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Abstract

In his keynote speech at CHES 2004, Kocher advocated that side-
channel attacks were an illustration that formal cryptography was not as
secure as it was believed because some assumptions (e.g., no auxiliary
information is available during the computation) were not modeled. This
failure is due to the fact that formal methods work with models rather
than implementations. Of course, we can use formal methods to prove
non-functional security properties such as the absence of side-channel leak-
ages. But a common obstacle is that those properties are very low-level
and appear incompatible with formalization. To avoid the discrepancy
between the model and the implementation, we apply formal methods di-
rectly on the implementation. Doing so, we can formally prove that an
assembly code is leak-free, provided that the hardware it runs on satisfies
a finite (and limited) set of properties that we show are realistic. We ap-
ply this technique to prove that a present implementation in 8 bit AVR
assembly code is leak-free.

keywords. side-channels, balancing countermeasure, formal methods,
symbolic evaluation.

1 Introduction

The need to trust code is not something that needs to be proved anymore. But
the code itself needs to be proved in order to be trustable. In applications such as
cryptography or real-time systems, formal methods are used to prove functional
properties on the critical parts of the code. Specifically in cryptography, some
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non-functional properties are very important too, but are not typically subject
to formal proof yet. Side-channel attacks are a real world threat to cryptogra-
phy that use auxiliary information gathered on implementations though physical
channels such as power consumption, electromagnetic radiations, or time. The
amount of leaked information depends on the implementation and as such ap-
pears difficult to model. As a matter of fact, physical leakages are usually not
modeled when it comes to prove the security properties of a cryptographic algo-
rithm. By applying formal methods directly on implementations we can avoid
the discrepancy between the model and the implementation. Formally prov-
ing non-functional security properties then becomes a matter of modeling the
leakage itself. In this paper we make a first step towards formally trustable, in-
cluding for non-functional properties, cryptosystems by showing that modeling
leakage and applying formal methods to implementations is feasible.

Most existing countermeasures against side-channel attacks are implemented
at the hardware level. However, software level countermeasures are also very
important. Not only in embedded systems where the hardware cannot always
be modified or updated. But also in purely software world, as shown recently by
Zhang et al. in [24], where they extract private keys using side-channel attacks
against a target virtual machine running on the same physical server as their
virtual machine. Side-channel in software can also be found each time there are
some non-logic behaviors (in the sense that it does not appear in the equations
/ control-flow modeling the program) such as timing and power consumption,
but also some software-specific information such as packet size for instance.

In many cases where the cryptographic code executed on secure elements
(smarcards, TPM, tokens, etc.) side-channel and fault analyses are the most
natural attack paths. A combination of signal processing and statistical tech-
niques on the data obtained by side-channel analysis allows to build key hy-
potheses distinguishers. The protection against those attacks is necessary to
ensure that secrets do not leak, and most secure elements are thus evaluated
against those attacks. Usual certifications are the common criteria (ISO/IEC
15408), the FIPS 140-2 (ISO/IEC 19790), or proprietary schemes (EMVCo,
CAST, etc.).

Thwarting side-channel analysis is complicated since an unprotected imple-
mentation leaks at every step, and powerful (and simple) attacks manage to
exploit any bias. For instance, the differential power analysis [12] does not re-
quire a precise modelization of the leakage, and thus works blind, i.e., even if
the implementation is blackbox.

In practice, there are two options: “palliative” versus “curative” counter-
measures. Palliative countermeasures attempt to make the attack more diffi-
cult, however without a theoretical foundation. They include variable clock,
shuffling, dummy encryptions, among others (see also [9]). Since non-provable,
they are not suitable for a safe certification process. Curative countermeasures
aim at providing a leak-free implementation based on a security rationale. The
two defense strategies are:

1. make the leakage constant, irrespective of the manipulated data (hiding
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or balancing strategy [13, Chp. 7]), or

2. make the leakage as decorrelated from the manipulated data (masking
strategy [13, Chp. 9]) as possible.

