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1 Introduction

In this article, we give an algorithm for decomposing given element of Jacobian gruop into the
sum of the decomposed factor, which consists of the points of curve. This is the generalization
of the Semaev’s formula [8] and by leading this formuls, we use the Riemann-Roch space
technique similar as [5]. Recently, French researchers [2], [7], propose the algorithm for solving
ECDLP over binary extension field by subexponential complexities of extension degree n.
This algorithm uses the fact that the system of the equations obtained by decomposing given
element of elliptic curve into decomposed fatcor contains many hidden equations and the
complexity for decomposing a point of elliptic curve into d = nc (0 < c < 1/2 is a constant 1 )
elements of decomposed factor, is subexponential. These arguments seems to have some gaps,
but, any way, there is some posibility that ECDLP is subexponential. By using thier argument
to the Jacobian of plane curve, we similarly get that the DLP of the Jacobian of plane curve
of small genus over binaly extension field /or its generalization to small characterristic field
also subexponential.

2 Notations

In this article, let C : f(x, y) = 0 be a plane curve of small genus g over Fpn , ∞ be a fixed
point at infinity, D0 = Q1 + Q2 + ... + Qg − g∞ be a fixed element of Jac(C/Fpn). We also
put dy := degy f(x, y) and φ1(x) :=

∏g
i=1 x − x(Qi).

3 Riemann-Roch Space

Proposition 1 (Riemann-Roch). Let D be a divisor such that deg D ≥ 2g − 1. Then
dimL(D) = deg D − g + 1.

Let d be an integer such that d > 2g−1. Put D := d∞−D0 = (d+ g)∞−Q1 −Q2 − ...−Qg.
Then form Riemann-Roch theorem(Proposition 1), there are independent elements of function
field fi(x, y) ∈ Fpn(C) (i = 0, 1, .., d − g) such that fi(x, y) = 0 at all Q1, .., Qg, fi(x, y) does
not has a pole except ∞, ord∞fi(x, y) < −d−g for i = 1, 2, .., d−g and ord∞f0(x, y) = −d−g.
Moreover, form Riemann-Roch Theorem, the element h(x, y) of function field Fpn(C) such
that h(x, y) = 0 at all Q1, .., Qg, h(x, y) does not has a pole except ∞, and ord∞h(x, y) =
−d−g, is written by h(x, y) = f0(x, y)+a1f1(x, y)+ ....+anfn(x, y) (ai ∈ Fpn) up to constant
multiplication.
1 Taking d = O(n1/3) is best possible for the complexity



Let us denote

H(x, y) := f0(x, y) + A1f1(x, y) + .... + Anfn(x, y)

where Ai are variables and let S(x) := resultanty(f(x, y),H(x, y)).

Lemma 1. 1. degx S(x) = d + g.
2. φ1(x) |S(x)
3. Put g(x) := S(x)/φ1(x) and we have degx g(x) = d.
4. Put Ci be the i-th coefficients of g(x) (i.e. g(x) =

∑d
i=0 Cix

i). Then we have Ci is a
polynomial of A1, ..., Ad−g with total degree ≤ dy.

4 System of equations

Assume that there are d elements Pi = (xi, yi) ∈ C(F̄p) (i = 1, 2, .., d) such that the relation
D0 + P1 + ... + Pd − d∞ ∼ 0 holds. From the definition of linear equivalence, there is an
element h(x, y) ∈ C(F̄p) such that div h(x, y) = D0 + P1 + ... + Pd − d∞. Put si by the xi

coefficient of the polynomial
∏d

i=1(x − xi).

Lemma 2. There are some ai ∈ F̄p (i = 1, 2, .., d − g) satisfying the following:
1. h(x, y) = Constant × H(x, y)|Ai=ai ,
2. si · Cd|Ai=ai = Ci|Ai=ai (i = 0, 1, .., d − 1).

Further let Xi (i = 1, 2, .., d) be variables and put Si = Si(X1, .., Xd) by the Xi coefficient
of the polynomial

∏d
i=1(X − Xi).

Consider the system of the equations

Si(X1, ..., Xd) · Cd(A1, .., Ad−g) = Ci(A1, .., Ad−g) (i = 0, 1, .., d − 1). (1)

Note that the equations system consists of d equations of d−g variables of Ai and d variables
of Xi with total degree associated with {A′

is} being ≤ dy.

Proposition 2. The condition that there are some Pi = (xi, yi) (i = 1, 2, .., d) such that
D0 + P1 + ... + Pd − d∞ ∼ 0 is equivalent to the condition that the equations system 1 of the
variables{Ai} and {Xi} has some solution satisfying Xi = xi.

We want to eliminate the value of {Ai}. Fundamentaly, by eliminating d−g variables form
d equations, we must obtain (at least) g equations of X1, .., Xd. However, only eliminating
{Ai}, we does not get the sufficient condition that {X ′

is} is the x-coordinate of decomposed
factor, we use very techniqual method.

