
Virtual Black-Box Obfuscation for All Circuits

via Generic Graded Encoding

Zvika Brakerski∗ Guy N. Rothblum†

Abstract

We present a new general-purpose obfuscator for all polynomial-size circuits. The obfuscator
uses graded encoding schemes, a generalization of multilinear maps. We prove that the obfusca-
tor exposes no more information than the program’s black-box functionality, and achieves virtual
black-box security, in the generic graded encoded scheme model. This proof is under a plausi-
ble worst-case complexity-theoretic assumption related to the Exponential Time Hypothesis, in
addition to standard cryptographic assumptions.

Very recently, Garg et al. (FOCS 2013) used graded encoding schemes to present a candidate
obfuscator for the weaker notion of indistinguishability obfuscation, without a proof of security.
They posed the problem of constructing a provably secure indistinguishability obfuscator in
the generic model. Our obfuscator, which achieves the stronger guarantee of virtual black-box
security, resolves this problem (under the complexity assumptions).

Our construction is different from that of Garg et al., but it is inspired by their use of
permutation branching programs. We obtain our obfuscator by developing techniques used to
obfuscate d-CNF formulas (ePrint 2013), and applying them to permutation branching pro-
grams. This yields an obfuscator for the complexity class NC1. We then use homomorphic
encryption to obtain an obfuscator for any polynomial-size circuit.

1 Introduction

Code obfuscation is the task of taking a program, and making it “unintelligible” or impossible
to reverse engineer, while maintaining its input-output functionality. While this is a foundational
question in the theory and practice of cryptography, until recently very few techniques or heuristics
were known. Recently, however, several works have leveraged new constructions of cryptograph-
ically secure graded encoding schemes (which generalize multilinear maps) [GGH13a, CLT13] to
propose obfuscators for complex functionalities [BR13a, BR13b] and even for arbitrary polynomial
size circuits [GGH+13b].

In this work, we propose a new code obfuscator, building on techniques introduced in [BR13a,
GGH+13b, BR13b]. The obfuscator works for any polynomial-time circuit, and its security is ana-
lyzed in the idealized generic graded encoding scheme model. We prove that in this idealized model,
the obfuscator achieves the strong “virtual black-box” security notion of Barak et al. [BGI+12]
(see below). Security in the idealized model relies on a worst-case exponential assumption on the
hardness of the NP-complete 3SAT problem (in the flavor of the well known exponential time hy-
pothesis). Our construction relies on asymmetric graded encoding schemes, and can be instantiated

∗Stanford University, zvika@stanford.edu.
†Microsoft Research, rothblum@alum.mit.edu.

1

using the new candidate constructions of Garg, Gentry and Halevi [GGH13a], or of Coron, Lepoint
and Tibouchi [CLT13].

Obfuscation: Definitions. Intuitively, an obfuscator should generate a new program that pre-
serves the the original program’s functionality, but is impossible to reverse engineer. The theoretical
study of this problem was initiated by Barak et al. [BGI+12]. They formalized a strong simulation-
based security requirement of black box obfuscation: namely, the obfuscated program should expose
nothing more than what can be learned via oracle access to its input-output behavior. We refer to
this notion as “black-box” obfuscation, and we use this strong formalization throughout this work.

A weaker notion of obfuscation, known as indistinguishability or best-possible obfuscation was
studied in [BGI+12, GR07]. An indistinguishability obfuscator guarantees that the obfuscations of
any two programs (boolean circuits) with identical functionalities are indistinguishable. We note
that, unlike the black-box definition of security, indistinguishability obfuscation does not quantify or
qualify what information the obfuscation might expose. In particular, the obfuscation might reveal
non-black-box information about the functionality. Recently, Sahai and Waters [SW13] showed that
indistinguishability obfuscation suffices for many cryptographic applications, such as transforming
private key cryptosystems to public key, and even for constructing deniable encryption schemes.

Prior Work: Negative Results. In their work, [BGI+12] proved the impossibility of general-
purpose black-box obfuscators (i.e. ones that work for any polynomial-time functionality) in the
virtual black box model. This impossibility result was extended by Goldwasser and Kalai [GK05].
Goldwasser and Rothblum [GR07] showed obstacles to the possibility of achieving indistinguisha-
bility obfuscation with information-theoretic security, and to achieving it in the idealized random
oracle model.

Looking ahead, we note that the impossibility results of [BGI+12, GK05] do not extend to
idealized models, such as the random oracle model, the generic group model, and (particularly
relevant to our work) the generic graded encoding model.

Prior Work: Positive Results. Positive results on obfuscation focused on specific, simple pro-
grams. One program family, which has received extensive attention, is that of “point functions”:
password checking programs that only accept a single input string, and reject all others. Starting
with the work of Canetti [Can97], several works have shown obfuscators for this family under vari-
ous assumptions [CMR98, LPS04, Wee05], as well as extensions [CD08, BC10]. Canetti, Rothblum
and Varia [CRV10] showed how to obfuscate a function that checks membership in a hyperplane of
constant dimension (over a large finite field). Other works showed how to obfuscate cryptographic
function classes under different definitions and formalizations. These function classes include check-
ing proximity to a hidden point [DS05], vote mixing [AW07], and re-encryption [HRSV11]. Several
works [Can97, CMR98, HMLS10, HRSV11] relaxed the security requirement so that obfuscation
only holds for a random choice of a program from the family.

More recently, Brakerski and Rothblum [BR13a] showed that graded encoding schemes could
be used to obfuscate richer function families. They constructed a black-box obfuscator for conjunc-
tions, the family of functions that test whether a subset of the input bits take on specified values.
Building on this result, in a followup work [BR13b], they constructed a black-box obfuscator for
d-CNFs and (more generally) conjunctions of NC0 circuits. These constructions were proved secure

2

in the generic graded encoding model. The conjunction obfuscator was also shown to be secure un-
der falsifiable (see [Nao03]) multilinear DDH-like assumptions, so long as the conjunction is drawn
from a family with sufficient entropy.

In recent work, Garg et al. [GGH+13b] use cryptographic graded encoding schemes to construct
a candidate indistinguishability obfuscator (see above) for all polynomial-size circuits. The main
differences between our results and theirs are: (i) we construct an obfuscator with the stronger
security notion of black-box obfuscation (for the same class of functions), and (ii) we provide a
security proof in the generic graded encoding model. This was posed as a major open question in
[GGH+13b].1 Our proof uses a worst-case complexity-theoretic assumptions, as explained below.

Canetti and Vaikuntanathan [CV13] outline a candidate obfuscator and prove its security in
an idealized pseudo-free group model. They also use Barrington’s theorem and randomization
techniques. The main difference from our work is in the nature of their idealized pseudo-free group
model: in particular, there are no known candidates for concretely instantiating such groups.

1.1 Our Work: Black-Box Obfuscation for all of P

In this work we construct an obfuscator for any function in P, using cryptographic graded encoding
schemes. Our obfuscator can be instantiated using recently proposed candidates [GGH13a, CLT13].
The main component of our construction is an obfuscator for the complexity class NC1, which is
then leveraged to an obfuscator for P using homomorphic encryption. Our main contribution is
a proof that the main component is a secure black-box obfuscator in the generic graded encoding
scheme model, assuming the bounded speedup hypothesis (BSH) [BR13b], a generalization of the
exponential time hypothesis. More details follow.

Theorem 1.1. There exists an obfuscator PObf for any circuit in P, which is virtual black-box
secure in the generic graded encoding scheme model assuming the bounded speedup hypothesis, and
the existence of homomorphic encryption with an NC1 decryption circuit.

Since any virtual black-box obfuscator is also an indistinguishability obfuscator [GR07], we
obtain as a corollary:

Corollary 1.2. There exists an obfuscator PObf for any circuit in P, which is an indistinguisha-
bility obfuscator in the generic graded encoding scheme model assuming the bounded speedup hy-
pothesis, and the existence of homomorphic encryption with an NC1 decryption circuit.

For the remainder of this work, we focus our attention on black-box obfuscation. Our construc-
tion proceeds in two steps. As hinted above, the first (and main) step is an obfuscator for NC1

circuits. Then, in the second step, we use homomorphic encryption [RAD78, Gen09] to obfuscate
any polynomial-size circuit. (Which is done by encrypting the input circuit using the homomorphic
scheme, and obfuscating a “verified decryption” circuit, see Section 4.)

Our obfuscator for NC1 circuits combines ideas from: (i) the d-CNF obfuscator of [BR13b]
and its security proof. In particular, we build on their technique of randomizing sub-assignments
to prove security in the generic model based on the bounded speedup hypothesis, and (ii) the
indistinguishability obfuscator of [GGH+13b] and their use of Barrington’s theorem [Bar86]. See
Section 1.2 for an overview of the construction and its proof, and Section 3 for the full details.

1[GGH+13b] provide a proof of security in a more restricted “generic colored matrix model”.