Balancing. Balancing requires a close collaboration between the hardware
and the software: two indistinguisable from a side-channel point of view re-
sources shall exist and be used according to a DPL protocol. Dual-rail with
precharge logic (DPL) consists in precharging the resources, so that they are in
a common state, and then setting one of the resources. Which resource has been
set is unknown to the attacker, because they leak the same (by hypothesis). As
both resources leak identically, the attacker cannot determine which of them has
been set and computations can be carried out without exploitable leakage [23].

Masking. Masking mixes the computation with random numbers, to make
the leakage (at least in average) independent of the sensitive data. Advantages
of masking are (a priori) the absence of leakage behavior from the hardware, and
the existance of provably secure masking schemes [18]. The drawbacks are the
possibility of high-order attacks (that examine the variance or the joint leakage),
and a greedy requirement for randomness (that is very costly to generate).
Another concern with masking is the overhead it incurs in the computation
time. For instance, a provable masking of the AES is reported in [18] to be 43
(resp. 90) times slower than the non-masked implémentation when a 1st (resp.
2nd) order masking scheme is used. Further, recent studies have shown that
masking cannot be analyzed independently from the execution platform. For
instance, the leakage models in Hamming distance mix two sensitive variables
(and is thus already second-order). Also, glitches are transient leakages that
are likely to depend on more than one sensitive data, hence being high-order.
Indeed, a glitch occurs when there is a race between two signals, i.e., when it
involves more than one sensitive variable.

Lightweight cryptography, cost of countermeasures. Lightweight cryp-
tography are cryptographic primitives that have been designed to meet as tightly
as possible the security requirements in terms of resistance against cryptanaly-
ses. They are thus dimensioned minimally, thereby making suitable for integra-
tion in resource-constrained devices, offering a mathematically provable security
level at cost lower than non-lightweight primitives. Of course, lightweight prim-
itives shall also be protected against side-channel attacks. Now, lightweight
primitives shall remain lightweight even after their armoring with side-channel
countermeasures. However, this is far from being obvious; let us consider the
example of present [1], a 64 bit block cipher using a 80 bit key. Present is
extremely lightweight in hardware, as it is 2.17 times smaller than the AES for
the same functionality (encryption / decryption) [1, Table 2]. But in software,
the implementation is fairly inefficient [6], as it requires about twice as much
time to execute as AES. Now, the 4 × 4 substitution box (S-Box) involved in
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present is a random (i.e., unstructured) function which cannot be easily ex-
pressed as polynomial. Masking operations are embedded within a group, and
thus traditionnal masking schemes, such as [18], cannot be applied; instead,
generic masking methods (thus without optimizations) shall be employed [2].
We have estimated that a protected implémentation of present is roughly 32
times slower than an unprotected one, which is definitely a huge overhead.

As masking is inadequate for present, hiding must be considered.
The motivations are as follows:

• Given the simple Boolean equations of the S-Box, a bitslice implementa-
tion is not that long to compute, especially in regards of the extremely
long time required to execute bit-level parts such as the permutation layer
and the round keys computation.

• Such an implementation is standalone, not requiring any source of ran-
domness (usually absent from low-cost embedded devices).

• DPL also protect against some fault injection attacks: the encoding being
redundant, some error detection logic can be added; also it is likely that
the fault alters the data in a way that makes it not compliant with the
protocol, in which case the algorithm continues with data that have lost
all relationships with the correct data, thereby whitening the sensitive
values.

Contributions. The three contributions of this paper are: (1) a software
bitsliced implementation of present that is faster than the current state-of-the-
art implementation, (2) an automatic protection against side-channel leakages
of assembly code by insertion of the dual-rail with precharge logic (DPL), and
(3) a formal proof of the implementation’s security with respect to side-channel
analysis.

The use of formal methods is not widespread in the domain of implemen-
tations security. When they exist, security proofs are done on mathematical
models rather than implementations. An emblematic example is the Common
Criteria [5], that bases its “formal” assurance evaluation levels on “Security Pol-
icy Model(s)” (class SPM) and not on implementation-level proofs. This means
that it is the role of the implementers to ensure that their implementation fit
the model, which is usually done by hand and is thus error-prone.

