
a shortest vector is expected to be found.

Denote by R′ (resp. R) the maximum length of those vectors in S′ (resp. S).
To find S′, the sieve algorithm usually tries to find a set C of lattice vectors in
S such that the balls centered at these vectors with radius R′ can cover all the
lattice points in some spherical shell Cn(γ,R). By subtracting the correspond-
ing center from every lattice point in every ball, shorter lattice vectors will be
obtained, which form the set S′.

Different ways to find C lead to different algorithms. Roughly speaking,

– The Nguyen-Vidick algorithm checks every lattice point in S′ sequentially
to decide whether it is also in some existing ball or it is a new vector in C
(see Figure 1 for a geometric description).

– The WLTB algorithm involves a two-level strategy, that is, the big-ball-
level and the small-ball-level. It first covers the spherical shell with big balls
centered at some lattice vectors, then covers the intersection of every big
ball and Cn(γ,R) with small balls centered at some lattice points in the
intersection. The centers of the small balls form C. It can be shown that
it is faster to decide whether a lattice vector is in C or not. We first check
whether it is in some big ball or not. If not, it must be a new point in C. If
so, we just check whether it is in some small ball in the big ball it belongs
to, regardless of those small balls of the other big balls (see Figure 2 for a
geometric description).

(a) (b)

Fig. 1. Geometric description of Nguyen-Vidick’s sieve algorithm

(a) (b) (c)

Fig. 2. Geometric description of WLTB’s sieve algorithm

For either the Nguyen-Vidick algorithm or the WLTB algorithm, to analyze
its complexity needs a natural assumption below.

Heuristic Assumption 1: At any stage in Algorithm 1, the lattice vectors
in S′ ∩ Cn(γ,R) are uniformly distributed in Cn(γ,R).

3 A Three-Level Sieve Algorithm

3.1 Description of the Three-Level Sieve Algorithm

Different from the two-level algorithm, our algorithm involves a medium-ball-
level. Simply speaking, the algorithm first covers the spherical shell with big
balls, then covers every big ball with medium balls, and at last covers every
medium ball with small balls. Algorithm 2 gives a detailed description of the
three-level sieve algorithm.

Algorithm 2 A three-level sieve algorithm
Input: A subset S ⊆ Bn(R) of vectors in a lattice L where R← maxv∈S ∥v∥

and sieve factors 0.88 < γ3 < 1 < γ2 < γ1 <
√
2γ3.

Output: A subset S′ ⊆ Bn(γ3R) ∩ L.
1: S′ ← ∅, C1 ← ∅.
2: for v ∈ S do
3: if ∥v∥ ≤ γ3R then
4: S′ ← S′ ∪ {v}
5: else
6: if ∃ c1 ∈ C1, ∥v − c1∥ ≤ γ1R then
7: if ∃ c2 ∈ Cc1

2 , ∥v − c2∥ ≤ γ2R then \Cc1
2 is initialized as ∅\

8: if ∃ c3 ∈ Cc1,c2

3 , ∥v − c3∥ ≤ γ3R then \Cc1,c2

3 is initialized as ∅\
9: S′ ← S′ ∪ {v − c3}
10: else
11: Cc1,c2

3 ← Cc1,c2

3 ∪ {v} \ centers of small balls \
12: end if
13: else
14: Cc1

2 ← Cc1
2 ∪ {v} \ centers of medius balls \

15: end if
16: else
17: C1 ← C1 ∪ {v} \ centers of big balls \
18: end if
19: end if
20: end for
21: return S′

In Algorithm 2, 0.88 < γ3 < 1 < γ2 < γ1 <
√
2γ3. The set C1 is the collection

of centers of big balls with radius γ1R in the first level. For any c1 ∈ C1,
Cc1

2 is the set of centers of medium balls with radius γ2R that cover the big
spherical cap Bn(c1, γ1R) ∩ Cn(γ3, R). It is clear that the elements of Cc1

2 are
chosen from Bn(c1, γ1R) ∩ Cn(γ3, R). For c1 ∈ C1, c2 ∈ Cc1

2 , Cc1,c2

3 is the set
of centers of small balls with radius γ3R that cover the small spherical cap
Bn(c2, γ2R) ∩ Bn(c1, γ1R) ∩ Cn(γ3, R). Also the elements of Cc1,c2

3 are chosen
from the small spherical cap.

3.2 Complexity of the Algorithm

Denote by N1, N2 and N3 the corresponding upper bound on the expected
number of lattice points in C1, Cc1

2 (for any c1 ∈ C1) and Cc1,c2

3 (for any
c1 ∈ C1, c2 ∈ Cc1

2).
The Space Complexity. Notice that the total number of big, medium and

small balls can be bounded by N1, N1N2 and N1N2N3 respectively. As in [21]
and [31], if we sample poly(n)N1N2N3 vectors, after a polynomial number of
iterations in Algorithm 1, it is expected that a shortest non-zero lattice vector
can be obtained with the left vectors. So the space complexity is bounded by
O(N1N2N3).