3

The Generic Graded Encoding Scheme Model. We prove that our construction is a black-
box obfuscator in the generic graded encoding scheme model. In this model, an adversary must
operate independently of group elements’ representations. The adversary is given arbitrary strings
representing these elements, and can only manipulate them using oracles for addition, subtraction,
multilinear operations and more. See Section 2.5 for more details.

The Bounded Speedup Hypothesis. We prove security based on the Bounded Speedup Hy-
pothesis, as introduced by [BR13b]. This is a worst-case assumption about exponential hardness of
3SAT, a strengthening of the long-standing exponential time hypothesis (ETH) for solving 3SAT
[IP99]. The exponential-time hypothesis states that no sub-exponential time algorithm can re-
solve satisfiability of 3CNF formulas. Intuitively, the bounded-speedup hypothesis states that
no polynomial-time algorithm for resolving satisfiability of 3CNFs can have “super-polynomial
speedup” over a brute-force algorithm that tests assignments one-by-one. More formally, there
does not exist an ensemble of polynomial-size circuits {An}, and an ensemble of super-polynomial-
size sets of assignments {Xn}, such that on input a 3CNF Φ on n-bit inputs, w.h.p. An finds a
satisfying assignment for Φ in Xn if such an assignment exists. We emphasize that this is a worst-
case hypothesis, i.e. it only says that for every ensemble A, there exists some 3CNF on which A
fails. See Section 2.2 for the formal definition.2

Perspective. Barak et al. [BGI+12] show that there are function families that are impossible
to obfuscate under the black-box security definition. Their results do not apply to idealized models
such as the random oracle model, the generic group model, and the generic graded encoding model.
This is because their adversary needs to be able to execute the obfuscated circuit on parts of its own
explicit description. In idealized models, the obfuscated circuit does not have a succinct explicit
description, and so these attacks fail. Indeed, our main result, Theorem 1.1, shows that general-
purpose black-box obfuscation is possible in the generic graded encoding model (under plausible
assumptions). How should one interpret this result in light of the impossibility theorems?

One immediate answer, is that if one implements a graded encoding scheme using opaque
secure hardware (essentially implementing the generic model), then the hardware can be used
to protect any functionality (under plausible assumptions). The hardware is (arguably) natural,
simple, stateless, and independent of the functionality being obfuscated.

Another answer, is that the security proof shows that (under plausible assumptions) our obfus-
cator is provably resilient to attacks from a rich family: namely, to all attacks that are independent
of the encoding scheme’s instantiation. While we find this guarantee to be of value, we caution that
it should not be over-interpreted. The results of [BGI+12] imply that, for any concrete instantia-
tion of the graded encoding scheme, the obfuscation of their unobfuscatable functions is not secure.
In particular, their result (applied to our construction) provides a non-generic attack against any
graded encoding candidate. This is similar to the result of [CGH98], showing an attack against any
instantiation of a random oracle in a particular protocol. Somewhat differently from their result,
however, in our case the primitive in question is impossible altogether in the standard model, as
opposed to not achievable by a specific construction with arbitrary instantiations of the idealized
model. We find this state of affairs to be of interest, even irrespective of the applications to code
obfuscation.

2We note that if both the adversary and the simulator are allowed to run in quasi-polynomial time, security can
be based on the (standard) Exponential-Time Hypothesis.

4

Taking a more optimistic view, the new construction invites us to revisit limits in the negative
results: both in the unobfuscatable functionalities, and in the nature of the attacks themselves. It
may suggest new relaxations that make obfuscation achievable in standard models, e.g. obfuscating
functionalities that inherently do not allow self-execution, or protecting against a class of attackers
that cannot execute the obfuscated code on itself.

Finally, the relaxed notion of indistinguishability obfuscation, where only limited hardness and
impossibility results are known, remains a promising avenue for future research. Our construction
is the first provably secure indistinguishability obfuscator in the generic graded encoding model
(under the bounded speedup hypothesis). It is interesting to explore whether indistinguishability
obfuscation can be proved in the standard model under falsifiable assumptions.

1.2 Construction Overview

We proceed with an overview of the main step in our construction: an obfuscator for NC1. We are
assuming basic familiarity with graded encoding schemes. The full construction, and proof of its
security in the generic model, are in Section 3.

Permutation Branching Programs. The obfuscator NC1Obf takes as input an NC1 program,
represented as an oblivious width 5 permutation branching program C, as in [GGH+13b]. Let m
denote the depth of C (as is necessary, we allow the obfuscator to expose m or some upper bound
thereof). Let C = {Mj,0,Mj,1}j∈[m], where Mj,b ∈ {0, 1}5×5 are matrices, and let i = `(j) indicate
which variable xi controls the jth level branch. See Section 2.1 for more background on (oblivious)
branching programs.

Graded Encoding Schemes. The obfuscator makes (extensive) use of an asymmetric graded
encoding schemes. Similarly to [GGH+13b], we assign a group progj to each level j of the branching
program, and encode the matrices Mj,b in the group progj . This encoding is done as in [BR13a,
BR13b]: we encode each matrix Mj,b relative to a unique generator of progj (denoted ρprogj ,b), and
also provide an encoding of the generators. This will prove to be useful in the security proof. In
other words, in the j-th group progj , we have two pairs:

(ρprogj ,0, (ρprogj ,0 ·Mj,0)) and (ρprogj ,0, (ρprogj ,0 ·Mj,0))

Randomizing The Matrices. As computed above, the encoded pairs clearly hide nothing: Mj,b

are binary matrices, and so they are completely revealed (via zero-testing). As a first step, we use the
NC1 randomization technique (see [Bab85, Kil88, FKN94]), as was done in [GGH+13b] (however,
unlike [GGH+13b], we don’t need to extend the matrix dimensions beyond 5 × 5). The idea is
to generate a sequence of random matrices Yj (over the ring R underlying the encoding scheme),
and work with encodings of Nj,b = Y−1

j−1 ·Mj,b · Yj instead of the original Mj,b. This preserves
the program’s functional behavior, but each matrix, examined in isolation, becomes completely
random. In fact, even if we take one matrix out of each pair, the joint distribution of these m
matrices is uniformly random (see Section 2.1).

There is an obstacle here, because using the standard graded encoding interface, we can generate
a random level 0 encoding of Y, but we cannot derive Y−1 (in fact, this is not possible even for
scalars). Indeed, to perform this step, [GGH+13b] rely on the properties of a specific graded
encoding instantiation. We propose a difference solution that works with any graded encoding

5

scheme: instead of Y−1, we use the adjoint matrix Z = adj(Y), which is composed of determinants
of minors of Y, and is therefore computable given the level 0 encoding of Y. We know that
Y · Z = det(Y) · I, which will be sufficient for our purposes.3 Thus, in the j-th group progj , we
encode the two pairs

(ρprogj ,b, (ρprogj ,b · Nj,b))b∈{0,1}, where Nj,b = Zj−1 ·Mj,b · Yj

To efficiently evaluate this program, we need an additional group, which we denote by chk. In
this group we encode a random generator ρchk, and the element (ρchk · (

∏
j det(Yj)) · Ym[1, 1]). We

evaluate the branching program using the graded encoding scheme’s zero-test feature, by checking
whether:(

(ρprog1,x`(1)
N1,x`(1)

) · · · (ρprogm,x`(m)
Nm,x`(m)

) · ρchk
)

[1, 1]−

ρprog1,x`(1)
· · · ρprogm,x`(m)

· (ρchk · (
∏
j

det(Yj)) · Ym[1, 1]) = 0 .

This provides the required functionality, but it does not provide a secure construction.

Enforcing Consistency. An obvious weakness of the above construction is that it does not
verify consistency. For a variable xi that appears multiple time in the program, the above scheme
does not enforce that the same value will be used at all times. This will be handled, similarly to
[GGH+13b, BR13b], by adding consistency check variables. In each group grp that is “associated”
with a variable xi (so far, these only include groups of the form progj s.t. `(j) = i), the obfuscator
generates two random variables βgrp,i,0 and βgrp,i,1, and multiplies the relevant variables. Namely,
in group progj with `(j) = i, we provide encodings of

(ρprogj ,b, (ρprogj ,b · βprogj ,i,b · Nj,b))b∈{0,1}
To preserve functionality, we would like to choose the β variables so that the product of all zero-
choices and the product of all one-choices are the same (one might even consider imposing a
constraint that the product is 1). For clarity of exposition, we prefer the following solution: we use
an additional auxiliary group cci for every variable xi, such that

βcci,0 = β′cci ·
∏

j:`(j)=i

βprogj ,1 ,

and vice versa (and β′cci is the same for both cases). This guarantees that the product of all
zero-choices, and the product of all one-choices, is the same. We denote this value by γi.