Let [θ1, θ2, ..., θg] be a (fixed) base of Fpgn/Fpn and consider the equations

The equations of (1) and T = Xd−g+1θ1 + Xd−g+2θ2 + ... + Xdθg (2)

Note that the equations system consists of d + 1 equations of d − g variables of Ai and d
variables of Xi ,and one variable T with total degree associated with {A′

is} being ≤ dy and
with {X ′

is} being ≤ d.
Let F (X1, .., Xd−g, T ) be the polynomial ∈ Fpgn [X1, ..., Xd, T ] obtained from equation 2

by eliminating A1, ..., Ad−g and Xd−g+1, ..., Xd.

Proposition 3. Assume Pi = (xi, yi) ∈ C(Fpn) (i − 1, 2, .., d) and put t := xd−g+1θ1 +
xd−g+2θ2 + ...+xdθg. The condition D0 +P1 + ...+Pd−d∞ ∼ 0 is equivalent to the condition
F (x1, ..., xd−g, t) = 0.

Since F (X1, .., Xd−g, T ) ∈ Fpgn [X1, .., Xd−g, T ], there are polynomials
Fj(X1, ..., Xd) ∈ Fpn [X1, , , .Xd] (j = 1, 2, ..., g) such that

F (X1, .., Xd−g, Xd−g+1θ1 + Xd−g+2θ2 + ... + Xdθg) =
g∑

j=1

Fj(X1, ..., Xd)θj .



Proposition 4. Assume Pi = (xi, yi) ∈ C(Fpn) (i = 1, 2, .., d). The condition D0 +P1 + ...+
Pd − d∞ ∼ 0 is equivalent to the condition Fj(x1, ..., xd) = 0 (j = 1, 2, ..., g).

In order for estimating the total degree of Fj(X1, .., Xd), we use the Macaulay matrix
[3]. Let Res be the multipolynomial resutant of the system of the equations (2) considering
A1, ..., Ad−g, Xd−g+1, ..., Xd as variables and X1, ..., Xd−g, T as constants. Form its meaning,
Res is one representation of F (X1, ..., Xd−g, T ). Since each equation of (2) has degree ≤ dy+g,
the maximam degree of the multipolynomial, which is represented by some row of Res is
≤

∑d
i=1(dy +g−1) = d(dy +g−1). So we have the upper bound of the size of the matrix Res

is ≤
(
d(dy+g)

d

)
, since the number of the monomials of n variables and degree ≤ m is

(
m+n

n

)
.

From Stirling formula, which state N ! ≈
√

2πNNN exp(−N), it is estimated by√
dy + g

2π(dy + g − 1)d
× (

(dy + g)(dy+g)

(dy + g − 1)(dy+g−1)
)d.

Moreover, we see that an element of the matrix Res is degree 1 polynomial of Si =
Si(X1, ..., Xd) and T (thus also we see degree atmost d − g polynomial of {Xi} and T ), we
have the following:

Proposition 5. The upper bound of the total degree of the multipolinomial F (X1, ..., Xd−g, T )

and Fj(X1, ..., Xd) (j = 1, 2, ..., g) are estimated by (d−g)×
√

dy+g
2π(dy+g−1)d×( (dy+g)(dy+g)

(dy+g−1)(dy+g−1) )d.

5 Hyper elliptic curve case

In this section, we consider the hyper elliptic curve case. Let C : f(x, y) = y2 + b′1xy + .. −
x2g+1−b2gx

2g − ...−a0 = 0 be a hyper elliptic curve of small genus g over Fpn , ∞ be a unique
point at infinity, D0 = Q1+Q2+...+Qg−g∞ be a fixed element of Jac(C/Fpn). From Munford
representation, D0 is also represented by using two polynomials φ1(x) :=

∏g
i=1 x−x(Qi) and

φ2(x) which has the properties deg φ2(x) ≤ g − 1 and y(Qi) = φ2(x(Qi)).
Let d be an integer such that d > 2g−1. Put D := d∞−D0 = (d+g)∞−Q1−Q2−...−Qg.

Then form Riemann-Roch theorem(Proposition 1), the base of the vector space
L(D) := {h ∈ C(Fpn)|h has zero at all Q1, .., Qg and has pole only at ∞, ord∞h ≤ −d − g}
is written by

{φ1(x), φ1(x)x, ..., φ1(x)xM1 , (y − φ2(x)), (y − φ2(x))x, ..., (y − φ2(x))xM2
}

where M1 = b(d−g)/2c and M2b(d−g−1)/2c. Note that when 2|(d−g), ord∞φ1(x)xM1 = g+d
and when 2 6 |(d − g), ord∞(y − φ2(x))xM2 = g + d.

So put f0(x, y) :=
{

φ1(x)xM1 2|(d − g)
(y − φ2(x))xM2 2 6 |(d − g) and putfi(x, y) (1 ≤ i ≤ d − g) by other

bases of L(D) and exceeds the simailar argument of Section 2. Let us denote

H(x, y) := f0(x, y) + A1f1(x, y) + .... + Anfn(x, y)

where Ai are variables and let S(x) := ±resultanty(f(x, y),H(x, y)).

