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Abstract. In [2], Faugére et al. shows that the decomposition problem of an element
of elliptic curve over binary field F2n reduces to solving low degree equations system
over F2 coming from Weil descent. Using this method, the discrete logarithm problem of
elliptic curve over F2n reduces to linear constrains, i.e., solving equations system using
linear algebra of monomial modulo field equations, and its complexity is expected to be
subexponential of input size n. However, it is pity that at least using linear constrains,
it is exponential. 1 In [7], Petit et al. shows that assuming first fall degree assumption
and using Gröbner basis computation, its complexity is heuristically subexponential.
On the other hands, the author [6] shows that the decomposition problem of Jacobian
of plane curve over Fpn also essentially reduces to solving low degree equations system
over Fp coming from Weil descent. In this paper, we generalize (p > 2 cases, Jacobian
cases) and revise (precise estimation of first fall degree) the results of Petit et al. and
show that the discrete logarithm problem of elliptic curve over small characteristic field
Fpn is subexponential of input size n, and the discrete logarithm problem of Jacobian
of small genus curve over small characteristic field Fpn is also subexponential of input
size n, under first fall degree assumption.
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1 Notations and Results

Through out of this paper, let p be a small prime number( or power of primenumber), n, n′,
d,(d, n′ ≤ n), N = n′d 2 be positive integers, {wi}i=1,...,n be a fixed base of Fpn/Fp, and

B := {
n′∑

i=1

xiwi |xi ∈ Fp}(⊂ Fpn).

Let
−→
Xi (i = 1, .., d) be variables which move in extension field Fpn .

−→
Xi are called global vari-

ables and a polynomial
−→
F ∈ Fpn [

−→
X1, ...,

−→
Xd] is called global polynomial. Let {Xi,j}i=1,...,d,j=1,...,n′

be variables which moves in base field Fp. {Xi,j} are called local variables and a polynomial
F ∈ Fp[{Xi,j}] is called local polynomial. (We sometimes write {Xi,j} by {X1, ..., XN} where
N = dn′ for simplicity.) Since Xi,j only moves in Fp, there is a set of equations

Sfe := {Xp
i,j − Xi,j |1 ≤ i ≤ d, 1 ≤ j ≤ n′}

called field equations.

1 In §4, we shows there are many trivial relations of polynomial modulo field equations
2 In elliptic curve case N > n, and in Jacobian case N > ng, where g is the genus of the curve, is

needed.



For global polynomial
−→
F ∈ Fpn [

−→
X1, ...,

−→
Xd], let wd(

−→
F )(∈ Fpn [{Xi,j}]) be the polynomial

obtained by substituting
−→
Xi :=

∑n′

j=1 Xi,jwj (i = 1, ..., d) and decreasing the degrees of Xi,j ’s
taking modulo field equations. 3 i.e.,

wd(
−→
F ) :=

−→
F |−→

Xi:=
Pn′

j=1 Xi,jwj
mod Sfe.

Let [
−→
F ]↓k(∈ Fp[{Xi,j}]) (k = 1, ..., n) be the local polynomials such that

wd(
−→
F ) =

n∑
k=1

[
−→
F ]↓kwk.

We will call wd(
−→
F ), [

−→
F ]↓k by Weil desent of

−→
F .

Let E/Fpn : f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6 = 0 be an elliptic curve.

From technical reason, we assume that E has no Fpn rational point at x = 0, i.e., the equation
f(0, y) = 0 has no solution in Fpn , which does not lose the generality. Put decomposed factor

DF := {P ∈ E(Fpn) |x(P ) ∈ B}

and consider the decomposition problem which states that for arbitrary P0 ∈ E(Fpn) finding
P1, ..., Pd ∈ DF satisfying P0 + P1 + ... + Pd = 0. From Semaev [8], there is a global poly-
nomial

−−→
SemP0(

−→
X1, ...,

−→
Xd) of degree < 2d such that P0 + P1 + ... + Pd = 0 is equivalent to

−−→
SemP0(x(P1), ..., x(Pd)) = 0. So the problem reduced to sloving local polenomial system con-
sisting [

−−→
SemP0 ]