The Time Complexity. The initial size of S is poly(n)N1N2N3. In each
iteration in Algorithm 1, steps 3–19 in Algorithm 2 repeat poly(n)N1N2N3 times,
and in each repeat, at most N1+N2+N3 comparisons are needed. Therefore, the
total time complexity can be bounded by O(N1N2N3(N1+N2+N3)) polynomial-
time operations.

We next give the estimation of N1, N2 and N3. Without loss of generality,
we restrict R = 1 and let Cn(γ) = Cn(γ, 1) = {x ∈ Rn | γR ≤ ∥x∥ ≤ 1} through
our proofs for simplicity.

The Upper Bound of N1. Nguyen and Vidick [21] first gave a proof of the
upper bound N1, and a more refined proof was given by Wang et al [31].

Theorem 1 (Wang et al. [31]). Let n be a non-negative integer, N be an
integer and 0.88 < γ3 < 1 < γ1 <

√
2γ3. Let

N1 = cnH1
⌈3
√
2πn

3
2 ⌉,

where cH1 = 1/(γ1

√
1− γ2

1

4) and S a subset of Cn(γ3R) of cardinality N whose
points are picked independently at random with uniform distribution. If N1 <
N < 2n, then for any subset C ⊆ S of size at least N1 whose points are picked
independently at random with uniform distribution, with overwhelming probabil-
ity, for all v ∈ S, there exists a c ∈ C such that ∥v − c∥ ≤ γ1R.

The Upper Bound of N2. Let

– Ωn(γ1) be the fraction of Cn(γ3) that is covered by a ball of radius γ1 centered
at a point of Cn(γ3),

– Γn(γ1, γ2) be the fraction of Cn(γ3) covered by a big spherical capBn(c2, γ2)∩
Bn(c1, γ1)∩ Cn(γ3),

– Ωn(γ1, γ2) be the fraction of Bn(c1, γ1) ∩ Cn(γ3) covered by Bn(c2, γ2) ∩
Bn(c1, γ1) ∩Cn(γ3), where c2 ∈ Cc1

2 , c1 ∈ C1.

Clearly, Ωn(γ1, γ2) = Γn(γ1,γ2)
Ωn(γ1)

. To compute N2, we need the minimal value of

Ωn(γ1, γ2). We estimate Ωn(γ1) and Γn(γ1, γ2) respectively.

Lemma 1 (Wang et al. [31]). Let 0.88 < γ3 < 1 < γ1 <
√
2γ3, then

1

3
√
2πn

(sin θ2)
n−1

cos θ2
< Ωn(γ1) <

1√
2π(n− 1)

(sin θ1)
n−1

cos θ1
,

where θ1 = arccos(1− γ2
1

2γ2
3
), θ2 = arccos(1− γ2

1

2).

Note that the proportion Γn(γ1, γ2) is different from that of Lemma 4 in [31],
as the radius of Bn(c2, γ2) is larger than the inside radius of the shell Cn(γ3).
Thus, it leads to the slightly different bounds of Γn(γ1, γ2) from that of Lemma
4 in [31]. If c2 lies on the sphere of a big ball Bn(c1, γ1), the fraction Γn(γ1, γ2)
is minimal. Lemma 2 gives the minimal and maximal value of Γn(γ1, γ2) when
c2 lies on the sphere of a big ball Bn(c1, γ1).

Lemma 2. Let 0.88 < γ3 < 1 < γ2 < γ1 <
√
2γ3, where γ3 is very close to 1.

Then
cdn−2

min

2πn
≤ Γn(γ1, γ2) ≤

c′dn−2
max

2π
,

where dmax =

√
1−

(
γ2
3−γ2

1+1
2γ3

)2
−
(

1
cH2 ·γ3

(
γ2
3+1−γ2

2

2 − (2γ2
3−γ2

1)(γ
2
3−γ2

1+1)

4γ2
3

))2
, dmin

= γ2

√
1−

γ2
2c

2
H1

4 , cH1 = 1/(γ1

√
1− γ2

1

4), cH2 = γ1

γ3

√
1− γ2

1

4γ2
3
, c and c′ are con-

stants unrelated to n.

o c1

c2

γ1

γ2

γ3

1

Fig. 3. The region of Bn(c2, γ2) ∩Bn(c1, γ1) ∩ Cn(γ3).

Proof. Note that γ3 is very close to 1. We just consider the proportion on the
sphere covering as in [31].