To preserve functionality, we multiply the element in the chk group by
∏
i γi. Now in the chk

group we have encodings of:

(ρchk, (ρchk ·
∏
i

γi · (
∏
j

det(Yj)) · Ym[1, 1]))

Intuitively, it seems that this change renders inconsistent assignments useless: if, for some bit i
of the input, the β values for i are not all taken according to the same value (0 or 1), then the
constraint does not come into play. Therefore, the β values completely randomize these selected
values.

3We use here the fact that all matrices we work with are of constant dimension, and so we can compute the
determinants of the minors in polynomial time while using only multilinear operations.

6

Enforcing Simulatability. One could postulate that the above construction is secure. In fact,
we do not know of an explicit generic-model attack on this construction. Still, there are challenges
to constructing a simulator. The crux of the difficulty is that an attacker might somehow efficiently
produce a multilinear expression that corresponds to the evaluation of multiple (super-polynomially
many) consistent inputs at the same time (or some function of super-polynomially many inputs:
e.g. checking if the circuit accepts all of them simultaneously). This would break the obfuscator’s
security, since an (efficient) simulator cannot evaluate the function on super-polynomially many
inputs.

To address this, we build on the randomizing sub-assignments technique from [BR13b]. Here,
we use this idea to bind the variables together into triples. This done by adding

(
n
3

)
additional

groups, denoted bindT , where T ∈
(

[n]
3

)
(i.e. one for each triple of variables). The group bindT is

associated with the triple of variables {i1, i2, i3} ∈ T , and contains 8 pairs of encodings:

(ρbindT ,b1b2b3 , (ρbindT ,b1b2b3 · βbindT ,i1,b1 · βbindT ,i2,b2 · βbindT ,i3,b3))b1b2b3∈{0,1}3

In evaluating the program on an input x, for each group bindT , the evaluator chooses one of these
8 pairs according to the bits of x|T . The aforementioned consistency variables βcci,b will now take
these new β’s into account, and will accordingly be computed as

βcci,0 = β′cci ·
∏

j:`(j)=i

βprogj ,1 ·
∏
T :i∈T

βbindT ,i,1 ,

and vice versa. The γi values are modified in the same way.
Intuitively, in order to evaluate the program, the adversary now needs not only to consistently

choose the value of every single variable, but also to jointly commit to the values of each triple, con-
sistently with its choices for the singleton variables. We show that if a polynomial adversary is able
to produce an expression that corresponds to a sum of superpolynomially many consistent evalua-
tions, then it can also evaluate a 3SAT formula on superpoynomially many values simultaneously,
which contradicts the bounded speedup hypothesis (BSH, see Section 2.2).

A Taste of the Security Proof. The (high-level) intuition behind the security proof is as
follows. In the idealized generic graded encoding scheme model, an adversary can only compute
(via the encoding scheme) multilinear arithmetic circuits of the items encoded in the obfuscation.
Moreover, the expansion of these multilinear circuits into a sum-of-monomials form, will only have
one element from each group in each monomial (note that this expansion may be inefficient and
the number of monomials can even be exponential). We call this a cross-linear polynomial.

The main challenge for simulation is “zero testing” of cross linear polynomials, given their
circuit representation:4 determining whether or not a polynomial f computed by the adversary
takes value 0 on the items encoded in the obfuscation. We note that this is where we exploit the
generic model—it allows us to reason about what functions the adversary is computing, and to
assume that they have the restricted cross-linear form. We also note that zero-testing is a serious
challenge, because the simulator does not know the joint distribution of the items encoded in
the obfuscation (their joint distribution depends on the branching program C in its entirety). See
Section 3.1 for details on the simulator and on why zero testing is the main challenge for simulation.

4In fact, all we need is black-box access to the polynomial, and the guarantee that it is computable by a polynomial-
size arithmetic circuit.

7

A cross-linear polynomial f computed by the adversary can be decomposed using monomials
that only depend on the ρ variables in the construction outlined above. f must be a sum of such “ρ-
monomials”, each multiplied with a function of the other variables (the variables derived from the
matrices of the branching program and the randomized elements used in the obfuscation). Because
of the restricted structure of these ρ-monomials, they each implicitly specify an assignment to every
program group progj (a bit value for the `(j)-th bit), every binding group bindT (a triple of bit
values for the input bits in T), and every consistency variable cci (a bit value for the i-th bit). We
say that the assignment is full and consistent, if all of these groups are assigned appropriate values,
and the value assigned to each bit i (0 or 1) is the same in throughout all the groups. We show
that if a polynomial f computed by the adversary contains even a single such ρ-monomial that is
not full and consistent, then it will not take 0 value (except with negligible probability over the
obfuscator’s coins), and thus it can be simulated. Further, if f contains only full and consistent
ρ-monomials, the simulator can isolate each of these monomials, discover the associated full and
consistent input assignment, and then zero-test f .

The main remaining concern, as hinted at above, is that f might have super-polynomially many
full and consistent ρ-monomials. Isolating these monomials as described above would then take
super-polynomial time (whereas we want a polynomial time black-box simulator). Intuitively, this
corresponds to an adversary that can test some condition on the obfuscated circuit’s behavior over
super-polynomially many inputs (which the black-box simulator cannot do). Let X ⊆ {0, 1}n
denote the (super-polynomial) set of assignments associated with the above ρ-monomials. We
show that given such f (even via black-box access), it is possible to test whether any given 3CNF
formula Φ has a satisfying assignment in X. This yields a worst-case “super-polynomial speedup”
in solving 3SAT. Since the alleged f is computable by a polynomial size arithmetic circuit, we get
a contradiction to the Bounded Speedup Hypothesis.

This connection to solving 3SAT is proved by building on the “randomizing sub-assignment”
technique from [BR13b] and the groups bindT . The intuition is as follows. The generic adversary
implicitly specifies a polynomial-size arithmetic circuit that computes the function f . Recall that
f has many full and consistent ρ-monomials, each associated with an input x ∈ X ⊆ {0, 1}n. For a
given 3CNF formula Φ, we can compute a restriction of f by setting some of the variables ρbindT ,i,~v
to 0, in a way that “zeroes out” every ρ-monomial associated with an input x ∈ X that does not
satisfy Φ, which is possible since the binding variables correspond exactly to all possible clauses in
a 3CNF formula (see below). We then test to see whether or not the restricted polynomial (which
has low degree) is identically 0, i.e. whether any of the ρ-monomials were not “zeroed out” by the
above restriction. This tells us whether there exists x ∈ X that satisfies Φ.

All that remains is to compute the restriction claimed above. For every clause in the 3CNF
formula Φ, operating on variables T = {i1, i2, i3}, there is an assignment ~v ∈ {0, 1}3 that fails to
satisfy the clause. For each such clause, we set the variable ρbindT ,~v to be 0. This effectively “zeroes
out” all of the ρ-monomials whose associated assignments do not satisfy Φ (i.e., the ρ-monomials
whose assignments simultaneously fail to satisfy all clauses in Φ).

The full construction and security proof are in Section 3.

8

2 Preliminaries

For all n, d ∈ N we define
([n]
d

)
to be the set of lexicographically ordered sets of cardinality d in [n].

More formally: (
[n]

d

)
=
{
〈i1, . . . , id〉 ∈ [n]d : i1 < · · · < id

}
.

Note that
∣∣∣([n]

d

)∣∣∣ =
(
n
d

)
.

For ~x ∈ {0, 1}n and I = 〈i1, . . . , id〉 ∈
([n]
d

)
, we let ~x|I ∈ {0, 1}d denote the vector 〈~x[i1], . . . , ~x[id]〉.

We often slightly abuse notation when working with ~s = ~x|I , and let ~s[ij] denote the element x[ij]
(rather than the ijth element in ~s).

2.1 Branching Programs and Randomizations

A width-5 length-m permutation branching program C for n-bit inputs is composed of: a sequence
of pairs of permutations represented as 0/1 matrices (Mj,v ∈ {0, 1}5×5)j∈[m],v∈{0,1}, a labelling
function ` : [m] → [n], an accepting permutation Qacc, and a rejecting permutation Qrej s.t.
QTacc · ~e1 = ~e1 and QTrej · ~e1 6= ~ek for k 6= 1.

For an input ~x ∈ {0, 1}, taking P =
∏
j∈[m]Mj,~x[`(j)], the program’s output is 1 iff P = Qacc,

and 0 iff P = Qrej. If P is not equal to either of these permutations, then the output is undefined
(this will never be the case in any construction we use).

Barrington’s Theorem [Bar86] shows that any function in NC1, i.e. a function that can be com-
puted by a circuit of depth d can be computed by a permutation branching program of length 4d.
Moreover, the theorem is constructive, and gives an algorithm that efficiently transforms any
depth d circuit into a permutation branching program in time 2O(d). This program can be made
oblivious, in the sense that its labeling function is independent of the circuit C (and depends only
on its depth), at the cost of an O(n)-factor increase in the length. An immediate implication is
that NC1 circuits, which have depth d(n) = log(n), can be transformed into polynomial length
branching program, in polynomial time.

