
Multi-Valued Byzantine Broadcast: the t < n Case

Martin Hirt, Pavel Raykov

ETH Zurich, Switzerland
{hirt,raykovp}@inf.ethz.ch

Abstract. Byzantine broadcast is a distributed primitive that allows a specific party to
consistently distribute a message among n parties in the presence of potential misbehavior of
up to t of the parties. All known protocols implementing broadcast of an `-bit message from
point-to-point channels tolerating any t < n Byzantine corruptions have communication
complexity at least Ω(`n2). In this paper we give cryptographically secure and information-
theoretically secure protocols for t < n that communicate O(`n) bits. This matches the
optimal communication complexity bound for any protocol allowing to broadcast `-bit
messages. While broadcast protocols with the optimal communication complexity exist in
cases where t < n/3 (by Liang and Vaidya in PODC ’11) or t < n/2 (by Fitzi and Hirt in
PODC ’06), this paper is the first to present such protocols for t < n.

1 Introduction

1.1 Byzantine Broadcast

The Byzantine broadcast problem (aka Byzantine generals) is stated as follows [PSL80]: A specific party
(the sender) wants to distribute a message among n parties in such a way that all correct parties obtain
the same message, even when some of the parties are malicious. The malicious misbehavior is modeled
by a central adversary who corrupts up to t parties and takes full control of their actions. Corrupted
parties are called Byzantine and the remaining parties are called correct. Broadcast requires that all
correct parties agree on the same value v, and if the sender is correct, then v is the value proposed by
the sender. Broadcast is one of the most fundamental primitives in distributed computing. It is used to
implement various protocols like voting, bidding, collective contract signing, etc. Basically, this list can
be continued with all protocols for secure multi-party computation as defined by Yao [Yao82,GMW87].

There exist various implementations of Byzantine broadcast from synchronous point-to-point com-
munication channels with different security guarantees. In the model without trusted setup, perfectly-
secure Byzantine broadcast is achievable when t < n/3 [PSL80, BGP92, CW92]. In the model with
trusted setup, cryptographically or information-theoretically secure Byzantine broadcast is achievable
for any t < n [DS83,PW96].

Closely related to the broadcast problem is the consensus problem. In consensus each party holds
a value as input, and then parties agree on a common value as output of consensus. In this paper we
consider the case where any number of parties may be Byzantine. In this case the consensus problem
is not well-defined, and hence we do not treat it here.

1.2 Efficiency of Byzantine Broadcast

In this paper we focus on the efficiency of broadcast protocols. In particular, we are interested in
optimizing their communication complexity. The communication complexity of a protocol is defined by
Yao [Yao79] to be the number of bits sent/received by correct parties during the protocol run.1

Historically, the broadcast problem was introduced for binary values [PSL80]. However, in various
applications long values are broadcast rather than bits. Examples of such applications are general
purpose multi-party computation protocols and specific tasks like voting. Such a broadcast of long
values is called multi-valued broadcast. In this paper we study the communication complexity of multi-
valued broadcast protocols.

Many known protocols for multi-valued broadcast [TC84,FH06,LV11,Pat11] are actually construc-
tions from a broadcast of short messages and point-to-point channels. Communication complexity of
such constructions is computed in terms of the point-to-point channels and the broadcast for short mes-
sages usage. The security of the protocol is based on the security of the construction and the security
of the broadcast for short messages.

Let us denote the communication complexity of a short s-bit message broadcast with B(s). The most
trivial construction is to broadcast the message bit by bit, which is perfectly secure for t < n and has
communication complexity `B(1). The construction by Turpin and Coan [TC84] is perfectly secure and
tolerates t < n/3 while communicating O(`n2 +nB(1)) bits. The construction by Fitzi and Hirt [FH06]
is information-theoretically secure and tolerates t < n/2 while communicating O(`n+n3κ+nB(n+κ))
bits, where κ denotes a security parameter. The construction by Liang and Vaidya [LV11] is perfectly
secure and tolerates t < n/3 while communicating O(`n+

√
`n2B(1) + n4B(1)) bits. This construction

can even be extended to tolerate more than n/3 corruptions [LV11]. However, the extended protocol

1 When counting the number of bits received by correct players, we take into account only messages which were actively
received by them, i.e., messages which should be received according to the protocol specification.

1

inherently requires t < n/2 (see Appendix B for the details). The construction by Patra [Pat11] is
perfectly secure and tolerates t < n/3 while communicating O(`n+ n2B(1)) bits.

In this paper we consider the case where t < n. In this model existing protocols [DS83, PW96]
were designed to broadcast bits, but they can be easily adopted to broadcast long messages. A simple
modification of the protocol by Dolev and Strong [DS83] is cryptographically secure and has commu-
nication complexity Ω(`n2 + n3κ). Analogously, the protocol by Pfitzmann and Waidner [PW96] is
information-theoretically secure and has communication complexity Ω(`n2 + n6κ) [Fit03].

