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Abstract

Functional encryption is an important generalization of several types of encryption such as public-
key, identity-based, and attribute-based encryption. Numerous different security definitions for func-
tional encryption have been proposed, most of them being rather complex and involving several
algorithms. Many of these definitions differ in details such as which algorithm has oracle access to
which oracle, while the consequences of specific choices are often unclear. This spans a large space
of possible definitions without a consensus on the adequacy of specific points in this space. What a
particular definition means and for which applications it is suitable remains unsettled.

To remedy this situation, we propose a novel interpretation of functional encryption, based on
the Constructive Cryptography framework, in which a protocol is seen as a construction of an ideal
resource with desired properties from a real resource, which is assumed to be available. The resulting
ideal resource can then be used as a real resource in other protocols to construct more advanced
resources. The real resource we consider here corresponds to a public repository that allows everyone
to read its contents. Such repositories are indeed widely available on the internet. Using functional
encryption, we construct, as the ideal resource, a repository with fine-grained access control.

Based on this constructive viewpoint, we propose a new security definition, called FA-security, for
functional encryption by adequately modifying an established definition, and prove the equivalence
to our notion of construction. This gives evidence that FA-security is an appropriate definition. We
further consider known impossibility results and examine a weaker security definition. We show that
this weaker definition, for which secure schemes exist, is sufficient to construct a repository that
restricts the number and order of interactions. This makes explicit how such schemes can be used.

1 Introduction

Consider a public repository that allows users to input and access data. When users input a piece
of data, they get a handle via which this data can be accessed by other users. Such repositories are
commonly available in real applications. For example, one can upload documents to a web server, which
corresponds to the repository, and these documents can then be accessed by everyone who knows the
URL, which corresponds to the handle. A relevant goal is to add access control to such a repository.
That is, instead of allowing everyone to access all data, we want to be able to grant users access rights
and prevent users without the required rights from accessing the data. In contrast to many systems
used in practice, including most cloud services, we want to achieve this without trusting the repository
provider. To this end, we consider a trusted party that is external to the repository and that can grant
users access rights. As outlined below, this also allows us to model as a special case that the users who
upload data specify access rights for their data.

One can use encryption to restrict access to the data: Using a public-key encryption scheme, the
trusted party can generate a key-pair, publish the public key and give the private key to the users who
should be able to access the data. Users can then input encrypted data and exactly those who were given
the secret key can access it. However, this does not allow much flexibility; one can only specify whether
a user is allowed to access all data or nothing. One might prefer to grant different users rights to access
different information about the data. This is indeed possible if an encryption scheme with more features
is used. Identity-based encryption [Sha85, MY96, BF01], for example, allows the trusted party to grant
users the right to access data for a specific identity where the input data contains the data itself and the
identity that should be able to access it. This therefore enables the user who inputs data to specify who
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should be able to access it. More advanced access policies can be implemented using attribute-based
encryption [SW05].

Functional encryption is a very general concept formally introduced by Boneh, Sahai, and Waters
[BSW11]. Many types of encryption such as public-key encryption, identity-based encryption, and
attribute-based encryption can be seen as a special case of functional encryption. Briefly, a functional
encryption scheme for a set of functions allows a trusted authority holding a master secret key to generate
secret keys for all functions in this set. Given a secret key for a function f and an encryption of a value
x, one can efficiently compute f(x) but does not learn anything more about x.

Encrypting data in a repository with a functional encryption scheme allows to grant users the right to
access certain functions of the input data. The more functions the scheme supports, the more flexibility
the resulting repository provides. The following application from [BSW12, GKP+13] demonstrates the
benefits of such flexibility: Assume some user receives encrypted emails that are stored on his provider’s
server and he does not want to download mails with a high probability of being spam, to avoid unnecessary
traffic. The trusted party, which in this case can coincide with the recipient of the mails, generates a
special secret key for the provider that only allows to compute the score function of the spam filter.
The provider now cannot read the contents of the mails but is still able to filter out spam and notify
the recipient only about the remaining incoming messages. The repository here corresponds to the mail
server and inputting data into the repository to sending the recipient encrypted emails.

Formalizing the intuitive security requirement that one only learns f(x) given a ciphertext for some
x and a secret key for f has caused more trouble than one might expect; several security definitions
for functional encryption exist in the literature. While some of them were shown to be too weak since
schemes that should not be considered secure could be proven to satisfy them, others are so strong
that even for very simple sets of functions, no scheme exists that satisfies them in the plain model
[BSW11, AGVW13, BO12].

To address the question which definition is the right one, we use the Constructive Cryptography
framework [Mau12, MR11], in which a protocol is seen as a construction of a so-called ideal resource
from a so-called real resource. This ideal resource can then be used in a larger protocol as a real resource
to construct a more advanced ideal resource. The security of the overall construction follows due to a
composition theorem of the framework. This allows us to capture the security of a protocol by what
it achieves, namely which resource it constructs. Other frameworks that capture security properties
by defining an ideal functionality include Universal Composability [Can01] and Reactive Simulatability
[PW01, BPW07]. While these frameworks are designed bottom-up from a specific machine model, the
Constructive Cryptography framework follows a top-down approach, leading to simpler descriptions and
avoiding technicalities.

Defining security in a composable framework has the advantage that all security properties are guar-
anteed to hold in any context. As an example, consider a company that uses many different repositories
to store related data where employees have different rights for each repository. While it might not be
clear whether a protocol proven to satisfy a standalone security definition is secure in such a context or
a new definition is required that explicitly takes this application into account, our approach makes sure
that all users only learn what can be concluded from the information they have access rights to in the
repositories.

