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Abstract

Key exchange with unilateral authentication (short: unilateral key exchange) is an important
primitive in practical security protocols; a prime example is the widely deployed TLS protocol,
which is usually run in this mode. Unilateral key-exchange protocols are employed in a client-
server setting where only the server has a certified public key. The client is then authenticated
by sending credentials via a connection that is secured with the key obtained from the protocol.
Somewhat surprisingly and despite its importance in practical scenarios, this type of key exchange
has received relatively little attention in the cryptographic literature compared to the type with
mutual authentication.

In this work, we follow the constructive cryptography paradigm of Maurer and Renner (ICS
2011) to obtain a (composable) security definition for key-exchange protocols with unilateral au-
thentication: We describe a “unilateral key” resource and require from a key-exchange protocol that
it constructs this resource in a scenario where only the server is authenticated. One main advantage
of this approach is that it comes with strong composition guarantees: Any higher-level protocol
proven secure with respect to the unilateral key resource remains secure if the key is obtained
using a secure unilateral key-exchange protocol.

We then describe a simple protocol based on any CPA-secure KEM and prove that it constructs a
unilateral key (previous protocols in this setting relied on a CCA-secure KEM). The protocol design
and our security analysis are fully modular and allow to replace a sub-protocol π by a different sub-
protocol π′ by only proving security of the sub-protocol π′; the composition theorem immediately
guarantees that the security of the modified full protocol is maintained. In particular, one can
replace the KEM by a sub-protocol based on Diffie-Hellman, obtaining a protocol that is similar
to the A-DHKE protocol proposed by Shoup. Moreover, our analysis is simpler because the actual
key-exchange part of the protocol can be analyzed in a simple three-party setting; we show that the
extension to the multi-party setting follows generically.

Compared to the TLS handshake protocol, the “de facto” standard for unilateral key exchange
on the Internet, our protocol is more efficient (only two messages) and is based on weaker assump-
tions.
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1 Introduction
Many practical security protocols used on the Internet are designed for a client-server setting, where
only the server has a certified public key. The most prominent example for this use case is access to
web servers, but protocols for sending or receiving mail or for accessing database or directory servers
often follow the same approach. In these settings, the client and the server generate a cryptographic
key which has only unilateral authentication (cf. [BM03]), i.e., the client is assured to share a key
with the assumed server; the server has no comparable guarantee. The client is later authenticated
by sending its credentials, often a username and password, over a connection that is secured with the
shared key. Despite the practical importance of key exchange with unilateral authentication (if the
client does not have a certified public key, a mutually authenticated key cannot be achieved), most
models and protocols in the cryptographic literature focus on the mutual-authentication case where
both the client and the server have certified public keys.

A (cryptographic) key is not a particularly interesting security goal in its own right. The reason
for a key to be useful is that it can be used in other protocols or schemes (such as encryption or
MAC) that assume such a key. Hence, a crucial requirement for a security definition for key-exchange
protocols is that it supports this type of composition: If one uses the key that was generated by a
key-exchange protocol in some higher-level protocol that was proven secure with respect to some
“ideal key,” then the security of the higher-level protocol is maintained. This argument extends to the
settings of unilateral keys, but previous security models for unilateral key exchange do not come with
an explicit such composability guarantee.

We analyze unilateral key exchange from the perspective of the constructive cryptography paradigm
introduced by Maurer and Renner [MR11, Mau11]: We define a “unilateral key” as a resource available
to parties and require from a unilateral key-exchange protocol that it constructs, in a well-defined sense
derived from [MR11], such a resource in a setting where only one party has a certified public key. This
approach has two main advantages: First, constructive security definitions come with a general notion
of composition. In our case, this means that the key generated by a unilateral key-exchange protocol
can be used in any higher-level protocol that requires such a key. Second, it leads to a modular
protocol design, where each method or scheme used in the protocol (such as the use of nonces or
the application of a cryptographic schemes) has a clear goal which it is proven to achieve, and sub-
protocols can be replaced without re-proving the security of the remaining protocol steps. We describe
our approach in more detail in the following sections.

1.1 Constructive Cryptography
The foundational idea of constructive cryptography [MR11, Mau11] is to specify both the assump-
tions1 and the guarantees of protocols explicitly as resources, and to consider a protocol as a construc-
tion of a (desired) resource from assumed resources. A resource is a shared functionality accessed
by several parties; in this work we consider different types of communication channels and shared
keys. The assumed resources formalize the setting in which a protocol is used (such as a certain type
of communication channel) and constructed resources describe the functionality achieved by using the
protocol on the assumed resources (such as a shared key or a communication channel with stronger
guarantees).

If a cryptographic protocol π constructs the resource S from the assumed resource R, we write
R

π
==⇒ S. Two such construction steps can be composed, i.e., if we additionally consider a protocol ψ

that assumes the resource S and constructs a resource T , the composition theorem states that

R
π

==⇒ S ∧ S
ψ

==⇒ T =⇒ R
ψ◦π

==⇒ T,

1The term “assumption” often refers to two different concepts: setup assumptions such as a network or a PKI, and
computational assumptions such as the hardness of certain problems. Here, we refer to setup assumptions.

1



where ψ ◦ π denotes the composed protocol. A similar idea underlies the subroutine replacement
operation in the UC framework [Can01], but security statements in that framework formally do not
make the assumed resources explicit.

Following the constructive paradigm, a protocol is built in a modular fashion from isolated con-
struction steps. A security proof guarantees the soundness of one such step, and each proof is inde-
pendent of the remaining steps. The composition theorem then guarantees that several such steps can
be composed.

1.2 Keys with Unilateral Authentication
From a constructive perspective, the goal of a unilateral key-exchange protocol is to construct a key
with unilateral authentication (short: a unilateral key). This resource formalizes that if the adversary
does not interfere, then the client and the server obtain a perfectly random shared secret key; and
if the adversary does interfere, then the server shares a key with the adversary (i.e., the client is not
authenticated), and the client does not obtain a key.

We specify the described guarantee as a resource that has three interfaces A (the client), B (the
server), and E (the adversary). The input c ∈ {0, 1} in step 0. signals to the resource that, if c = 0,
no adversary is present (this allows to formalize an availability or correctness condition), or that, if
c = 1, an adversary is present and will potentially interfere. The input r ∈ {0, 1} at the E-interface
determines that either (r = 0) the server shares a secret key with the client, or (r = 1) the server
shares a key with the adversary.

Key with unilateral authentication:
K

= =•

0. Obtain input c ∈ {0, 1} at the E-interface. If c = 0, then choose κ ∈ K uniformly at random,
output κ at both the A and the B-interface, and halt. If c = 1, then:

1. Upon input (r, κ̃) ∈ {0, 1} × K at the E-interface:

• If r = 1, then output κ̃ at the B-interface.
• If r = 0, then choose κ ∈ K uniformly at random and output κ at the B-interface.

2. Upon input ok at the E-interface, if r = 0, then output κ at the A-interface

Figure 1: The resource formalizing the guarantees of a key with unilateral authentication.