↓
k = 0 (k = 1, ..., n) and field equations Xp

i,j−Xi,j = 0 (i = 1, ..., d, j = 1, ..., n′).
From the assumption that E has no Fpn rational points at x = 0, this problem also reduced to
solve [c ·−→m ·

−−→
SemP0 ]

↓
k = 0 (k = 1, ..., n) and field equations Xp

i,j −Xi,j = 0, where c is arbitrary

element of F×
pn and −→m =

∏d
i=1

−→
Xi

ei is arbitrary monomial of {−→Xi}. 4 In this paper, we show
that takeing n′ = O(n2/3), d = O(n1/3) and the complexity of computing [−→m0 ·

−−→
SemP0 ]

↓
k is

O(exp(n2/3+o(1))), where o(1) → 0 when n → ∞. Moreover, if we assume the first Fall degree
assumption of [7], the complexity of solving local polynomial system is also O(exp(n2/3+o(1))),
So the total cost of solving discrete logarithm of E(Fpn) which consists of DF times decom-
position of an element in E(Fpn) and linear algebra computation of #DF ×#DF size matrix,
is also O(exp(n2/3+o(1))).

Let C/Fpn : f(x, y) = 0 be a plane curve of small constant genus g. Fix ∞ ∈ C(Fpn) be
some point of C at x = ∞. From technical reason, we assume that C has no Fpn rational
point at x = 0, i.e., the equation f(0, y) = 0 has no solution in Fpn , which does not lose the
generality. 5 Put decomposed factor

DF := {P −∞|P ∈ C(Fpn), x(P ) ∈ B}

and consider the decomposition problem which states that for arbitrary D0 ∈ Jac(C/Fpn)
finding D1, ..., Dd ∈ DF satisfying D0 + D1 + ... + Dd ∼ 0. From the author [6], there is
a set of g global polynomials

−−−→
F(D0)1, ...,

−−−→
F(D0)g of degree < Cd (C is come constant)such

that this problem reduced to sloving local polenomial system consisting [
−−−→
F(D0)i]

↓
j = 0 (i =

1, ..., g, j = 1, ..., n) and field equations Xp
i,j − Xi,j = 0 (i = 1, ..., d, j = 1, ..., n′). From the

3 For each i, j, degXi,j
wd(

−→
F ) ≤ p − 1.

4 In order for solving ECDLP in subxeponential complexity, we will take deg−→m = O(exp(n1/3+o(1)))
5 From this assumption, solving equations system [c · −→m ·

−−→
SemP0 ]

↓
k = 0 (k = 1, ..., n) and field

equations, is equivalent condition of finding P1, ..., Pd. Note that if this assumption does not hold,
it is only a necessay condition



assumption that C has no Fpn rational points at x = 0, this problem also reduced to solve
[c · −→m ·

−−−→
F(D0)i]

↓
j = 0 (i = 1, ..., g, j = 1, ..., n) and field equations Xp

i,j − Xi,j = 0, where

c is arbitrary element of F×
pn and −→m =

∏d
i=1

−→
Xi

ei is arbitrary monomial of {
−→
Xi}. In this

paper, we show that taking n′ = O(n2/3), d = O(gn1/3) = O(n1/3) and the complexity of
computing [c · −→m ·

−−−→
F(D0)i]

↓
j is O(exp(n2/3+o(1))), where o(1) → 0 when n → ∞. Moreover, if

we assume the first fall degree assumption of [7], the complexity of solving local polynomial
system is also O(exp(n2/3+o(1))), So the total cost of solving discrete logarithm of Jac(C/Fpn)
which consists of DF times decomposition of an element in Jac(C/Fpn) and linear algebra
computation of #DF × #DF size matrix, is also O(exp(n2/3+o(1))).

It must be noted that althought its complexity is subexponential, the practical computa-
tion, especially in cases of p > 2 or g ≥ 2, is quite hard and it is a results of the complexity.

