
Multi-Valued Byzantine Broadcast: the t < n Case

Martin Hirt, Pavel Raykov
ETH Zurich, Switzerland
{hirt,raykovp}@inf.ethz.ch

Abstract

All known protocols implementing broadcast from synchronous point-to-point
channels tolerating any t < n Byzantine corruptions have communication complex-
ity at least Ω(`n2). We give cryptographically secure and information-theoretically
secure protocols for t < n that communicate O(`n) bits in order to broadcast suf-
ficiently long ` bit messages. This matches the optimal communication complexity
bound for any protocol allowing to broadcast ` bit messages. While broadcast pro-
tocols with the optimal communication complexity exist in cases where t < n/3 (by
Liang and Vaidya in PODC ’11) or t < n/2 (by Fitzi and Hirt in PODC ’06), this
paper is the first to present such protocols for t < n.

Type of submission: Regular
Best student paper award: Eligible
Contact tel. +41 44 632 72 94

1 Introduction

1.1 Byzantine Broadcast

The Byzantine broadcast problem (aka Byzantine generals) is stated as follows [PSL80]: A
specific party (the sender) wants to distribute a message among n parties in such a way that
all correct parties obtain the same message, even when some of the parties are malicious. The
malicious misbehavior is modeled by a central adversary who corrupts up to t parties and takes
full control of their actions. Corrupted parties are called Byzantine and the remaining parties
are called correct. Broadcast requires that all correct parties agree on the same value v, and if
the sender is correct, then v is the value proposed by the sender. Broadcast is one of the most
fundamental primitives in distributed computing. It is used to implement various protocols like
voting, bidding, collective contract signing, etc. Basically, this list can be continued with all
protocols for secure multi-party computation as defined by Yao [Yao82, GMW87].
There exist various implementations of Byzantine broadcast from synchronous point-to-point
communication channels with different security guarantees. In the model without trusted setup,
perfectly-secure Byzantine broadcast is achievable when t < n/3 [PSL80, BGP92, CW92]. In
the model with trusted setup, cryptographically or information-theoretically secure Byzantine
broadcast is achievable for any t < n [DS83, PW96].
Closely related to the broadcast problem is the consensus problem. In consensus each party
holds a value as input, and then parties agree on a common value as output of consensus. In
this paper we consider the case where any number of parties may be Byzantine. In this case the
consensus problem is not well-defined, and hence we do not treat it here.

1.2 Efficiency of Byzantine Broadcast

In this paper we focus on the efficiency of broadcast protocols. In particular, we are interested
in optimizing their communication complexity. The communication complexity of a protocol
is defined by Yao [Yao79] to be the number of bits sent/received by correct parties during the
protocol run.1

Historically, the broadcast problem was introduced for binary values [PSL80]. However, in var-
ious applications long values are broadcast rather than bits. Examples of such applications are
general purpose multi-party computation protocols and specific tasks like voting. Such a broad-
cast of long values is called multi-valued broadcast. In this paper we study the communication
complexity of multi-valued broadcast protocols.
Many known protocols for multi-valued broadcast [TC84, FH06, LV11a, Pat11] are actually
constructions from a broadcast of short messages and point-to-point channels. Communication
complexity of such constructions is computed in terms of the point-to-point channels and the
broadcast for short messages usage. The security of the protocol is based on the security of the
construction and the security of the broadcast for short messages.
Let us denote the communication complexity of a short s bit message broadcast with B(s). The
most trivial construction is to broadcast the message bit by bit, which is perfectly secure for
t < n and has communication complexity `B(1). The construction by Turpin and Coan [TC84]
is perfectly secure and tolerates t < n/3 while communicating O(`n2 + nB(1)) bits. The con-
struction by Fitzi and Hirt [FH06] is information-theoretically secure and tolerates t < n/2
while communicating O(`n+n3κ+nB(n+κ)) bits, where κ denotes a security parameter. The
construction by Liang and Vaidya [LV11a] is perfectly secure and tolerates t < n/3 while com-
municating O(`n +

√
`n2B(1) + n4B(1)) bits (for the extensions of their approach for t < n/2

1When counting the number of bits received by correct players, we take into account only messages which were
actively received by them, i.e., messages which should be received according to the protocol specification.