We define a real resource corresponding to a public repository without access control and an ideal
resource corresponding to a repository that allows users to access certain functions of the input data. For
each function in the set of supported functions, a trusted party can grant the right to access this function
of all stored data. We then define a protocol that uses a functional encryption scheme in a natural way
to construct this ideal resource from the real resource. The underlying functional encryption scheme can
be considered secure if this construction is achieved. From this perspective, we propose a new security
definition for functional encryption schemes, which we call fully adaptive security (FA-security), based on
a definition from [BSW11] and show that our protocol securely constructs the ideal resource if and only
if the underlying functional encryption scheme is FA-secure. Since known impossibility results extend to
FA-security, we also consider a weaker definition from [GVW12] and show that it is sufficient to construct
a restricted repository with access control. This justifies that definition and makes explicit for which
applications schemes satisfying it can be used.
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2 Preliminaries

2.1 Resources, Converters, and Distinguishers

The results in this paper are formulated using the theory of Constructive Cryptography. In this section,
we introduce the relevant concepts, following [MR11] and the exposition given in [MRT12]. We consider
different types of systems, which are objects with interfaces via which they interact with their environ-
ment. Interfaces are denoted by uppercase letters. One can compose two systems by connecting one
interface of each system. The composed object is again a system.

Two types of systems we consider here are resources and converters. Resources are denoted by
small capitals and have a finite set I of interfaces. Resources with interface set I are called I-resources.
Converters have one inner and one outer interface and are denoted by lowercase Greek letters. The inner
interface of a converter α can be connected to interface I ∈ I of a resource R. The outer interface of α
then serves as the new interface I of the composed resource, which is denoted by αIR. We also write αIR
instead of αI

IR for a converter αI . For I-resources R1, . . . ,Rm, the parallel composition [R1, . . . ,Rm] is
defined as the I-resource where each interface I ∈ I allows to access the corresponding interfaces of all
sub-systems Ri as sub-interfaces.

A distinguisher D for resources with n interfaces is a system with n+ 1 interfaces, where n of them
connect to the interfaces of a resource and a bit is output at the remaining one. We write P(DR = 1) to
denote the probability that D outputs the bit 1 when connected to resource R. The goal of a distinguisher
is to distinguish two resources by outputting a different bit when connected to a different resource. Its
success is measured by the distinguishing advantage.

Definition 2.1. The distinguishing advantage of a distinguisher D for resources R and S is defined as

∆D(R,S) := |P(DR = 1)− P(DS = 1)| .

If ∆D(R,S) = 0 for all distinguishers D, we say R and S are equivalent, denoted as R ≡ S. If the
distinguishing advantage is negligible for all efficient distinguishers, we say R and S are computationally
indistinguishable, denoted as R ≈ S.

2.2 Examples of Resources

An important example of resources are communication channels. They allow the sender A to send
messages from the message space M := {0, 1}∗ to the receiver B. We define two such channels, which
differ in what an eavesdropper E learns about the messages. If a channel is used in a context with several
potentially dishonest parties, all of them are connected to interface E. The channels we consider in this
paper can transmit an arbitrary number of messages.

Definition 2.2. An authenticated channel from A to B, denoted as AutA,B , is a resource with three
interfaces A, B, and E. On input a message m ∈ M at interface A, the same message is output at
interfaces B and E. Other inputs are ignored.

This channel is called authenticated because E cannot modify the messages. If an eavesdropper can
only learn the length of the transferred messages, we get the following resource.

Definition 2.3. A secure channel from A to B, denoted as SecA,B , is a resource with three interfaces
A, B, and E. On input a message m ∈M at interface A, the same message is output at interface B and
the length |m| of the message is output at interface E. Other inputs are ignored.

2.3 Construction of Resources

A protocol is a vector of converters with the purpose of constructing a so-called ideal resource from
an available real resource. Depending on which parties are considered potentially dishonest, we get a
different notion of construction.

As an example from [CMT13], consider the setting for public-key encryption with honest A and B
where we want to construct a secure channel SecA,B from authenticated channels AutB,A and AutA,B

in presence of a dishonest eavesdropper E. Here, the real resource is R := [AutB,A,AutA,B ] and the
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ideal resource is S := SecA,B . In such a setting, a protocol π = (πA, πB) constructs S from R with
potentially dishonest E if there exists a converter σE (called simulator) such that

πAπB⊥ER ≈ ⊥ES

and πAπBR ≈ σES,

where ⊥ blocks all interactions at the corresponding interface and σE provides a sub-interface to the
distinguisher for each channel that constitutes the real resource. The first condition ensures that the
protocol implements the required functionality if there is no eavesdropper and the second condition
ensures that whatever Eve can do when connected to the real resource without necessarily following the
protocol, she could do as well when connected to the ideal resource by using the simulator σE .

While Eve in the above example can be seen as an attacker who is not guaranteed any interaction,
the setting in this paper includes one potentially dishonest party that can also be honest. Hence, all
parties will have a protocol and all interactions provided by the ideal resource are guaranteed to all
honest parties. On the other hand, a dishonest party should not be able to do more than specified by
the ideal resource. We will consider three parties A, B, and C, where B is potentially dishonest and
define a secure construction as follows.

Definition 2.4. Let R and S be {A,B,C}-resources and let π = (πA, πB , πC) be a protocol. We say π
constructs S from R with potentially dishonest B if there exists a converter σB such that

πAπBπCR ≈ S

and πAπCR ≈ σBS.

This definition is a special case of the abstraction notion from [MR11] that considers many dishonest
and mutually distrusting parties.

2.4 Efficiency and Security Parameters

Cryptographic primitives are often equipped with a security parameter and efficiency and negligibility
is defined with respect to this parameter. To simplify the presentation, we will omit security parameters
in this work. To be compatible with standard asymptotic definitions, one can understand all results in
this paper asymptotically by treating all algorithms and systems as asymptotic families indexed by a
security parameter. The distinguishing advantage is then a function of this parameter. All reductions in
this paper are efficient with respect to standard polynomial-time notions.

2.5 Functional Encryption

A functional encryption scheme is a generalized public-key encryption scheme defined for a set F of
functions with common domain X. Given the public key, one can encrypt data x ∈ X and given a
secret key for a function f ∈ F , one can compute f(x) from an encryption of x. The secret keys for
all f ∈ F can be generated using a so-called master secret key which is generated together with the
public key. To capture which information ciphertexts leak about the encrypted data, a special leakage
function f0 ∈ F is considered. An intuitive security requirement guarantees that given a ciphertext for
some x and secret keys for f1, . . . , fn, one should not be able to learn more about x than what can be
learned from f0(x), . . . , fn(x). We here only define the syntax and correctness condition of a functional
encryption scheme and refer to later sections for formal security definitions.