Theorem 2.1 (Barrington’s Theorem [Bar86]). For any circuit depth d and input size n, there
exists a length m = O(n · 4d), a labeling function ` : [m]→ [n], an accepting permutation Qacc and
a rejecting permutation Qrej, s.t. the following holds. For any circuit with input size n, depth d and
fan-in 2, which computes a function f , there exists a permutation branching program of length m
that uses the labeling function `(·), has accepting permutation Qacc and rejecting permutation Qrej,
and computes the same function f .

The permutation branching program is computable in time poly(m) given the circuit description.

Randomized Branching Programs. Permutation branching programs are amenable to ran-
domization techniques that have proved very useful in cryptography and complexity theory [Bab85,
Kil88, FKN94, AIK06]. The idea is to “randomize” each matrix pair while preserving the program’s
functional behavior. Specifically, taking p to be a large prime, for i ∈ [m] multiply the i-th matrix
pair (on its right) by a random invertible matrix Yi ∈ Z∗p5×5, and multiply the (i + 1)-th pair by

Y−1
i (on its left). This gives a new branching program:

(Nj,v)j∈[m],v∈{0,1} : Nj,v = (Y−1
j−1 ·Mj,v · Yj)

9

(where we take Y−1
0 to be the identity). The new randomized program preserves functionality in

the sense that intermediate matrices cancel out. For an input ~x ∈ {0, 1}n, taking P =
∏
j Nj,v,

the program accepts ~x if P = (Qacc · Ym) (or, equivalently P [1, 1] = Ym[1, 1]) and rejects ~x if
P = (Qrej · Ym) (or, equivalently, P [1, 1] = Ym[k, 1], for k 6= 1). We note that there is a negligible
probability of error due to the multiplication by Ym. In terms of randomization, one can see that for
any assignment y : [m]→ {0, 1}, the collection of matrices (Nj,y(j))j∈[m] are uniformly random and
independent invertible matrices. We note that this holds even if y is not a “consistent” assignment:
for j, j′ ∈ [m] : `(j) = `(j′) = i, y can assign different values to j and j′ (corresponding to an
inconsistent assignment to the i-th bit of ~x).

Implementing the randomization idea over graded encoding schemes (see Section 2.4) is not
immediate, because we do not know an efficient procedure for computing inverses, and we also
do not know how to sample random invertible matrices. To handle these difficulties, we utilize a
variant of the above idea (see the discussion in Section 1.2).

Instead of Y−1
j , we use the adjoint matrix Zj = adj(Yj), which is composed of determinants of

minors of Y, and satisfies Y · Z = det(Y) · I. We take:

(Nj,v)j∈[m],v∈{0,1} : Nj,v = (Zj−1 ·Mj,v · Yj)

(where Z0 is again the identity matrix). Observe that for ~x ∈ {0, 1}n, taking P =
∏
j Nj,v, the pro-

gram accepts ~x if P [1, 1] = ((
∏
j∈[m−1] det(Yj))·Ym)[1, 1] and rejects ~x if P [1, 1] = ((

∏
j∈[m−1] det(Yj))·

Ym)[k, 1]. It is not hard to see that this also preserves the randomization property from above. The
only remaining subtlety is that we do not know how to pick a uniformly random invertible matrix
(without being able to compute inverses). This is not a serious issue, because for a large enough
prime p, we can simply sample uniformly random matrices in Zp5×5, and their joint distribution
will be statistically close to uniformly random and invertible matrices.

Lemma 2.2 (Randomized Branching Programs). For security parameter λ ∈ N, let pλ be a prime in
[2λ, 2λ+1]. Fix a length-` permutation branching program, and let y : [m]→ {0, 1} be any assignment
function. Let (Yj)j∈[m] be chosen uniformly at random from Zp5×5, and for j ∈ [m], v ∈ {0, 1} take
Nj,v = (Zj−1 ·Mj,v · Yj). (where Z0 is the identity matrix).

Then the joint distribution of (Nj,y(j))j∈[m] is negl(λ)-statistically close to uniformly random
and independent.

2.2 The Bounded Speedup Hypothesis (BSH)

The Bounded Speedup Hypothesis was introduced in [BR13b] as a strengthening of the exponential
time hypothesis (ETH). Formally, the hypothesis is as follows.

Definition 2.3 (X -3-SAT Solver). Consider a family of sets X = {Xn}n∈N such that Xn ⊆ {0, 1}n.
We say that an algorithm A is a X -3-SAT solver if it solves the 3-SAT problem, restricted to inputs
in X . Namely, given a 3-CNF formula Φ : {0, 1}n → {0, 1}, A finds whether there exists x ∈ Xn

such that Φ(x) = 1.

Assumption 2.4 (Bounded Speedup Hypothesis). There exists a polynomial p(·), such that for
any X -3-SAT solver that runs in time t(·), the family of sets X is of size at most p(t(·)).

The plausibility of this assumption is discussed in [BR13b, Appendix A], where it is shown that
a quasi-polynomial variant of BSH follows from ETH. Further evidence comes from the field of
parameterized complexity.

10

2.3 Obfuscation

Definition 2.5 (Virtual Black-Box Obfuscator [BGI+12]). Let C = {Cn}n∈N be a family of
polynomial-size circuits, where Cn is a set of boolean circuits operating on inputs of length n.
And let O be a PPTM algorithm, which takes as input an input length n ∈ N, a circuit C ∈ Cn, a
security parameter λ ∈ N, and outputs a boolean circuit O(C) (not necessarily in C).
O is an obfuscator for the circuit family C if it satisfies:

1. Preserving Functionality: For every n ∈ N, and every C ∈ Cn, and every ~x ∈ {0, 1}n, with all
but negl(λ) probability over the coins of O:

(O(C, 1n, λ))(~x) = C(~x)

2. Polynomial Slowdown: For every n, λ ∈ N and C ∈ C, the circuit O(C, 1n, 1λ) is of size at
most poly(|C|, n, λ).

3. Virtual Black-Box: For every (non-uniform) polynomial size adversary A, there exists a (non-
uniform) polynomial size simulator S, such that for every n ∈ N and for every C ∈ Cn:∣∣ Pr

O,A
[A(O(C, 1n, 1λ)) = 1]− Pr

S
[SC(1|C|, 1n, 1λ) = 1]

∣∣ = negl(λ)

Remark 2.6. A stronger notion of functionality, which also appears in the literature, requires that
with overwhelming probability the obfuscated circuit is correct on every input simultaneously. We
use the relaxed requirement that for every input (individually) the obfuscated circuit is correct with
overwhelming probability (in both cases the probability is only over the obfuscator’s coins). We note
that our construction can be modified to achieve the stronger functionality property (by using a ring
of sufficiently large size and the union bound).

2.4 Graded Encoding Schemes

We begin with the definition of a graded encoding scheme, due to Garg, Gentry and Halevi [GGH13a].
While their construction is very general, for our purposes a more restricted setting is sufficient as
defined below.

Definition 2.7 (τ -Graded Encoding Scheme [GGH13a]). A τ -encoding scheme for an integer τ ∈ N
and ring R, is a collection of sets S = {S(α)

~v ⊂ {0, 1}∗ : ~v ∈ {0, 1}τ , α ∈ R} with the following
properties:

1. For every index ~v ∈ {0, 1}τ , the sets {S(α)
~v : α ∈ R} are disjoint, and so they are a partition

of the indexed set S~v =
⋃
α∈R S

(α)
~v .

In this work, for a 5× 5 matrix Y, we use S
(Y)
~v to denote the set of 5× 5 matrices where for

all i, j ∈ [5], the matrix’s [i, j]-th entry contains an element in S
(Y[i,j])
~v .

2. There are binary operations “+” and “−” such that for all ~v ∈ {0, 1}τ , α1, α2 ∈ R and for all

u1 ∈ S(α1)
~v , u2 ∈ S(α2)

~v :

u1 + u2 ∈ S(α1+α2)
~v and u1 − u2 ∈ S(α1−α2)

~v ,

where α1 + α2 and α1 − α2 are addition and subtraction in R.

11

3. There is an associative binary operation “×” such that for all ~v1, ~v2 ∈ {0, 1}τ such that

~v1 + ~v2 ∈ {0, 1}τ , for all α1, α2 ∈ R and for all u1 ∈ S(α1)
~v1

, u2 ∈ S(α2)
~v2

, it holds that

u1 × u2 ∈ S(α1·α2)
~v1+~v2

,

where α1 · α2 is multiplication in R.

In this work, the ring R will always be Zp for a prime p.

For the reader who is familiar with [GGH13a], we note that the above is the special case of
their construction, in which we consider only binary index vectors (in the [GGH13a] notation, this
corresponds to setting κ = 1), and we construct our encoding schemes to be asymmetric (as will
become apparent below when we define our zero-text index vzt = ~1).