1

see Appendix A). The construction by Patra [Pat11] is perfectly secure and tolerates t < n/3
while communicating O(`n+ n2B(1)) bits.
In this paper we consider the case where t < n. In this model existing protocols [DS83, PW96]
were designed to broadcast bits, but since they are based on signatures (cryptographic or
information-theoretic) they can be easily adopted to broadcast long messages. The protocol
by Dolev and Strong [DS83] is cryptographically secure and has communication complexity
Ω(`n2 + n3κ). The protocol by Pfitzmann and Waidner [PW96] is information-theoretically
secure and has communication complexity Ω(`n2 + n6κ) [Fit03].

1.3 Contributions

Consider any protocol for multi-valued broadcast. Since each correct player must learn the
value proposed by the sender, the communication costs of the broadcast protocol must be at
least Ω(`n).
In case where t < n known protocols [DS83, PW96] communicate at least Ω(`n2) bits. In this
paper we give two generic constructions for a multi-valued broadcast which allow to achieve
optimal communication complexity of O(`n) bits for t < n. The first construction is crypto-
graphically secure and communicates O(`n+n(B(κ) +nB(1))) bits. The second construction is
information-theoretically secure and communicates O(`n+n3(B(κ)+nB(1))) bits. The following
table summarizes the communication costs of multi-valued broadcast protocols:

Threshold Security Bits Communicated Literature

t < n/3 perfect

Ω(`n2) [BGP92]

O(`n+
√
`n4 + n6) [LV11a] with [BGP92]

O(`n+ n4) [Pat11] with [BGP92]

t < n/2
inf.-theor. O(`n+ n7κ) [FH06] with [PW96]

cryptographical O(`n+ n4(n+ κ)) [FH06] with [DS83]

t < n

inf.-theor.
Ω(`n2 + n6κ) [PW96]

O(`n+ n10κ) This with [PW96]

cryptographical
Ω(`n2 + n3κ) [DS83]

O(`n+ n5κ) This with [DS83]

2 Model and Definitions

Parties. We consider a setting consisting of n parties (players) P = {P1, . . . , Pn} with some
designated party called the sender, which we denote with Ps for some s ∈ {1, . . . , n}. We
assume that the parties are connected with a synchronous authentic point-to-point network.
Synchronous means that all parties share a common clock and that the message delay in the
network is bounded by a constant.
For a set of parties A ⊆ P we define A to be P \A.

Broadcast definition. A broadcast protocol allows the sender Ps to distribute a value vs
among parties P such that:

• (Termination) Every correct party Pi ∈ P terminates.

• (Consistency) All correct parties in P decide on the same value.

• (Validity) If the sender Ps is correct, then every correct party Pi ∈ P decides on the value
proposed by the sender vi = vs.

2

Adversary. The faultiness of parties is modeled in terms of a central adversary corrupting up
to t < n parties, making them deviate from the protocol in any desired manner. We distinguish
two types of security in this paper: cryptographic and information-theoretic. Cryptographic
security guarantees that the protocol is secure based on some computational assumptions (e.g.,
signatures and/or collision resistant hash functions), while information-theoretical (also called
statistical) security captures the fact that even a computationally unbounded adversary cannot
violate the security of the protocol with a non-negligible probability.