Without loss of generality, we assume the center of Bn(c1, γ1) is c1 =
(α1, 0, . . . , 0), and the center ofBn(c2, γ2) is c2 = (β1, β2, 0 . . . , 0), where α, β1, β2

> 0. The spherical cap Bn(c2, γ2) ∩Bn(c1, γ1)∩ Cn(γ3) isx2
1 + x2

2 + . . .+ x2
n = 1

(x1 − α1)
2 + x2

2 + . . .+ x2
n < γ2

1

(x1 − β1)
2 + (x2 − β2)

2 + . . .+ x2
n < γ2

2

where γ3 ≤ α1 ≤ 1, (β1−α1)
2 + β2

2 = γ2
1 and γ2

3 ≤ β2
1 + β2

2 ≤ 1. The region is as
the shadow of the Figure 3. Denote by Q the volume of the region. By projecting

the target region to the hyperplane orthogonal to x1 and by sphere coordinate
transformation (for details see the proof of Lemma 4 in [31]), we get

cdn−2

2πn
≤ Γn(γ1, γ2) =

Q

|Sn|
≤ c′dn−2

2π

where d =

√
1−

(
α2

1−γ2
1+1

2α1

)2
−
(

1
β2

(
β2
1+β2

2+1−γ2
2

2 − β1
α2

1−γ2
1+1

2α1

))2
and c, c′ are

constants unrelated to n. Let α2 =
√
β2
1 + β2

2 . From the equation (β1 − α1)
2 +

β2
2 = γ2

1 , we obtain

β1 =
α2
2 + α2

1 − γ2
1

2α1
, β2 =

√
α2
2 −

(
α2
2 + α2

1 − γ2
1

2α1

)2

.

Therefore, d can be regarded as a function with respect to α1, α2, where γ3 ≤
α1 ≤ 1, γ3 ≤ α2 ≤ 1. Since 0.88 < γ3 < 1 < γ2 < γ1 <

√
2γ3, it can be proven

that d decreases with α1, α2 increasing. Then dmin can be obtained by letting
α1 = 1, α2 = 1 and dmax can be obtained by letting α1 = γ3, α2 = γ3. Hence,
the lemma follows.

Theorem 2. Let n be a non-negative integer, N be an integer and 0.88 < γ3 <
1 < γ2 < γ1 <

√
2γ3, where γ3 is very close to 1. Let

N2 = c2(
cH2

dmin
)n⌈n 3

2 ⌉,

where cH2 = γ1

γ3

√
1− γ2

1

4γ2
3
, dmin = γ2

√
1−

γ2
2c

2
H1

4 , cH1 = 1/(γ1

√
1− γ2

1

4), and c2

is a positive constant unrelated to n. Let S be a subset of Cn(γ3R)∩Bn(c1, γ1R)∩
Bn(c2, γ2R) of cardinality N whose points are picked independently at random
with uniform distribution. If N2 < N < 2n, then for any subset C ⊆ S of
size at least N2 whose points are picked independently at random with uniform
distribution, with overwhelming probability, for all v ∈ S, there exists a c ∈ C
such that ∥v − c∥ ≤ γ2R.

Proof. Combining Lemma 1 and Lemma 2, we have Ωn(γ1, γ2) = Γn(γ1,γ2)
Ωn(γ1)

≥
c√
2πn
·
(
1− γ2

1

2γ2
2

)(
dmin

cH2

)n
. The expected fraction of Bn(c1, γ1) ∩ Cn(γ3) that

is not covered by N2 balls of radius γ2 centered at randomly chosen points of
Bn(c1, γ1) ∩ Cn(γ3) is (1−Ωn(γ1, γ2))

N2 . So,

N2 log(1−Ωn(γ1, γ2)) ≤ N2(−Ωn(γ1, γ2))

< c2n
3/2

(
cH2

dmin

)n

· 1

c2
√
n

(
dmin

cH2

)n

≤ −n < − logN.

which implies (1 − Ωn(γ1, γ2))
N2 < e−n < 1

N . The expected number of uncov-
ered points is smaller than 1. It means that any point in Bn(c1, γ1) ∩ Cn(γ3) is
covered by a ball centered at a vector in Bn(c1, γ1)∩Cn(γ3) with radius γ2 with
probability 1− e−n.

The Upper Bound of N3. Let

– Γn(γ1, γ2, γ3) be the fraction of Cn(γ3) that is covered by a small spherical
cap Bn(c3, γ3) ∩Bn(c2, γ2)∩ Bn(c1, γ1)∩ Cn(γ3),

– Ωn(γ1, γ2, γ3) the fraction of Bn(c2, γ2) ∩ Bn(c1, γ1) ∩Cn(γ3) covered by
Bn(c3, γ3) ∩Bn(c2, γ2)∩Bn(c1, γ1)∩ Cn(γ3), where c3 ∈ Cc1,c2

3 , c2 ∈ Cc1
2 , c1 ∈

C1.

Clearly, Ωn(γ1, γ2, γ3) = Γn(γ1,γ2,γ3)
Γn(γ1,γ2)

. To estimate N3, we need to compute the

lower bound of Ωn(γ1, γ2, γ3). To obtain the lower bound of Γn(γ1, γ2, γ3), we
need to compute the volume of some irregular convex region, which is very com-
plicated. However, using the inscribed triangle of the region, we get a reasonable
lower bound of the volume successfully.

Lemma 3. Let 0.88 < γ3 < 1 < γ2 < γ1 <
√
2γ3, where γ3 is very close to 1.

We have

Γn(γ1, γ2, γ3) ≥
c′′rn−3

min

2π3/2n2
,

where rmin = γ3

√
1− γ2

3

4cH3
, cH3 = γ2

2

(
1− γ2

2c
2
H1

4

)
, c′′ is a constant unrelated

to n.