The symbol = =• that we use to denote the resource follows the notation introduced by [MS96].
The marker “•” signifies that the capabilities at the B-interface are exclusive to that interface: If a
key is output at the A-interface, this key is guaranteed to be shared with the B-interface (and not the
E-interface). There is no comparable guarantee with respect to the A-interface, and hence there is
no “•” at the left hand side of the symbol = =•. A unilateral key is a useful resource for higher-level
protocols, as discussed in Section 4.

1.3 Modular Protocol Design
The consistent application of the constructive cryptography paradigm leads to a different perspective
on protocol design, and to modular security proofs. Following this approach, each method or scheme
that is used in a larger protocol is understood as a construction in its own right. This of course
includes schemes such as encryption or signatures, but also “simpler” mechanisms such as nonces are
formalized in this way. This approach has three main advantages:

• every protocol step has a well-understood purpose; this helps keeping protocols simple and
efficient as well as based on the “right” and “minimal” tools,
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• as each step is proven in isolation and steps are composed by a general composition theorem,
the proofs for the isolated steps remain easy to write and verify,
• if an isolated construction step is achieved by different mechanisms (e.g., Diffie-Hellman or a

CPA-secure encryption), proving a modified protocol in which one replaces one sub-protocol by
a different sub-protocol that achieves the same step means that one only has to prove this single
step, the security of the entire protocol again follows from the general composition theorem.

1.4 Contributions
The contributions of this paper can be categorized as follows: Conceptually, this is the first paper that
applies the constructive paradigm to protocol design, and shows that this approach leads to simple
and modular protocols and proofs. To formalize our security statements, we extend the framework
used for constructive cryptography to capture settings with any number of parties, and show how
statements in settings with two honest parties can be “lifted” to this more general setting. Finally, we
provide a simple protocol for unilateral key exchange. The protocol consists of only two messages and
can be based on any CPA-secure KEM; previous protocols for unilateral key exchange that were based
on KEMs generally required CCA-security, a much stronger property. Compared to the TLS handshake
protocol, which prevails in practice, our protocol requires fewer messages, makes weaker assumptions
on the underlying primitives, and does not require the use of random oracles.

1.5 Related Work
Various security models for key-exchange protocols have been proposed, most of them in the game-
based setting and with focus on key-exchange protocols with mutual authentication. A partial list
includes [BR93, BJM97, BCK98, BM98, CK01, LLM07]. Such security definitions come (a priori)
without general composition theorems, although specific results are known for some of the defini-
tions [CK01, BFWW11]. A simulation-based definition of key-exchange security has first been given
by Shoup [Sho99], still without general composition guarantees. A treatment in the UC frame-
work [Can01], which guarantees composability, is given in [CK02].

Only few security definitions apply to the case of unilateral authentication; the first formal treat-
ment of this setting has been given by Halevi and Krawczyk [HK99], with a focus on password-based
protocols. Shoup [Sho99] also covers unilateral authentication, and describes several protocols that
achieve his security definition; one of those (called A-DHKE) is very similar to a modification of our
protocol with respect to Diffie-Hellman, as we show in Appendix D. Most further definitions appear
in works related to TLS: Morissey, Smart, and Warinschi [MSW08] extend a game-based definition to
capture the case where only the server is authenticated, but, as in [HK99, Sho99], the guarantees this
definition provides with respect to composition are unclear. The recent analysis of the TLS handshake
by Krawczyk, Paterson, and Wee [KPW13] also considers the case of unilateral authentication, but as
the unmodified TLS handshake protocol is not secure with respect to “standard” security notions for
key exchange, they provide a comprehensive security statement for the complete protocol.

2 Preliminaries
2.1 Systems: Resources and Converters, Distinguishers, Games, and Reductions
At the highest level of abstraction (following the hierarchy in [MR11]), systems are objects with
interfaces by which they connect to (interfaces of) other systems; each interface is labeled with an
element of some label set. This concept, which we refer to as abstract systems, captures the topological
structures that result when multiple systems are connected in this manner. Generally, several systems
can be composed in parallel, and interfaces of systems can be connected. Moreover, multiple interfaces
of a system can be merged to form a single interface; we refer to the original interfaces as the sub-
interfaces of the newly formed interface.
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The abstract systems concept, however, does not model the behavior of systems, i.e., how the
systems interact via their interfaces. Consequently, statements about cryptographic protocols are
statements at the next (lower) abstraction level. In this work, we describe all systems in terms of
(probabilistic) discrete systems, which we explain in Section 2.2.

Resources and Converters. Resources in this work are systems with multiple interfaces labeled by
elements of some label set L. A converter is a two-interface system which is directed in that it has
an inside and an outside interface. As a notational convention, we generally use upper-case, bold-face
letters (e.g., R, S), symbols (e.g., •− →), or upper-case sans-serif fonts to denote resources and lower-
case Greek letters (e.g., α, β) or sans-serif fonts (e.g., enc, dec) for converters. We denote by ΦL (or
simply Φ if L is clear from the context) the set of all resources with interfaces labeled by elements in
L, and by Σ the set of all converters.

The topology of a composite system is described using a term algebra, where each expression
starts from one resource on the right-hand side and is subsequently extended with further terms on
the left-hand side. An expression is interpreted in the way that all interfaces of the system it describes
can be connected to interfaces of systems which are appended on the left. For instance, for a single
resource R ∈ Φ, all its interfaces are accessible. For I ∈ L, a resource R ∈ Φ, and a converter α ∈ Σ,
the expression αIR denotes the composite system obtained by connecting the inside interface of α to
the I-interface of R; the outside interface of α becomes the I-interface of the composite system. The
system αIR is again a resource. More generally, for a subset I ⊆ L we write αIR to denote that we
first merge the interfaces I ∈ I of the resource and then attach the converter α to the merged interface.
For two resources R and S, [R,S] denotes the parallel composition of R and S. For each I ∈ L, the I-
interfaces of R and S are merged and become the sub-interfaces of the I-interface of [R,S]. A converter
α that connects to the I-interface of [R,S] has two inside sub-interfaces, where the first connects to
R and the second connects to S (i.e., sub-interfaces are ordered). Converters can (as resources) be
composed in parallel, which is also written [α, β]. It then holds that [α, β]I [R,S] = [αIR, βIS]. Any
two converters α and β can be composed sequentially by connecting the inside interface of β to the
outside interface of α, written β ◦ α, with the effect that (β ◦ α)IR = βIαIR. There are two special
converters: an “identity” converter id with idIR = R for all resources R ∈ Φ and I ∈ L, and a
“blocking” converter ⊥ that has an inactive outside interface.

We introduce special notation for families of resources/converters: If we compose a family of
resources (Ri)i∈{1,...,n} (resp. converters (αi)i∈{1,...,n}) in parallel, we write this as a product such as⊗n

i=1Rn (resp.
⊗n

i=1 αi). If we attach a family of converters α1, . . . , αn to interfaces I1, . . . , In of a
resource R, we write

∏n
i=1 αi

IiR.