2 First fall degree assumpton

Definition 1 (First fall degree [7]). Let K be a field and let f1, ..., fl ∈ K[X1, ..., XN ].
first fall degree Dff is the (minimam) positive integer satisfying the following;
There exists gi ∈ K[X1, ..., XN ] (i = 1, ..., l) such that
1) max1≤i≤l deg(gifi) = Dff , 2)

∑l
i=1 gifi 6= 0, 3) deg(

∑l
i=1 gifi) < Dff , 4) deg(fi) ≤ Dff .

Petit et al. [7] assume the following assumption, which has some counter examples, but,
generally it seems to be true and show the subexponentiality of the discrete logarithm problem
of elliptic curve over binary field.

Assumption 1 (First fall degree Assumption) Upperbound of the degree of the polyno-
mial for computiing Gröbner basis of f1, ..., fl of F4 algorithm is Dff + O(1).

This assumption has some counter examples and Petit et al. assume that the polynomials
f1, ..., fl are general(random?) polynomials. However, if f1, ..., fl are randomly choosen, the
value of Dff seems to be very large. In our situation, we treat only the cases that Dff ∼
maxi deg fi and so, f1, ..., fl can not be randomly choosen.

For my opinion, if there are many l-ple (g1, ..., gl) ∈ Al(K[X1, ..., XN ]) satisfying the
definition of first fall degree, assumption seems to be true. For example, for any l × l size

invertible matrix M , put

 f
(N)
1
...

f
(M)
l

 := M

f1
...
fl

 . When deg f
(M)
1 = max1≤i≤l deg f

(M)
i , define

Dff (M) by minimam integer satisfying
there exists g

(M)
i ∈ K[X1, ..., XN ] (i = 1, ..., l) such that

1) max1≤i≤l deg(g(M)
i f

(M)
i ) = Dff (M), 2)

∑l
i=1 g

(M)
i f

(M)
i 6= 0, 3) deg(

∑l
i=1 g

(M)
i f

(M)
i ) <

Dff , 4) deg(f (M)
i ) ≤ Dff (M). and put Dff := maxM Dff (M). However, by using this new

assumption, I can not prove that the equations system coming from Weil descent have low
first fall degree in strict way and it remains a future work.

Lemma 1. Under the Assumption 1, the complexity of computiong Gröbner basis of f1, ..., fl

by F4 algorithm is estimated by ≤ O(NDf ·C+O(1)), when N À Dff and where C is some
constant ∼ 3.

Proof. The number of the momonials of degree ≤ Dff + O(1) is
(

Dff + O(1) + N − 1
Dff + O(1)

)
<

NDff +O(1). So, in order to compute Gröbner basis of f1, ..., fl, it is sufficient to compute
linear algebta of the matrix of size NDff +O(1) × NDff +O(1). So its complexity is estimated
by ≤ O(NDf ·C+O(1)), where C is linear algebra constant.



In the discussion of [7], the decomposition of arbitrary Fpn rational point of elliptic curve
into d-elements of decomposed factor DF (they treat only binary field F2n case and we make
its generalization here), reduces to solving equations system
[
−→
f ]↓k = 0, (k = 1, ..., n) and feild equations Xp

i,j − Xi,j = 0, where
−→
f ∈ Fpn [

−→
X1, ...,

−→
Xd] is

some global polynomial and N = dn′ is an integer > n. Moreover they shows that there exists
huristically some local polynomials g, g1, ..., gn ∈ Fp[{Xi,j}] such that
1) g ≡

∑n
i=1 gi[

−→
f ]↓i mod Sfe,

2) deg gi ≤ 1 (i = 1, , ..., n), and 3) deg g ≤ maxi deg[
−→
f ]↓i .

So, from the definition of first fall degree, the first fall degree of equations system
{[
−→
f ]↓k ∈ Fp[{Xi,j}]1≤i≤d,1≤j≤n′ | k = 1, ..., n} seems to be 1 + maxi deg[

−→
f ]↓i (Strict speaking,

considering the rare cases, for example, almost all gi’s are constant, it is not true, which I
call shallow gap and repair in the next section). However, g is only equivalent to

∑n
i=1 gi[

−→
f ]↓i

modulo field equations. So, I feel that it seems to have deep gaps. However, it is surprizing
for me, this Gap can be repair by using the following lemma;

Lemma 2. Let G1, ..., GN ∈ Fp[X1, .., XN ] be local polynomials and put F :=
∑N

i=1 Gi ·
(Xp

i − Xi) and D := deg F . So, there are some local polynomials G′
1, ..., G

′
N ∈ Fp[X1, .., XN ]

satisfying F :=
∑N

i=1 G′
i · (X

p
i − Xi) and deg G′

i ≤ D − p (i = 1, ..., N).