3 Protocols Overview

We present cryptographically and information-theoretically secure constructions for multi-valued
broadcast. Both constructions are built over point-to-point channels and an oracle for broad-
casting short messages. When describing protocols we often say that players broadcast messages,
while meaning that they actually use the given broadcast oracle.
On the highest level both constructions broadcast the long message block by block, where each
block is broadcast using a special protocol for block broadcast. This block broadcast protocol
achieves optimal communication complexity only in good executions, while in bad executions
more bits need to be communicated. We select the number of blocks in such a way that good
executions outnumber bad ones and the total communication complexity is optimal. Whether an
execution is good or bad is determined using the Dispute Control Framework [BH06]. Dispute
control is a technique which keeps track of disputes (also called conflicts) between players and
ensures that occurred disputes cannot show up again. Intuitively, an execution is good if it is
dispute-free, and bad otherwise.
We employ the dispute control framework as follows. We consider a set of unordered pairs of
parties ∆, where {Pi, Pj} ∈ ∆ represents the fact that parties Pi and Pj accuse each other of
being Byzantine. Parties start a protocol by setting ∆ to be the empty set. Then during the
protocol run they add new disputes to ∆ when they learn about new accusations. We ensure
that ∆ always remains valid, meaning that if {Pi, Pj} ∈ ∆ then at least one of the players Pi, Pj
is Byzantine.

4 Cryptographically Secure Construction

First, we present a protocol CryptoBlockBC for broadcasting blocks. CryptoBlockBC makes
use of an external procedure for broadcasting short values and a set of disputes ∆. Then we
plug CryptoBlockBC in the protocol CryptoBC, which broadcasts an ` bit message block by
block q times. In each invocation of CryptoBlockBC we will use the same global variable ∆
with the disputes among the players. This means that if parties Pi and Pj conflict during
some block broadcast, then they conflict in all later invocations of CryptoBlockBC. Then, we
count the communication complexity of the resulting construction and select q which makes its
optimal.

4.1 Block Broadcast Protocol CryptoBlockBC

The protocol CryptoBlockBC employs a collision-resistant hash function CRHash, i.e., no efficient
algorithm can find two different inputs v, v′ with CRHash(v) = CRHash(v′).2 In the beginning
of the protocol the sender broadcasts a hash h = CRHash(vs) of the value it holds. The goal of

2This is rather informal definition of collision resistance for unkeyed hash functions, for a more formal treatment
see [Rog06].

3

the protocol is to ensure that all correct players learn vs. All parties during the protocol run are
divided into two sets: H and H. The set H consists of happy players who have already learned
vs, and H who have not. At each iteration of CryptoBlockBC we try to move a player from H
to H. We select a pair of players Px, Py such that Px ∈ H and Py ∈ H. Then Px sends the
value it holds to Py. This procedure is meaningless if parties Px, Py are in the dispute, so the
pair is chosen such that {Px, Py} 6∈ ∆. Once Py receives a value from Px it verifies that its hash
is h; in the positive case Py is included in H and in the negative case a conflict between Px and
Py is found. Hence at each iteration we either include one player into H or we discover a new
conflict between a pair of players.

Protocol CryptoBlockBC(vs):
1. Parties initialize happy set H to be {Ps}.
2. Sender Ps: Broadcast h := CRHash(vs).
3. While ∃ Px, Py ∈ P s.t. Px ∈ H and Py ∈ H and {Px, Py} 6∈ ∆ do

r.1 Px: Send vx to player Py. Denote received value by vy.
r.2 Py: If h = CRHash(vy) broadcast 1, else broadcast 0.
r.3 If Py broadcasted 1 then parties add Py to H , otherwise they add {Px, Py} to ∆.

4. ∀Pi ∈ P: If Pi ∈ H decide on vi, otherwise decide on ⊥.

Lemma 1. Given that the initial dispute set ∆s is valid and CRHash is a collision-resistant
hash function, protocol CryptoBlockBC achieves broadcast (of vs) and terminates with a valid
dispute set ∆e. Furthermore, the protocol communicates at most B(|h|) + (n + d)(|vs| + B(1))
bits, where d = |∆e| − |∆s|, |h| is the output length of CRHash, and |vs| is the block length.

proof First, we prove that at each iteration of the while loop all correct players in H always
hold the same value v such that CRHash(v) = h. A player is included into H under condition that
it broadcasts 1 at Step r.2, which he does only if it holds a value v with CRHash(v) = h. Hence
for any two correct players Pi, Pj ∈ H it must hold that CRHash(vi) = h and CRHash(vj) = h.
Since CRHash is collision-resistant it implies that vi = vj .