Distinguishers. A distinguisher D is a special type of system that connects to all interfaces of a
resource U and outputs a single bit at the end of its interaction with U. In the term algebra, this
appears as the expression DU, which defines a binary random variable. The distinguishing advantage
of a distinguisher D on two systems U and V is defined as

∆D (U,V) := |P(DU = 1)− P(DV = 1)|.
The advantage of a class D of distinguishers is defined as ∆D (U,V) := supD∈D∆D (U,V). The
distinguishing advantage measures how much the distribution of the output of D differs when it is
connected to either U or V. Intuitively, if no distinguisher (of a certain class) differentiates between
U and V, they can be used interchangeably in any environment (of that class, as otherwise the envi-
ronment would serve as a distinguisher).

Note that the distinguishing advantage is a pseudo-metric. In particular, it satisfies the triangle
inequality, i.e., ∆D (U,W) ≤ ∆D (U,V) + ∆D (V,W) for all resources U, V, and W and distin-
guishers D. There is an equivalence relation on the set of resources (which is defined on the level of
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discrete systems), denoted by U ≡ V, which means that ∆D (U,V) = 0 for all distinguishers D.

Games. We consider two different types of games. First, games that capture properties such as un-
forgeability are two-interface systems that at their left interface connect to some adversary or solver A
and at the right interface output a single bit (usually denoted W ). The performance of A in a game G
is denoted as

ΓA(G) := PAG(W = 1).
Second, properties such as confidentiality are captured via distinguishing problems in which an

adversary A tries to distinguish between two systems G0 and G1. These systems are single-interface
systems, which appear, similarly to resources, on the right-hand side of the expressions in the term
algebra. The adversary is similar to a distinguisher, but it connects to a game instead of a resource.

Reductions. When relating two problems, it is convenient to use a special type of system C that
translates one setting into the other. Formally, C is a converter that has an inside and an outside
interface. When it is connected to a system S, which is denoted by CS, the inside interface of C
connects to the merged interfaces of S and the outside interface of C becomes the interface of the
composed system. C is called a reduction system (or simply reduction).

To reduce distinguishing two systems S,T to distinguishing two systems U,V, one exhibits a
reduction C such that CS ≡ U and CT ≡ V. Then, for all distinguishers D, we have ∆D (U,V) =
∆D (CS,CT) = ∆DC (S,T). The last equality follows from the fact that C can also be thought of as
being part of the distinguisher.

2.2 Discrete Systems
Protocols that communicate by passing messages and the respective resources are described as (prob-
abilistic) discrete systems. Their behavior is formalized by random systems as in [Mau02], i.e., as
families of conditional probability distributions of the outputs (as random variables) given all previ-
ous inputs and outputs of the system. For systems with multiple interfaces, the interface to which an
input or output is associated is explicitly specified as part of the input or output.

2.3 Settings Considered in this Work
The most important scenario we consider in this work comprises multiple clients, one server, and one
(explicit) external adversary. Still, some protocol steps can be proven in isolation, i.e., with respect to
only one client, one server, and the adversary.

The {A,B,E}-setting. This simple setting is used to analyze protocols that involve only two honest
parties (such as in symmetric encryption). The (honest) parties’ interfaces are named A and B, and
there is an explicit adversarial interface E. Resources are in the set Φ{A,B,E}, and protocols are pairs
of converters π = (π1, π2) for A and B, respectively.

The multiple-clients setting. Unilateral key-exchange protocols are used in a setting with multiple
clients, one server, and an explicit adversary. We consider a set C of clients, a server S, and an
adversary E . Formally, the interfaces S and E of a resource are merged from multiple sub-interfaces as
well (i.e., S and E are sets). Hence, we consider a label set L = C ∪ E ∪ S, resources are in the set ΦL
and a protocol consists of a family (πC)C∈C of client converters and a server converter πS .

Lifting from the {A,B,E}-setting to the multi-entity setting. Constructions in the {A,B,E}-setting
can be “lifted” to settings with more interfaces. Such a lifting is described by an injective function
τ : {A,B,E} → L, where we generally assume τ(E) ∈ E . Resources R ∈ Φ{A,B,E} are embedded into
ΦL by providing the A and B-interfaces as τ(A) and τ(B)-interfaces and inactive interfaces for all I ∈
L \ τ({A,B,E}). We denote this resource by JRK(τ(A),τ(B),τ(E)) (we usually only write JRK(τ(A),τ(B)),
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disregarding the exact structure of the E-interface). A protocol π = (π1, π2) consisting of a pair of
converters π1 for A and π2 for B becomes πL = (πI)I∈L with πτ(A) = π1, πτ(B) = π2, and πI = id
for all I /∈ τ({A,B,E}). Security statements transfer from the {A,B,E}-setting to the L-setting since
any distinguisher in the L-setting can be translated into a distinguisher for the {A,B,E}-setting by
simply emulating the inactive interfaces.

2.4 The Notion of Construction
Recall that we consider resources with interfaces labeled by elements of the set L, with adversarial in-
terface E . We formalize the security of protocols via the following notion of construction (cf. [Mau11]):

Definition 1. Let ΦL and Σ be as in Section 2.1. A protocol π consisting of converters (πLi)i∈{1,...,n}
for a partition L1 ∪ · · · ∪Ln = L\E constructs resource S ∈ ΦL from resource R ∈ ΦL within ε and with
respect to distinguisher class D, if{

∆D
(
πL1

L1 . . . πLn
Ln⊥ER,⊥ES

)
≤ ε (availability)

∃σ ∈ Σ : ∆D
(
πL1

L1 . . . πLn
LnR, σES

)
≤ ε (security).

The availability condition captures that a protocol correctly implements the functionality of the
constructed resource in the absence of the adversary. The security condition models the requirement
that everything the adversary can achieve in the real-world system (i.e., the assumed resource with
the protocol) he can also accomplish in the ideal-world system (i.e., the constructed resource with the
simulator). In more detail, we describe all the resources as taking a special “cheating bit” c ∈ {0, 1} at
the E-interface and describe their behavior in the case there is no attacker present (c = 0, this is input
by ⊥), and in case that there is an attacker present (c = 1, usually set by the simulator σ).

2.5 Primitives and Assumptions
Signature schemes. A signature scheme is a triple of algorithms SIG = (siggen, sign, vrf). The
key generation algorithm siggen takes no input2 and outputs a pair (sk, vk) of a signature key sk
and a verification key vk. The signing algorithm sign takes as input a signature key sk and a message
m ∈M of some message spaceM, and outputs a signature s = sign(sk,m). The (often deterministic)
verification algorithm vrf takes as input a verification key vk, a message m, and a signature s, and
outputs a decision bit. A signature scheme is correct if for any key pair (sk, vk) generated by siggen

and for all m ∈M, vrf(vk,m, sign(sk,m)) = 1.
The common security requirement for a signature scheme SIG = (siggen, sign, vrf) is called

unforgeability and is formalized using the following game GSIG:

1. Generate a key pair (sk, vk) = siggen() and output vk to the adversary.
2. (Repeatedly) Given a message m ∈M from the adversary, compute s = sign(sk,m), store m in

an internal buffer B, and return s to the adversary.
3. Upon input a pair (m′, s′) with m′ /∈ B and vrf(vk,m′, s′) = 1, output that the game is won.