Proof. Fix some monomial order > satisfying
∏

Xei
i >

∏
Xfi

i when
∑

ei >
∑

fi. Put

G := {(G1, ..., GN ) ∈ AN (Fp[X1, ..., Xd]) |F =
N∑

i=1

Gi(X
p
i − Xi)}.

For G = (G1, ..., GN ) ∈ G, let ψ(G) be the maximal monomial i.e.,
ψ(G) ∈ {LM(G1X

p
1 ), ..., LM(GNXp

N )} and ψ(G) ≥ LM(GiX
p
i ) for all i = 1, ..., N . Put

IND(G) := {i |ψ(G) = LM(GiX
p
i )}, NUM(G) := #IND(G).

For G = (G1, ..., GN ) ∈ G, if NUM(G) = 1, there is some I(≤ N) such that ψ(G) =
LM(GIX

p
I ) and ψ(G) > LM(GiX

p
i ) for i 6= I. So, we have D = deg F = deg ψ(G) ≥

p + deg LM(Gi) and desired result. Assume NUM(G) > 1 and deg ψ(G) > D, and we will
construct Gnew ∈ G such that ψ(Gnew) < ψ(G) and form the induction of φ(G), we will prove
this lemma.

Let {I1, .., Ik} = IND(G). (k = NUM(G) > 1 is assumed) We have easily
1) Xp

I1
|GIi (2 ≤ i ≤ k),

2)
∑k

i=1 LT (GIiX
p
Ii

) =
∑k

i=1 LT (GIiX
p
Ii

) = 0 and

3) (Xp
Ii
− XIi

)GIi
= (Xp

Ii
− XIi

)(GIi
− LT (GIi

) +
LT (GIi

)

Xp−1
I1

)

+
LT (GIi

)

Xp
I1

(Xp
I1
− XI1)(X

p
Ii
− XIi

) (i = 1, ..., k).

So, put
Gnew

I1
:= GI1 +

∑k
i=2

LT (GIi
)

Xp
I1

(Xp
Ii
− XIi)

Gnew
Ii

:= GIi − LT (GIi) + LT (GIi
)

Xp−1
I1

for(2 ≤ i ≤ k) and

Gnew
i := Gi for i 6∈ IND(G).

Then we have
Gnew = (Gnew

1 , ..., Gnew
N ) ∈ G and LM(Gnew

i ) < φ(G). Here, we only check the case i = I1.
(other cases it is trivial)

From the definition of Gnew
I1

, we have
Gnew

I1
Xp

I1
= GI1X

p
I1

+
∑k

i=2 LT (GIi)(X
p
Ii
−XIi) =

∑k
i=1 LT (GIi)X

p
Ii

= 0. So the leading terms
of G cancel and we have LT (Gnew

I1
) < LT (GI1) = ψ(G). Similary we have LT (Gnew

i ) < ψ(G)
for all i = 1, ..., N . This means ψ(Gnew) < ψ(G) and finish the proof.



From this lemma, the first fall degree of the equations system consists of the following
n + N number equations {[

−→
f ]↓k ∈ Fp[{Xi,j}]1≤i≤d,1≤j≤n′ | k = 1, ..., n} ∪ Sfe is heuristically

1 + max1≤i≤n deg[
−→
f ]↓i . We also remark that when deg

−→
f ∼ exp(n1/3+O(1)), which is used for

solving ECDLP, computation of such G′
i is very hard and its complexity (using direct com-

putation) seems to be exponential of n, althought computation of wd(
−→
f ) is subexponential.