Definition 2.5. Let X be a nonempty set and F be a set of functions with domain X such that F
contains a distinguished function f0. A functional encryption scheme for F consists of the efficient
probabilistic algorithms setup, keygen, enc, and dec. The algorithm setup generates a public key pk

and a master secret key mk. Given mk and some f ∈ F , keygen generates a secret key skf for this
f where skf0 equals the empty string. Given pk and some x ∈ X, enc computes a ciphertext c such
that dec(skf , c) 6= f(x) with negligible probability, where the probability is over the randomness of all
algorithms.
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Remark. Following [BSW11], we assume everyone can always evaluate f0. This can be seen as a rather
artificial requirement; if f0(x), e.g., reveals the bit length |x| of x, there has to be an efficient algorithm
that precisely computes |x| from a ciphertext. A more natural approach would not guarantee all parties
to compute f0, but rather not exclude in the security definition that dishonest parties can do so. To
formalize that something is not guaranteed but potentially possible, the Constructive Cryptography
framework provides the concept of filtered resources (see [MR11] for more details). While all results in
this paper extend to such a definition, we stick to the definition above to simplify the presentation.

3 Repositories and Access Control

3.1 Repository Resources

In this section, we introduce a repository resource that allows users to input and access data and that
naturally captures how a repository works. We first define a repository with access control and then
specify a public repository without access control as a special case thereof. Users can input data from
a data set X into the repository. After inputting data, the resource returns a handle (e.g. a URL or a
memory address) from a set H via which the data can be accessed later. This handle could be chosen
by the resource, by the user who inputs data, or by both in an interactive protocol. Since the particular
procedure to generate handles is irrelevant for our purposes, we will refer to a method getHandle that
returns an element of H without describing its implementation. We only assume that the returned
handles are distinct, that is, no data is overwritten.

Motivated by the syntax of functional encryption, we consider a set F of access functions containing
functions with domain X and allow users to retrieve such functions of input data. Which functions a
user can access depends on the rights of this user, i.e., for each f ∈ F users can have the right to obtain
f(x) for previously input x ∈ X. Everyone has the right to obtain f0(x) for a special function f0 and a
trusted authority can grant users additional rights.

We consider a resource with an interface for Alice who can input data, an interface for Bob who can
access data, and an interface for the trusted party Charlie who can grant rights to Bob. Alice and Bob
are not necessarily single users but correspond to roles users can have. All results in this paper regard
Bob as the only potentially dishonest party. In case he is dishonest, one can also think of him as a group
of dishonest and colluding parties who possibly try to combine their rights to get access to a function of
some data none of them alone could access. Hence, one dishonest party is sufficient to cover collusion
resistance. Similarly, the resource can be used in a context with multiple honest parties inputting data.

Definition 3.1. Let X be a nonempty set and F a set of functions with domain X and f0 ∈ F . The
resource RepF has the interfaces A, B, and C. It internally manages the set R of functions Bob is
allowed to access and a map M assigning to a handle h ∈ H the value M [h] ∈ X ∪ {⊥} where ⊥ /∈ X is
a special symbol. Initially, R = {f0} and M [h] = ⊥ for all h ∈ H. The resource works as follows:

Interface A

Input: x ∈ X
h← getHandle

M [h]← x
output h at interface A

Interface B

Input: (f, h) ∈ F ×H
if f ∈ R and M [h] 6= ⊥ then

output f(M [h]) at interface B

Interface C

Input: f ∈ F
R← R ∪ {f}
output f at interface B
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All inputs not matching the given format are ignored.1

Remark. Our definitions can be straightforwardly generalized to allow probabilistic access functions
where the randomness is provided by the repository and access functions that depend on more than one
piece of data, i.e., functions with domain Xn for arbitrary n ∈ N. Since we do not need this generality
for the examples discussed in this paper, we only consider the simplest case.

We now define a public repository without access control, which will serve as a real resource in our
constructions. It corresponds to a repository as defined above where everyone is allowed to access the
identity function of stored data.

Definition 3.2. Let X be a nonempty set, f0 := idX : X → X,x 7→ x, and P := {f0}. We define the
public repository for X as PRepX := RepP . For inputs at Bob’s interface, we will write h instead of
(idX , h) to simplify notation.

3.2 Access Control via Functional Encryption

A versatile repository supports a large class of access functions and restricts Bob’s initial rights as much
as possible. In this section, we describe how to use functional encryption to construct such a repository
from a public repository. More precisely, let E = (setup, keygen, enc, dec) be a functional encryption
scheme for a set F of functions with domain X and let C be the range of enc. Our goal is to construct
RepF from PRepC. To distribute keys in the real world, we additionally need an authenticated channel
AutC,A from Charlie to Alice and a secure channel SecC,B from Charlie to Bob2, i.e., the real resource
in our construction corresponds to [PRepC,AutC,A,SecC,B ].

The protocol π = (πA, πB , πC) works as follows: At the beginning, πC invokes (pk, mk) ← setup(),
stores mk and sends pk to Alice over the authenticated channel. This public key is internally stored
by πA. On input x ∈ X at its outer interface, πA outputs c := enc(pk, x) at its inner interface to the
repository and outputs the returned handle h at its outer interface. On input f ∈ F at its outer interface,
πC sends (f, keygen(mk, f)) to B over the secure channel. The corresponding secret key is stored by πB
and f is output at its outer interface. On input (f, h) ∈ F ×H at its outer interface, πB outputs h at
its inner interface to the repository if it has stored a secret key skf for this function f or if f = f0. If it
receives a ciphertext c from the repository, it outputs dec(skf , c) at its outer interface. All other inputs
are ignored.