For ε ∈ [0, 1], a signature scheme is ε-secure with respect to a class A of adversaries if ΓA(GSIG) ≤ ε
for all A ∈ A.

Key encapsulation mechanisms. A key-encapsulation mechanism (KEM) with key space K is a triple
of algorithms KEM = (kemgen, enc, dec). The key generation algorithm kemgen outputs a key pair
(pk, sk) = kemgen(), the (probabilistic) encryption algorithm enc takes a public key pk and outputs
a pair (κ, z) = enc(pk), where κ ∈ K and z is the corresponding ciphertext, and the decryption

2For an asymptotic treatment, the algorithm takes as input the security parameter.
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algorithm dec takes a secret key sk and a ciphertext z′ and outputs κ′ = dec(sk, z′). A KEM is correct
if for (κ, z) = enc(pk) also dec(sk, z) = κ for all key pairs (pk, sk) generated by kemgen. For security
properties of KEM schemes which are defined via a bit-guessing game, it will be more convenient to
phrase the game as a distinguishing problem between two game systems (cf. Section 2.1). We consider
the following game, which corresponds to the (standard) notion IND-CPA.

To formalize CPA-security for KEMs, consider systems GKEM
0 and GKEM

1 : For a KEM scheme KEM, both
GKEM

0 and GKEM
1 initially compute (pk, sk) = kemgen(), output pk, and compute (κ, z) = enc(pk). Then,

GKEM
0 outputs (κ, z), and GKEM

1 outputs (κ̄, z) for a randomly chosen κ̄ ∈ K.

2.6 Resources Described in Previous Work
We use two types of communication channels that have been described and used in previous work
(e.g., [MT10, CMT13]). We specify the channels with respect to a set {A,B,E} of interfaces, and
each channel is parametrized by a message spaceM (usually ⊆ {0, 1}∗).

The first channel is a fully insecure channel − � that transmits multiple messages. This channel
corresponds to, for instance, communication via the Internet. If no adversary is present (i.e., if c = 0),
then all messages are transmitted from A to B faithfully. Otherwise, the communication can be
controlled via the E-interface. The channel is described in more detail in Figure 2 in Appendix B.

The second channel is a single-use authenticated channel •− →. The channel guarantees that,
while a message transmitted from A to B is leaked at the E-interface, a message is output at the B-
interface only if it has previously been input at the A-interface (authenticity). The channel is described
in more detail in Figure 3 in Appendix B.

3 Constructing a Unilateral Key

In this section, we iteratively build a protocol that constructs a unilateral key from a network of
insecure communication channels and a single authenticated channel that models the availability of a
public-key infrastructure (PKI). Each construction step is simple and serves a clear purpose:

1. A signature scheme allows to transfer the authenticity from a single-use channel to a multiple-
use channel: the server publishes the verification key and signs all messages, and the clients
verify the signatures.

2. The clients send their “names” to the server (this could be a unique network address or a nonce as
a “disposable name” that is unique with high probability), which uses them to separate protocol
sessions and target specific clients. All further construction steps can be analyzed in a simpler
setting with only three entities.

3. Within a session, the client generates a KEM key pair and sends the public key to the server,
which responds by encapsulating a key (and confirming the client’s public key). As the client’s
messages are not authenticated, we obtain a unilateral key.

3.1 The Assumed Resources
The protocol we describe assumes an insecure communication network and a public-key infrastructure
that allows the server to transmit one message (the signature verification key) authentically. This is
usually implemented by a certification authority that signs the server’s key.

The insecure network.The insecure network consists of, for each C ∈ C, one insecure communication
channel −� from the client to the server, and one such channel in the opposite direction. Hence, the
server’s interface S has sub-interfaces which we label by C′ := {C ′ : C ∈ C}, and the network is the
parallel composition of resources J−�K(C,C

′) and J� −K(C,C
′) for each C ∈ C. In short, we use the

“cloud” symbol “�.”
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Authenticated transmission of single messages. The purpose of a public-key infrastructure in the
unilateral setting is to provide the clients with an authentic copy of the server’s public key. We model
the PKI as a resource that takes a message from the server and distributes copies to the clients, where
the delivery of the copies may be delayed via the E-interface. (Technically, the E-interface has for each
C ∈ C a sub-interface that accepts an ok-message to provoke delivery.) The resource is specified with
the same interface labels as the network.

Authenticated transmission of single messages BB1 (“bulletin board”)

0. Obtain input c ∈ {0, 1} at the E-interface.
1. Upon input a string m ∈ {0, 1}∗ at the S-interface:

• if c = 0, then output m at all interfaces C ∈ C and halt;
• if c = 1, then output m at the E-interface.

2. (Repeatedly) Upon input ok at the C-sub-interface of the E-interface (C ∈ C), output m at
the C-interface.

3.2 Authentication via Signatures
The PKI resource BB1 is useful for transmitting the server’s signature verification key to the clients.
Using the signature scheme, the server can then transmit multiple messages authentically. The protocol
uses as resources BB1 as well as channels � − from the server to the clients. The server’s converter
sgn operates as follows:

1. Generate a key pair (sk, vk) = siggen() and input the verification key vk at BB1.
2. For each m ∈ M that is input at the C-sub-interface of the outside interface (C ∈ C), compute

s = sign(sk,m) and send (m, s) via the insecure channel corresponding to C.

The clients’ converter vrf is defined as follows:

1. Obtain a verification key vk from BB1.
2. (Repeatedly) Upon receiving a pair (m′, s′) at � −, if vrf(vk,m′, s′) = 1, then output m′ at the

outside interface.

We claim that we construct the following resource, which has interfaces C ∈ C, S, and E , where the
interfaces S and E both have sub-interfaces for each C ∈ C:

Authenticated transmission of multiple messages BB∗ (“bulletin board”)

0. Obtain input c ∈ {0, 1} at the E-interface.
1. (Repeatedly) Upon input a string m ∈ {0, 1}∗ at the C-sub-interface of the S-interface:

• if c = 0, then output m at the C-interface.
• if c = 1, then output m at the C-sub-interface of the E-interface and put it in buffer B.

2. (Repeatedly) If c = 1, then upon input a message m at the C-sub-interface of the E-
interface, if m ∈ B, output m at the C-interface.

The construction is achieved if the signature scheme is unforgeable. This is formalized in the following
lemma.

Lemma 2. Let (siggen, sign, vrf) be a signature scheme and (sgn, vrf) be the pair of converters described
above. Then (∏

C∈C
vrfC

)
sgnS⊥E

[
BB1,

⊗
C∈C

J� −K(C,C
′)

]
≡ ⊥EBB∗,
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and there is a simulator σ and a reduction C such that for all distinguishers D,

∆D

((∏
C∈C

vrfC

)
sgnS

[
BB1,

⊗
C∈C

J� −K(C,C
′)

]
, σEBB∗

)
≤ ΓDC(GSIG).