1.3 Contributions

Consider any protocol for multi-valued broadcast. Since each correct player must learn the value pro-
posed by the sender, the communication costs of the broadcast protocol must be at least O(`n). In this
paper we give two generic constructions for a multi-valued broadcast which allow to achieve optimal
communication complexity of O(`n) bits for t < n. The first construction is cryptographically secure
and communicates O(`n+ n(B(κ) + nB(1))) bits. The second construction is information-theoretically
secure and communicates O(`n+n3(B(κ)+nB(1))) bits. The following table summarizes the complexity
costs of the existing constructions for multi-valued broadcast:2

Threshold Security Bits Communicated Literature

t < n/3 perfect

O(`n2 + nB(1)) [TC84]

O(`n+ (
√
`n2 + n4)B(1)) [LV11]

O(`n+ n2B(1)) [Pat11]

t < n/2 inf.-theor. O(`n+ n3κ+ (n2 + nκ)B(1)) [FH06]

t < n

perfect `B(1) Trivial

inf.-theor. O(`n+ (n4 + n3κ)B(1)) This paper

cryptographical O(`n+ (n2 + nκ)B(1)) This paper

In order to obtain a concrete protocol for multi-valued broadcast one takes the above constructions
and composes them with the existing protocols for a bit broadcast (e.g., [BGP92, DS83, PW96]). The
security of the composed protocol is then the “minimal” security provided by the construction and the
bit broadcast protocol employed. For example, when composing information-theoretical construction
for t < n/2 [FH06] with cryptographically secure protocol for t < n [DS83] we obtain multi-valued
broadcast protocol with cryptographic security tolerating t < n/2 and communication complexity
O(`n+ n4(n+ κ)). Further instantiations are described in Appendix A.

Both constructions for t < n presented in this paper are not constant-round, that is, they require
O(n2) and O(n3) rounds, respectively. While for the case of t < n/2 constant-round constructions exist
(e.g., [FH06]), we show that in the settings with t < n constant-round constructions do not exist.

2 Model and Definitions

Parties. We consider a setting consisting of n parties (players) P = {P1, . . . , Pn} with some designated
party called the sender, which we denote with Ps for some s ∈ {1, . . . , n}. For a set of parties A ⊆ P let
A denote P \A. We assume that the parties are connected with a synchronous authentic point-to-point

2 In order to facilitate comparison we substitute B(s) with sB(1) in the complexity of the constructions, which is trivially
possible since B(s) ≤ sB(1) for all s and such arguments appear as summands inside the big O.

2

network. Synchronous means that all parties share a common clock and that the message delay in the
network is bounded by a constant.

Broadcast definition. A broadcast protocol allows the sender Ps to distribute a value vs among
parties P such that:

Termination: Every correct party Pi ∈ P terminates.
Consistency: All correct parties in P decide on the same value.
Validity: If the sender Ps is correct, then every correct party Pi ∈ P decides on the value proposed

by the sender vi = vs.

Adversary. The faultiness of parties is modeled in terms of a central adversary corrupting up to t < n
parties, making them deviate from the protocol in any desired manner. We distinguish two types of
security in this paper: cryptographic and information-theoretic. Cryptographic security guarantees that
the protocol is secure based on some computational assumptions (e.g., signatures and/or collision-
resistant hash functions), while information-theoretical (also called statistical) security captures the
fact that even a computationally unbounded adversary cannot violate the security of the protocol with
a non-negligible probability.

3 Protocols Overview

We present cryptographically and information-theoretically secure constructions for multi-valued broad-
cast. Both constructions are built over point-to-point channels and an oracle for broadcasting short
messages. When describing protocols we often say that players broadcast messages, while meaning that
they actually use the given broadcast oracle.

On the highest level both constructions broadcast the long message block by block, where each
block is broadcast using a special protocol for block broadcast. This block broadcast protocol achieves
optimal communication complexity only in good executions, while in bad executions more bits need
to be communicated. We select the number of blocks in such a way that good executions outnumber
bad ones and the total communication complexity is optimal. Whether an execution is good or bad is
determined using the Dispute Control Framework [BH06]. Dispute control is a technique which keeps
track of disputes (also called conflicts) between players and ensures that occurred disputes cannot show
up again. Intuitively, an execution is good if it is dispute-free, and bad otherwise.

We employ the dispute control framework as follows. We consider a set of unordered pairs of parties
∆, where {Pi, Pj} ∈ ∆ represents the fact that parties Pi and Pj accuse each other of being Byzantine.
Parties start a protocol by setting ∆ to be the empty set. Then during the protocol run they add new
disputes to ∆ when they learn about new accusations. We ensure that ∆ always remains valid, meaning
that if {Pi, Pj} ∈ ∆ then at least one of the players Pi, Pj is Byzantine.

4 Cryptographically Secure Construction

First, we present a protocol CryptoBlockBC for broadcasting blocks. CryptoBlockBC makes use of an
external procedure for broadcasting short values and a set of disputes ∆. Then we plug CryptoBlockBC

in the protocol CryptoBC, which broadcasts an `-bit message block by block q times. In each invocation of
CryptoBlockBC we will use the same global variable ∆ with the disputes among the players. This means
that if parties Pi and Pj conflict during some block broadcast, then they conflict in all later invocations
of CryptoBlockBC. Then, we count the communication complexity of the resulting construction and
select q which makes its optimal.