Proof. We consider the proportion on the sphere covering. W.l.o.g., we assume
the centers of Bn(c1, γ1), Bn(c2, γ2), Bn(c3, γ3) are, respectively,

c1 = (α1, 0, . . . , 0), α1 > 0,

c2 = (β1, β2, 0 . . . , 0), β1, β2 > 0,

c3 = (δ1, δ2, δ3, 0 . . . , 0), δ1, δ2, δ3 > 0.

The spherical cap Bn(c3, γ3) ∩Bn(c2, γ2) ∩Bn(c1, γ1)∩ Cn(γ3) is
x2
1 + x2

2 + . . .+ x2
n = 1 (E1)

(x1 − α1)
2 + x2

2 + . . .+ x2
n < γ2

1 (E2)
(x1 − β1)

2 + (x2 − β2)
2 + x2

3 + . . .+ x2
n < γ2

2 (E3)
(x1 − δ1)

2 + (x2 − δ2)
2 + (x3 − δ3)

2 + . . .+ x2
n < γ2

3 (E4)

where γ3 ≤ α1 ≤ 1, γ2
3 ≤ β2

1 + β2
2 ≤ 1, (β1 − α1)

2 + β2
2 = γ2

1 , γ
2
3 ≤ δ21 + δ22 + δ23 ≤

1, (δ1 − α1)
2 + δ22 + δ23 = γ2

1 , (δ1 − β1)
2 + (δ2 − β2)

2 + δ23 = γ2
2 .

Denote by Q the volume of the region, and project the target region to the
hyperplane orthogonal to x1. Denote by D the projection region. Therefore, the
volume of the target region is

Q =

∫∫
· · ·
∫
D

√√√√1 +
n∑

i=2

(
∂x1

∂xi

)2

dx2dx3 · · ·dxn =

∫∫
· · ·
∫
D

dx2dx3 · · · dxn√
1−

∑n
i=2 x

2
i

.

Now we determine the projection region D. To simplify the expression, we let

α2 =
√
β2
1 + β2

2 , α3 =
√
δ21 + δ22 + δ23 , a =

α2
1+1−γ2

1

2α1
, b =

α2
2+1−γ2

2

2 , f =
α2

3+1−γ2
3

2 .

From the equations (β1−α1)
2 + β2

2 = γ2
1 , (δ1−α1)

2 + δ22 + δ23 = γ2
1 , (δ1− β1)

2 +
(δ2 − β2)

2 + δ23 = γ2
2 , it is easy to write β1, β2, δ1, δ2, δ3 as the expressions of

αi, γi, i = 1, 2, 3, i.e.,

β1 =
α2
1 + α2

2 − γ2
1

2α1
, β2 =

√
α2
2 −

(
α2
2 + α2

1 − γ2
1

2α1

)2

,

δ1 =
α2
1 + α2

3 − γ2
1

2α1
, δ2 =

α2
2 + α2

3 − γ2
2 −

(α2
1+α2

2−γ2
1)(α

2
1+α2

3−γ2
1)

2α2
1

2

√
α2
2 −

(
α2

1+α2
2−γ2

1

2α1

)2 ,

δ3 =

(
α2
3 −

(
α2
1 + α2

3 − γ2
1

2α1

)2

−

(
α2
2 + α2

3 − γ2
2 −

(α2
1+α2

2−γ2
1)(α

2
1+α2

3−γ2
1)

2α2
1

)2

4

(
α2
2 −

(
α2

1+α2
2−γ2

1

2α1

)2)
) 1

2

.

We project the intersection of equation (E1) and (Ei) to the hyperplane or-
thogonal to x1 and suppose the projection region is Di−1, i = 2, 3, 4. Then
D = D1 ∩D2 ∩D3, where

D1 ={(x2, x3, . . . , xn) ∈ Rn−1|x2
2 + x2

3 + · · ·+ x2
n < 1− a2}.

D1
2 =
{
(x2, x3, . . . , xn) ∈ Rn−1|x2

2 + x2
3 + · · ·+ x2

n < 1−
(
b− β2x2

β1

)2

, x2 <
b

β2

}
,

D2
2 =
{
(x2, x3, . . . , xn) ∈ Rn−1|x2

2 + x2
3 + · · ·+ x2

n < 1, x2 ≥
b

β2

}
,

D2 =D1
2 ∪D2

2.

D1
3 =
{
(x2, x3, . . . , xn) ∈ Rn−1|x2

2 + x2
3 + · · ·+ x2

n < 1−
(
f − δ2x2 − δ2x3

δ1

)2

,

f − δ2x2 − δ2x3 > 0
}
,

D2
3 ={(x2, x3, . . . , xn) ∈ Rn−1|x2

2 + x2
3 + · · ·+ x2

n < 1, f − δ2x2 − δ2x3 ≤ 0},
D3 =D1

3 ∪D2
3.

The region of (x2, x3) for D is the shadow of Fig. 4, and that of (x4, . . . , xn) is an

(n−3)-dimensional ball with radius r =

√
1− a2 −

(
b−aβ1

β2

)2
−
(

f−δ1a−δ2
b−aβ1

β2

δ3

)2

.