For instance, some masking implementation have been proved. However,
masking relies on randomness, which is a rare resource and is hard to formally
capture. Thus, many aspects of the security are actually displaced in the ran-
domness requirement rather that soundly proved. Moreover, in the field of
masking, most proofs are still literate (i.e., verified manually, not by a com-
puter program). This has led to recent security breach in what was supposed
to be a proved [18] masking implementation [2].

In this light it is easy to conclude that the use formal methods to prove the
security of implementations is a technological enabler: it would guarantee that
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the instanciations of security principles are as strong as the security principles
themselves.

In this paper we use formal methods (symbolic evaluation) to prove that
an implementation (at the assembly code level) is leak-free, provided that the
hardware it runs on satisfies a finite and limited set of requirements that we
give and which can be tested in lab. We also provide a case study on a software
implementation of the present algorithm running on an AVR micro-controller.

Organization of the paper. First of all, a state-of-the-art about constant
leakage, irrespective of the sensitive variables, is drawn in Section 2: it explains
the specificity of dual-rail with precharge logic (DPL) in software, and notably
why the approach is realistic. The compilation flow to obtain a portable pro-
tected program (mappable to several CPU cores) is described in Section 3. The
security proof of the programs generated by this compilation is given in Sec-
tion 4. A case study is then presented in Section 5. Eventually, conclusions are
in Section 6.

2 State-of-the-Art of DPL implementations

The hiding countermeasure has been employed against side-channel since the
early 2004, with dual-rail with precharge logics. The countermeasure consist in
computing on a redundant representation: each bit b is implemented as a pair
(yFalse, yTrue). The bit pair is then used in a protocol made up of two phases:

1. a precharge phase, during which all the bit pairs are zeroized (yFalse, yTrue) =
(0, 0), such that the computation starts from a known reference state;

2. an evaluation phase, during which the pair (yFalse, yTrue) is equal to (1, 0)
if it carries the logical value 0, or (0, 1) if it carries the logical value 1.

The value (yFalse, yTrue) = (1, 1) is unused. As suggested in [14], it can serve as
a canary to detect a fault.

Various dual-rail with precharge logic styles for electronic circuits have been
proposed. Some of them, implementing the same logical AND functionality, are
represented in Fig. 1; many more variants exist, but these four are enough to
illustrate our point. The reason for the multiplicity of styles was that the indis-
tinguishability hypothesis on the two resources holding yFalse and yTrue values
was violated, which lead to the development of dedicated hardware. A first
dissymetry comes from the gates driving yFalse and yTrue. In wave dynamic
differential logic (WDDL [21]), these two gates are different: logical OR versus
logical AND. Other logic styles are balanced with this respect. Then, the load of
the gate shall also be similar. This can be achieved by careful place-and-route
constraints [22, 8], that take care of having lines of the same length, and that fur-
thermore do not interfere one with the other (phenomenon called “crosstalk”).
As those are complex to implement exactly for all secure gates, the masked
dual-rail with precharge logic (MDPL [16]) style has been proposed: instead
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Figure 1: Four dual-rail with precharge logic styles.

of balancing exactly the lines carrying yFalse and yTrue, those were randomly
swapped, according a random bit, as represented as a pair (mFalse,mTrue) to
avoid it from leaking. Therefore, in this case, not only the computing gates are
the same (viz. a majority – MAJ), but the routing is balanced thanks to the
extra mask. However, it appeared that another dissymetry could be fatal to
WDDL and MDPL: the gates pair could evaluates at different dates, depend-
ing on their input. It is important to mention that side-channel acquisitions
are very accurate in timing (off-the-shelf oscilloscopes can sample at more than
1 Gsample/s, i.e., at a higher rate than the clock period), but very inaccurate
in space (i.e., it is difficult to capture the leakage of an area smaller than about
1 mm2 without also recording the leakage from the surrounding logic). There-
fore, two bits cannot be measured separately. To avoid this issue, every gate
has to include some synchronization logic. In Fig. 1, the “computation part” of
the gate is represented in a grey box with round corners. The synchronization
logic are the gates outside of this box. In SecLib [7], the synchronization can
be achieved by Muller C-elements (represented with a symbol C [20]), and act
as a decoding of the inputs configuration. Another implementation, balanced
cell-based differential logic (BCDL [15]), parallelize the synchronization with
the computation.