The following lemma states that this protocol constructs the desired ideal resource if all parties are
honest. It follows directly from the correctness of the functional encryption scheme.

Lemma 3.3. For the protocol π = (πA, πB , πC) defined above, we have

πAπBπC [PRepC,AutC,A,SecC,B ] ≈ RepF .

4 Security of Functional Encryption Schemes

4.1 Definition of FA-Security

The protocol described in the previous section constructs the desired resource with a dishonest Bob
only if the underlying functional encryption scheme satisfies a suitable security definition. We propose
such a definition, based on [BSW11, Definition 4] and refer to it as fully adaptive security (FA-security
for short). We extend the definition from [BSW11] to adaptive adversaries that can choose messages
depending on ciphertexts for previous messages. This extension was already mentioned in that paper
but not formalized. Our definition additionally restricts oracle access of the involved algorithms. These
changes are discussed after the definition. We follow the notation from [BSW11], i.e., for algorithms A

1We define all resources to ignore invalid inputs. Alternatively, the resources could return error messages. While this
alternative might be closer to the behavior of real systems, we decided to simply ignore invalid inputs because they are not
relevant here.

2For both channels, a dishonest Bob assumes the role of an eavesdropper. That is, he can learn the public key, which
is sent over the authenticated channel from Charlie to Alice. If the resource is used in a context with many Bobs, it is
important that the channel from Charlie to each of them is secure to prevent dishonest users from eavesdropping secret
keys.
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and B, AB(·)(x) denotes that A gets x as input and has oracle access to B, that is, B(q) is answered to
A in response to an oracle query q. Moreover, A(·)[[s]] means that A gets s as an additional input and
can update the value of s.

Definition 4.1. Let E = (setup, keygen, enc, dec) be a functional encryption scheme for a set F of
functions with domain X. We introduce the following experiments for an efficient probabilistic oracle
algorithm Adv1 and efficient probabilistic algorithms Adv2, S1, S2, and S3. We denote the advantage of a

distinguisherD in distinguishing the outputs of these experiments by ∆D
(

FA-ExpReal
E,Adv,FA-ExpIdeal

E,Adv,S

)
.

FA-ExpReal
E,Adv

(pk, mk)← setup()
(l, τ)← (0, 0)
repeat

l← l + 1
xl ← Adv

keygen(mk,·)
1 (pk)[[τ ]]

cl ← enc(pk, xl)
t← Adv2(cl)[[τ ]]

until t = true

return τ

FA-ExpIdeal
E,Adv,S

(pk, s)← S1()
(l, τ)← (0, 0)
repeat

l← l + 1
xl ← Adv

f 7→S2(f,f(x1),...,f(xl−1))[[s]]
1 (pk)[[τ ]]

(f1, . . . , fq)← all queries by Adv1 so far
cl ← S3(f0(xl), . . . , fq(xl))[[s]]
t← Adv2(cl)[[τ ]]

until t = true

return τ

We say E is FA-secure if there exist S1, S2, and S3 such that the distinguishing advantage is negligible
for all Adv1, Adv2 and for all efficient distinguishers.

As mentioned before, this definition is close to a fully adaptive version of the one given in [BSW11].
One difference is that Adv2 is not given oracle access to a key-generation oracle in our definition. This
simplifies especially the ideal experiment and is not necessary here since Adv2 can store its query in
τ and Adv1 can then query its oracle and continue the execution of Adv2 in the following round.
Furthermore, S3 in [BSW11] has oracle access to Adv2 and can therefore run Adv2 on several inputs
and discard undesired outputs. Our definition is stronger because we do not allow this. It was already
noted in [AGVW13] that this oracle access might be problematic. Note that, in contrast to [BSW11,
Definition 4], it is sufficient to return τ because Adv2 can encode all relevant information in it and S3

cannot tamper with it.
Unlike many other definitions (e.g. [O’N10, BF13, GVW12, GKP+13]), we do allow S1 and S2 to

“fake” the public key and the secret keys, respectively. In contrast to what is claimed in [BF13], it
turns out that this is not a problem (see section 4.3 for more details). This shows that there are many
degrees of freedom in defining security experiments for functional encryption and that the consequences
of a particular choice are often unclear. On the other hand, the constructive approach we follow in this
paper makes explicit what a protocol satisfying the definitions achieves, by specifying the ideal resource
that is constructed.

4.2 Equivalence of FA-Security and Construction of Repository

The goal of this section is to prove that the protocol defined in section 3.2 constructs the corresponding
repository resource if and only if the underlying functional encryption scheme is FA-secure. This implies
that FA-security is precisely the definition needed for our purpose. The following lemma shows that
FA-security is sufficient for the construction.

Lemma 4.2. Let S1, S2, and S3 be efficient probabilistic algorithms. Then there exists an efficient con-
verter σB such that for all efficient distinguishers D for πAπC [PRepC,AutC,A,SecC,B ] and σBRepF ,
there is an efficient probabilistic oracle algorithm Adv1, an efficient probabilistic algorithm Adv2, and
an efficient distinguisher D′ for the FA experiment such that

∆D
(
πAπC [PRepC,AutC,A,SecC,B ], σBRepF

)
= ∆D′

(
FA-ExpReal

E,Adv,FA-ExpIdeal
E,Adv,S

)
.
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Proof. We define σB as follows:

Initialization

(l, q)← (0, 0)
(pk, s)← S1()
output pk at outer sub-interface simulating AutC,A

Inner Interface

Input: f ∈ F
q ← q + 1
fq ← f
for i = 1, . . . , l do

yi ← returned value from output (f, hi) at inner interface

skf ← S2(f, y1, . . . , yl)[[s]]
output (f, skf ) at outer sub-interface simulating SecC,B

Outer Interface

Input: h ∈ H
if ∃k ∈ {1, . . . , l} : hk = h then

output ck at outer sub-interface simulating PRepC
else if output (f0, h) at inner interface is not ignored then . some data is stored for handle h

l← l + 1
hl ← h
for i = 0, . . . , q do

yi ← returned value from output (fi, h) at inner interface

cl ← S3(y0, . . . , yq)[[s]]
output cl at outer sub-interface simulating PRepC

Now let D be an efficient distinguisher for πAπC [PRepC,AutC,A,SecC,B ] and σBRepF . We can assume
without loss of generality that D inputs h ∈ H at interface B only if this h was output at interface A
before, because other h will be ignored by both resources. We further assume that each h ∈ H is input
at most once, since both resources return the same value for each input of the same h.