6

3 Weight Theory and precise estimation of First fall degree

Here, we compute the strict values of the degree of the polynomial deg wd(
−→
F ) and [

−→
F ]↓i

(i = 1, ..., n) of a global polynomial
−→
F ∈ Fpn [

−→
X1, ...,

−→
Xd] such that each monomial

−→
M =∏−→

Xi
ei ∈ Mon(

−→
F ) satisfying ei ≤ pn′−1 or simply its necessary condition deg

−→
F ¿ pn′−1,

and show that the equations system coming from Weil desent have strictly low first fall
degree. In order to develop the strict argument, instead of computing wd(

−→
F ), we compute

wd(−→m1
−→m0

−→
F ) where −→m0, −→m1 are some global monomials such that deg(−→m0

−→
F ) is written by

the form pα − 1 7.

Definition 2. Let e =
∑blogp ec

k=0 ekpk (0 ≤ ek ≤ p − 1) be a positive integer ≤ pn′−1. Put its

weight by wt(e) :=
∑blogp ec

k=0 ek.
For a global variable

−→
X and positive integer e (≤ pn′−1), put wt(

−→
X e) := wt(e) and for a global

monomial −→m =
∏d

i=1

−→
Xi

ei satisfying 0 ≤ ei ≤ pn′−1, put wt(−→m) :=
∑d

i=1 wt(ei).

Further we assume the following assumption of the choice of the base {wi} which does not
lose the generality;

Assumption 2 (choice of the base) n′×n′ size matrix M := (wpi−1

j )1≤i,j≤n′ is invertible.

Lemma 3. For a monomial −→m =
∏d

i=1

−→
Xi

ei satisfying 0 ≤ ei ≤ pn′−1, deg(wd(−→m)) =∑d
i=1 wt(ei).

Proof. It is sufficient to show deg(wd(
−→
Xl

el)) = wt(el). Let el =
∑blogp elc

k=0 el,kpk (0 ≤ el,k ≤ p−

1) and

 Y1
...

Yn′

 := M

 Xl,1
...

Xl,n′

 . From
−→
Xl =

∑n′

j=1 Xl,jwj , we have
−→
Xl

pi−1 ≡
∑n′

j=1 Xl,jw
pi−1

j mod

Sfe = Yi and wd(
−→
Xl

el) ≡
∏blogp elc

i=0 Y
el,i

i+1 mod Sfe. (Here we use the condition el ≤ pn′−1

which is equivalent to logp el ≤ n′−1) So, we have degY1,...,Yn′ wd(
−→
Xl

el) = wt(el) and from the

invertibility of M , we also get deg wd(
−→
Xl

el) = degXl,1,...,Xl,n′ wd(
−→
Xl

el) = wt(el). (Note that

assume wt(el) > deg wd(
−→
Xl

el) = degXl,1,...,Xl,n′ wd(
−→
Xl

el), substituting Xl,i :=
∑n′

j=1 M−1
i,j Yj

to wd(
−→
Xl

el) and we obtains degY1,...,Yn′ wd(
−→
Xl

el) < wt(el), which is a contradiction. )

Lemma 4. For a monomial −→m =
∏d

i=1

−→
Xi

ei satisfying 0 ≤ ei ≤ pn′−1, there is some c ∈ F×
pn

such that deg[c−→m]↓j = wt(−→m) for arbitary j = 1, ..., n.

6 G′
i seems to be able to recover using Gröbner basis computation and under the first fall degree

assumption, complexity of the computation is subexponential
7 Note that if the constant term of

−→
F is not zero, solution(s) of −→m −→

F = 0 equals to the solution(s)

of
−→
F = 0 and −→m

−→
F can be used instead of

−→
F .



Proof. Let c0 · m (c0 ∈ F×
pn , m ∈ Mon({Xi,j})) be a certain term of wd(−→m) whose degree

eqauls to deg wd(−→m). Take c := c−1
0 ·

∑n
i=1 wi, we have a desired result.

Lemma 5. Let α be a positive integer. Then wt(pα − 1) = (p − 1)α and for any x ≤ 2pα −
pα−1 − 2 except x = pα − 1, wt(x) < (p − 1)α.

Proof. trivial.