3

(Validity of ∆e) We show that whenever Px and Py are correct then {Px, Py} is not added
to ∆ at Step r.3. A correct Px ∈ H holds vx with CRHash(vx) = h and sends vx = vy to Py
at Step r.1, who successfully verifies that CRHash(vy) = h and broadcasts 1 at Step r.2, hence
{Px, Py} is not added to ∆ at Step r.3.
(Termination) At each iteration of the while loop either the happy set H or the dispute set ∆
grows. |H| is limited by n and |∆| is limited by n2, hence the number of iterations is limited.
(Consistency) We prove that in the end of the protocol all correct players belong either to H
(and decide on the same value v) or to H (and decide on ⊥). As shown above ∆ remains valid
in all iterations, hence for correct players Px and Py the pair {Px, Py} 6∈ ∆. Hence, if Px ∈ H
and Py ∈ H then the while loop does not terminate.
(Validity) The sender Ps is always in H. If Ps is correct then it decides on vs and due to the
consistency criterion all other correct players decide on vs as well.
(Communication complexity analysis) At each iteration of the while loop either H or ∆
grows. Hence, the total number of iterations of the while loop is upper bounded by n + d
where d is |∆e| − |∆s|. So, the total communication costs of the protocol are upper bounded by
B(|h|) + (n+ d)(|vs|+ B(1)).

3More formally, when an adversary can provoke two correct players to hold colliding values for CRHash with
non-negligible probability, then this adversary can be used to construct an efficient collision-finding algorithm for
CRHash.

4

4.2 Constructing Broadcast for Long Messages

Now we plug in CryptoBlockBC in the protocol CryptoBC which broadcasts a message block by
block.

Protocol CryptoBC(vs, q):
1. Parties initialize dispute set ∆ with the empty set.
2. Sender Ps: Cut vs in q pieces v1, . . . , vq (add padding if required).
3. For r = 1, . . . , q invoke CryptoBlockBC(vr), denote the output of party Pi by vri .
4. ∀Pi ∈ P: If one of vri = ⊥ then output ⊥, otherwise output v1i || · · · ||v

q
i .

Since block broadcast is invoked q times, due to Lemma 1 the total communication complexity
is at most

q∑
i=1

[
B(|h|) + (n+ di)(`/q + B(1))

]
= qB(|h|) + (qn+

q∑
i=1

di)(`/q + B(1))

bits. We know that the sum of di is upper bounded by the total number of possible disputes n2.
Hence we have that communication complexity is upper bounded by qB(|h|) + (qn+ n2)(`/q +
B(1)). By setting q = n we get that the total communication is at most 2`n+ 2n2B(1) +nB(|h|)
which is O(`n + n(B(κ) + nB(1))). The following theorem summarizes the cryptographically
secure construction presented in this section:

Theorem 1. In the setting with t < n, the protocol CryptoBC with q = n achieves cryptograph-
ically secure broadcast of ` bit messages with communication complexity O(`n+n(B(κ)+nB(1)))
(where κ is a security parameter).

In order to obtain a concrete multi-valued broadcast protocol we instantiate CryptoBC with the
protocol [DS83]:

Theorem 2. The protocol CryptoBC with q = n and implementation of broadcast for short
messages by [DS83] is a cryptographically secure multi-valued broadcast protocol for t < n and
has communication complexity O(`n+ n5κ) bits (where κ is a security parameter).

5 Information-Theoretically Secure Construction

This section is organized similar to the cryptographic case. First, we present a protocol ITBlockBC
for broadcasting blocks which is analogous to CryptoBlockBC, with the difference that it relies
on a universal hash function instead of a collision-resistant one. As in the cryptographic case we
then plug ITBlockBC in the ITBC protocol, which broadcasts a message block by block q times.
Then, we count the communication complexity of the resulting protocol ITBC, and select the
number of blocks q which makes it optimal.