We now describe the algorithms Adv1 and Adv2. When Adv1 is invoked with pk and τ = 0, it starts
a new simulation of the distinguisher D, outputting pk at interface B from the authenticated channel.
When D returns a bit b, Adv1 sets τ ← (return, b) and returns a random x ∈ X. When D inputs f ∈ F
at interface C, Adv1 invokes its oracle with query f and outputs f and the answer to D at interface B
from the secure channel. When D inputs x ∈ X at interface A, Adv1 invokes getHandle and outputs
the returned handle h at interface A. It further sets M [h]← x for a map M . When D inputs h ∈ H at
interface B, Adv1 saves M and the state of D in τ and returns M [h]. This will invoke Adv2 on input a
ciphertext c and τ . If τ = (return, b), for some b ∈ {0, 1}, Adv2 returns true. Otherwise, it saves c in
τ and returns false. Afterwards, Adv1 is invoked on input pk and τ 6= 0. In this case, it reads c and
the state of D from τ and continues the simulation by outputting c at interface B from the repository.
Adv1 then proceeds as above.

The distinguisher D′ on input τ = (return, b) outputs the bit b. Note that the distribution of the
outputs of D′ given outputs of the real experiment equals the distribution of the outputs of D connected
to the real resource πAπC [PRepC,AutC,A,SecC,B ] and the output distribution of D′ given outputs of
the ideal experiment equals the distribution of the outputs of D connected to σBRepF . Hence, the
corresponding distinguishing advantages are the same.

The next lemma shows that FA-security is not only sufficient but also necessary for constructions
of the desired repository resource. Since this notion is even stronger than the one in [BSW11], known
impossibility results translate to our model.

Lemma 4.3. Let σB be an efficient converter. Then there exist efficient probabilistic algorithms S1, S2,
and S3 such that for all efficient probabilistic oracle algorithms Adv1, all efficient probabilistic algorithms
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Adv2, and all efficient distinguishers D for the FA experiment, there exists an efficient distinguisher D′

for πAπC [PRepC,AutC,A,SecC,B ] and σBRepF such that

∆D
(
FA-ExpReal

E,Adv,FA-ExpIdeal
E,Adv,S

)
= ∆D′

(
πAπC [PRepC,AutC,A,SecC,B ], σBRepF

)
.

Proof. The algorithms S1, S2, and S3 together simulate an execution of σB . S1 starts the simulation,
prepares an initially empty map M (i.e., M [f ][h] = ⊥ for all f and h), and sets (l, q)← (0, 0). It returns
the first output at the outer interface of σB together with an encoding of the state of σB , l, q, and M
in s. On input f ∈ F , f(x1), . . . , f(xl) and some s, S2 extracts M , l, q, h1, . . . , hl, and the state of σB
from s, sets q ← q + 1, fq ← f , and M [fq][hi] ← f(xi) for i = 1, . . . , l. It then inputs f at the inner
interface of σB . When σB outputs (f, skf ) at its outer interface, S2 stores the state of σB together with
M , q, and fq in s and returns skf . On input (f0(x), . . . , fq(x)) and s, S3 extracts the state of σB , M , l,
q, and f1, . . . , fq from s, sets l← l+ 1, invokes3 hl ← getHandle, sets M [fi][hl]← fi(x) for i = 0, . . . , q,
and inputs h at the outer sub-interface of σB simulating the repository. When σB outputs c at its outer
interface, S3 saves the state of σB , M , l, and hl in s and returns c. Outputs of the form (f, h) at the
inner interface of σB are handled equally by S1, S2, and S3 by inputting M [f ][h] at its inner interface
if M [f ][h] 6= ⊥. Otherwise, that input is ignored. Note that such input is ignored if and only if f has
not been input at the inner interface of σB or h has not been input at its outer interface before. This is
consistent to RepF if all handles returned at interface A are immediately input at interface B afterwards.
The distinguisher defined below always does this.

Now let Adv1 be an efficient probabilistic oracle algorithm, Adv2 an efficient probabilistic algorithm,
and let D be an efficient distinguisher for the FA experiment. We define a distinguisher D′ for the
resources πAπC [PRepC,AutC,A,SecC,B ] and σBRepF as follows. It first runs Adv1 on input the initial
output pk at interface B and τ = 0. A query f ∈ F from Adv1 to its oracle is answered by inputting f at
interface C, receiving (f, skf ) at interface B, and returning skf as the answer. When Adv1 returns x, D′

inputs x at interface A and then the returned handle4 h at interface B to the repository. When c is output
at interface B, the distinguisher D′ invokes Adv2 on input c and τ . If it returns t = false, D′ repeats
this procedure by running Adv1 on input pk and τ . Otherwise, D′ invokes D on input τ . Finally, D′

outputs the output of D. Since the distribution of τ if D′ is connected to πAπC [PRepC,AutC,A,SecC,B ]
is the same as in the real FA experiment and the same as in the ideal one if D′ is connected to σBRepF ,
the corresponding distinguishing advantages are equal.

Combining lemmata 3.3, 4.2, and 4.3, we get the following theorem:

Theorem 4.4. The protocol π defined above constructs RepF from [PRepC,AutC,A,SecC,B ] with po-
tentially dishonest B if and only if E is FA-secure.