The difficulty of balancing the gates in hardware implementations is simpli-
fied in software. Indeed:

• In software, there are less resources than the thousands of gates that can
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be found in hardware (aimed at computing fast, with parallelism); thus
the attention for the balancing can be focused.

• There is no such problem as early evaluation, since the processor executes
one operation after the other; therefore there are no unbalanced paths.

This has motived the design for DPL co-processors [17, 3, 4].
In this paper, we want to run dual-rail with precharge logic on an off-the-shelf

processor. Therefore, we must:

1. identify two similar resources that can hold true and false values in an
undiscernible way for a side-channel attacker;

2. play the DPL protocol by ourselves.

Basically, by an adequate characterization (called stochastic profiling [19]),
it is easy to find two bits from the processor accumulator that have the same
leakage property. Then, by a careful handwritten sequence in assembly lan-
guage, the resources can be precharged and used in the DPL protocol. Our flow
to generate a DPL program is discussed in the next section.

3 Generation of DPL code

This section develops on the generation of DPL code, Fig. 2 recaps the steps
of this transformation. The point is to show that leak-free code actually exists
and can be obtained methodically. Besides, it provides us with examples that
serves as targets for our formal proofs.

Translation to abstractASM. We chose to implement the DPL protection
at the assembly level for two main reasons. The optimization by any compiler
would mess up the DPL scheme, which for instance requires logically useless
precharge of values. Second, it is really on the actual implementation that we
want to prove the absence of sensible information leakage.

However, it would be wasteful to develop formal methods and proven im-
plementations for one particular physical architecture. This is why we chose to
design our own assembly language, abstractASM. AbstractASM is a simple and
generic assembly language which is easy to manipulate and, more importantly,
whose instructions can be mapped one-to-one with those of actual assembly
languages. This allows to develop tools that will be usable to formally prove
the security of assembly code on multiple devices. To give the reader an idea of
what it looks like, a BNF of abstractASM can be found in the appendix A.

Bitslice transformation. The DPL protocol has originally been designed to
be implemented in hardware. Thus it operates at the bit level. This means that
it is very generic and can be applied to virtually any algorithm, but also that
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we cannot apply it to a software implementation “as is”. The first code trans-
formation is the translation of the algorithm into bitslice form: all operations
must be bitwise and memory cells and registers must contain only one bit. In
terms of speed, this transformation could seem prohibitive, but it can actually
be benefical for some classes of algorithms. Indeed, bitslice implementations
of some ciphers (precisely what interest us here) are parallelizable on as many
blocks as the machine word length in bits with minimum efforts. In particular,
ciphers whose internal data are seen as binary Galois field, i.e., those that make
extensive use of binary exclusive or, such as present, AES (block ciphers),
Trivium, Grain, MICKEY (stream ciphers). On the other hand, algorithms
whose data are seen as integers are less suitable for this transformation, for
instance the round function of RC5 can be computed in two 32 bits instructions
but would require hundreds of instructions in bitslice.

For now the bitslice transformation is done by hand. There is no tool to do
that off-the-shelf yet, but our plan is to have this done by an automated compiler
which will have been formally proved not to alter the semantic or behavior of
the code.

DPLization of the state. The code and data are now in bitsliced form.
Each literal (or “immediate” values in assembly terms), preset memory cells
and registers values which correspond to data (by opposition to code or memory
addresses) must be translated to their DPL equivalent in order to have a DPL
state.

DPLization of the code. Our leakage model is the Hamming distance of
updates. We want that, each time a register is updated, the Hamming distance
between its old and new values be constant, independent of any sensitive value

Our approach is the one followed in [10]: each sensitive instruction is replaced
by a sequence of instructions (a macro) which does the same computation but
respect the constant Hamming distance constraint. The principle of the macros
is to apply the DPL precharge before writing sensitive data, and to use lookup
tables to compute the results of binary operations on DPLized bits. Macros
assume that the current state is a valid DPL state and must leave a valid DPL
state after their computation, so they can be chained.