Let
−→
F ∈ Fpn [

−→
X1, ...,

−→
Xd] be a global polynomial. Further we assume deg

−→
F ¿ pn′−1. We fix

−→
Mmax =

∏d
i=1

−→
Xi

Ei ∈ Mon(
−→
F ) such that deg

−→
Mmax ≥ deg

−→
M for any M ∈ Mon(

−→
F ). Let

α = α(
−→
F ) be a positive integer satisfying pα − 1 + deg

−→
F < 2pα − pα−1 − 2 ≤ pn′−1.

From deg
−→
F ¿ pn′−1, such α can be take in O(logp deg

−→
F ).

Put N := pα − pα−1 − deg
−→
F − 1(> 0)8, D :=

∑d
i=1 Ei, and −→m0 :=

∏d
i=1

−→
Xi

pα−1−Ei .

So from Lemma 3, we have wt(−→m0 ·
−→
Mmax) = wt(

∏d
i=1

−→
Xi

pα−1) = (p − 1)dα. Also let
−→
M =∏d

i=1

−→
Xi

ei ∈ Mon(
−→
F ) \ {−→Mmax}, we have wt(−→m0 ·

−→
M) = wt(

∏d
i=1

−→
Xi

pα−1+(ei−Ei)) and since
0 < pα −1+(ei −Ei) < pα −1+deg

−→
F ≤ 2pα −pα−1−1, we have wt(−→m0 ·

−→
M) < (p−1)dα

form Lemma 5. Thus we obtain the folowing from Lemma 4;

Lemma 6. Assume deg
−→
F ¿ pn′−1 and let α be a positive integer satisfying pα−1+deg

−→
F <

2pα − pα−1 − 2 ≤ pn′−1. Then we have
1) deg wd(−→m0 ·

−→
F ) = (p − 1)dα.

2) There is some c0 ∈ F×
pn such that deg[c0

−→m0 ·
−→
F ]↓j = (p − 1)dα for any j = 1, ..., n.

Also put −→m1 :=
∏d

i=1

−→
Xi

fi (0 ≤ fi ≤ N). let
−→
M =

∏d
i=1

−→
Xi

ei ∈ Mon(
−→
F )}, we have wt(−→m1

−→m0 ·−→
M) = wt(

∏d
i=1

−→
Xi

pα−1+fi+(ei−Ei)) and since
0 < pα−1+fi +(ei−Ei) ≤ pα−1+deg

−→
F +N ≤ 2pα−pα−1−1, we have wt(−→m1

−→m0 ·
−→
M) ≤

(p − 1)dα form Lemma 5. Thus we obtain the folowing from Lemma 4;

Lemma 7. Assume deg
−→
F ¿ pn′−1 and let α be a positive integer satisfying pα−1+deg

−→
F <

2pα − pα−1 − 2 ≤ pn′−1. Then we have
1) deg wd(−→m1 · −→m0 ·

−→
F ) ≤ (p − 1)dα.

2) For all c ∈ F×
pn , deg[c · −→m1 · −→m0 ·

−→
F ]↓j ≤ (p − 1)dα for any j = 1, ..., n.

Further put
−→
F0 := c0 · −→m0 ·

−→
F and ai,j,k ∈ Fp by wiwj =

∑n
k=1 ai,j,kwk.

Lemma 8.

[−→m1 ·
−→
F0]

↓
k ≡

n∑
i=1

[wi · −→m1]
↓
k [
−→
F0]

↓
i mod Sfe (k = 1, ..., n).

Proof. From
∑n

k=1[wi
−→m1]

↓
k wk = wd(wi

−→m1) =
∑n

k=1 wi [−→m1]
↓
kwk =

∑n
j=1[

−→m1]
↓
jwi wj

=
∑n

k=1(
∑n

j=1 ai,j,k[−→m1]
↓
j )wk, we have [wi

−→m1]
↓
k =

∑n
j=1 ai,j,k[−→m1]

↓
j .

On the other hands, we have
wd(−→m1 ·

−→
F0) ≡ wd(−→m1) × wd(

−→
F0) mod Sfe = wd(−→m1) × wd(

−→
F0) =

∑n
i=1

∑n
j=1[

−→m1]
↓
j [
−→
F0]

↓
i wiwj

=
∑

k(
∑

i(
∑

j ai,j,k [−→m1]
↓
j ) [

−→
F0]

↓
i ) wk =

∑
k(

∑
i[wi

−→m1]
↓
k [
−→
F0]

↓
i ) wk.