4.3 Alleged Insufficiency of BSW’s Security Definition

The results from the previous section seem to contradict an example given in [BF13], which was meant to
show that the security definition from [BSW11] is not adequate and which can easily be extended to our
definition. We first recall the example for a fixed set of functions from the full version of [BF13] and then
explain why it is not a problem in our context. Assume E = (setup, keygen, enc, dec) is a functional
encryption scheme for a set F of functions with domain X with idX ∈ F and P ⊆ F where P is a family of
trapdoor one-way permutations on X. We consider a modified scheme E ′ = (setup′, keygen′, enc, dec′)
as follows. The algorithm setup′ first runs setup and samples a permutation p∗ ∈ P according to the
key-generation algorithm of the trapdoor one-way permutation. It then includes the description of p∗ in
the public key pk (and discards the trapdoor). The algorithm keygen′ on input (mk, f) does the same
as keygen if f 6= p∗ and returns (p∗, skid) with skid ← keygen(mk, idX) if f = p∗. The algorithm enc is
not modified and dec′ on input ((p∗, skid), c) returns p∗(dec(skid, c)) and dec(skf , c) on input (skf , c).
As in [BF13], it can be shown that E ′ is FA-secure if E is. Intuitively, the simulator, which generates the
public key, can store the trapdoor and hence compute x from p∗(x), enabling it to simulate.

According to [BF13], this scheme should not be considered secure because one can learn x instead
of only p∗(x) given a key for p∗. They conclude that the simulator should therefore not be allowed to
generated the public key. We claim that this is actually not a problem: An adversary cannot choose for

3If getHandle requires interaction with interface A, S3 emulates it using an arbitrary fixed strategy.
4D′ uses the same strategy as S3 for inputs at interface A for getHandle, such that handles are equally distributed.
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which p ∈ P he wants to learn x instead of p(x), but a p∗ is chosen at random by the key-generation
algorithm of the trapdoor one-way permutation. By simply invoking this algorithm themselves, all users
can obtain a trapdoor for such random permutation p∗ and hence compute x from p∗(x) even if the
original scheme is used. The only difference is that in the modified scheme, this particular permutation
is contained in the public key. Using this permutation in another protocol built on top of the modified
scheme would be problematic. However, if schemes are composed according to the Constructive Cryp-
tography framework, this cannot happen since other protocols then only use the ideal resource that is
constructed by the scheme and our ideal resource does not provide a distinguished function corresponding
to the permutation in the public key to any party.

5 Special Cases and Impossibility Results

5.1 Public-Key Encryption and its Impossibility

As described in [BSW11], many types of encryption can be seen as special cases of functional encryption.
We restate how standard public-key encryption is captured as a special case and explain why this
immediately leads to strong impossibility results.

Consider public-key encryption with plaintext space M . We can set X := M and FPKE := {f0, idX}
with f0 : X → N, x 7→ |x|. This provides the same functionality as public-key encryption [BSW11]: The
holder of the secret key (corresponding to the key for idX) can decrypt a ciphertext to the encrypted
message while without the secret key, one can only learn the length of the message.

Depending on how the encryption scheme is intended to be used, different security properties are
required. Typically, one assumes that there is a legitimate receiver Bob knowing the secret key from
the beginning and an eavesdropper Eve who never learns the secret key. The ideal repository resource
defined above, however, allows to adaptively grant Bob the right to learn the input data. In case
of a dishonest Bob, this enables the distinguisher to adaptively retrieve the secret key after receiving
ciphertexts. Hence, we are in a situation of adaptive adversaries [CFGN96]. Therefore, the result by
Nielsen [Nie02] stating that the length of secret keys in any adaptively secure scheme must be at least
the total number of bits to be encrypted, on which the impossibility results in [BSW11, BO12] are based,
can be applied directly here. Since there is no restriction on the number of messages Alice can input in
the repository, the distinguisher can input messages whose total length exceed an upper bound on the
length of secret keys before granting access rights to Bob. We therefore get the following theorem as a
direct consequence of Theorem 4.4 and the result from [Nie02]. This shows another advantage of our
constructive approach, namely that defining security of a protocol by what it achieves simplifies reusing
results without reproving them for new definitions as in [BSW11] and [BO12].

Theorem 5.1. There is no FA-secure functional encryption scheme for FPKE.

As we have seen, while public-key encryption can be considered to be a special case of functional
encryption, typical security definitions for public-key encryption do not correspond to the given security
definition for functional encryption. This is not a weakness of our security definition but comes from the
fact that public-key encryption is usually used in a specific setting and thus a less restrictive definition
is sufficient. See [CMT13] for a treatment of public-key encryption in the Constructive Cryptography
framework. Similarly, it is still meaningful to consider security definitions for other special cases of
functional encryption such as identity-based and attribute-based encryption that take into account how
these schemes are intended to be used.

5.2 Circumventing Impossibility Results

As seen in the previous section, realizing FA-secure functional encryption schemes, even for very simple
sets of functions, is impossible without further assumptions. In general, there are two ways to circumvent
such impossibility results. One can either start with a stronger real resource or aim for a weaker ideal
resource. The authors in [BSW11] use a random oracle to realize secure functional encryption schemes
for a large class of functions. This falls in the first category and can be understood in our model as adding
a random oracle to the real resource. Bellare and O’Neill [BO12] generalize the result from [BSW11] and
obtain secure functional encryption schemes without random oracles by allowing the keys to be longer
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than all encrypted messages together. This can also be interpreted as restricting the amount of data the
repository can store. Hence, this is an example of weakening the ideal resource.

Many papers consider different security definitions [O’N10, BO12, GVW12, AGVW13, GKP+13].
However, changing a security definition can lead to an inadequate notion of security and it might not
be clear how the resulting schemes can be used. In the following section, we further follow the approach
of considering weaker ideal resources. In particular, we introduce restricted repositories and show that
schemes satisfying a definition from [GVW12] can be used to construct such repositories.

6 Constructing Restricted Versions of Repository Resources

6.1 Definitions

We first define restricted variants of repository resources.