Proof (sketch). The availability condition follows from the correctness of the signature scheme. The
simulator initially generates a key pair (sk∗, vk∗) = siggen() and simulates vk∗ on the sub-interface
corresponding to BB1, and registers the clients C ∈ C to which the distinguisher has decided to
deliver the key. Whenever some message m∗ is output to σ via sub-interface C of the E-interface of
BB∗, σ computes s∗ = sign(sk∗,m∗) and simulates (m∗, s∗) on the channel � − to C. Whenever
σ obtains at its outside interface the command to deliver some pair (m′, s′) to some client C ∈ C, if
vrf(vk∗,m′, s′) = 1, m′ has been input into BB∗ before, and the key vk∗ was delivered to C, then
input m′ at the C-sub-interface of (the E-interface of) BB∗.

The reduction that connects to GSIG and simulates the same interfaces for D is straightforward.
The systems

(∏
C∈C vrf

C
)
sgnS [BB1,

⊗
C∈C J� −K(C,C

′)], σEBB∗, and CGSIG are equivalent unless a
forgery occurs (sometimes called “bad” event), and using [Mau13, Lemma 2] concludes the proof.

3.3 (Obtaining) Unique Names
Unique names that are associated to clients allow to fully separate sessions that belong to different
clients. A unique name in our terminology is a weak assumption: There is no authenticity requirement,
and it is sufficient if honest clients have distinct names with high probability. The “unique name”
resource can be implemented by choosing any value that leads to a unique name for each session that
a client initiates (a client’s interface then corresponds to one session). One possibility is to use the
client’s network address along with a session counter if one is willing to accept that the client keeps
state over multiple sessions.

For a set N of names, the resource assigns to each client C ∈ C a unique name n ∈ N ,3 this
assignment is described by an injective function ρ : C → ρ(C) ⊆ N .

Unique name resource NAMEρ for ρ ⊆ C ×N

At each interface C ∈ C, output ρ(C).

Alternatively, the honest clients can choose their “name” at random from a set of nonces N (at the
loss of a collision probability term). The nonces can be viewed as “disposable names,” which is further
discussed in Appendix C.

3.4 Separating Sessions
The purpose of the unique names is to separate different “sessions” in the protocol. The client sends its
name via an insecure channel, and the server will associate all following communication in this session
with that name. (Of course, the name may be modified by the adversary, there is no authenticity
guarantee.) In particular, the server includes the names in the communication via BB∗, and a client
will only accept messages if they contain the chosen name. Furthermore, the server will also use
that name to locally address the sessions; in our formulation, this means that the server will use a
sub-interface corresponding to the name.

Below, we describe a protocol π that achieves the following construction:[⊗
C∈C

J−�K(C,C
′) ,BB∗,NAMEρ

]
π

==⇒
⊗
C∈C

J[−− →,← −•]K(C,ρ(C)) .

3Without loss of generality, we assume N ⊆M.
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The term on the right-hand side means that for each C ∈ C there are two channels −− → and ← −•
such that the A-interface of the channels is embedded as the C-interface, and the B interface as the
ρ(C)-sub-interface of the server’s interface.

The client converter s-client has at the inside three sub-interfaces (one is supposed to connect
to BB∗ as receiver, one to − � as sender, and one to NAMEρ). The outside interface of s-client is
structured in two sub-interfaces, where the first one allows to input one message and the second one
potentially outputs one message. In more detail, s-client is specified as follows:

• Upon receiving the name n ∈ N (from NAMEρ), send n to the server (i.e., via −�).
• Upon input a message m at the outside interface, send m to the server (via −�).
• Upon receiving a message m′ at the inside interface (via the second sub-interface, i.e., from BB∗)

such that m′ = n|m′′, output m′′ at the second sub-interface.

The server converter s-server has at the inside interface |C| + 1 sub-interfaces, where the first sub-
interface is supposed to connect to (the sender’s interface of) BB∗, and all other interfaces to the
receiver’s interfaces of −�. The outside interface is structured into sub-interfaces labeled by n ∈ N ,
where each such interface again consists of two sub-interfaces (the first one outputs a message, the
second one takes one as input).

• Upon receiving the first message on a sub-interface C of the inside interface, parse the message
as name n ∈ N and, if this succeeds, store the pair (C, n) internally. (If there are pending
messages for C—see below—deliver those.)
• Upon receiving the second message mC on a sub-interface C of the inside interface, output mC

at the n-sub-interface of the outside interface (if there is a recorded pair (C, n)).
• Upon receiving an input m′ at the first part of the n-sub-interface: If there is a record (C, n)

for some C, then send n|m′ via the C-sub-interface of BB∗. (Otherwise record the message as
pending.)

We now state and prove the construction described above. For simplicity, the lemma is stated for the
case |C| = |N | (otherwise the constructed resource has further sessions that do not correspond to
honest clients).

Lemma 3. For the converters s-client and s-server described above,(∏
C∈C

s-clientC

)
s-serverS⊥E

[⊗
C∈C

J−�K(C,C
′) ,BB∗,NAMEρ

]
≡ ⊥E

⊗
C∈C

J[−− →,← −•]K(C,ρ(C))

and there is a simulator σ such that(∏
C∈C

s-clientC

)
s-serverS

[⊗
C∈C

J−�K(C,C
′) ,BB∗,NAMEρ

]
≡ σE

⊗
C∈C

J[−− →,← −•]K(C,ρ(C)) .

Proof (sketch.) For ρ : C → N we describe a simulator σρ that achieves the respective construction.
Initially, the simulator σ outputs for each C ∈ C the message ρ(C) on the channel −� corresponding
to C. The simulator keeps track of which names have been delivered on which channel, i.e., with
respect to which C ∈ C. In the following, whenever the simulator obtains a message at its inside
interface, i.e., on one of the resources of the type −− → or← −•, it behaves as follows.

• For a message m on the channel J−− →K(C,ρ(C)), output m as second message on J−�K(C,ρ(C)).
• For a message m′ on the channel J← −•K(C,n), output n|m′ as transmitted via BB∗ to Cn, where
Cn describes the channel J−�K(Cn,ρ(Cn) on which n has been delivered (as soon as n has been
delivered).
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On receiving messages at the outside interface, the simulator behaves as follows:

• Upon delivery of the first message at J−�K(C,ρ(C)), if the message can be parsed as a name
n, then store a record (C, n). If messages have been sent on the channel J← −•K(C,n) before,
perform the simulation of delivering via BB∗ now.
• Upon delivery of the second message at J−�K(C,ρ(C)), let nC be the nonce that was transmitted

before on that channel (If that was invalid, stop!), and inject the message into J−− →K(ρ
−1(nC),C).

• Upon delivery of a message n|m via BB∗ to a client address C, if (C, n) ∈ ρ then make J← −•K(C,n)
deliver the message.

It is easy to verify that the complete systems in the real and the ideal case behave equivalently.

3.5 Key Exchange Based on a KEM
After using the unique names to separate the protocol sessions, we can analyze the following steps
in the simple {A,B,E}-setting. The next step in our construction is to use a CPA-secure KEM with
key space K to construct a unilateral key. The protocol is initiated by the client, which runs the key
generation algorithm to obtain a key pair (pk, sk) and sends the public key pk over a fully insecure
channel to the server. The server runs the encryption algorithm, obtaining a key κ and a ciphertext
z, and sends z along with the public key pk via the authenticated channels. The client verifies that
the server used the “correct” pk (remember that pk was sent over an insecure connection) and only
computes the key in this case. The resource that is constructed in this step is a unilateral key with key
space K. This resource = =• is more formally described in Figure 1.