3

4.1 Block Broadcast Protocol CryptoBlockBC

The protocol CryptoBlockBC employs a collision-resistant hash function CRHash, i.e., no efficient al-
gorithm can find two different inputs v, v′ with CRHash(v) = CRHash(v′).3 In the beginning of the
protocol the sender broadcasts a hash h = CRHash(vs) of the value it holds. The goal of the protocol
is to ensure that all correct players learn vs. All parties during the protocol run are divided into two
sets: H and H. The set H consists of happy players who have already learned vs, and H who have
not. At each iteration of CryptoBlockBC we try to move a player from H to H. We select a pair of
players Px, Py such that Px ∈ H and Py ∈ H. Then Px sends the value it holds to Py. This procedure
is meaningless if parties Px, Py are in the dispute, so the pair is chosen such that {Px, Py} 6∈ ∆. Once
Py receives a value from Px it verifies that its hash is h; in the positive case Py is included in H and in
the negative case a conflict between Px and Py is found. Hence at each iteration we either include one
player into H or we discover a new conflict between a pair of players.

Protocol CryptoBlockBC(vs):
1. Parties initialize happy set H to be {Ps}.
2. Sender Ps: Broadcast h := CRHash(vs).
3. While ∃ Px, Py ∈ P s.t. Px ∈ H and Py ∈ H and {Px, Py} 6∈ ∆ do
r.1 Px: Send vx to player Py. Denote received value by vy.
r.2 Py: If h = CRHash(vy) broadcast 1, else broadcast 0.
r.3 If Py broadcasted 1 then parties add Py to H , otherwise they add {Px, Py} to ∆.

4. ∀Pi ∈ P: If Pi ∈ H decide on vi, otherwise decide on ⊥.

Lemma 1. Given that the initial dispute set ∆s is valid and CRHash is a collision-resistant hash
function, protocol CryptoBlockBC achieves broadcast (of vs) and terminates with a valid dispute set
∆e. Furthermore, the protocol terminates in O(n + d) rounds communicating at most B(|h|) + (n +
d)(|vs| + B(1)) bits, where d = |∆e| − |∆s|, |h| is the output length of CRHash, and |vs| is the block
length.

Proof. First, we prove that at each iteration of the while loop all correct players in H always hold the
same value v such that CRHash(v) = h. A player is included into H under condition that it broadcasts
1 at Step r.2, which he does only if it holds a value v with CRHash(v) = h. Hence for any two correct
players Pi, Pj ∈ H it must hold that CRHash(vi) = h and CRHash(vj) = h. Since CRHash is collision-
resistant it implies that vi = vj .

4

(Validity of ∆e) We show that whenever Px and Py are correct then {Px, Py} is not added to ∆ at
Step r.3. A correct Px ∈ H holds vx with CRHash(vx) = h and sends vx = vy to Py at Step r.1, who
successfully verifies that CRHash(vy) = h and broadcasts 1 at Step r.2, hence {Px, Py} is not added to
∆ at Step r.3.
(Termination) At each iteration of the while loop either the happy set H or the dispute set ∆ grows.
|H| is limited by n and |∆| is limited by n2, hence the number of iterations is limited.
(Consistency) We prove that in the end of the protocol all correct players belong either to H (and
decide on the same value v) or to H (and decide on ⊥). As shown above ∆ remains valid in all iterations,
hence for correct players Px and Py the pair {Px, Py} 6∈ ∆. Hence, if Px ∈ H and Py ∈ H then the
while loop does not terminate.
(Validity) The sender Ps is always in H. If Ps is correct then it decides on vs and due to the consistency

3 This is rather informal definition of collision resistance for unkeyed hash functions, for a more formal treatment
see [Rog06].

4 More formally, when an adversary can provoke two correct players to hold colliding values for CRHash with non-negligible
probability, then this adversary can be used to construct an efficient collision-finding algorithm for CRHash.

4

criterion all other correct players decide on vs as well.
(Complexity analysis) At each iteration of the while loop either H or ∆ grows. Hence, the total
number of iterations of the while loop is upper bounded by n+ d where d is |∆e| − |∆s|. This implies
that the number of rounds the construction employs is O(n+d). Furthermore, the total communication
costs of the protocol are upper bounded by B(|h|) + (n+ d)(|vs|+ B(1)). ut

4.2 Constructing Broadcast for Long Messages

Now we plug in CryptoBlockBC in the protocol CryptoBC which broadcasts a message block by block.

Protocol CryptoBC(vs, q):
1. Parties initialize dispute set ∆ with the empty set.
2. Sender Ps: Cut vs in q pieces v1, . . . , vq (add padding if required).
3. For r = 1, . . . , q invoke CryptoBlockBC(vr), denote the output of party Pi by vri .
4. ∀Pi ∈ P: If one of vri = ⊥ then output ⊥, otherwise output v1i || · · · ||v

q
i .