5.1 Universal Hash Functions

Consider a family of functions U = {Uk}k∈K indexed with a key set K, where each function Uk
maps elements of some set X to a fixed set of bins Y. The family U is called ε-universal if for
any two distinct messages v1 and v2,

|{k ∈ K | Uk(v1) = Uk(v2)}|
|K|

≤ ε.4

4This is a combinatorial definition of a universal hash function, usually the last condition is written proba-

bilistically as Pr[k
$←− K : Uk(v1) = Uk(v2)] ≤ ε.

5

A ε-universal hash function can for example be constructed as follows: Let X = {0, 1}`, K =
Y = GF(2ν), and any value v ∈ {0, 1}` be interpreted as a polynomial fv over GF(2ν) of
degree d`/νe − 1. The hash function is defined as Uk(v) = fv(k). We know that two distinct
polynomials of degree d`/νe − 1 can match in at most d`/νe − 1 points. Hence, for any two
distinct v1, v2 ∈ {0, 1}`,

|{k ∈ {0, 1}ν | Uk(v1) = Uk(v2)}|
2ν

≤ d`/νe − 1

2ν
≤ 2−ν`.

So, {Uk}k∈{0,1}ν is a family of (2−ν`)-universal hash functions.
We will denote a ε-universal hash function with ITHash.

5.2 Block Broadcast Protocol ITBlockBC

Similarly to the cryptographic case all parties during the protocol ITBlockBC run are divided
into two sets: H and H. The set H consists of happy players who have already learned vs, and
H who have not. The difference to the cryptographic case is that the set H is not monotonically
growing—it may happen that the same player may be added/removed from H several times. At
each iteration of ITBlockBC we try to move a player from H to H. We select a pair of players
Px, Py such that Px ∈ H and Py ∈ H and {Px, Py} 6∈ ∆. Then Px sends the value it holds to Py.
Now player Py needs to verify that the value received from Px is the value that correct parties
in H hold. In order to do so, Py broadcasts a key k for ε-universal hash function ITHash, and
then Ps broadcasts a hash h for this key. As long as Py honestly chooses k uniformly at random,
with overwhelming probability correct players will obtain different hashes if they hold different
values. If a party in H ∪ {Py} \ {Ps} holds a value with a hash h, then he broadcasts 1, and 0
otherwise (the sender Ps does not broadcast because if he is correct he can broadcast only 1).
If every party broadcasts 1, then the iteration was successful and Py is added to H. Otherwise,
some of the parties in H ∪ {Py} do not hold the right value and we search for new disputes.
An important difference from the cryptographic case is that disputes may occur not only between
Px and Py, but between any two parties in H. In order to find such disputes, one must be able
to reason about the history of how H was formed. We will keep a history set T which will
contain pairs of players (Px, Py) such that Py learned the value it holds from Px.

Protocol ITBlockBC(vs):
1. Parties initialize happy set H to be {Ps} and history set T to be ∅.
2. While ∃ Px, Py ∈ P s.t. Px ∈ H and Py ∈ H and {Px, Py} 6∈ ∆ do

r.1 Px: Send vx to player Py. Denote received value by vy. Add (Px, Py) to T .
r.2 Py: Generate random k ∈ K and broadcast it.

Sender Ps: Broadcast h := ITHashk(vs).
r.3 ∀Pi ∈ H ∪ {Py} \ {Ps}: If h = ITHashk(vi) then broadcast 1, otherwise 0.
r.4 If all parties broadcasted 1

- Add Py to H.
else

- For all (Pi, Pj) ∈ T s.t. Pi broadcasted 1 (resp. Pi = Ps) and
Pj broadcasted 0, add {Pi, Pj} to ∆.

- Set H to {Ps}, T to ∅.
3. ∀Pi ∈ P: If Pi ∈ H decide on vi, otherwise decide on ⊥.

Lemma 2. Given that the initial dispute set ∆s is valid and ITHash is a universal hash function,
protocol ITBlockBC achieves broadcast (of vs) and terminates with a valid dispute set ∆e (except
with negligible probability). Furthermore, the protocol communicates at most (n + nd)(|vs| +
B(|h|) + B(|k|) + nB(1)) bits, where d = |∆e| − |∆s|, |h| is the output length of ITHash, |k| is
the key length of ITHash, and |vs| is the block length.