For arbitary I ∈ [1, .., n], since −→m1 is not constant, and deg wd(wI
−→m1) ≥ 1, there exists

some integer k(I) ∈ [1, ..., n] such that deg[wI
−→m1]

↓
k(I) ≥ 1. So consider the formula obtained

from Lemma 8,

[−→m1
−→
F0]

↓
k(I) ≡

n∑
i=1

[wi
−→m1]

↓
k(I) [

−→
F0]

↓
i mod Sfe.

8 It is a dble notation! but we use N here!!!



From Lemma 6 and Lemma 7, we remember deg[
−→
F0]

↓
i = (p − 1)dα, 1 ≤ deg[−→m1

−→
F0]

↓
k(I) ≤

(p − 1)dα, and using Lemma 2, we have the precise estimation of first fall degree;

Proposition 1. first fall degree of the equations sysytem

{[
−→
F0]

↓
k | k = 1, ..., n} ∪ Sfe

is estimated by ≤ (p − 1)dα + 1. 9

4 Trivial relation and linear constrains algorithm

By using the weight theory, we can show the following;

Lemma 9. Let c ∈ F×
pn ,

−→
F ,−→m =

∏d
i=1

−→
Xi

ei ,
−→
m′ =

∏d
i=1

−→
Xi

e′
i ∈ Fpn [

−→
X1, ...,

−→
Xd], such that

wt(ei) = wt(e′i) and deg(−→m
−→
F ),deg(

−→
m′ −→F ) ≤ pn′−1. Then there exists n×n invertible matrix

M ∈ SLn(Fp) such that [c
−→
m′ −→F ]↓1

...
[c
−→
m′ −→F ]↓n

 = M

 [−→m
−→
F ]↓1
...

[−→m
−→
F ]↓n

 .

From this Lemma, there exists many many 10 trivial relations among the equations coming
from Weil descent. So, the solution of the equation system using linear constrains of algebra
Fp[{Xi,j}] mod Sfe can not work 11 in subexponential complexity when deg

−→
F = O(exp(nc))

for some constant c.

5 Cost for computing Weil descent

In this section, we estimate the upperbound of the cost for computing wd(
−→
f ), where

−→
f ∈

Fpn [
−→
X1, ...,

−→
Xd] is a global polynomial with n′, d ¿ deg

−→
f ¿ pn′−1.

Lemma 10. The number of the monomials of N1 variables with degree ≤ N2 (not consider

field equations) is
(

N1 + N2 − 1
N1 − 1

)
=

(
N1 + N2 − 1

N2

)
Let I1 be the number of global monomial ∈ Mon(

−→
f ). From this lemma and d ¿ deg

−→
f , I1

is estimated by I1 ≤
(

deg
−→
f + d − 1

d

)
< (deg

−→
f )d.

Lemma 11. Let
−→
M ∈ Mon(

−→
f ) and let I2 be the upper bound of the degree of wd(

−→
M). Then,

I2 ≤ (p − 1) d (logp deg
−→
f + 1).

Proof. Put
−→
M =

∏−→
Xi

ei . Remark that ei ≤ deg
−→
f and logp ei ≤ logp deg

−→
f , we have wd(

−→
M) =∑d

i=1 wt(ei) ≤ (p − 1) d maxi(blogpei + 1c) ≤ (p − 1) d (deg
−→
f + 1) where blogpei + 1c is the

p-adic digits of ei.
9 Note that −→m1 can be take degree 1 global monomial

10 much more than Faugére et al. [2] pointed out
11 When I read [2], I wonder by collecting the relations coming from Weil decent of −→m

−→
F of low

weight −→m, the complexity of ECDLP, using linear constrains to solving equations system, seems
to become subexponential. However, there are such trivial relations and it is not true.