Since block broadcast is invoked q times, due to Lemma 1 the total communication complexity is
at most

q∑
i=1

[
B(|h|) + (n+ di)(`/q + B(1))

]
= qB(|h|) + (qn+

q∑
i=1

di)(`/q + B(1))

bits. We know that the sum of di is upper bounded by the total number of possible disputes n2.
Hence we have that communication complexity is upper bounded by qB(|h|) + (qn + n2)(`/q + B(1)).
By setting q = n we get that the total communication is at most 2`n + 2n2B(1) + nB(|h|) which is
O(`n+ n(B(κ) + nB(1))).

The number of rounds the construction employs is
∑q

i=1 ri, where each ri ∈ O(n + di). Hence, for
q = n we have that the total number of rounds is O(n2).

The following theorem summarizes the cryptographically secure construction presented in this sec-
tion:

Theorem 1. In the setting with t < n, the construction CryptoBC with q = n achieves cryptograph-
ically secure broadcast of `-bit messages in O(n2) rounds by communicating O(`n + n(B(κ) + nB(1)))
bits (where κ is a security parameter and B(s) is the complexity of the underlying broadcast for short
s-bit messages).

In order to obtain a concrete multi-valued broadcast protocol we instantiate CryptoBC with the proto-
col [DS83]:

Theorem 2. Instantiating the construction CryptoBC with q = n and [DS83] as underlying broadcast
for short messages results in a cryptographically secure multi-valued broadcast protocol for t < n with
communication complexity O(`n+ n5κ) (where κ is a security parameter).

5 Information-Theoretically Secure Construction

This section is organized similar to the cryptographic case. First, we present a protocol ITBlockBC
for broadcasting blocks which is analogous to CryptoBlockBC, with the difference that it relies on a
universal hash function instead of a collision-resistant one. As in the cryptographic case we then plug
ITBlockBC in the ITBC protocol, which broadcasts a message block by block q times. Then, we count
the communication complexity of the resulting protocol ITBC, and select the number of blocks q which
makes it optimal.

5

Ps

H

Stay happy
(Ps and those

who broadcasted 1)

Become unhappy
(broadcasted 0)

PzPiu
Piu+1

Conflict

Fig. 1. Conflict finding in the iteration of ITBlockBC

5.1 Universal Hash Functions

Consider a family of functions U = {Uk}k∈K indexed with a key set K, where each function Uk maps
elements of some set X to a fixed set of bins Y. The family U is called ε-universal if for any two distinct
messages v1 and v2,

|{k ∈ K | Uk(v1) = Uk(v2)}|
|K|

≤ ε.5

A ε-universal hash function can for example be constructed as follows: Let X = {0, 1}`, K = Y =
GF(2ν), and any value v ∈ {0, 1}` be interpreted as a polynomial fv over GF(2ν) of degree d`/νe−1. The
hash function is defined as Uk(v) = fv(k). We know that two distinct polynomials of degree d`/νe − 1
can match in at most d`/νe − 1 points. Hence, for any two distinct v1, v2 ∈ {0, 1}`,

|{k ∈ {0, 1}ν | Uk(v1) = Uk(v2)}|
2ν

≤ d`/νe − 1

2ν
≤ 2−ν`.

So, {Uk}k∈{0,1}ν is a family of (2−ν`)-universal hash functions.

We will denote a ε-universal hash function with ITHash.

5.2 Block Broadcast Protocol ITBlockBC

Similarly to the cryptographic case all parties during the protocol ITBlockBC run are divided into two
sets: H and H. The set H consists of happy players who have already learned vs, and H who have not.
The difference to the cryptographic case is that the set H is not monotonically growing—it may happen
that the same player may be added/removed from H several times. At each iteration of ITBlockBC we
try to move a player from H to H. We select a pair of players Px, Py such that Px ∈ H and Py ∈ H
and {Px, Py} 6∈ ∆. Then Px sends the value it holds to Py. Now player Py needs to verify that the
value received from Px is the value that correct parties in H hold. In order to do so, Py broadcasts a
key k for ε-universal hash function ITHash, and then Ps broadcasts a hash h for this key. As long as
Py honestly chooses k uniformly at random, with overwhelming probability correct players will obtain
different hashes if they hold different values. If a party in H ∪ {Py} \ {Ps} holds a value with a hash h,
then he broadcasts 1, and 0 otherwise (the sender Ps does not broadcast because if he is correct he can
broadcast only 1). If every party broadcasts 1, then the iteration was successful and Py is added to H.
Otherwise, some of the parties in H ∪{Py} do not hold the right value and we search for new disputes.
An important difference from the cryptographic case is that disputes may occur not only between Px
and Py, but between any two parties in H. In order to find such disputes, one must be able to reason
about the history of how H was formed. We will keep a history set T which will contain pairs of players
(Px, Py) such that Py learned the value it holds from Px.

5 This is a combinatorial definition of a universal hash function, usually the last condition is written probabilistically as

Pr[k
$←− K : Uk(v1) = Uk(v2)] ≤ ε.

6

Protocol ITBlockBC(vs):
1. Parties initialize happy set H to be {Ps} and history set T to be ∅.
2. While ∃ Px, Py ∈ P s.t. Px ∈ H and Py ∈ H and {Px, Py} 6∈ ∆ do
r.1 Px: Send vx to player Py. Denote received value by vy. Add (Px, Py) to T .
r.2 Py: Generate random k ∈ K and broadcast it.