The client’s converter dec first generates (pk, sk) = kemgen(), and sends pk via −− →. Then, upon
receiving (pk′, z′) via← −•, if pk′ = pk, then dec outputs κ′ = dec(sk, z′) at the outside interface.

The server’s converter enc, receiving pk′ via −− →, runs (κ, z) = enc(pk), sends (pk′, z) via ← −•,
and outputs κ at the outside interface.

Lemma 4. For the converters dec and enc described above. There is a reduction C such that

∆D
(
decAencB⊥E [−− →,← −•],⊥E = =•

)
≤ ∆DC

(
GKEM

0 ,GKEM
1

)
,

and there are a simulator σ and a reduction C′ such that for all D:

∆D
(
decAencB[−− →,← −•], σE = =•

)
≤ ∆DC′

(
GKEM

0 ,GKEM
1

)
.

Proof. The availability condition is easy to verify, the reduction C provides to D the key κ obtained
from the game. The simulator σ is as follows:

1. Generate (pk, sk) = kemgen() and simulate pk as transmitted on −− →.
2. Here we have to distinguish cases, based on the input at the E-interface.

• If pk is delivered to B, then compute (κ̄, z) = enc(pk), input (0, κ̄) at = =•, and output
(pk, z) at the outside interface.

• If pk′ 6= pk is delivered, then compute (κ̄, z) = enc(pk′), input (1, κ̄) at = =• and output
(pk′, z) at the outside interface.

3. In case pk was delivered and (pk, z) is forwarded on← −•, then input ok to = =•.

The case where pk′ 6= pk is delivered is clear: The outputs in the real and ideal cases are distributed
equivalently, there is no output at the A-interface. The key κ̄ obtained by enc(pk′) is output at the
B-interface, and the value (pk′, z) is output at the E-interface.

If pk is delivered, the distribution corresponds either exactly to the one given by GKEM
0 (in the

“ideal” case), or to the one given by GKEM
1 (in the “real” case). The reduction C′ can provide the same

view to D using the values obtained from the CPA-game.
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3.6 The Complete Protocol
Let ka1 and ka2 the (client’s and server’s) converters that we obtain by composing the converters vrf,
s-client, and dec, and sgn, s-server, and enc, respectively. More formally: ka1 = dec ◦ s-client ◦ [vrf, id, id]
and ka2 =

(⊗
n∈N enc

)
◦ s-server ◦ [sgn, id, id]. Then, using the composition theorem, we obtain:

Theorem 5. There is a reduction C such that

∆D

(∏
C∈C

ka1
Cka2

S⊥E [BB1,�,NAMEρ],⊥E
⊗
C∈C

J= =•K(C,ρ(C))

)
≤ ∆DC

(
GKEM

0 ,GKEM
1

)
and there are a simulator σ as well as reductions C′ and C′′ such that

∆D

(∏
C∈C

ka1
Cka2

S [BB1,�,NAMEρ], σ
E
⊗
C∈C

J= =•K(C,ρ(C))

)
≤ ΓDC′(GSIG) + ∆DC′′

(
GKEM

0 ,GKEM
1

)
.

The theorem follows from Lemmas 2, 3, and 4 as well as the composition theorem (cf. Appendix A).
The reductions C, C′, and C′′ are obtained by composing the reductions shown in the lemmas.

The protocol consists of two messages: First, the client sends (n, pk) for a name n and public key
pk. The server responds with (n|pk|z, s), where z is a KEM ciphertext and s is a signature on n|pk|z.

4 Using Unilateral Keys

A unilateral key (after potentially expanding and then splitting it appropriately) can be used in encryp-
tion and MAC schemes (i.e., Encrypt-then-MAC) for protecting messages to construct a communica-
tion channel in which either the server communicates consistently with the client, or it communicates
consistently with the adversary. As a resource, such a channel allows the adversary to choose in the
beginning (like the bit r in = =• in Figure 1) whether it behaves as a secure channel between A and B
(which we usually denote by •− →•), or whether it lets the adversary control the communication with
the server; in this case the A-interface becomes inactive. Such a communication channel can then,
e.g., be used to authenticate the client by sending credentials. The formalization of this technique,
however, is not in the scope of the current paper.

5 Conclusion

In this paper, we applied the constructive cryptography approach of Maurer and Renner [MR11] to
design and analyze a protocol for constructing unilateral keys from a resource that allows the server
to transmit a single message (here: a signature verification key) authentically to all potential clients.
We make two main technical contributions: First, we provide a composable security definition for uni-
lateral key-exchange protocols, in the sense that the keys that are established using a secure protocol
can be used in arbitrary applications. Previous definitions for this setting were not shown to be com-
posable. Second, the approach naturally leads to a simple and efficient protocol that can be based on
any unforgeable signature scheme and CPA-secure KEM. Previous protocols in this setting that were
based on KEMs required the KEM to be CCA-secure, a much stronger requirement. Furthermore, both
the protocol and the security proof are modular, so that replacing a sub-protocol only requires a proof
of the respective sub-protocol.
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A The Composition Theorem
We formulate the composition theorem in constructive cryptography. We extend the notation for
parallel and sequential composition to protocols, i.e., we write ψ ◦π or [π(1), . . . ,π(m)] and mean that
the respective operations apply to all converters individually. We also make use of a special converter
id that behaves transparently (i.e., allows access to the underlying interface of the resource). The
protocol where all parties have to converter id is denoted id.

This composition theorem here resembles the one in [MT10], but is phrased such that it applies
to settings where one does not assume that the distinguisher class is closed under absorption of con-
verters or resources, such as concrete security notions. The proof follows the same steps as the one
in [MT10]. For the statement of the theorem we assume the operation [·, . . . , ·] to be left-associative;
in this way we can simply express multiple resources using the single variable U.

Theorem 6. Let R,S,T,U ∈ ΦL be resources, and let L′ := L\E . Let π = πL′ and ψ = ψL′ be protocols
(such that π is intended to construct S from the resource R and ψ is intended to construct T from S).

For each distinguisher D, denote by D′ the distinguisher that runs D but emulates ψ` at interface `
for all ` ∈ L′, and by D′′ the distinguisher that runs D and emulates σπ at interface E . Then, for all D,

∆D
(
(ψ ◦ π)R, (σπ ◦ σψ)ET

)
≤ ∆D′

(
πR, σEπ S

)
+ ∆D′′

(
ψS, σEψT

)
, and

∆D
(
⊥E(ψ ◦ π)R,⊥ET

)
≤ ∆D′

(
⊥EπR,⊥ES

)
+ ∆D

(
⊥EψS,⊥ET

)
.