For (x4, . . . , xn), we adopt hyper sphere coordinate transformation. Let

x4 = t cosφ1

x5 = t sinφ1 cosφ2

...

xn−1 = t sinφ1 · · · sinφn−5 cosφn−4

xn = t sinφ1 · · · sinφn−5 sinφn−4

P1

P2 P3

Fig. 4. The region of (x2, x3) for D.

where 0 ≤ t ≤ r, 0 ≤ φk ≤ π, k = 1, . . . , n− 5, 0 ≤ φn−4 ≤ 2π.
For a fixed t, denote by D(t) the corresponding region of (x2, x3) and by s(t)

the area of D(t). Let f(t) be the area of triangular △P1P2P3
, then s(t) ≥ f(t).

Thus,

Q =

∫ r

0

∫ 2π

0

∫ π

0

· · ·
∫ π

0

tn−4 sinφn−5 · · · sinn−4 φ1

∫∫
D(t)

dx2dx3√
1−

∑n
i=2 x

2
i

dφ1 · · · dt

≥
∫ r

0

∫ 2π

0

∫ π

0

· · ·
∫ π

0

tn−4 sinφn−5 · · · sinn−4 φ1

∫∫
D(t)

dx2dx3dφ1 · · · dφn−4dt

=2π

∫ r

0

tn−4s(t)dt
n−5∏
k=1

∫ π

0

sink φdφ ≥ 2π

∫ r

0

tn−4f(t)dt
n−5∏
k=1

∫ π

0

sink φdφ,

and

Γn(γ1, γ2, γ3) =
Q

|Sn|
≥

2Γ (n+2
2)

∏n−5
k=1

∫ π

0
sink φdφ

nπn/2−1

∫ r

0

tn−4f(t)dt. (1)

We next give the lower bounds of
2Γ (n+2

2)
∏n−5

k=1

∫ π
0

sink φdφ

nπn/2−1 and
∫ r

0
tn−4f(t)dt.

Since
∫ π

0
sink φdφ =

√
π Γ ((k+1)/2)

Γ (k/2+1) and Γ (x) is increasing when x > 2, we

obtain
2Γ (n+2

2)
∏n−5

k=1

∫ π

0
sink φdφ

nπn/2−1
≥

2Γ (n+2
2)

π3/2nΓ (n−3
2)
≥ n− 3

2π3/2
. (2)

For the lower bound of
∫ r

0
tn−4f(t)dt, we first have the coordinate of P1, P2, P3:

P1 =

b− aβ1

β2
,

√
1− a2 −

(
b− aβ1

β2

)2

− t2

 , (a1, b1),

P2 =
(
k1(s1 −

√
t1 − q1t2) + k2, s1 −

√
t1 − q1t2

)
, (a2, b2),

P3 =

(
f − aδ1 − δ3(s2 −

√
t2 − q2t2)

δ2
, s2 −

√
t2 − q2t2

)
, (a3, b3).

where

h1 = − δ3β2

δ1β2 − δ2β1
, h2 =

fβ2 − bδ2
δ1β2 − δ2β1

, k1 =
δ3β1

δ1β2 − δ2β1
, k2 =

bδ1 − fβ1

δ1β2 − δ2β1
,

s1 = −h1h2 + k1k2
1 + k21 + h2

1

, q1 =
1

1 + k21 + h2
1

, t1 =
1− h2

2 − k22
1 + k21 + h2

1

+

(
h1h2 + k1k2
1 + k21 + h2

1

)2

,

s2 =
(f − δ1a)δ3
δ22 + δ23

, q2 =
δ22

δ22 + δ23
, t2 =

(
1− a2 − (f − δ1a)

2

δ22 + δ23

)
δ22

δ22 + δ23
.

The area of△P1P2P3 is f(t) = 1
2 (a1b2+a2b3+a3b1−a3b2−a2b1−a1b3). It can

be verified that f(t) is decreasing when t ∈ [0, r] and f(r) = f ′(r) = 0, f ′′(r) > 0.
We have

∫ r

0

tn−4f(t)dt ≥
∫ r− r

n

0

tn−4f(t)dt ≥ rn−3

n− 3
(1− 1

n
)n−3f(r − r

n
).

Notice that
(
1− 1

n

)n−3 ≥
(
1− 1

n

)n ≈ e−1 when n is sufficiently large, and
by Taylor series for f(r − r

n), f(r −
r
n) = Θ(1

n2). We have for some constant c′′

unrelated to n, ∫ r

0

tn−4f(t)dt ≥ c′′rn−3

n2(n− 3)
. (3)

Combining (1), (2) and (3), we have Γn(γ1, γ2, γ3) ≥ c′′rn−3

2π3/2n2 . Now r can be re-
garded as a function with respect to α1, α2, α3, where γ3 ≤ α1, α2, α3 ≤ 1. It can
be verified that r decreases with α1, α2, α3 increasing. Let α1 = 1, α2 = 1, α3 = 1,

we get the minimal value of r. rmin = γ3

√
1− γ2

3

4cH3
, cH3 = γ2

2

(
1− γ2

2c
2
H1

4

)
. So,

Γn(γ1, γ2, γ3) ≥
c′′rn−3

min

2π3/2n2 .