Sender Ps: Broadcast h := ITHashk(vs).
r.3 ∀Pi ∈ H ∪ {Py} \ {Ps}: If h = ITHashk(vi) then broadcast 1, otherwise 0.
r.4 If all parties broadcasted 1

- Add Py to H.
else

- For all (Pi, Pj) ∈ T s.t. Pi broadcasted 1 (resp. Pi = Ps) and
Pj broadcasted 0, add {Pi, Pj} to ∆.

- Set H to {Ps}, T to ∅.
3. ∀Pi ∈ P: If Pi ∈ H decide on vi, otherwise decide on ⊥.

Lemma 2. Given that the initial dispute set ∆s is valid and ITHash is a universal hash function,
protocol ITBlockBC achieves broadcast (of vs) and terminates with a valid dispute set ∆e (except with
negligible probability). Furthermore, the protocol terminates in O(n + nd) rounds communicating at
most (n + nd)(|vs| + B(|h|) + B(|k|) + nB(1)) bits, where d = |∆e| − |∆s|, |h| is the output length of
ITHash, |k| is the key length of ITHash, and |vs| is the block length.

Proof. First, we prove that at each iteration of the while loop all correct players in H always hold the
same value v. More precisely, we need to show that if a correct player Py is added to H, then, given
that all correct players in H hold the same value v, it holds that vy = v. We have that all parties in
H ∪{Py}\{Ps} broadcast 1 at Step r.3. This implies that Py successfully verifies that ITHashk(vy) = h,
and all correct parties in H verify that ITHashk(v) = h. Due to the fact that Py is correct, the key k is
chosen uniformly at random, so given that ITHashk(vy) = ITHashk(v), it must hold with overwhelming
probability 1− ε that vy = v.
Second, we show that if the condition at Step r.4 is false then at least one new conflict is found. We
have that not all players in H ∪ {Py} \ {Ps} broadcasted 1. Consider two possible cases:
(Exists Pz ∈ H \ {Ps} which broadcasts 0 at step r.3) For Pz to be included in H there must exist a

sequence of players Pi1 , Pi2 , . . . , Pik in H such that Pi1 = Ps, Pik = Pz and (Pij , Pij+1) ∈ T for all
j = 1, . . . , k − 1 (see illustration in Figure 1). In the rth iteration some of the players in H stayed
happy (Ps and those who broadcasted 1) and some become unhappy (broadcasted 0). We know
that Ps stayed happy and Pz became unhappy. Hence in a row Pi1 , Pi2 , . . . , Pik there are players
of both types. Then we have that exist two players Piu , Piu+1 such that Piu stays happy and Piu+1

becomes unhappy. By construction of T , (Piu , Piu+1) ∈ T implies that {Piu , Piu+1} is not yet in ∆.
Consequently, the pair {Piu , Piu+1} will be identified as having a conflict and will be added to ∆.

(Each Pi ∈ H \ {Ps} broadcasts 1 at step r.3) It means that Px broadcasts 1 (or Px = Ps) and Py
broadcasts 0. Hence the new dispute {Px, Py} will be added to ∆.

Now we proceed with the proof of the current lemma.
(Validity of ∆e) We show that whenever Pi and Pj are correct then {Pi, Pj} is never added to ∆.
The pair {Pi, Pj} is added to ∆ only when Pi sent some v to Pj (i.e., (Pi, Pj) ∈ T), and they disagree
for some key k whether ITHashk(v) equals h. Hence, Pi or Pj is corrupted.
(Termination) There can be at most n successive iterations where the set H grows (condition at
Step r.4 is true). As shown above whenever condition at Step r.4 is false a new conflict is found. The
number of conflicts is limited and so must be the number of the while loop iterations.
(Consistency) We prove that in the end of the protocol all correct players belong either to H (and
decide on the same value v) or to H (and decide on ⊥). As shown above ∆ remains valid in all iterations,

7

hence for any two correct players Px, Py, the pair {Px, Py} 6∈ ∆. Hence, if Px ∈ H and Py ∈ H then the
while loop does not terminate.
(Validity) The correct sender Ps is always in H. The sender Ps decides on vs and due to the consistency
criterion all other correct players decide on vs as well.
(Complexity analysis) There can be at most n consecutive iterations, where no conflict is found,
hence the total number of iterations is at most n + nd, where d = |∆e| − |∆s|. This implies that the
number of rounds the construction employs is O(n+ nd). Furthermore, since the communication costs
of each iteration are at most |vs|+B(|h|) +B(|k|) +nB(1), we have that the total communication costs
of the protocol are upper bounded by (n+ nd)(|vs|+ B(|h|) + B(|k|) + nB(1)). ut

5.3 Constructing Broadcast for Long Messages

Similarly to the cryptographic case, we plug ITBlockBC in the protocol ITBC which simply broadcasts a
message block by block. The protocol ITBC is a copy of the protocol CryptoBC with the only difference
that CryptoBlockBC is substituted with ITBlockBC.