6

Ps

H

Stay happy
(Ps and those

who broadcasted 1)

Become unhappy
(broadcasted 0)

PzPiu
Piu+1

Conflict

Figure 1: Conflict finding in the iteration of ITBlockBC.

proof First, we prove that at each iteration of the while loop all correct players inH always hold
the same value v. More precisely, we need to show that if a correct player Py is added to H, then,
given that all correct players in H hold the same value v, it holds that vy = v. We have that all
parties in H ∪{Py}\{Ps} broadcast 1 at Step r.3. This implies that Py successfully verifies that
ITHashk(vy) = h, and all correct parties in H verify that ITHashk(v) = h. Due to the fact that
Py is correct, the key k is chosen uniformly at random, so given that ITHashk(vy) = ITHashk(v),
it must hold with overwhelming probability 1− ε that vy = v.
Second, we show that if the condition at Step r.4 is false then at least one new conflict is found.
We have that not all players in H ∪ {Py} \ {Ps} broadcasted 1. Consider two possible cases:

(Exists Pz ∈ H \ {Ps} which broadcasts 0 at step r.3) For Pz to be included in H there must
exist a sequence of players Pi1 , Pi2 , . . . , Pik inH such that Pi1 = Ps, Pik = Pz and (Pij , Pij+1) ∈
T for all j = 1, . . . , k−1 (see illustration in Figure 1). In the rth iteration some of the players
in H stayed happy (Ps and those who broadcasted 1) and some become unhappy (broadcasted
0). We know that Ps stayed happy and Pz became unhappy. Hence in a row Pi1 , Pi2 , . . . , Pik
there are players of both types. Then we have that exist two players Piu , Piu+1 such that Piu
stays happy and Piu+1 becomes unhappy. By construction of T , (Piu , Piu+1) ∈ T implies that
{Piu , Piu+1} is not yet in ∆. Consequently, the pair {Piu , Piu+1} will be identified as having
a conflict and will be added to ∆.

(Each Pi ∈ H \ {Ps} broadcasts 1 at step r.3) It means that Px broadcasts 1 (or Px = Ps) and
Py broadcasts 0. Hence the new dispute {Px, Py} will be added to ∆.

Now we proceed with the proof of the current lemma.
(Validity of ∆e) We show that whenever Pi and Pj are correct then {Pi, Pj} is never added
to ∆. The pair {Pi, Pj} is added to ∆ only when Pi sent some v to Pj (i.e., (Pi, Pj) ∈ T), and
they disagree for some key k whether ITHashk(v) equals h. Hence, Pi or Pj is corrupted.
(Termination) There can be at most n successive iterations where the set H grows (condition
at Step r.4 is true). As shown above whenever condition at Step r.4 is false a new conflict is
found. The number of conflicts is limited and so must be the number of the while loop iterations.
(Consistency) We prove that in the end of the protocol all correct players belong either to
H (and decide on the same value v) or to H (and decide on ⊥). As shown above ∆ remains
valid in all iterations, hence for any two correct players Px, Py, the pair {Px, Py} 6∈ ∆. Hence, if
Px ∈ H and Py ∈ H then the while loop does not terminate.
(Validity) The correct sender Ps is always in H. The sender Ps decides on vs and due to the
consistency criterion all other correct players decide on vs as well.
(Communication complexity analysis) There can be at most n consecutive iterations, where
no conflict is found, hence the total number of iterations is at most n+nd, where d = |∆e|−|∆s|.
The communication costs of each iteration are at most |vs|+B(|h|)+B(|k|)+nB(1). So, the total
communication costs of the protocol are upper bounded by (n+nd)(|vs|+B(|h|)+B(|k|)+nB(1)).