Definition 2.8 (Efficient Procedures for a τ -Graded Encoding Scheme [GGH13a]). We consider
τ -graded encoding schemes (see above) where the following procedures are efficiently computable.

• Instance Generation: InstGen(1λ, 1τ) outputs the set of parameters params, a description of
a τ -Graded Encoding Scheme. (Recall that we only consider Graded Encoding Schemes over
the set indices {0, 1}τ , with zero testing in the set S~1). In addition, the procedure outputs
a subset evparams ⊂ params that is sufficient for computing addition, multiplication and
zero testing5 (but possibly insufficient for encoding or for randomization).

• Ring Sampler: samp(params) outputs a “level zero encoding” a ∈ S(α)
0 for a nearly uniform

α ∈R R.

• Encode and Re-Randomize:6 encRand(params, i, a) takes as input an index i ∈ [τ] and

a ∈ S(α)
0 , and outputs an encoding u ∈ S(α)

~ei
, where the distribution of u is (statistically close

to being) only dependent on α and not otherwise dependent of a.

• Addition and Negation: add(evparams, u1, u2) takes u1 ∈ S
(α1)
~v , u2 ∈ S

(α2)
~v , and outputs

w ∈ S(α1+α2)
~v . (If the two operands are not in the same indexed set, then add returns ⊥).

We often use the notation u1 + u2 to denote this operation when evparams is clear from the

context. Similarly, negate(evparams, u1) ∈ S(−α1)
~v .

• Multiplication: mult(evparams, u1, u2) takes u1 ∈ S(α1)
~v1

, u2 ∈ S(α2)
~v2

. If ~v1 + ~v2 ∈ {0, 1}τ (i.e.

every coordinate in ~v1 + ~v2 is at most 1), then mult outputs w ∈ S(α1·α2)
~v1+~v2

. Otherwise, mult
outputs ⊥. We often use the notation u1 × u2 to denote this operation when evparams is
clear from the context.

• Zero Test: isZero(evparams, u) outputs 1 if u ∈ S(0)
~1

, and 0 otherwise.

In the [GGH13a, CLT13] constructions, encodings are noisy and the noise level increases with
addition and multiplication operations, so one has to be careful not to go over a specified noise

5The “zero testing” parameter pzt defined in [GGH13a] is a part of evparams.
6This functionality is not explicitly provided by [GGH13a], however it can be obtained by combining their encoding

and re-randomization procedures.

12

bound. However, the parameters can be set so as to support O(τ) operations, which are sufficient for
our purposes. We therefore ignore noise management throughout this manuscript. An additional
subtle issue is that with negligible probability the initial noise may be too big. However this can
be avoided by adding rejection sampling to samp and therefore ignored throughout the manuscript
as well.

As was done in [BR13a, BR13b], our definition deviates from that of [GGH13a]. We define
two sets of parameters params and evparams. While the former will be used by the obfuscator
in our construction (and therefore will not be revealed to an external adversary), the latter will
be used when evaluating an obfuscated program (and thus will be known to an adversary). When
instantiating our definition, the guideline is to make evparams minimal so as to give the least
amount of information to the adversary. In particular, in the known candidates [GGH13a, CLT13],
evparams only needs to contain the zero-test parameter pzt (as well as the global modulus).

2.5 The Generic Graded Encoding Scheme Model

We would like to prove the security of our construction against generic adversaries. To this end,
we will use the generic graded encoding scheme model, which was previously used in [?], and is
analogous to the generic group model (see Shoup [Sho97] and Maurer [Mau05]). In this model, an
algorithm/adversary A can only interact with the graded encoding scheme via oracle calls to the
add, mult, and isZero operations from Definition 2.8. Note that, in particular, we only allow access
to the operations that can be run using evparams. To the best of our knowledge, non-generic
attacks on known schemes, e.g. [GGH13a], require use of params and cannot be mounted when
only evparams is given.

We use G to denote an oracle that answers adversary calls. The oracle operates as follows:

for each index ~v ∈ {0, 1}τ , the elements of the indexed set S~v =
⋃
α∈R S

(α)
~v are arbitrary binary

strings. The adversary A can manipulate these strings using oracle calls (via G) to the graded
encoding scheme’s functionalities. For example, the adversary can use G to perform an add call:

taking strings s1 ∈ S(α1)
~v , s2 ∈ S(α2)

~v , encoding indexed ring elements (~v, α1), (~v, α2) (respectively),

and obtaining a string s ∈ S(α1+α2)
~v , encoding the indexed ring element (~v, (α1 + α2)).

We say that A is a generic algorithm (or adversary) for a problem on graded encoding schemes
(e.g. for computing a moral equivalent of discreet log), if it can accomplish this task with respect
to any oracle representing a graded encoding scheme, see below.

In the add example above, there may be many strings/encodings in the set S
(α1+α2)
~v . One

immediate question is which of these elements should be returned by the call to add. In our
abstraction, for each ~v ∈ {0, 1}τ and α ∈ R, G always uses a single unique encoding of the indexed
ring element (~v, α). I.e. the set Sα~v is a singleton. Thus, the representation of items in the graded
encoding scheme is given by a map σ(~v, α) from ~v ∈ {0, 1}τ and α ∈ R, to {0, 1}∗. We restrict our
attention to the case where this mapping has polynomial blowup.

Remark 2.9 (Unique versus Randomized Representation). We note that the known candidates of
secure graded encoding schemes [GGH13a, CLT13] do not provide unique encodings: their encodings
are probabilistic. Nonetheless, in the generic graded encoding scheme abstraction we find it helpful to
restrict our attention to schemes with unique encodings. For the purposes of proving security against
generic adversaries, this makes sense: a generic adversary should work for any implementation of
the oracle G, and in particular also for an implementation that uses unique encodings.

13

Moreover, our perspective is that unique encodings are more “helpful” to an adversary than ran-
domized encodings: a unique encoding gives the adversary the additional power to “automatically”
check whether two encodings are of the same indexed ring element (without consulting the oracle).
Thus, we prefer to prove security against generic adversaries even for unique representations.

It is important to note that the set of legal encodings may be very sparse within the set of
images of σ, and indeed this is the main setting we will consider when we study the generic model.
In this case, the only way for A to obtain a valid representation of any element in any graded set
is via calls to the oracle (except with negligible probability). Finally, we note that if oracle calls
contain invalid operators (e.g. the input is not an encoding of an element in any graded set, the
inputs to add are not in the same graded set, etc.), then the oracle returns ⊥.

Random Graded Encoding Scheme Oracle. We focus on a particular randomized oracle:
the random generic encoding scheme (GES) oracle RG. RG operates as follows: for each indexed
ring element (with index ~v ∈ {0, 1}τ and ring element σ ∈ R), its encoding is of length ` =
(|τ | · log |R| ·poly(λ)) (where |τ | is the bit representation length of τ). The encoding of each indexed
ring element is a uniformly random string of length `. In particular, this implies that the only way
that A can obtain valid encodings is by calls to the oracle RG (except with negligible probability).

The definition of secure obfuscation in the random GES model is as follows.

Definition 2.10 (Virtual Black-Box in the Random GES Model). Let C = {Cn}n∈N be a family of
circuits and O a PPTM as in Definition 2.5.

A generic algorithm ORG is an obfuscator in the random generic encoding scheme model, if it
satisfies the functionality and polynomial slowdown properties of Definition 2.5 with respect to C
and to any GES oracle RG, but the virtual black-box property is replaced with:

3. Virtual Black-Box in the Random GES Model: For every (non-uniform) polynomial size
generic adversary A, there exists a (non-uniform) generic polynomial size simulator S, such
that for every n ∈ N and every C ∈ Cn:∣∣(Pr

RG,O,A
[ARG(ORG(C, 1n, 1λ))] = 1)− (Pr

RG,S
[SC(1|C|, 1n, 1λ)] = 1)

∣∣ = negl(λ)

We remark that while it makes sense to allow S to access the oracle RG, this is in fact not
necessary. This is since RG can be implemented in polynomial time (as described below), and
therefore S can just implement it by itself.

Online Random GES Oracle. In our proof, we will use the property that the oracle RG can be
approximated to within negligible statistical distance by an online polynomial time process, which
samples the representations on-the-fly. Specifically, the oracle will maintain a table of entries of

the form (~v, α, label~v,α), where label~v,α ∈ {0, 1}` is the representation of S
(α)
~v in RG (the table is

initially empty). Every time RG is called for some functionality, it checks that its operands indeed
correspond to an entry in the table, in which case it can retrieve the appropriate (~v, α) to perform
the operation (if the operands are not in the table, RG returns ⊥). Whenever RG needs to return a

value S
(α)
~v , it checks whether (~v, α) is already in the table, and if so returns the appropriate label~v,α.