Assuming that a and b are the registers containing the operands, that d is the
destination, that op is the address of the lookup table for the binary operation
that we “expand” with this macro, and that r0 an always-0 register, Here is the
macro:
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Figure 2: Generation of DPL code.

r1 ← r0 mov r1 r0

r1 ← a mov r1 a
r1 ← r1 ∧ 3 and r1 r1 #3

r1 ← r1 � 1 shl r1 r1 #1

r1 ← r1 � 1 shl r1 r1 #1

r2 ← r0 mov r2 r0

r2 ← b mov r2 b
r2 ← r2 ∧ 3 and r2 r2 #3

r1 ← r1 ∨ r2 orr r1 r1 r2

r3 ← r0 mov r3 r0

r3 ← op[r1] mov r3 !r1,op
d ← r0 mov d r0

d ← r3 mov d r3
The “expansion” of the sensible instructions is done automatically by a

script. Provided that the lookup tables are built correctly (as explained in [10]),
the semantic preservation of this transformation is provable by exhaustive case
coverage. Since there’s only four cases for each binary operation, it is sufficient
to test them and see that macro(DPL(a) op DPL(b)) = DPL(a op b), where
macro(inst) is the “expansion” of the instruction inst and DPL is the encoding
function for our DPL convention, i.e., DPL(0) = 0b10 and DPL(1) = 0b01.

Translation to concrete assembly. The obtained code is supposed to be
protected. The security proof is done independently from the code generation
and is exposed in Section 4. Once the proof is done, the abstractASM code can
be mapped back to concrete assembly code for lab tests.
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Figure 3: Stochastic characterization of every bit in a general purpose CPU.

4 Security Proof of our Code

The security proof is done independently from the DPL code generation. On
the one hand there are other ways to obtain leak-free code and it should be
possible to formally prove the absence of leakages on theses codes too. On
the other hand the tool we developed to generate the proof, and which will be
presented in Section 4.2, can be used as a non-regression test in case of attempts
at optimization of the protected code.

4.1 Hardware Characterization

This is done by exhaustive execution of the routines and profiling. For in-
stance, on an 8-bit 6502 core (see Fig. 3), the main register have bits that leak
equally (and some others that leak exactly the opposite direction – those can
be ignored). Such a characterization, based on real traces analyzed by a linear
regression to infer the most adequate model (i.e., the stochastic approach [19])
shows that most bits in a CPU register are indeed indistinguishable in practice.

4.2 Proof of Constant Activity

The aim of the DPL code protection against sensitive information leakage is to
make the leakage activity constant. To prove that this goal is acheived the only
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solution would be to record the leakage activity of the algorithm running for
each input. This is obviously non-feasible using a naive brute-force approach,
and this is were formal methods enter the game.

In [11], Kocher pointed out that side-channel attacks could exist because
some assumptions were not modeled. We want to illustrate that formal methods,
in return, can help thwart implementation-level attacks by properly capturing
device-level leakage and deriving a formal assurance of resistance.

Formal methods are the key to certified security, and the key to formal
methods is modelization. Being as low-level as assembly language could seem
to be contradictory with modelization, since we lost almost all semantics of what
the program does. However, we are not interested in what the program actually
does. What interest us is what the implementation does, at the bit level. In
this perspective, it is also an absolute benefit to work with bitsliced code.

A common model for power consumption and electromagnetic radiations
side-channels is the Hamming distance of updates of values.

We model the execution of the code by running it on a software simulated
processor which we call abstractCPU. AbstractCPU is equipped to compute the
leakages as we modeled them. But this does not solve the problem of computing
the leakages for all the possible inputs. We address this problem by using
symbolic evaluation: rather than computing using values, it computes using
sets of values. We don’t have the risk of combinatorial explosion given the few
possible values that each set can contain due to the bitslicing of the code.

The use of sets of possible values allow to compute the Hamming distance
between all the previous values to all the new values for each update. Thus
compute all the possible leakages for each instruction.