For each distinguisher D, let D′′′ be the distinguisher that runs D and additionally emulates a concurrent
execution of U. Then, for all D,

∆D
(

[π, id][R,U], [σπ, id]E [S,U]
)
≤ ∆D′′′

(
πR, σEπ S

)
, and

∆D
(
⊥E [π, id][R,U],⊥E [R,U]

)
≤ ∆D

′′′ (
⊥EπR,⊥ES

)
.

The similar argument holds with respect to [id,π], [U,S], and [U,R].
If one considers classes of distinguishers that are closed under composition with converters, that is

D ◦ Σ ⊆ D, and π constructs S from the resource R within ε1 and ψ constructs T from S within ε2, then
ψ ◦ π constructs T from R within ε1 + ε2, [π, id] constructs [S,U] from [R,U] within ε1, and [id,π]
constructs [U,S] from [U,R] within ε1.

B Specification of Resources
In this section, we describe the resources that we deferred from the main body of the paper. The inse-
cure channel − �, specified in Figure 2, models a channel where the adversary can read and modify
all transmitted messages. This corresponds to the type of communication that occurs in networks such
as the Internet.

The (single-use) authenticated channel •− →, described in Figure 3, allows the senderA to transmit
a single message to the receiver B authentically. That means, while the adversary (at the E-interface)
can still read the transmitted messages, the only influence allowed is delaying the message (arbitrarily,
i.e., there is no guarantee that the message will ever be delivered). The channel guarantees that if a
message is delivered to B, then this message was input by A before. This channel can be constructed
(from different resources) by cryptographic primitives such as MAC or signature schemes.

C Using Nonces as Unique Names
The approach of choosing a nonce at random also implements this resource; in particular the resource
is constructed without any setup assumptions. In more detail, let rnd be the converter that chooses a
nonce n ∈ N uniformly at random and outputs n at the outside interface.
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Insecure channel −�

0. Obtain input c ∈ {0, 1} at the E-interface.
1. (Repeatedly) Upon input a message m at the A-interface:

• if c = 0, then output m at the B-interface;
• if c = 1, then output m at the E-interface.

2. (Repeatedly) Upon input a message m at the E-interface, if c = 1, then output m at the
B-interface.

Figure 2: Insecure, multiple-use communication channel from A to B.

(Single-use) authenticated channel •− →

0. Obtain input c ∈ {0, 1} at the E-interface.
1. Upon input a message m at the A-interface:

• if c = 0, then output m at the B-interface and halt;
• if c = 1, then output m at the E-interface.

2. Accept at the E-interface a bit d ∈ {0, 1}, on input d = 0, output m at the B-interface.

Figure 3: Authenticated, single-use communication channel from A to B.

Lemma 7. The protocol consisting of one converter rnd for each client (and the converter ⊥ for the
server) constructs (from scratch) the resource NAMER, where R is an injective function chosen uniformly
at random from all such functions C → N . More formally, for all D,

∆D

((∏
C∈C

rndC

)
⊥S∅,⊥S⊥ENAMER

)
≤
(
|C|
2

)
· 1

|N |
,

which in this case is both the availability and the security condition.

Proof (sketch). We define a collision event on the output at the client’s interfaces (i.e., the event says
that there exist C,C ′ ∈ C with ρ(C) = ρ(C ′)). Conditioned on this event being false, the real and ideal
settings are equivalent. Following [Mau13, Theorem 3], this means that the distinguishing advantage
is bounded by the probability of provoking the event, i.e., the probability of a collision in the clients’
nonces.

D A Diffie-Hellman-Based Protocol
In this section, we show how the protocol from the main paper can be adapted to be based on the
Diffie-Hellman protocol together with a strong extractor. The protocol as we describe it here (we do
so for the modularity of the description) sends two messages from the server to the client (the group
element and the seed for the extractor), hence we have to modify the session protocol to provide two
authenticated channels. (This appears to be an effect of our current proof technique rather than a
restriction of the model.)

D.1 Preliminaries
The Diffie-Hellman protocol. The Diffie-Hellman protocol [DH76] can be specified with respect to an
arbitrary finite cyclic groupG = 〈g〉. The protocol is executed between two parties A and B, A chooses
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a number a ∈ {1, . . . , |G|} and B chooses a number b ∈ {1, . . . , |G|}, both uniformly at random. Then,
A computes and sends the message ga to B, and B computes and sends the message ga to A. Finally,
both parties compute the key gab = (ga)b = (gb)a ∈ G.

The Diffie-Hellman protocol is secure if (and only if) the messages ga and gb are transmitted
via authenticated channels and the so-called Decisional Diffie-Hellman (DDH) assumption holds: no
efficient algorithm distinguishes a triple (ga, gb, gc), with a, b, c ∈ {1, . . . , |G|} uniformly random, from
a triple (ga, gb, gab) with a, b ∈ {1, . . . , |G|} uniformly random.

Strong extractors. The purpose of a randomness extractor is to convert a random source which has
an arbitrary distribution with sufficiently high (min-)entropy into a distribution over a smaller space
which has (almost) full entropy. A strong extractor makes use of an additional (short but public)
random seed.

Definition 8. A (k, ε)-strong extractor is a function ext : {0, 1}n×{0, 1}d → {0, 1}m such that for every
distribution X on {0, 1}n with min-entropy at least k the distribution (Ud, ext(X,Ud)) is ε-close to the
uniform distribution on {0, 1}n+d.

In the protocol, we apply a strong extractor to the (preliminary) key that we obtain from the Diffie-
Hellman protocol, which is (an encoding of) a group element, in order to obtain a shared key which
is a shorter bit string with full entropy.

D.2 Separating Sessions
The Diffie-Hellman-based protocol requires the server to send two messages authentically (in the
protocol, the two messages can be sent together): one for transmitting the server’s Diffie-Hellman
element, and one for transmitting the seed required for the strong extractor. Hence, the protocol that
implements separated sessions has to construct two authenticated channels from the server to the
client. This is easily achieved by separating the message spaces by an additional bit that is included
before the messages are sent via BB∗.

The construction we aim for in this case is hence:[⊗
C∈C
−�,BB∗,NAMEρ

]
π

==⇒
⊗
C∈C

J[−− →,← −•,← −•]K(C,ρ(C)) .

The clients’ converter s-client has at the inside three sub-interfaces (one is supposed to connect to
BB∗ as receiver, one to − � as sender, and one to NAMEρ). The outside interface of s-client is also
structured in three sub-interfaces, where the first one allows to input one message and the second
and third each potentially output one message. Finally, s-client is specified as follows (each step is
performed at most once):

• Upon receiving the name n ∈ N (from NAMEρ), send n to the server (i.e., via −�).
• Upon input a message m at the outside interfaces, send m to the server (via −�).
• Upon receiving a message m′ at the inside interface (via the second sub-interface, i.e., from BB∗)

such that m′ = n|0|m′′, output m′′ at the second sub-interface.
• Upon receiving m′ at the inside with m′ = n|1|m′′, output m′′ at the third sub-interface.

The server’s converter s-client has at the inside interface |C| + 1 sub-interfaces, where the first sub-
interface is supposed to connect to (the sender’s interface of BB∗), and all other interfaces to the
receiver’s interface of − �. The outside interface is structured into sub-interfaces labeled by n ∈ N ,
where each such interface again consists of three parts (one for −− →, and two for each one← −•).