Lemma 3. 1. S(x) is monic polynomial of x and degx S(x) = d + g.
2. φ1(x) |S(x)
3. Put g(x) := S(x)/φ1(x). g(x) is a monic polynomial of x and degx g(x) = d.
4. Put Ci be the i-th coefficients of g(x) (i.e. g(x) = xd +

∑d−1
i=0 Cix

i). Then we have Ci is a
polynomial of A1, ..., Ad−g with total degree 2. (Note that Cd = 1 form g(x) being monic.)



Similarly let Xi (i = 1, 2, .., d) be variables and put Si = Si(X1, .., Xd) by the Xi coefficient
of the polynomial

∏d
i=1(X − Xi).

Consider the system of the equations

Si(X1, ..., Xd) = Ci(A1, .., Ad−g) (i = 0, 1, .., d − 1). (3)

Proposition 6. The condition that there are some Pi = (xi, yi) (i = 1, 2, .., d) such that
D0 + P1 + ... + Pd − d∞ ∼ 0 is equivalent to the condition that the equations system 3 of the
variables{Ai} and {Xi} has some solution satisfying Xi = xi.

6 Decomposed factor

In 2009, Diem [1] proposes the way of taking decomposed factor, called Diem-variant, and
shows ECDLP of elliptic curves over Fpn satisfying log p = O(n2) has subexponential complex-
ity when input size n log p goes to infinity. In 2005 or 2006, soon after the Semaev’s formula is
discoverd, Matsuo also found the simmilar and more general way of taking decomposed factor
(for exapmle distinct or non-equal size decomposed factor). Matsuo tries to decompose an
element of elliptic curve over around 120-bit size binary field, but, huge memory workstation
does not returns the reply and it it not presented and only the researchers around him knows
this.

Here, we propose the way of taking decomposed factor of Jacobian of the curve, which is
the generalization of Matsuo’s decomposed factor. Fix [w1, ..., wn] be the base of Fpn/Fp. Let
n1, ..nd be the positive integers satisfying n1 + ... + nd ≈ ng. Put

B′
i := {

nj∑
j=1

xi,jwj |xi,j ∈ Fp} (i = 1, 2, ..., d).

Let r1, ..., rd be elements of Fpn
2 and take decomposed factor Bi by

Bi := {P −∞ ∈ Jac(C/Fpn)|P ∈ C(Fpn), ∃x ∈ B′
i such that x(P ) = x+ri} (i = 1, 2, ..., d),

and consider the decomposition (of D0)

D0 +
d∑

i=1

(Pi −∞) = 0 (Pi −∞) ∈ Bi

in Jacobian group.
Note that Bi’s are essentially disjoint, |Bi| ≈ pni , and the probability that the decompo-

sition success is O(pn1+...+nd−ng) ≈ 1. From the disjointness, it is improved that the term of
1/d! in the probability is omitted. (Remark that it is needed to compute gaussian elimination
of d-times size matrix in the last step.)

So, we have the following proposition, which is a generalization of Diem’s result:

Proposition 7. DLP of the Jacobian group of a plane curve of small genus g over extension
field Fpn satisfying log p = O((ng)2) (since g is constant, it is equivalent to log p = O(n2))
has subexponential complexity when input size N = ng log p goes to infinity. .

Proof. We consider the case d = ng, n1 = n2 = ... = nd = 1 and compute the decomposi-
tion of given divissor D0. In this case, D0 is decomposed by the divisor

∑ng
i=1(Pi −∞) such

that x(Pi) = (xi,1w1 + ri) with xi,1 ∈ Fp. From Proposition 4, in order to find such {xi,1},
it it sufficient to solve the 2ng equations Fj,k ∈ Fp[{xi,1}] obtained by Weil descent from
Fj(x1,1w1 + r1, ..., xng,1w1 + rng) = 0 (j = 1, 2, ..., g). (Note that put Fj,k be the polymo-
nials obtained by Fj(x1,1w1 + r1, ..., xng,1w1 + rng) =

∑n
k=1 Fj,k(x1,1, ..., xng,1)wk ). From

2 Take ri+1 ∈ Fpn \ ∪i
j=1B

′
j and disjoint decomposed factor is constracted



Proposition 5,the degree of the equations obtained by Weil descent is ≤ Constd
1 = Constng

1 .
So the upper bound of the cost of finding the value of {xi,1} by using Gröbner basis is es-
timated by (Constng

1 )ng×Const2 = exp(Const3 n2g2) = exp(N2/3+o(1)). In order to solve the
DLP, we must have obtain dp = ngp decomposition and compute the Gaussian elimination
of the dp = ngp size matrix. Since ngp = exp(log(ng) + log p) = exp(N2/3+o(1)), we also have
both of the costs of ngp decomposition and Gaussian elimination are exp(N2/3+o(1)).
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