Due to Lemma 2 the total communication complexity of ITBC is at most

q∑
i=1

[
(n+ din)(`/q + B(|h|) + B(|k|) + nB(1))

]
= n(q +

q∑
i=1

di)(`/q + B(|h|) + B(|k|) + nB(1)).

This expression is bound by n(q + n2)(`/q + B(|h|) + B(|k|) + nB(1)). By setting q = n2 we have that
communication costs are at most 2`n+2n3(B(|h|)+B(|k|)+nB(1))) which is O(`n+n3(B(κ)+nB(1))).

The number of rounds the construction employs is
∑q

i=1 ri, where each ri ∈ O(n+ ndi). Hence, for
q = n2 we have that the total number of rounds is O(n3).

The following theorem summarizes the information-theoretically secure construction presented in
this section:

Theorem 3. In the setting with t < n, the construction ITBC with q = n2 achieves information-
theoretically secure broadcast of `-bit messages in O(n3) rounds by communicating O(`n + n3(B(κ) +
nB(1))) bits (where κ is a security parameter and B(s) is the complexity of the underlying broadcast for
short s-bit messages).

In order to obtain a concrete multi-valued broadcast protocol we instantiate ITBC with the proto-
col [PW96]:

Theorem 4. Instantiating the construction ITBC with q = n2 and [PW96] as underlying broadcast for
short messages results in an information-theoretically secure multi-valued broadcast protocol for t < n
with communication complexity O(`n+ n10κ) (where κ is a security parameter).

6 On The Round Complexity of Multi-Valued Constructions

While the primary goal of this paper is to build communication efficient protocols, one often optimizes
the protocols with respect to another measure of the protocols’ efficiency, number of rounds employed by
a protocol. According to this measure there are two principal classes of the protocols: constant-round and
non-constant round. In the following we investigate whether it is possible to obtain protocols optimal in
both measures, that is, constant-round multi-valued broadcast protocols with optimal communication
complexity for t < n.
The goal of this paper is to build protocols for efficient multi-valued constructions. We stress that by
construction we understand a protocol for n players which realizes multi-valued broadcast on top
of bilateral channels and a special procedure for broadcasting bits. We explicitly distinguish such

8

constructions and plain multi-valued broadcast protocols (e.g., [DS83,PW96]) that directly implement
broadcast from bilateral channels.
When t < n/2 both communication and round optimal multi-valued broadcast protocols can be built
by combining constant-round construction [FH06] with a constant-round binary broadcast protocol
(e.g., [GKKO07,KK06]). For the case of arbitrary t < n it has been shown that no plain protocol can
achieve broadcast in a constant number of rounds [GKKO07]. In the context of this paper this shows
that no concrete instantiation of a multi-valued construction and a procedure for broadcasting bits can
be constant-round. However, it is still interesting to understand whether a non-trivial constant-round
construction for multi-valued broadcast exists separately. Next we show that this is not possible, i.e.,
there is a separation between t < n/2 and t < n cases not only for broadcast protocols but between
constructions for multi-valued broadcast as well.
A construction’s failure probability (based on the definition [GY89]). Consider any multi-
valued construction protocol π = (π1, . . . , πn). A scenario is a triple (v,B,A) where v ∈ {0, 1}` is a
value that the sender broadcasts, B ⊆ P is a set of malicious players controlled with an adversarial
strategy A. We call an execution of the protocol π in a scenario successful if the outputs of honest
parties P \ B satisfy broadcast properties (validity and consistency). We define the error επ,v,B,A to
be the probability of an unsuccessful execution over the randomness used by honest parties and the
adversary in the corresponding scenario.6 Then the failure probability of π is defined as max

v,B,A
επ,v,B,A,

i.e., as the maximum failure among all scenarios.
Impossibility framework. We employ a standard indistinguishability argument that is used to prove
that certain security goals cannot be achieved by any protocol in the Byzantine environment [PSL80].
Such a proof goes by contradiction, i.e., by assuming that the security goals can be satisfied by means
of some protocol π = (π1, . . . , πn). Then the programs πi are used to build a configuration with contra-
dictory behavior. The configuration consists of (possibly) multiple copies of πi connected with bilateral
channels and given admissible inputs. Once the configuration is built, one simultaneously starts all the
programs in the configuration and analyzes the outputs produced by the programs locally. By arguing
that the view of some programs πi and πj in the configuration is indistinguishable from their view
when run by the corresponding players Pi and Pj (while the adversary corrupts the remaining players
in P \{Pi, Pj}) we can deduce consistency conditions on the outputs by πi and πj that lead to a contra-
diction. The main novelty in the following proof is that we consider an extended communication model
where in addition to bilateral channels players are given access to a special procedure for broadcasting
short messages. While following the path described above, we need to additionally describe how the
calls to this procedure are handled.

Theorem 5. Every non-trivial 7 multi-valued construction for t < n which takes less than n−1 rounds
fails with probability at least 1/(2n).