Definition 6.1. Let L,Q ∈ N∪{∞}, X be a nonempty set, and let F be a set of functions with domain
X and f0 ∈ F . We define the resource RepAD

F,L,Q to be identical to RepF as in Definition 3.1 but only
allow up to L inputs at interface A and Q inputs at interface C and ignore further inputs (in case L or Q
equals ∞, no restriction is placed on the number of inputs, i.e., RepAD

F,∞,∞ ≡ RepF ). We further define

a nonadaptive variant RepNA
F,L,Q that ignores all inputs at interface C after the first input at interface A.

Since the resources only accept a given number of inputs at interfaces A and C, we have to adjust
the protocols to behave the same way. We therefore consider a functional encryption scheme E =
(setup, keygen, enc, dec) for a set F of functions with domain X where C is the range of enc. We then

define the protocol πAD,L,Q := (πL
A, πB , π

AD,Q
C ) as π in section 3.2, but πL

A and πAD,Q
C additionally keep

track of the number of inputs at their outer interface and ignore all of them after the first L and Q
inputs, respectively.

The following lemma states that this protocol constructs a restricted repository with access control
if all parties are honest. It follows directly from the correctness of the functional encryption scheme.

Lemma 6.2. For the protocol πAD,L,Q = (πL
A, πB , π

AD,Q
C ) defined above, we have

πL
AπBπ

AD,Q
C [PRepC,AutC,A,SecC,B ] ≈ RepAD

F,L,Q.

To construct the nonadaptive variant, the protocol at interface C has to ignore all inputs after the
first input at interface A. Hence, it needs to know whether there has already been any input at interface
A, i.e., whether the repository is still empty. We thus introduce for a nonempty set X the resource
PRep∅X that is identical to PRepX as in Definition 3.2 but additionally accepts the input isEmpty at
interface C which is answered with true if the repository is empty, and false otherwise. We then define
πNA,L,Q := (πL

A, πB , π
NA,Q
C ) where πNA,Q

C on each input at its outer interface outputs isEmpty at its inner
interface to the repository and ignores the input (and all subsequent inputs) if the repository answers

false, and otherwise does the same as πAD,Q
C .

As above, correctness of the functional encryption schemes implies the following lemma.

Lemma 6.3. For the protocol πNA,L,Q = (πL
A, πB , π

NA,Q
C ) defined above, we have

πL
AπBπ

NA,Q
C [PRep∅C,AutC,A,SecC,B ] ≈ RepNA

F,L,Q.

We now recall a simulation-based single-message security definition from [GVW12].

Definition 6.4. Let E = (setup, keygen, enc, dec) be a functional encryption scheme for a set F of func-
tions with domain X. We introduce the following experiments for an efficient probabilistic oracle algo-
rithm Adv1 and efficient probabilistic algorithms Adv2 and S. We denote the advantage of a distinguisher

D in distinguishing the outputs of these experiments by ∆D
(

NA-SIM-ExpReal
E,Adv,NA-SIM-ExpIdeal

E,Adv,S

)
.
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NA-SIM-ExpReal
E,Adv

(pk, mk)← setup()

(x, τ)← Adv
keygen(mk,·)
1 (pk)

c← enc(pk, x)
α← Adv2(pk, c, τ)
return (α, x)

NA-SIM-ExpIdeal
E,Adv,S

(pk, mk)← setup()

(x, τ)← Adv
keygen(mk,·)
1 (pk)

(f1, . . . , fq)← oracle queries by Adv1

(sk1, . . . skq)← replies from keygen oracle
(y0, . . . , yq)← (f0(x), . . . , fq(x))
c← S(pk, f1, . . . , fq, sk1, . . . skq, y0, . . . , yq)
α← Adv2(pk, c, τ)
return (α, x)

For Q ∈ N, the scheme E is Q-NA-SIM-secure if there exists an efficient probabilistic algorithm S such

that ∆D
(

NA-SIM-ExpReal
E,Adv,NA-SIM-ExpIdeal

E,Adv,S

)
is negligible for all efficient probabilistic oracle algo-

rithms Adv1 that make at most Q queries, all efficient probabilistic algorithms Adv2, and for all efficient
distinguishers D.

6.2 Sufficiency of the Definition

The following result implies that the above definition is sufficient to construct a nonadaptive repository
with potentially dishonest B. Note that in contrast to Definition 4.1, all keys the adversary sees in
the ideal experiment are generated by the algorithms of the functional encryption scheme and not by a
simulator. While this is an artificial restriction for constructing single-input repositories, it interestingly
allows us to prove that this definition is sufficient to construct a repository for many inputs. A similar
result was already shown in [GVW12] but our result is stronger because we allow subsequent inputs to
depend on previous ciphertexts whereas the many-message definition in [GVW12] restricts the adversary
to input all messages at once before seeing a ciphertext.

Theorem 6.5. Let L,Q ∈ N and S be an efficient probabilistic algorithm. Then there exists an ef-
ficient converter σB such that for all efficient distinguishers D for πL

Aπ
NA,Q
C [PRep∅C,AutC,A,SecC,B ]

and σBRepNA
F,L,Q, there is an efficient probabilistic oracle algorithm Adv1 that makes at most Q queries,

an efficient probabilistic algorithm Adv2, and an efficient distinguisher D′ for the NA-SIM experiment
such that

∆D
(
πL
Aπ

NA,Q
C [PRep∅C,AutC,A,SecC,B ], σBRepNA

F,L,Q

)
= L ·∆D′

(
NA-SIM-ExpReal

E,Adv,NA-SIM-ExpIdeal
E,Adv,S

)
.

Proof. We define σB as follows:

Initialization

(l, q)← (0, 0)
(pk, mk)← setup()
output pk at outer sub-interface simulating AutC,A

Inner Interface

Input: f ∈ F
q ← q + 1
fq ← f
skq ← keygen(mk, f)
output (f, skq) at outer sub-interface simulating SecC,B
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Outer Interface

Input: h ∈ H
if ∃k ∈ {1, . . . , l} : hk = h then

output ck at outer sub-interface simulating PRep∅C
else if output (f0, h) at inner interface is not ignored then . some data is stored for handle h

l← l + 1
hl ← h
for i = 0, . . . , q do

yi ← returned value from output (fi, h) at inner interface

cl ← S(pk, f1, . . . , fq, sk1, . . . skq, y0, . . . , yq)

output cl at outer sub-interface simulating PRep∅C

Now let D be an efficient distinguisher for the two resources πL
Aπ

NA,Q
C [PRep∅C,AutC,A,SecC,B ] and

σBRepNA
F,L,Q. We can assume that D does not make any inputs that are ignored by both resources.