Let I3 be the number of local monomials ∈ F[{Xi,j}] with degree ≤ I2. From Lemma 10,

I3 =
(

I2 + n′d − 1
I2

)
and from deg

−→
f ¿ pn′−1, we have I2 ¿ n′d and I3 ≤ (n′d)I2 .

Let I4 be the cost of computing wd(
−→
f ). Since wd(

−→
f ) =

∑
−→
M∈Mon(

−→
f )

wd(
−→
M), I4 = I1×

cost of computing wd(
−→
M). Since the cost of computing the product of two polynomials with

degree ≤ I2 is I2
3 and computation of wd(

−→
M) which consists of at most I2 times multiplication

of polynomials of degree ≤ I2, cost of computing wd(
−→
M) is estimated by ≤ I2 I2

3 and the
following;

Lemma 12. Let
−→
f ∈ Fpn [

−→
X1, ...,

−→
Xd] be a global polynomial with n′, d ¿ deg

−→
f ¿ pn′−1, and

let I1, ..., I4 be the comlplexities, which appears in the privious sentence. Then I4 ≤ I1×I2×I2
3 .

Further, we estimate the cost of computing Discrete logaritm of elliptic curve E/Fpn . In
elliptic curve case, we take d = O(n1/3), n′ = O(n2/3) and we try to decompose arbitary P0 ∈
E(Fpn) into d- decomposed factor ∈ DF . So, we must take

−→
F :=

−−→
SemP0 whose degree < 2d.

Since d = O(n1/3), α = α(
−→
F ) can be taken α = logp 2d + O(1) and deg

−→
F0 = deg(c−→m0

−→
F ) ≤

2pα − pα−1 − 2 < 2d+O(1) and the condition n′, d ¿ deg
−→
F0 ¿ pn′−1 holds. Each complexities

are estimated by I1 ≤ 2d2+O(1)d = O(exp(n2/3+o(1))), I2 ≤ O(d(d + O(1))) ≤ O(n2/3+o(1)),
I3 ≤ (n′d)I2 = O(exp(n2/3+o(1))), and I4 ≤ I1 × I2 × I2

3 = O(exp(n2/3+o(1))). On the other
hands from Proposition 1, first fall degree of the equation system {[−→F0]

↓
k | k = 1, ..., n}∪Sfe is

Dff ≤ I2+1 If we assume the first fall degree assumption 1, from Lemma 1, the cost of solving
this equations system also O(exp(n2/3+o(1))). So,the total cost of solving discrete logarithm
of E(Fpn), which consists of #DF = O(n2/3) times decompositions and #DF × #DF size
linear algebra computations is also O(exp(n2/3+o(1))). Thus we have the following;

Theorem 1. Under the first fall degree assumption 1, the cost of solving discrete logarithm of
E(Fpn) where p is a small prime number (or a power of prime number) is O(exp(n2/3+o(1)))
when n → ∞.

Further, we estimate the cost of computing Discrete logaritm of Jacobian of a curve
C/Fpn of small constant genus g. In this case, we also take d = O(g · n1/3) = O(n1/3),
n′ = O(n2/3) and we try to decompose arbitary D0 ∈ Jac(C/Fpn) into d- decomposed
factor ∈ DF . In the author [6], there is a set of global polynomials

−−−→
FD0,1, ...,

−−−→
FD0,g such that

deg
−−−→
FD0,i < Cd (C:some constant) the decomposition problem reduces to solving equations

system {[
−−−→
FD0,i]

↓
j |1 ≤ i ≤ g, 1 ≤ j ≤ n} and field equations. By using similar trick, which use

−−→mi,0
−−−→
FD0,i instead of

−−−→
FD0,i, there exists some monomials −→mi,0 such that the decomposition

problem also reduces to solving equations system {[−→mi,0
−−−→
FD0,i]

↓
j |1 ≤ i ≤ g, 1 ≤ j ≤ n} and

field equations and its first fall degree can be estimated ≤ O(n2/3+O(1)). So, we similary have
the following;

Theorem 2. Under the first fall degree assumption 1, the cost of solving discrete logarithm
of Jac(C/Fpn) of small genus g, where p is a small prime number (or a power of prime
number),is O(exp(n2/3+o(1))) when n → ∞.
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