7

5.3 Constructing Broadcast for Long Messages

Similarly to the cryptographic case, we plug ITBlockBC in the protocol ITBC which simply
broadcasts a message block by block. The protocol ITBC is a copy of the protocol CryptoBC
with the only difference that CryptoBlockBC is substituted with ITBlockBC.

Protocol ITBC(vs, q):
1. Parties initialize dispute set ∆ to be an empty set.
2. Sender Ps: Cut vs in q pieces v1, . . . , vq (add padding if required).
3. For r = 1, . . . , q invoke ITBlockBC(vr), denote the output of party Pi by vri .
4. ∀Pi ∈ P: If one of vri = ⊥ then output ⊥, otherwise output v1i || · · · ||v

q
i .

Due to Lemma 2 the total communication complexity is at most

q∑
i=1

[
(n+ din)(`/q + B(|h|) + B(|k|) + nB(1))

]
= n(q +

q∑
i=1

di)(`/q + B(|h|) + B(|k|) + nB(1)).

This expression is bound by n(q + n2)(`/q + B(|h|) + B(|k|) + nB(1)). By setting q = n2

we have that communication costs are at most 2`n + 2n3(B(|h|) + B(|k|) + nB(1))) which is
O(`n + n3(B(κ) + nB(1))). The following theorem summarizes the information-theoretically
secure construction presented in this section:

Theorem 3. In the setting with t < n, the protocol ITBC with q = n2 achieves information-
theoretically secure broadcast of ` bit messages with communication complexityO(`n+n3(B(κ)+
nB(1))) (where κ is a security parameter).

In order to obtain a concrete multi-valued broadcast protocol we instantiate ITBC with the
protocol [PW96]:

Theorem 4. The protocol ITBC with q = n2 and implementation of broadcast for short mes-
sages by [PW96] is an information-theoretically secure multi-valued broadcast protocol for t < n
and has communication complexity O(`n+ n10κ) bits (where κ is a security parameter).

6 Conclusions

Existing multi-valued broadcast protocols achieve optimal communication complexity only for
t < n/3 [LV11a] or t < n/2 [FH06]. In this paper we proposed the first broadcast protocols that
tolerate any t < n Byzantine corruptions and achieve optimal communication complexity O(`n)
for sufficiently long messages of ` bits. One of the proposed protocols is cryptographically secure
and the other one is information-theoretically secure. The cryptographically secure protocol is
based on the security of the signature scheme and a collision-resistance of the hash function
employed. It communicates O(`n + n5κ) bits. The information-theoretically secure protocol
may fail with a negligible probability and needs to communicate O(`n+ n10κ) bits.
The presented constructions CryptoBC and ITBC leave room for different optimizations. In
particular, it is an interesting task to optimize the number of rounds used. Our constructions
require O(n2) rounds (cryptographic one), respectively O(n3) rounds (information-theoretic
one). It seems that the obvious approach with simultaneously broadcasting many blocks does
not improve the round complexity in the worst case. We leave the optimization of the round
complexity as an open question for future research.

8

References

[BGP92] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit optimal distributed consen-
sus. In Computer Science Research, pages 313–322. Plenum Publishing Corporation,
New York, NY, USA, 1992. Preliminary version appeared in STOC ’89.

[BH06] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation
with dispute control. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography
Conference — TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages
305–328. Springer-Verlag, March 2006.

[CW92] Brian A. Coan and Jennifer L. Welch. Modular construction of a byzantine agreement
protocol with optimal message bit complexity. Information and Computation, 97:61–
85, March 1992. Preliminary version appeared in PODC ’89.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agree-
ment. SIAM Journal on Computing, 12(4):656–666, 1983. Preliminary version ap-
peared in STOC ’82.

[FH06] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued Byzantine agree-
ment. In Proceedings of the 26th annual ACM symposium on Principles of distributed
computing, PODC ’06, pages 163–168, New York, NY, USA, 2006. ACM.