Theorem 3. Let n be a non-negative integer, N be an integer and 0.88 < γ3 <
1 < γ2 < γ1 <

√
2γ3, where γ3 is very close to 1. Let

N3 = c3n
3(
dmax

rmin
)n,

where dmax =

√
1−

(
γ2
3−γ2

1+1
2γ3

)2
−
(

1
cH2 ·γ3

(
γ2
3+1−γ2

2

2 − 2γ2
3−γ2

1

2γ3

γ2
3−γ2

1+1
2γ3

))2
, rmin =

γ3

√
1− γ2

3

4cH3
, cH1 = 1

γ1

√
1− γ2

1
4

, cH2 = γ1

γ3

√
1− γ2

1

4γ2
3
, cH3 = γ2

2

(
1− γ2

2c
2
H1

4

)
, and

c3 is a positive constant unrelated to n. Let S be a subset of Cn(γ3R)∩Bn(c1, γ1R)∩
Bn(c2, γ2R)∩Bn(c3, γ3R) of cardinality N whose points are picked independent-
ly at random with uniform distribution. If N3 < N < 2n, then for any subset
C ⊆ S of size at least N3 whose points are picked independently at random with
uniform distribution, with overwhelming probability, for all v ∈ S, there exists a
c ∈ C such that ∥v − c∥ ≤ γ3R.

Proof. Combining Lemma 2 and Lemma 3, we have

Ωn(γ1, γ2, γ3) =
Γn(γ1, γ2, γ3)

Γn(γ1, γ2)
≥ c′′√

πn2

(
rmin

dmax

)n

.

Let N3 = c3n
3(dmax

rmin
)n, the remaining proof is similar to that of Theorem 2.

The Optimal Time Complexity. Since

– N1 = ⌈3
√
2πn3/2⌉ · (cH1)

n

= ⌈3
√
2πn3/2⌉ · (1

γ1

√
1−γ2

1/4
)n,

– N2 = c2⌈n
3
2 ⌉ · (cH2

dmin
)n

= c2⌈n
3
2 ⌉ · (

γ1
γ3

√
1− γ2

1
4γ2

3

γ2

√
1−

γ2
2c2H1

4

)n,

– N3 = c3n
3 · (dmax

rmin
)n

= c3n
3 ·

√

1−
(

γ2
3−γ2

1+1

2γ3

)2

−
(

1
cH2

·γ3

(
γ2
3+1−γ2

2
2 − (2γ2

3−γ2
1)(γ2

3−γ2
1+1)

4γ2
3

))2

γ3

√
1− γ2

3
4cH3

n

.

the total time complexity is

N1N2N3(N1 +N2 +N3)

=2
(log2 cH1+log2

cH2
dmin

+log2
dmax
rmin

+log2 max{cH1 ,
cH2
dmin

, dmax
rmin

})·n+o(n)
.

The expression of the time complexity is so complicated, so we get a numerical
optimal solution. Taking γ3 from 0.88 to 1 with step 0.01, γ1 from 1 to 1.414γ3
with step 0.0001 and γ2 from 1 to γ1 with step 0.0001, then we can easily find the
minimal value of the constant in the exponent for the optimal time complexity.

Theorem 4. The optimal time complexity of the algorithm is 20.3778n+o(n) poly-
nomial-time operations with γ3 → 1, γ1 = 1.1399, γ2 = 1.0677, and the corre-
sponding space complexity is 20.2833n+o(n) polynomially many bits under Heuris-
tic Assumption 1.

Remark 1. As in [21], the number of iterations is usually linear in the dimension
of lattices. Regardless of the number of iterations, the polynomial factors hidden
in the time complexity in NV algorithm and WLTB algorithm are respectively
n3 and n4.5. In our three level sieve algorithm, the polynomial parts of N1, N2

and N3 given by Theorem 1, 2, and 3 are n3/2, n3/2 and n3 respectively. So the
hidden polynomial factor in our algorithm is n9 without the number of iterations.

Remark 2. It is natural to extend the three-level sieve algorithm to multiple-
level, such as four-level algorithm. However, the number of small balls will in-
crease as the number of the levels increases. Therefore, we conjecture that the
time complexity may be decreased with small number levels, but will increase if
the number of levels is greater than some positive integer.

4 Experimental Results

4.1 Comparison with the Other Heuristic Sieve Algorithms

We implemented the NV algorithm, the WLTB algorithm and our three-level
sieve algorithm on a PC with Windows 7 system, 3.00 GHz Intel 4 processor
and 2 GByte RAM using Shoup’s NTL library version 5.4.1 [29]. Instead of im-
plementing the GaussSieve algorithm, we directly applied the GaussSieve Alpha
V.01 published by Voulgaris [30] on a PC with Fedora 15 system, 3.00 GHz Intel
4 processor and 2 GByte RAM.