Otherwise it samples a new uniform label, and inserts a new entry into the table.

14

When interacting with an adversary that only makes a polynomial number of calls, the online
version of RG is within negligible statistical distance of the offline version (in fact, the statistical
distance is exponentially small in λ) . This is because the only case when the online oracle imple-
mentation differs from the offline one is when when the adversary guesses a valid label that it has
not seen (in the offline setting). This can only occur with exponentially small probability due to
the sparsity of the labels. The running time of the online oracle is polynomial in the number of
oracle calls.

3 Obfuscating NC1

See Section 1.2 for an overview of the construction. We proceed with a formal description of the
obfuscator. Functionality follows by construction, virtual black-box security is proved in Section 3.1
below.

Obfuscator NC1Obf, on input (1λ, 1n, C = (. . . , (Mj,0,Mj,1), . . .)j∈[m])

Input: Security parameter λ; Number of input variables n; Oblivious permutation branching
program C (with labeling function `), where (Mj,b)j∈[m],b∈{0,1} are 5× 5 permutation matrices. Let
Qacc, Qrej be the accepting and rejecting permutations for C (see Section 2.1).

Output: Obfuscated program for C.

Execution:

1. Generate asymmetric encoding scheme.

Generate (params, evparams)← InstGen(1λ, 1τ), where τ = m+ n+
(
n
3

)
+ 1.

Namely, we have τ level-1 groups. As explained above, we denote these groups as follows:

• Groups 1, . . . ,m are related to the execution of the branching program and are denoted
prog1, . . . , progm.

• Groups m+ 1, . . . ,m+ n are related to consistency check and are denoted cc1, . . . , ccn.

• Groups m+ n+ 1, . . . ,m+ n+
(
n
3

)
are used to bind triples of variables and are denoted

bindT , for T ∈
(

[n]
3

)
.

• Lastly, the group m+ n+
(
n
3

)
+ 1 is the check group and is denoted chk.

We let L(i) denote the set of groups that are related to the ith variable:

L(i) = {progj : i = `(j)} ∪ {bindT : i ∈ T} ∪ {cci} .

We let L denote the set of all groups: L = ∪i∈[n]L(i) ∪ chk.

2. Generate consistency check variables.

For all i ∈ [n]:

15

(a) for each grp ∈ (L(i) \ {cci}) and v ∈ {0, 1}: bgrp,i,v ← samp(params) ∈ S(βgrp,i,v)
0 . 7

(b) b′cci ← samp(params) ∈ S
(β′cci)

0

for v ∈ {0, 1}: bcci,i,v ← b′cci ×
(∏

grp∈(L(i)\{cci}) bgrp,i,(1−v)

)
∈ S(βcci,v)

0

(c) ci ←
∏

grp∈L(i) bgrp,i,0 ∈ S
(γi)
0 , where γi =

∏
grp∈L(i) βgrp,i,0 =

∏
grp∈L(i) βgrp,i,1

3. Generate randomizing matrices.

For each j ∈ [m]:

Sample Yj ← samp(params)5×5 ∈ S(Yj)
0 ,

and compute Zj = adj(Yj) ∈ S
(Zj)
0 , s.t. Yj · Zj = det(Yj) · I

We formally define Z0 = I.

4. Encode elements in program groups (prog).

For each j ∈ [m] and v ∈ {0, 1} :

Dprogj ,v ← bprogj ,v · (Zj−1 ×Mj,v × Yj) ∈ S
(Dj,v)
0 , where Dj,v = (βprogj ,v · (Zj−1 ·Mj,v · Yj)︸ ︷︷ ︸

Nj,v

)

rprogj ,v ← samp(params) ∈ S
(ρprogj ,v)

0 , Kprogj ,v ← (ρprogj ,v ×Dj,v) ∈ S
(ρprogj ,v ·Dj,v)

0

wprogj ,v ← encRand(params, progj , rj,v) ∈ S
(ρprogj ,v)

~eprogj
,

Uprogj ,v ← encRand(params, progj ,Kprogj ,v) ∈ S
(ρprogj ,v ·Dj,v)

~eprogj

5. Encode elements in consistency check groups (cc).

For each i ∈ [n] and v ∈ {0, 1}:

dcci,v ← bcci,~v[i] ∈ S
(δcci,v)
0 , where δcci,v = βcci,v.

rcci,v ← samp(params) ∈ S(ρcci,v)
0 , qcci,v ← (rcci,v · dcci,v) ∈ S

(ρcci,v ·δcci,v)
0

wcci,v ← encRand(params, cci, rcci,v) ∈ S
(ρcci,v)

~ecci

ucci,v ← encRand(params, cci, qcci,v) ∈ S
(ρcci,v ·δcci,v)

~ecci

7For notational convenience, we drop i when it is uniquely defined by grp. E.g., we use βprogj ,v to refer to βprogj ,`(j),v.

16

6. Encode elements in binding groups (bind).

For each T ∈
(

[n]
3

)
and ~v ∈ {0, 1}3:

dbindT ,~v ← (
∏
i∈T bbindT ,i,~v[i]) ∈ S

(δbindT ,~v)

0 , where δbindT ,~v =
∏
i∈T βbindT ,i,~v[i]

rbindT ,~v ← samp(params) ∈ S(ρbindT ,~v)

0 , qbindT ,~v ← (rbindT ,~v · dbindT ,~v) ∈ S
(ρbindT ,~v ·δbindT ,~v)

0

wbindT ,~v ← encRand(params, bindT , rbindT ,~v) ∈ S
(ρbindT ,~v)

~ebindT
,

ubindT ,~v ← encRand(params, bindT , qbindT ,~v) ∈ S
(ρbindT ,~v ·δbindT ,~v)

~ebindT

7. Encode elements in last group (chk).

dchk ←
(
(
∏
i∈[n] ci) · (

∏
j∈[m−1] det(Yj)) · Z0 · Ym

)
[1, 1] ∈ S(δchk)

0 ,

where δchk =
(

(
∏
i∈[n] γi) · (

∏
j∈[m−1] det(Yj)) · Ym

)
[1, 1]

rchk ← samp(params) ∈ S(ρchk)
0 , qchk ← rchk · dchk ∈ S

(ρchk·δchk)
0

wchk ← encRand(params, chk, rchk) ∈ S
(ρchk)
~echk

,

uchk ← encRand(params, chk, qchk) ∈ S
(ρchk·δchk)
~echk

8. Output.

Output evparams and the obfuscation:(
{(wprogj ,v, Uprogj ,v)}j∈[m],v∈{0,1}, {(wcci,v, ucci,v)}i∈[n],v∈{0,1},

{(wbindT ,~v, ubindT ,~v)}T∈(([n]
3)),~v∈{0,1}3 , (wchk, uchk)

)
Evaluation, on input x ∈ {0, 1}n

1. t←
(
wchk · (

∏
j∈[m] Uprogj ,x[`(j)]) · (

∏
T∈([n]

3) ubindT ,x|T) · (
∏
i∈[n] ucci,x[i])

)
[1, 1]

2. t′ ←
(
uchk · (

∏
j∈[m]wprogj ,x[`(j)]) · (

∏
T∈([n]

3)wbindT ,x|T) · (
∏
i∈[n]wcci,x[i])

)
3. output the bit: isZero(evparams, (t− t′)).

3.1 Security Proof

We prove the security of NC1Obf in the generic GES model (Section 2.5), assuming the Bounded
Speedup Hypothesis (Section 2.2), as stated below.

Theorem 3.1. Under the bounded speedup hypothesis, NC1Obf is a virtual black-box obfuscator in
the random GES model for the class NC1.

17

We show how to simulate the a random GES oracleRG, for an adversaryA, using only black-box
access to the obfuscated circuit C. The high-level simulation strategy follows the methodology of
[BR13a, BR13b]. Similarly to the RG oracle, the simulator S will generate labels for new elements
on the fly, and will maintain a table with all previously returned labels and the ring elements that
they encode.

As the simulation proceeds, S needs to produce encodings of unknown ring elements. For
example, to begin the simulation, S generates a dummy obfuscated circuit composed of labels that
are uniformly random strings. Here, S does not know (some of) the underlying ring elements
in the obfuscation’s labellings (S cannot produce a correct simulated program together with the
underlying ring elements without the code of C). Throughout the execution (and in this initial
step), when S needs to produce labellings of unknown ring elements, it returns a uniformly random
string of the appropriate length, and lists the respective ring element as an “unknown variable” in
its table. When group operations are performed on the labellings of unknown variables, S derives
an arithmetic circuit that represents the result (as a function of the unknown variables), and stores
that circuit in the table together with the output’s labelling. Thus, S maintains a list of labellings,
together with either the underlying ring element, or a variable that represents its unknown value (for
labellings in the obfuscation itself), or an arithmetic circuit over these “basic unknown variables”.
The only thing that is missing in order to simulate RG perfectly, is maintaining consistency: If two
unknown variables are supposed to be equal (when the real RG is used), then they should also be
given the same label in the simulation (and in particular an isZero call on their difference should
return 1). The main difficulty in simulation is identifying whether an arithmetic circuit over the
unknown variables computes the zero function when the basic variables are properly distributed
(i.e. jointly distributed as in the distribution produced by an execution of NC1Obf(C)). This is the
only ability that S needs in order to simulate RG perfectly.