Proof. Take any non-trivial construction π = (π1, . . . , πn) which requires q < n − 1 rounds and has
error probability ε. Without loss of generality, assume as well that the sender is P1, i.e., the sender’s
program is π1. On the highest level our proof consists of three steps. (i) we define a configuration
(inspired by [GKKO07]). (ii) we show that all programs in the configuration must output the same
value v with probability 1 − nε. (iii) we use an information flow argument to prove that there is a
program in the configuration that outputs v with probability at most 1/2. Finally, we combine the
probability inequalities given by (ii) and (iii) to conclude that ε ≥ 1/(2n).
(i) Consider a chain of n programs π1, π2, π3, . . . , πn connected with bilateral channels as shown in

6 In all executions we assume that the procedure to broadcast bits is perfectly secure, i.e., the values broadcast with it
are consistently delivered to the parties.

7 By non-trivial we mean every construction which broadcasts strictly less bits with the broadcast procedure than the
length of the message broadcast `.

9

π1 π2 π3 π4 π5 π6 π7 . . . πn
V

Fig. 2. The configuration to show the impossibility of non-trivial construction

Figure 2. In this configuration only programs that are connected communicate, i.e., π1 communicates
only with π2 and receives no messages from parties in P \ {P1, P2}. Let π1 be given as input a uniform
random variable V chosen from the input domain {0, 1}`. Now we execute the programs. Whenever any
program broadcasts any value using the broadcast procedure this value is delivered to all programs in
the configuration.
(ii) First, we prove that any pair of connected programs (πi, πi+1) in the chain outputs the same value.
One can view the configuration as the player Pi running the program πi and Pi+1 running πi+1 while
the adversary corrupting P\{Pi, Pi+1} is simulating the programs π1, . . . , πi−1 and πi+2, . . . , πn. Due to
the consistency property, πi and πi+1 must output the same value with probability at least 1− ε. Since
every connected pair of programs in the chain outputs the same value with probability at least 1 − ε,
then all the programs in the configuration output the same value with probability at least 1− (n− 1)ε.
Moreover, the configuration can be viewed as P1 executing π1 while the adversary corrupts P \ {P1}
and simulates the remaining programs. Due to the validity property, π1 must output V with probability
at least 1− ε. Finally, all the programs in the chain output V with probability 1− nε.
(iii) Let Sri be a random variable denoting the state of the program πi in the chain after r rounds of the
protocol execution. By state we understand the input that the program has, the set of all messages that
the program received up to the rth round over point-to-point channels and via the underlying broadcast
procedure together with the random coins it has used. Let Br be a random variable denoting the list
of the values that have been broadcast with the broadcast procedure up to the rth round.
After r rounds only programs π1, π2, . . . , πr+1 can receive full information about V . The remaining
programs in the chain πr+2, πr+3, . . . , πn can receive only the information that was distributed with the
broadcast procedure, i.e., the information contained in Br. That is, one can verify by induction that
for any r and for all i ≥ r+2 holds I(V ;Sri |Br) = 0. Hence, for the last program in the chain πn after q
rounds of computation it holds that I(V ;Sqn|Bq) = 0 and hence I(V ;Sqn) ≤ H(Bq). Because we assumed
that the construction is non-trivial, at most `− 1 bits can be broadcast with the broadcast procedure.
Hence, we have that H(Bq) ≤ `−1. Combining these facts we get that I(V ;Sqn) ≤ `−1. Hence, the last
program πn outputs V with probability at most 1/2. However, we have shown above that all programs
(including πn) output V with probability at least 1 − nε. Hence, we have that 1/2 ≥ 1 − nε which
implies that ε ≥ 1/(2n). ut

7 Conclusions

Existing multi-valued broadcast protocols achieve optimal communication complexity only for t <
n/3 [LV11] or t < n/2 [FH06]. In this paper we proposed the first broadcast protocols that tolerate
any t < n Byzantine corruptions and achieve optimal communication complexity O(`n) for sufficiently
long messages of ` bits. One of the proposed protocols is cryptographically secure and the other one is
information-theoretically secure. The cryptographically secure protocol is based on the security of the
signature scheme and a collision-resistance of the hash function employed. It communicates O(`n+n5κ)
bits. The information-theoretically secure protocol may fail with a negligible probability and needs to
communicate O(`n+ n10κ) bits.
The presented constructions CryptoBC and ITBC leave room for different optimizations. In particular,
it is an interesting task to optimize the number of rounds used. While constant-round constructions
are unachievable, it is still unresolved whether one can build more round-efficient constructions and/or
prove stronger lower bounds on the number of rounds constructions must employ.

10

References

[BGP92] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit optimal distributed consensus. In Computer Science
Research, pages 313–322. Plenum Publishing Corporation, New York, NY, USA, 1992. Preliminary version
appeared in STOC ’89.

[BH06] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation with dispute control. In Shai
Halevi and Tal Rabin, editors, Theory of Cryptography Conference — TCC 2006, volume 3876 of Lecture Notes
in Computer Science, pages 305–328. Springer-Verlag, March 2006.

[CW92] Brian A. Coan and Jennifer L. Welch. Modular construction of a byzantine agreement protocol with optimal
message bit complexity. Information and Computation, 97:61–85, March 1992. Preliminary version appeared
in PODC ’89.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agreement. SIAM Journal on
Computing, 12(4):656–666, 1983. Preliminary version appeared in STOC ’82.