We performed experiments to compare our three-level sieve algorithm with
the other three algorithms. For every dimension n, we first used the method in
[19] to pick some random n-dimensional lattice and computed the LLL-reduced
basis, then we sampled the same number of lattice vectors, and performed the
NV algorithm with γ = 0.97, the WLTB algorithm with γ1 = 1.0927, γ2 = 0.97
and our three-level sieve algorithm with γ1 = 1.1399, γ2 = 1.0667, γ3 = 0.97
using these samples. We performed one experiments on lattices with dimension
10, 20 with more than 100000 samples, but about fifty experiments with fewer
samples, and two experiments on dimension 25, 30, 40, 50. Instead of using our
samples, we just performed the GaussSieve Alpha V.01 with the selected lattices
as its inputs. The experimental results of the four algorithms are shown in Table
2, where v is the output vector of the corresponding algorithm.

dimension 10 20 25 30 40 50 60

number of sample 150000 100000 8000 5000 5000 3000 2000

time of sample(sec.) 301 810 87833 73375 147445 120607 167916

Time
(sec.)

NV alg. 25005 64351 120 220 625 254 187
WLTB alg. 23760 18034 35 42 93 46 47
Our alg. 20942 13947 27 27 57 29 30

GaussSieve alg. 0.003 0.013 0.068 0.098 0.421 3.181 42.696

∥v∥
λ1

NV alg. 1 1 23.8 38.3 170.1 323 347.7
WLTB alg. 1 1 25.9 35.1 170.1 323 347.7

Our three-level alg. 1 1 21.2 38.3 170.1 323 347.7
GaussSieve alg. 1 1 1 1 1 1 1

Table 2. Experimental results.

In our experiments, the GaussSieve algorithm is much faster than the others
and succeeds to find the shortest vectors for all the lattices we picked. Besides of
the major reason that the GaussSieve algorithm performs better in practice (it
has been reported that the GaussSieve algorithm is more efficient than the NV
algorithm), another possible reason is that our implementation is a little poor.

Compared with the NV and WLTB algorithms, it seems that our algorithm
may be slower for low dimensional lattices due to the larger hidden polynomial
factor. However, on one hand, the number of sieved vectors in each iteration
of our algorithm decreases faster because the number of small balls is larger,

which implies that the number of iterations is smaller and the number of the
vectors to be sieved in the next iteration is smaller as well. On the other hand,
the time complexity is for the worst case. In practice, we need not to check all
the big balls, medium balls and small balls to decide which small ball the sieved
vector belongs to. Thus, with the same number of samples in our experiments,
our algorithm runs faster than the NV and WLTB algorithms. Since the sample
procedure is very fast when the dimension n is not greater than twenty, we can
sample enough lattice vectors to ensure that the three algorithms can find a
shortest nonzero lattice vector. In such case, the time of sieving overwhelms the
time of sampling, so our algorithm usually costs the least total time.

4.2 On Heuristic Assumption 1

To test the validity of the Heuristic Assumption 1 that the distribution of the
sieved vectors remains uniform, we picked four random lattices of dimension 10,
25, 40 and 50, sampled 150000, 8000, 5000, 3000 lattice vectors and then sieved
them respectively. As in [21], we plotted the number of sieved vectors in each
iteration (see Figure 5). It can be seen that the head and the tail of the curve
change slightly, but most of the curve, the middle part, decreases regularly. The
lost vectors in each iteration are those used as centers or reduced to zero which
means collisions occur. So the curve shows that the numbers of centers and
collisions in most of the iterations are nearly the same, which partially suggests
that the distribution of the sieved vectors is close to uniform throughout the
iterations.

5 Conclusion

In this paper, we propose a three-level heuristic sieve algorithm to solve SVP
and prove that the optimal running time is 20.3778n+o(n) polynomial-time oper-
ations and the space requirement is 20.2833n+o(n) polynomially many bits under
Heuristic Assumption 1.

Acknowledgement. We like to thank Michael Schneider very much for his
valuable suggestions on how to improve this paper. We also thank the anonymous
referees for their helpful comments. We are grateful to Panagiotis Voulgaris for
the publication of his implementation of the GaussSieve algorithm. Pan would
like to thank Hai Long for his help on the programming.
We would like to thank Thijs Laarhoven in Eindhoven University of Technology
very much, who pointed out there was some mistake in the previous version.

References

1. L. M. Adleman. On breaking generalized knapsack public key cryptosystems. In
the 15th Annual ACM Symposium on Theory of Computing Proceedings, pages
402-412. ACM, April 1983.

0 10 20 30 40 50 60 70 80
0

30,000

60,000

90,000

120,000

150,000

Iteration of Sieve

No. Vectors sieved

(a) n=10

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000

8000

Iteration of Sieve

No. Vectors Sieved

(b) n=25

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Iteration of Sieve

No. Vectors sieved

(c) n=40

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

Iteration of Sieve

No. Vectors sieved

(d) n=50

Fig. 5. Cardinality of the set of sieved vectors.