We proceed with a high level description of the simulator S. We will denote by ~ρ the collection of
all ρ variables generated by NC1Obf, by ~δ the collection of all δ variables, and by ~D the collection of
all elements of the D matrices (see a full description below in Section 3.1.1). We say that a variable
d ∈ ~δ∪ ~D is associated with a variable ρ ∈ ~ρ, if an encoding of ρ·d appears in the obfuscated program.
Note also that in the progj groups, each ρ variable is associated with a number of variables that
correspond to the elements of the matrix D, whereas in the other groups, each ρ variable is only
associated with a single δ variable.

Consider the distribution of the ring elements that underly the labellings in the obfuscation.
There are labels of the ~ρ variables, and for each ρ variables, there are labels of its product with
the ~δ, ~D variables (or variable) that are associated with it. The variables ~ρ, ~δ, ~D are therefore the
“basic unknown variables” referred to above.8

The simulator S starts by generating a simulated obfuscated program as discussed above. The
labellings in this dummy obfuscation are all uniformly random strings. Claim 3.7 shows that, with
all but negligible probability, the underlying ring elements in the real obfuscation are all distinct
w.h.p. In particular, the real distribution of the obfuscated program of any circuit C (in the
random GES model) is statistically close to a sequence of uniformly random strings. Thus, the
initial real and simulated obfuscation labellings are statistically close, and S proceeds to simulate
A as explained above.

8The (joint) distribution of the ~δ, ~D variables depends on the circuit C, and is not known to the simulator, and
therefore it has to set them as unknowns. As for the ~ρ variables, it will be extremely useful for our analysis to treat
them as unknowns as well, even though their distribution is known (jointly uniform and independent).

18

The detailed technical description of how S maintains its table, and produces the arithmetic
circuits, is identical to [BR13a, BR13b], and is therefore omitted here. From those works, it follows
that all of the elements underlying labellings that are produced by the adversary can be represented
by multilinear polynomials in the variables ~ρ, ~δ, ~D. Moreover, due to constraints induced by the
random GES model, these multilinear polynomials have a special cross-linear structure. They are
cross-linear polynomials:

Definition 3.2 (cross-linear monomial). A cross-linear monomial g(~ρ) is a multilinear monomial of
ρ variables, where each variable ρgrp,(·),(·) comes from a different group grp. A cross-linear monomial
is full if it contains exactly one variable from each group.

Given a cross-linear monomial g(~ρ), we say that a variable in ~δ ∪ ~D is associated with g if it is
associated with one of the variables in g.

Definition 3.3 (cross-linear term, cross-linear polynomial). A cross-linear term is a multilinear
function f(~ρ, ~δ, ~D) which can be expressed as f(~ρ, ~δ) = g(~ρ)·hg(~δ, ~D), such that g(~ρ) is a cross-linear

monomial, and hg(~δ, ~D) is a multilinear function of the ~δ, ~D variables that are associated with g.
A cross-linear polynomial is a sum of cross-linear terms.

Organization. The remainder of the security proof is organized as follows. In Section 3.1.1, we
analyze the joint distribution ODistC of the ~ρ, ~δ, ~D variables in the obfuscation. In Section 3.1.2, we
show how to determine, given oracle access to the circuit C, whether an arithmetic circuit f(~ρ, ~δ, ~D),
which computes a cross-linear polynomial, computes the zero function over the distribution ODistC
produced by NC1Obf(C) (we emphasize again that this distribution is not known to S).

3.1.1 The Basic Variables and the Distribution ODistC

For a security parameter λ ∈ N, consider the obfuscation of an NC1 circuit C. The obfuscation is
generated by choosing parameters for a graded encoding scheme, and then picking ring elements
for the various labelings. The output labelings are defined by the underlying matrices and ring
elements:

{(ρprogj ,v,Dprogj ,v)}j∈[m],v∈{0,1},

{(ρbindT ,~v, δbindT ,~v)}T∈([n]
3),~v∈{0,1}3 ,

{(ρcci,v, δcci,v)}i∈[n],v∈{0,1},

(ρchk, δchk)

Note that these matrix entries and ring elements are not independently distributed (though each of
them, on its own, is close to uniformly random in R). In the security proof, we treat these matrices
and ring elements as variables, since they are unknown to the simulator (all that S knows is that
these variables were sampled in the process of obfuscating a circuit).

We divide these variables into three vectors as follows:

− The ρ random variables:
~ρ = ((ρprogj ,v)j∈[m],v∈{0,1}, (ρbindT ,~v)T∈([n]

3),~v∈{0,1}3 , (ρcci,v)i∈[n],v∈{0,1}, ρchk).

− The D random-variable matrices: ~D = (Dprogj ,v)j∈[m],v∈{0,1}.

19

− The δ random variables: ~δ = ((δbindT ,~v)T∈([n]
3),~v∈{0,1}3 , (δcci,v)i∈[n],v∈{0,1}, δchk).

For a circuit C, we consider the joint distribution of these variables:

Definition 3.4 (Distribution ODistC). For an NC1 circuit C, we define the distribution ODistC
over (~ρ, ~D, ~δ) to be the joint distribution of the ρ variables, the D matrices, and the δ variables, in
an obfuscation of C using the obfuscator NC1Obf.

In this section, we analyze the structure and properties of the ODistC distribution. These
properties will be used to show efficient simulation. Note that, by the construction of NC1Obf,
the ~ρ variables are uniformly and independently random, regardless of the circuit C . The joint
distribution of the ~D matrices and ~δ variables, on the other hand, is not independent and is
determined by the circuit C. These are themselves products of more basic variables, and we
analyze their structure below. First, we define the notion of an assignment to the groups in L. This
notion, and the properties of such assignments, will be helpful in analyzing the distribution ODistC .
(Note the analogy to the association relation and the notion of fullness defined for monomials in
Definition 3.2 above.)

Definition 3.5 (Assignments and associated variables). An assignment y to the groups in L is a
partial function y : L → {0, 1} ∪ {0, 1}3. An assignment maps a subset of the programs groups
{progj}j∈[m] to bits in {0, 1}, a subset of the binding groups {bindT }T∈([n]

3) to 3-tuples in {0, 1}3, a

subset of the consistency groups {cci}i∈[n], to bits in {0, 1}, and the check group chk always to 0.
For an assignment y, the variables associated with the assignment are: (i) for each group progj

on which y is defined, the D matrix {Dprogj ,y(progj)} (at most one out of each pair), (ii) for each

group bindT on which y is defined, the variable δbindT ,y(T) (one out of each 8-tuple), (iii) for each
group cci on which y is defined, the variable δcci,y(i) (at most one out of each pair), and (iv) for the
group chk, if y is defined on it, the variable δchk.

Definition 3.6 (Consistent and full assignments). Let y : L→ {0, 1}∪{0, 1}3 be a partial function
(i.e. one that is not necessarily defined on its entire domain). We say that y is consistent with
~x ∈ {0, 1}n, if: (i) for all j ∈ [m] s.t. y(progj) is defined, ~x`(j) = y(progj), (ii) for all T ∈

(
[n]
3

)
s.t.

y(bindT) is defined, ~x|T = y(bindT), and (iii) for all i ∈ [n] s.t. y(cci) is defined, ~xi = y(cci).
We say that y is consistent if it is consistent with some ~x ∈ {0, 1}n.
If y is a total function, we say that it is also full.

Underlying Variables. Recall the underlying variables and their distributions:

1. Matrices {Nj,v}j∈[m],v∈{0,1}. Recall that these matrices are computed by taking Nj,v ←
Zj−1 ·Mj,v ·Yj , where Yj is a uniformly random 5×5 matrix. In particular, for any assignment
y : [m]→ {0, 1}, the matrices (Nj,y(j))j∈[m] are negl(λ)-statistically close to uniformly random
and independent 5× 5 matrices over the ring R (see Lemma 2.2).

We further recall that Zj−1 = adj(Yj−1), and therefore each element in Nj,v is in fact a degree
5 multilinear polynomial in the Y variables (which are all uniformly random).

2. Program β-variables {βprogj ,v}k∈[m],v∈{0,1}. These are all uniformly random and independent
over R (even conditioned on the N matrices).

20

3. Binding β-variables {βbindT ,i,~v}T∈([n]
3),i∈T,~v∈{0,1}3 . These are all uniformly random and inde-

pendent over R (even conditioned on the N matrices and the program β-variables).