[FH06] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued Byzantine agreement. In Proceedings of the
26th annual ACM symposium on Principles of distributed computing, PODC ’06, pages 163–168, New York,
NY, USA, 2006. ACM.

[Fit03] Matthias Fitzi. Generalized Communication and Security Models in Byzantine Agreement. PhD thesis, ETH
Zurich, March 2003. Reprint as vol. 4 of ETH Series in Information Security and Cryptography, ISBN 3-89649-
853-3, Hartung-Gorre Verlag, Konstanz, 2003.

[GKKO07] Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round complexity of authenticated
broadcast with a dishonest majority. In Proceedings of the 48th Annual IEEE Symposium on Foundations of
Computer Science, FOCS ’07, pages 658–668, Washington, DC, USA, 2007. IEEE Computer Society.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In Proceedings of the 19th
annual ACM symposium on Theory of computing, STOC ’87, pages 218–229, New York, NY, USA, 1987. ACM.

[GY89] R. L. Graham and A. C. Yao. On the improbability of reaching byzantine agreements. In Proceedings of the
twenty-first annual ACM symposium on Theory of computing, STOC ’89, pages 467–478, New York, NY, USA,
1989. ACM.

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. In In
Advances in Cryptology—Crypto ’06, pages 445–462. Springer-Verlag, 2006.

[LV10a] Guanfeng Liang and Nitin Vaidya. Complexity of multi-value byzantine agreement. Technical report, University
of Illinois at Urbana-Champaign, 2010. Available at http://www.crhc.illinois.edu/wireless/papers/ba_

sum_capacity_0729.pdf.
[LV10b] Guanfeng Liang and Nitin Vaidya. Short note on complexity of multi-value byzantine agreement. CoRR,

abs/1007.4857, 2010.
[LV11] Guanfeng Liang and Nitin Vaidya. Error-free multi-valued consensus with Byzantine failures. In Proceedings of

the 30th annual ACM symposium on Principles of distributed computing, PODC ’11, pages 11–20, New York,
NY, USA, 2011. ACM. The arxiv version is available at http://arxiv.org/abs/1101.3520.

[LV14] Guanfeng Liang and Nitin Vaidya. Personal Communication, 2014.
[Pat11] Arpita Patra. Error-free multi-valued broadcast and Byzantine agreement with optimal communication com-

plexity. In Proceedings of the 15th international conference on Principles of Distributed Systems, OPODIS ’11,
pages 34–49. Springer, 2011.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228–234, 1980.

[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosignatures and Byzantine agreement for
t ≥ n/3. Technical report, IBM Research, 1996.

[Rog06] Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor, VIETCRYPT, volume 4341 of
Lecture Notes in Computer Science, pages 211–228. Springer, 2006.

[TC84] Russell Turpin and Brian A. Coan. Extending binary Byzantine agreement to multivalued Byzantine agreement.
Information Processing Letters, 18(2):73–76, 1984.

[Yao79] Andrew C. Yao. Some complexity questions related to distributive computing (preliminary report). In Proceed-
ings of the eleventh annual ACM symposium on Theory of computing, STOC ’79, pages 209–213, New York,
NY, USA, 1979. ACM.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Founda-
tions of Computer Science, SFCS ’82, pages 160–164, Washington, DC, USA, 1982. IEEE Computer Society.

11

A Combining Constructions with Bit Broadcast Protocols

This table shows the concrete instances of composing constructions with bit broadcast protocols.

Threshold Security Bits Communicated Literature

t < n/3 perfect

O(`n2) Trivial with [BGP92]

O(`n+
√
`n4 + n6) [LV11] with [BGP92]

O(`n+ n4) [Pat11] with [BGP92]

t < n/2
inf.-theor. O(`n+ n7κ) [FH06] with [PW96]

cryptographical O(`n+ n4(n+ κ)) [FH06] with [DS83]

t < n

inf.-theor.
Ω(`n2 + n6κ) [PW96]

O(`n+ n10κ) This with [PW96]

cryptographical
Ω(`n2 + n3κ) [DS83]

O(`n+ n5κ) This with [DS83]

B On the Constructions of Liang and Vaidya [LV11,LV10a,LV10b]

The current paper has been rejected from PODC’13 and DISC’13. The reviewers believed that the
construction given in [LV11] can be extended to tolerate arbitrary t < n. Hence, the result obtained
in the current paper was questioned to be novel. This opinion is based on [LV11] stating that the
construction can be extended to tolerate t ≥ n/3. We contacted the authors and they said that this
statement is misleading and it should have been “t < n/2” instead of “t ≥ n/3” to be more clear [LV14].
Below we detail why [LV11] inherently requires t < n/2 and cannot be extended beyond this bound
(this reasoning applies to the related constructions [LV10a,LV10b]).

Essentially, the construction relies on a player set S such that all players in S have the same value
v and S is guaranteed to contain at least one correct player. The value v is the value that should be
agreed on. This technique requires that such S is unique. Uniqueness of S can be guaranteed only when
t < n/2. When t ≥ n/2, even if all correct players do share the same value v, the Byzantine players can
always pretend to have a different value v′ and create a larger player set S′ just among themselves to
prevent protocol from reaching agreement.

12