2. M. Ajtai. The shortest vector problem in l2 is NP-hard for randomized reductions.
In Proc. of 30th STOC. ACM, 1998.

3. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In Proc. 33rd STOC, pages 601-610. ACM, 2001.

4. J. Blömer and S. Naewe. Sampling methods for shortest vectors, closest vectors and
successive minima. Theor. Comput. Sci. 410(18), 1648-1665 (2009).

5. K. Böröczky and G. Wintsche. Covering the sphere by equal spherical balls. Discrete
and Computational Geometry, The Goodman-Pollack Festschrift, 237-253, 2003.

6. U. Fincke and M. Pohst. A procedure for determining algebraic integers of given
norm. In Proc. of EUROCAL, volume 162 of LNCS, pages 19–202, 1983.

7. U. Fincke and M. Pohst. Improved methods for calculating vectors of short length
in a lattice, including a complexity analysis. Math. Comp., 44(170):463–471, 1985.

8. N. Gama, N. Howgrave-Graham, H. Koy, and P. Q. Nguyen. Rankin’s constant and
blockwise lattice reduction. In Proc. CRYPTO ’06, volume 4117 of Lecture Notes
in Computer Science, pages 112-130. Springer, 2006.

9. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequality.
In STOC ’08-Proc. 40th ACM Symposium on the Theory of Computing. ACM, 2008.

10. N. Gama, P. Q. Nguyen and O. Regev. Lattice enumeration using extreme prun-
ning. In Advances in Cryptology - EUROCRYPT 2010 Proceedings, pages 257-278.
Springer, May 2008.

11. J. Hoffstein, J. Pipher, J.H. Silverman. NTRU: a ring-based public key cryptosys-
tem. In Proc. of Algorithmic Number Theory, J.P. Buhler, Ed. Berlin, Germany:
Springer-Verlag, vol. 1423 of LNCS, pp. 267-288,1998.

12. R. Kannan. Improved algorithms for integer programming and related lattice prob-
lems. In Proc. of 15th STOC, pages 193-206. ACM, 1983.

13. P. N. Klein. Finding the closest lattice vector when it’s unusually close. In Proc.
of SODA, pages 937-941. ACM, 2000.

14. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Ann., 261:513-534, 1982.

15. J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. Jour-
nal of the ACM, 32(1): 229-246, 1985.

16. D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm
for most lattice problems based on Voronoi cell computations. In Proc. of STOC,
pages 351-358. ACM, 2010.

17. D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest
vector problem. In the 21th Annual ACM-SIAM Symposium on Discrete Algorithms
Proceedings, pages 1468-1480. SIAM, January 2010.

18. B. Milde and M. Schneider. A parallel implementation of GaussSieve for the short-
est vector problem in lattices. In Proceedings of the 11th International Conference
on Parallel Computing Technologies, volume 6873 of LNCS, pages 452-458. Springer,
2011.

19. P. Q. Nguyen and D. Stehle. LLL on the Average. In Proc. of the 7th International
Algorithmic Number Theory Symposium, (ANTS-VII), volume 4076 of LNCS, pages
238-256. Springer-Verlag, 2006.

20. P. Q. Nguyen and J. Stern. The two faces of lattices in cryptology. In Proc. of
CALC ’01, volume 2146 of LNCS. Springer-Verlag, 2001.

21. P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are
practical. Journal of Mathematical Cryptology, 2(2):181-207, July 2008.

22. X. Pujol and D. Stehlé. Solving the shortest lattice vector problem in time 22.465n.
Cryptology ePrint Archive, Report 2009/605, 2009.

23. O. Regev. Lecture notes on lattices in computer science, 2004. Available at
http://www.cs.tau.ac.il/ odedr/teaching/lattices fall 2004/index. html.

24. M. Schneider. Analysis of Gauss-Sieve for Solving the Shortest Vector Problem
in Lattices. In Proceedings of the 5th International Workshop of Algorithms and
Computation, WALCOM11, volume 6552 of LNCS, pages 89-97. Springer, 2011.

25. M. Schneider. Sieving for Shortest Vectors in Ideal Lattices. Africacrypt 2013,
LNCS 7918, pages 375-391, Springer 2013.

26. C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. The-
oretical Computer Science, 53:201-224, 1987.

27. C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems. Mathematics of Programming, 66: 181-199,
1994.

28. A. Shamir. A polynomial time algorithm for breading the basic Merkel-Hellman
cryptosystem. In the 23rd IEEE Symposium On Foundations of Computer Science
Proceedings, pages 145-152. IEEE, 1982.

29. V. Shoup. NTL: A library for doing number theory. Available at
http://www.shoup.net/ntl/

30. P. Voulgaris. Gauss Sieve alpha V.0.1 (2010). Available at
http://cseweb.ucsd.edu/ pvoulgar/impl.html.

31. X. Wang, M. Liu, C. Tian and J. Bi. Improved Nguyen-Vidick Heuristic Sieve
Algorithm for Shortest Vector Problem. The 6th ACM Symposium on Information,
Computer and Communications Security Proceedings, pages 1-9, ACM, 2011.