[Fit03] Matthias Fitzi. Generalized Communication and Security Models in Byzantine Agree-
ment. PhD thesis, ETH Zurich, March 2003. Reprint as vol. 4 of ETH Series in
Information Security and Cryptography, ISBN 3-89649-853-3, Hartung-Gorre Verlag,
Konstanz, 2003.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
In Proceedings of the 19th annual ACM symposium on Theory of computing, STOC
’87, pages 218–229, New York, NY, USA, 1987. ACM.

[LV10a] Guanfeng Liang and Nitin Vaidya. Complexity of multi-value byzantine agreement.
Technical report, University of Illinois at Urbana-Champaign, “http://www.crhc.
illinois.edu/wireless/papers/ba_sum_capacity_0729.pdf”, 2010.

[LV10b] Guanfeng Liang and Nitin H. Vaidya. Short note on complexity of multi-value byzan-
tine agreement. CoRR, abs/1007.4857, 2010.

[LV11a] Guanfeng Liang and Nitin Vaidya. Error-free multi-valued consensus with Byzan-
tine failures. In Proceedings of the 30th annual ACM symposium on Principles of
distributed computing, PODC ’11, pages 11–20, New York, NY, USA, 2011. ACM.

[LV11b] Guanfeng Liang and Nitin H. Vaidya. Error-free multi-valued consensus with byzan-
tine failures. CoRR, abs/1101.3520, 2011.

[Pat11] Arpita Patra. Error-free multi-valued broadcast and Byzantine agreement with opti-
mal communication complexity. In Proceedings of the 15th international conference
on Principles of Distributed Systems, OPODIS ’11, pages 34–49. Springer, 2011.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in
the presence of faults. Journal of the ACM, 27(2):228–234, 1980.

[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosignatures and
Byzantine agreement for t ≥ n/3. Technical report, IBM Research, 1996.

9

[Rog06] Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor, VI-
ETCRYPT, volume 4341 of Lecture Notes in Computer Science, pages 211–228.
Springer, 2006.

[TC84] Russell Turpin and Brian A. Coan. Extending binary Byzantine agreement to mul-
tivalued Byzantine agreement. Information Processing Letters, 18(2):73–76, 1984.

[Yao79] Andrew C. Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Proceedings of the eleventh annual ACM symposium on Theory
of computing, STOC ’79, pages 209–213, New York, NY, USA, 1979. ACM.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, SFCS ’82, pages 160–164,
Washington, DC, USA, 1982. IEEE Computer Society.

A On the Constructions of Liang and Vaidya

Liang and Vaidya have four papers based on the similar techniques which relate to the construc-
tion of multi-valued broadcast and consensus protocols:

1. The first paper [LV10a] presents a perfectly secure multi-valued broadcast protocol which
tolerates t < n/3.

2. The second paper [LV10b] proposes an information-theoretically secure modification of the
broadcast protocol from the first paper which tolerates t < n/3.

3. The third paper [LV11a] constructs a perfectly secure multi-valued consensus protocol for
t < n/3.

4. The fourth paper [LV11b] is an archive version of the third paper containing the same
protocol.

In the third and the fourth paper the authors explain how their protocols can be modified to
tolerate t ≥ n/3 by substituting the employed procedure for 1-bit broadcast with a protocol that
tolerates t ≥ n/3 (e.g., [DS83, PW96]). This modification can be applied in all four papers since
they share similar structure and are based on similar techniques. In the following we clarify why
even with this modification the protocols from the cited above papers cannot tolerate t ≥ n/2.
In the first and the second paper the presented broadcast protocols describe communication
between players based on their trust to each other. While the trust concept applies for any
t < n, the broadcast protocols put a limitation on the trust relation—it is required that any
two players either trust each other or there is another player whom both players trust (see
Section V.B in [LV10a] and Section 3 in [LV10b]). Clearly, such a mutually trusted player exists
only for t < n/2 and hence the protocols’ behavior is not well-defined for t ≥ n/2.
In the third and the fourth paper a consensus protocol for t < n/3 is presented. As consensus
is not achievable for t ≥ n/2, the proposed modification can at most construct consensus for
t < n/2, which in turn provides broadcast for the same bound only.

10