• Upon receiving the first message on a sub-interface C of the inside interface, parse the message
as name nC ∈ N and, if this succeeds, store the pair (C, nC) internally.
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• Upon receiving the second message mC on a sub-interface C of the inside interface, output mC

at the nC -sub-interface of the outside interface.
• Upon receiving an input m′n at the first part of the n-sub-interface (and there is a record (C, n)

for some C), send n|0|m′n via BB∗.
• Upon receiving an inputm′n at the second part of the n-sub-interface (and there is a record (C, n)

for some C), send n|1|m′n via BB∗.

We now state and prove the construction that we already described above. The proof is similar to the
proof of Lemma 3 and hence omitted.

Lemma 9. For the converters s-client and s-server described above,(∏
C∈C

s-clientC

)
s-serverS⊥E

[⊗
C∈C
−�,BB∗,NAMEρ

]
≡ ⊥E

⊗
C∈C

J[−− →,← −•,← −•]K(C,ρ(C))

and there is a simulator σ such that(∏
C∈C

s-clientC

)
s-serverS

[⊗
C∈C
−�,BB∗,NAMEρ

]
≡ σE

⊗
C∈C

J[−− →,← −•,← −•]K(C,ρ(C)) .

D.3 Obtaining a Diffie-Hellman Key
The next step in our construction is to use a (essentially) Diffie-Hellman protocol in a cyclic group
G = 〈g〉. The protocol is initiated by the client, which sends a group element ga ∈ G over a fully
insecure channel to the server. The server also chooses a group element gb ∈ G, and includes the
client’s group element in its reply. The client verifies that the server used the “correct” ga (remember
that ga was over an insecure connection) and only computes the key in this case.

The resource that is constructed in this step is a unilateral key with key space G. This resource
G

= =• is more formally described in Figure 1.
The protocol consists of two converters dh1 (for the client) and dh2 (for the server). The client’s

converter initially chooses a ∈ {1, . . . , |G|} uniformly at random and send ga via −− →. Then, upon
receiving (g1, g2) ∈ G2 via← −•, if g1 = ga, then dh1 outputs ga2 at the outside interface.

The server’s converter, upon receiving g0 via −− →, choose b ∈ {1, . . . , |G|} uniformly at random,
send (g0, g

b) via← −•, and output gb0 at the outside interface.

Lemma 10. Let G be a finite cyclic group. For the converters dh1 and dh2 described above:

dhA1 dh
B
2 [−− →,← −•] ≡ ⊥E G

= =•,
and there is a simulator σ such that for all D:

∆D
(
dhA1 dh

B
2 [−− →,← −•], σE G

= =•
)
≤ ∆DC

(
(ga, gb, gab), (ga, gb, gc)

)
.

Proof. The availability condition is easy to verify, if there is no adversary present then in both the real
and the ideal settings a uniformly random group element is output at both the A- and the B-interface.
The simulator σ is as follows:

1. Choose a, b ∈ {1, . . . , |G|} uniformly at random, and simulate ga (as transmitted on −− →).
2. Here we have to distinguish cases, based on the input at the E-interface.

• If ga is delivered to B, then input (0, g) at
G

= =• and simulate (ga, gb) on← −•.
• If g′ 6= ga is delivered, then input (1, (g′)b) at

G
= =• and simulate (g′, gb) on← −•.
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3. In case ga was delivered and (ga, gb) is forwarded, then input ok to = =•.

The case where g′ 6= gc is delivered is clear: The outputs in the real and ideal cases are distributed
equivalently, there is no output at the A-interface, the value (g′)b for uniformly distributed b ∈
{1, . . . , |G|} is output at the B-interface, and the value (g′, gb) is output at the E-interface.

If ga is delivered, this corresponds exactly to distinguishing triples (ga, gb, gab) and (ga, gb, gc) with
a, b, and c uniformly distributed. In the “real” case, D obtains gab at both the A- and the B-interface,
and (ga, gb) at the E-interface. In the “ideal” case, D also obtains (ga, gb) at the E-interface, but the
group element output at both the A- and the B-interface is uniformly random.

D.4 Extracting from the Diffie-Hellman Key
Our final goal is to obtain a key that is (almost) uniformly distributed in the set {0, 1}m. We obtain
this by applying a strong extractor to the key obtained from the Diffie-Hellman protocol. In more
detail, the server will use the second authenticated channel to transmit a seed for the extractor, and
both client and server will then extract from the Diffie-Hellman key. The first constructive step is to
construct, from the second authenticated channel, a resource formalizing the availability of a random
seed:

The random seed SEEDd

0. Obtain input c ∈ {0, 1} at the E-interface.
1. Choose u ∈ {0, 1}d uniformly, output u at the B- and, if c = 1, also the E-interface.
2. If c = 0 or upon input ok at the E-interface, output u at the A-interface.

Lemma 11. The protocol (seed1, seed2) where seed2 chooses x ∈ {0, 1}d uniformly at random and sends
it to seed1 constructs from a channel← −• the resource SEEDd, formally

seed1
Aseed2

B⊥E ← −• ≡ ⊥ESEEDd,
and there is a simulator σ such that

seed1
Aseed2

B ← −• ≡ σESEEDd.

Proof. The availability condition is clear. The simulator σ only forwards random value from SEEDd as
a message on ← −•, and the bit d ∈ {0, 1} from the outside interface to SEEDd. The distributions are
identical.

The key they obtain is the one where the adversary can choose the server’s key if it interferes with
the session, but the key is uniformly random otherwise. We denote the resource by

m
= =•. We describe

a converter ext that on the inside attaches to the two resources SEEDd and
G

= =•. It obtains the seed
and the Diffie-Hellman key, applies a (k, ε)-strong extractor (with k ≤ log |G|), and outputs the result
at the outside interface.

Lemma 12. Let k ≤ log |G|. By applying a (k, ε)-strong extractor to the seed obtained from SEEDd and

the key obtained from
G

= =•, we get a key
m

= =•. More formally, for a (k, ε)-extractor we obtain

∆D
(
extAextB⊥E [SEEDd,

G
= =•],⊥E m

= =•
)
≤ ε

and there is a simulator σ such that

∆D
(
extAextB[SEEDd,

G
= =•], σE m

= =•
)
≤ ε,

for any distinguisher D.
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Proof. The simulator begins by simulating a uniformly random seed. If the adversary injects a group
element as a (preliminary) key, the simulator simply computes the final key via the extractor and the
seed, and injects that key into the resource

m
= =•. (This can easily be seen to be a perfect simulation.)

If the adversary lets the client and the server exchange a (preliminary) key, the simulator also sets
r = 0. In this case, the distribution in the ideal is uniformly random for both the seed obtained at E
and the key obtained at A and B. In the real case the seed is also uniformly random, and the value
extracted from the (preliminary) key using the seed at A and B. Since the min-entropy of the key is
log |G| ≥ k, the distinguishing advantage is at most ε.

The availability condition follows even more directly, since the distinguisher only obtains the out-
put of the extractor.
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