The invariant that we want to obtain is that for each instruction there’s at
most one possible leak value. While this invariant holds, the code is provably
leak-free.

For example, let’s say that at some point in the computation r1 is {1, 2} (it
could either be 1 or 2) and r2 is {3, 4} (it could either be 3 or 4). If at this point
the next instruction is r1 ← r1 ⊕ r2 then after its evaluation, r1 becomes
{1, 2, 5, 6}. In that case, the value of the Hamming distance of r1’s update can
be either 0 (for 1 → 1, 1 → 2, 2 → 1, 2 → 2) or 1 (for 1 → 5, 1 → 6, 2 → 5,
2 → 6). This means that the leakage depends on the possible values in the
registers, which is exactly what we want to avoid.

For our purpose, the abstractCPU checks the possible leakages in six “places”:
the register write bus, the register read bus, the register address bus, the memory
write bus, the memory read bus, and the memory address bus. We are not
checking the code read and address buses (although we could easily have done
so, using the exact same methods as for the six others buses). Mainly because
the target device of our tests (an Atmel AVR) has an Harvard architecture, so
the memory and code are actually separated. Also, the code is supposed public
and there’s no conditional jump that depends on sensitive data in our examples
(as we will see in Section 5). Fig. 4 presents what abstractCPU looks like in this
configuration.

11



Figure 4: abstractCPU.

4.3 Support for Optimizations

The code generation methodology is rather generic, hence using protected code
for all possible operations. Now, due to:

1. The existence of non-sensitive signals (e.g., the selection of key size); or
loop counters;

2. The limited data range of some variables, that makes some parts of the
code use constant variables;

3. The possibility to go from one macro to the other through register, thereby
saving time from the memory transfers;

4. The possibility to merge instructions given certain patterns;

5. The use of architecture-specific intructions not included in our abstractASM.

There is certainly room for optimization of the obtained DPL code. Thanks
to the fact that our proof method is independant from DPL code generation,
it can still be applied to optimized code to verify if the optimizations are valid
with respect to security. Only the last of the five points would require an
adaptation of our tool, in order to implement the behavior of the architecture-
specific instructions.

5 Case study on PRESENT

We decided to use the cryptographic algorithm present for our case study,
for the reasons we exposed in the introduction. We decided to use an 8-bit
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cycle count code size∗ RAM words∗

state-of-the-art 11342 1000 18
bitsliced 6473 1194 144

DPL protected 182572 2674 192

* The state-of-the-art code size and RAM words are given for encryption + decryption, while

ours are for encryption only. Code size and RAM words are given in bytes.

Table 1: Comparison of implementations of present.

Atmel AVR device as the target architecture so we could compare our results
to the state-of-the-art which was presented at AfricaCrypt 2012 [6]. The first
step was to write a bitsliced implementation of the present cipher in AVR
assembly code. This was done by hand and the author of this code was learning
AVR assembly while writing it so there must be a lot of possible optimizations.
Despite this fact, the resulting implementation is faster than the state-of-the-
art. The code actually requires 4.5 times more clock cycles, but due to the
bitslicing it can cipher 8 blocks at the same time and is thus 1.75 times faster.
However, our implementation uses 8 times more memory. Table 1 sums up these
results.

The code was then automatically translated to abstractASM. This step does
not change the code size or anything since it’s a direct mapping from AVR
assembly to abstractASM.

The obtained abstractASM code was then DPLized according to the method
presented in Section 3. This transformation multiplied the code size by a little
more than 2 and the number of clock cycles by approximately 3.5. It also
multiplied the RAM needs by a factor of 1.3. The additional memory is used
for the DPL lookup tables, as described in Section 3. Table 1 sums up these
numbers.

The resulting protected code was then executed on the abstractCPU. The
execution confirmed that the protected code was leak-free using the techniques
developed in Section 4.

The code was then mapped back from abstractASM to AVR assembly which
compiled properly after a few hand tweaking: the DPL macros expanded the
code sufficiently to break small-jump branching (i.e., the target labels were more
than 64 instructions away after the code transformation), which was easy to fix.