Hence, we can assume that after getting a public key from interface B, D makes up to Q inputs of the
form f ∈ F at interface C. Afterwards, it makes inputs of the form x ∈ X at interface A and h ∈ H
at interface B for h that were output at interface A before. As in the proof of Lemma 4.2, we can also
assume without loss of generality that each h is input at most once, because both resources return the
same value for each input of the same h.

We let Adv1, Adv2, and D′ emulate D. At the beginning, Adv1 sets l ← 0, draws a number
l̂ ∈ {1, . . . , L} uniformly at random and outputs pk at interface B from the authenticated channel for
D. When D inputs f ∈ F at interface C, Adv1 makes the oracle-query f and outputs f and the answer
sk at interface B from the secure channel. When D inputs x at interface A, Adv1 invokes getHandle

and outputs the returned handle h at interface A. It further sets M [h] ← x for a map M . When

D inputs h ∈ H at interface B, Adv1 increments l by one. If l < l̂, Adv1 outputs enc(pk,M [h]) at

interface B from the repository. If l ≥ l̂, Adv1 saves M , the list f1, . . . , fq of queried functions, the
answers sk1, . . . , skq, and the state of D in τ and returns (M [h], τ). On input (pk, c, τ), Adv2 reads M ,
f1, . . . , fq, sk1, . . . , skq, and the state of D from τ and continues the simulation of D by outputting c
at interface B from the repository. When D inputs x at interface A, Adv2 invokes getHandle, outputs
the returned handle h at interface A, and sets M [h] ← x. When D inputs h ∈ H at interface B,
Adv2 computes y0 ← f0(M [h]), . . . , yq ← fq(M [h]) and c′ ← S(pk, f1, . . . , fq, sk1, . . . skq, y0, . . . , yq)
and outputs c′ at interface B from the repository. When D outputs a bit, Adv2 returns this bit. The
distinguisher D′ on input (α, x) simply outputs α.

We prove the bound on the distinguishing advantage by a hybrid argument. To this end, consider
for i = 0, . . . , L the system Hi that corresponds to πL

Aπ
NA,Q
C [PRep∅C,AutC,A,SecC,B ] until i different

h ∈ H are input at interface B, and from then on outputs S(pk, f1, . . . , fq, sk1, . . . skq, y0, . . . , yq) at
interface B on input h ∈ H, where q is the number of inputs at interface C, fj corresponds to the jth
input at interface C, skj to the value the resource output in return at interface B together with fj ,
and yj = fj(x) for the x ∈ X that was input at interface A before the resource returned h. Note that

HL ≡ πL
Aπ

NA,Q
C [PRep∅C,AutC,A,SecC,B ] and H0 ≡ σBRepNA

F,L,Q. Further note that

P
(
D′ NA-SIM-ExpReal

E,Adv = 1
)

=

L∑
i=1

P
(
l̂ = i

)
· P
(
D′ NA-SIM-ExpReal

E,Adv = 1 | l̂ = i
)

=
1

L

L∑
i=1

P(DHi = 1)

and similarly

P
(
D′ NA-SIM-ExpIdeal

E,Adv,S = 1
)

=
1

L

L∑
i=1

P(DHi−1 = 1).
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We therefore have

∆D
(
πL
Aπ

NA,Q
C [PRep∅C,AutC,A,SecC,B ], σBRepNA

F,L,Q

)
= ∆D(HL,H0)

= |P(DHL = 1)− P(DH0 = 1)|

=

∣∣∣∣∣
L∑

i=1

P(DHi = 1)−
L∑

i=1

P(DHi−1 = 1)

∣∣∣∣∣
=
∣∣∣L · P(D′ NA-SIM-ExpReal

E,Adv = 1
)
− L · P

(
D′ NA-SIM-ExpIdeal

E,Adv,S = 1
)∣∣∣

= L ·∆D′
(

NA-SIM-ExpReal
E,Adv,NA-SIM-ExpIdeal

E,Adv,S

)
.

7 Conclusions and Open Problems

To better understand the space of possible security definitions for functional encryption schemes, we have
put forward a new approach to define their security. To this end, we have defined a public repository
resource and repositories with access control. We then showed how a functional encryption scheme
can be used to construct a repository with access control from a public repository in the sense of the
Constructive Cryptography framework.

We have proposed a traditional, experiment-based security definition for functional encryption based
on a definition by Boneh, Sahai, and Waters and discussed the implications of some details in such
definitions. Furthermore, we have shown that this definition is equivalent to securely constructing an
ideal repository with access control and no restrictions on the inputs. Moreover, we have explained
how known impossibility results can be applied to our definition. We have further considered another
experiment-based definition for which functional encryption schemes exist and have shown that this
definition is sufficient to construct a repository with access control that only allows to grant rights before
any data is input, making explicit how such schemes can be used.

An interesting goal is to find practical protocols that construct the unrestricted ideal repository for
a large set of functions using stronger real resources such as random oracles. Moreover, our constructive
approach naturally leads to further open questions, which, to our knowledge, have not been considered so
far: We have only considered constructions with an honest Alice because it seems that existing definition
in the literature try to capture this setting. However, one could try to find functional encryption schemes
that can be used to construct an ideal repository if dishonest users can also input data. This probably
leads to stronger security definitions in the spirit of CCA-security instead of CPA-security for public-key
encryption. Another open problem is how several dishonest Bobs that are not colluding but mutually
distrusting can be handled, which is a valid scenario in real applications. These problems involve more
than one potentially dishonest party. While not considered in this paper, the Constructive Cryptography
framework provides general definitions to treat such situations.
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