The resulting protected AVR assembly code ran successfully on the Atmel
AVR ATMega163.

6 Conclusion

We have automatically protected an assembly code against side-channel attack
by transforming it so it has the same semantic and behavior as before, but
respect the dual-rail with precharge logic (DPL) protocol, which is a balancing
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countermeasure against side-channel attacks.
Independently, we have certified an assembly code against side-channel at-

tacks by proving it to be leak-free using formal methods directly on the im-
plementations after having modeled the leakage (as the Hamming distance of
updates of sensitive values). By doing so, we have shown that formal methods
(e.g., symbolic evaluation) can help proving non-functional security properties
on critical cryptographic code.

These methods have been put in pratice with the present algorithm running
on an AVR micro-controller. The result of this case study are very good with a
provably leak-free implementation that is at least 2 times faster than the state-
of-the-art of protected (with a 2nd order masking scheme) implementations of
present.

Our approach to proving resistance to side-channel analysis is also an enabler
for optimizations on protected code as it can be used as non-regression test for
the leak-free security property.

Our results are promising and we believe formal methods have a bright fu-
ture concerning side-channel attacks countermeasures certification for trustable
cryptosystems. The method we developed would also be beneficial to other
code level protections if we can model timing leakage, correctness of masking
schemes, or countermeasures to fault injection.
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Stéphane Badel, Theo Kluter, Philip Brisk, Yusuf Leblebici, and Paolo
Ienne. A Design Flow and Evaluation Framework for DPA-Resistant In-
struction Set Extensions. In CHES, volume 5747 of Lecture Notes in Com-
puter Science, pages 205–219. Springer, 6-9 September 2009. Lausanne,
Switzerland.

[18] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order
Masking of AES. In Stefan Mangard and François-Xavier Standaert, edi-
tors, CHES, volume 6225 of LNCS, pages 413–427. Springer, 2010.

[19] Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model
for Differential Side Channel Cryptanalysis. In LNCS, editor, CHES, vol-
ume 3659 of LNCS, pages 30–46. Springer, Sept 2005. Edinburgh, Scotland,
UK.

[20] M. Shams, J.C. Ebergen, and M.I. Elmasry. Modeling and comparing
CMOS implementations of the C-Element. IEEE Transactions on VLSI
Systems, 6(4):563–567, December 1998.

[21] Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Methodology for
a Secure DPA Resistant ASIC or FPGA Implementation. In DATE’04,
pages 246–251. IEEE Computer Society, February 2004. Paris, France.
DOI: 10.1109/DATE.2004.1268856.

[22] Kris Tiri and Ingrid Verbauwhede. Place and Route for Secure Standard
Cell Design. In Kluwer, editor, Proceedings of WCC / CARDIS, pages
143–158, Aug 2004. Toulouse, France.

[23] Kris Tiri and Ingrid Verbauwhede. A digital design flow for secure inte-
grated circuits. IEEE Trans. on CAD of Integrated Circuits and Systems,
25(7):1197–1208, 2006.

[24] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM side channels and their use to extract private keys. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, ACM Conference on
Computer and Communications Security, pages 305–316. ACM, 2012.

A AbstractASM’s BNF

Prog ::= ( Inst? [ ’;’ <comment> ] ’\n’ )*

Inst ::= Opcode0

| Opcode1 Val
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| Opcode2 Dst Val

| Opcode3 Dst Val Val

| Branch3 Val Val Val

Opcode0 ::= ’nop’ | ’dbg’

Opcode1 ::= ’jmp’

Opcode2 ::= ’not’ | ’mov’

Opcode3 ::= ’and’ | ’orr’ | ’xor’

| ’shl’ | ’shr’

| ’add’ | ’mul’

Branch3 ::= ’beq’ | ’bne’

Loc ::= ’r’ <register-number>

| ’@’ <memory-address>

Imm ::= ’#’ <immediate-value>

Rel ::= ’$’ <relative-code-address>

Dst ::= Loc | ’!’ ( Loc | Imm ) ( ’,’ <offset> )?

Val ::= Dst | Imm | Rel
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