4. Consistency β-variables {βcci,v}i∈[n],v∈{0,1}. For each i ∈ [n], we choose a uniformly random
β′cci variable, and take βcci,v ← β′cci · (

∏
grp∈L(i) βgrp,i,(1−v)). The uniformly random β′cci to

“randomizes” the i-th pair of consistency variables: for any assignment y : [n] → {0, 1}, the
collection of variables (βcci,y(i))i∈[n] are negl(λ)-close to uniformly random and independent
(even conditioned on the N matrices, and on the program and binding β-variables).

D matrices and δ variables. In turn, the underlying N matrices and β variables whose distribu-
tions are specified above completely determine the D matrices and δ variables, whose distributions
will be discussed throughout the simulation proof, as follows:

1. Matrices {Dj,v}j∈[m],v∈{0,1}, where Dj,v ← βprogj ,v · Nj,v. By the above, we get that for any
assignment y : [m] → {0, 1} (i.e. when choosing one matrix from each pair), the matrices
(Dj,v)j∈[m],y(j) are negl(λ)-statistically close to uniformly random.

2. Binding δ-variables {δbindT ,~v}T∈([n]
3),~v∈{0,1}3 , where δbindT ,~v ←

∏
i∈T βbindT ,i,~v[i]. By the above,

these variables are all negl(λ)-close to uniformly random and independent (even conditioned
on the D matrices).

3. Consistency δ-variables {δcci,v}i∈[n],v∈{0,1}, where δcci,v ← βcci,v. By the above, for any assign-
ment y : [n]→ {0, 1} (i.e. when choosing one δ from each pair), these variables (δcci,y(i))i∈[n]

are negl(λ)-close to uniformly random and independent (even conditioned on the D matrices
and on the δ binding variables).

4. Checking δ-variable δchk. The main difficulty for simulation is that the distribution of δchk
is not independent of the other variables, in fact it is completely determined by them, via a
function that depends on the obfuscated circuit C (see more below). Since S does not know
the explicit function C, it does not know the joint distribution of the (~D, ~δ) variables.

Properties of ODistC . We proceed to analyze the distribution of theD matrices and ~δ variables in
ODistC , with the goal of understanding dependencies between these variables (and achieving efficient
simulation for the obfuscation). The dependence of δchk on the other variables is of particular
interest.

First, in Claim 3.7, we prove that with high probability the ring elements encoded in the
obfuscation are all distinct w.h.p. This, in turn, implies that in the GES model they will all be
represented by uniformly random strings.

Claim 3.7. For any C ∈ NC1, with all but negl(λ) probability over (~ρ, ~δ, ~D) ∼ ODistC , the encoded
ring elements in the obfuscation are all distinct.

Proof. By the properties of the probability space underlying ODistC , we observe that with all but
negl(λ) probability it is the case that: (i) the entries of every D matrix are distinct and not in {0, 1}.
This because each of these matrices is uniformly random on its own (even though each matrix pair
is not independent of each other). Moreover (ii) none of the ~δ variables are in {0, 1}. The ~ρ

21

variables are all uniform and independently random ring elements, and they are each multiplied
with distinct items, none of which is 0 or 1.

Now, since the encoded ring elements are the ~ρ variables, and the products of a ~ρ variables
with a D matrix or a δ variable (each ρ variable is multiplied with a single matrix or a single δ
variable), then the difference between two such values always takes the form ρ1d1 − ρ2d2 (where
the d values are 0 only with negligible probability). If the ρ values are different, then the difference
is 0 with negligible probability. If the ρ values are the same, then either d1 = 1 (w.l.o.g), or both
d1, d2 are both elements of the same matrix D. In both cases, since the marginal distribution of
~δ, ~D is uniform and pairwise independent as explained above, the probability that the difference is
0 is negligible. Taking the union bound over all pairs completes the proof.

Now consider an assignment y : L → {0, 1} ∪ {0, 1}3 (possibly a patrial or non-consistent
assignment). Recall from above, that the variables associated with the assignment y (see Definition
3.5) are all independent and uniformly random. The only dependent variable is δchk, which might
be completely determined by the other variables (in a way that depends on the circuit C).

We show that if y is not a full and consistent assignment (see Definition 3.6), then all the
variables associated with y are (negligibly close to being) jointly uniform and independent. This
is shown in Lemma 3.8. On the other hand, if y is a full and consistent assignment corresponding
to some input ~x ∈ {0, 1}n, then the joint distribution of the associated variables is completely
determined by C(x) (regardless of any other property of C). In particular, δchk is completely
determined by the other variables via a fixed multilinear function that is efficiently computable
from C(x). This is stated in Lemma 3.8. Looking ahead, it implies that S can simulate the joint
distribution of all variables together with δchk given only C(~x) (which is available from black-box
access).

Lemma 3.8 (marginal distribution for inconsistent assignment). For any assignment y : L →
{0, 1} ∪ {0, 1}3 that is not full and consistent, the joint distributions of the the variables associated
with y is negl(λ)-statistically close to uniformly random.

Proof. We prove that if samp(params) samples labelings of uniform elements in Z∗p (rather than in
Zp), then the variables stated in the claim are uniform in Z∗p and independent. Since the statistical
distance from the real setting is (poly(m)/p), the claim follows.

We consider two cases. The easy case is where y is not defined on chk. In which case, δchk is not
associated with y. Since all other variables are jointly uniform and independent for any assumption
as we explained above, the result will follow.

Let us now consider the case where y is defined over chk, but is still not full or is inconsistent.
We know that for any assignment y, the joint distribution of the variables associated with y, without
δchk, is negl(λ)-close to uniformly random. We want to show if y is not full and consistent, then
even given all of these variables, δchk is still close to uniformly random.

Consider an assignment y that is not full or is not consistent. Namely, either there exists grp ∈ L
corresponding to an input bit i∗ ∈ [n], s.t. grp is not in the domain of y, or there exist grp1, grp2 ∈ L
that do not agree on the value that should be assigned to some bit i∗ of ~x.

We have:

δchk = γi∗ ·

(
∏

i∈[n]:i 6=i∗
γi) · (

∏
j∈[m]

det(Yj)) · Ym[1, 1]

22

We show below that γi∗ is uniformly random and independent of the variables associated with y.
In particular, this implies that it is also uniformly random and independent conditioned on the

product
(

(
∏
i∈[n]:i 6=i∗ γi) · (

∏
j∈[m] det(Yj)) · Ym[1, 1]

)
. When we multiply this product by γi∗ we

get a uniformly random δchk that is independent of the variables associated with y (recall that we’ve
assumed that the ring elements are all drawn from Z∗p, in particular this means that the product
by which we multiply γ∗i is non-zero). The lemma follows.

To prove independence of γi∗ , first observe that γi∗ is independent and uniformly random
conditioned on the variables associated with y that are not in L(i∗). It remains to show that it is
further independent of the variables that are associated with y and are also in L(i∗), let us slightly
abuse notation and denote them by y ∩ L(i∗).

First, consider the case where y is not associated with any variable in cci∗ . Recall that we can
express γi∗ as

γi∗ = β′cci∗ ·
∏

v∈{0,1}

(
∏

j∈[m]:`(j)=i∗

βprogj ,v) · (
∏

T∈([n]
3):i∗∈T

βbindT ,i∗,v) .

From this expression it follows that γi∗ is independent of all others, due to the variable β′cci∗ .
Otherwise, Let v ∈ {0, 1} be such that y is associated with δcci∗ ,v. Then there exists a variable

of the form δprogj ,i∗,v or δbindT ,i∗,~v) s.t. ~v[i∗] = v which is not associated with y. If we express γi∗ as

γi∗ = (
∏

j∈[m]:`(j)=i∗

βprogj ,v) · (
∏

T∈([n]
3):i∗∈T

βbindT ,i∗,v) · (βcci∗ ,v) ,

we can see that one of the β values in the product is independent of the variables in y ∩L(i∗). The
independence of γi∗ follows.

Lemma 3.9 (marginal distribution for consistent assignment). For any full and consistent assign-
ment y : L → {0, 1} ∪ {0, 1}3, which is consistent with an input ~x ∈ {0, 1}n, the joint distribution
of the variables associated with y is uniformly random.

Given these variables, and the value of C(~x), the value of δchk is completely determined. It
is given by a fixed and known multi-linear polynomial in the variables, and can be computed in
polynomial time.

Proof. By the above, the variables are all uniformly random. Let ~x be the input that is consistent
with y. Recall that the circuit C is an oblivious permutation branching program, with pairs of
matrices (Mj,0,Mj,1)j∈[m], the accepting permutation is Qacc, and the rejecting permutation is Qrej

(see Section 2.1). Note that the accepting and rejecting permutations are fixed and public, and so
their inverses Qacc, Qrej are also fixed, known and public.

Observe that, by the definition of the branching program, for any input ~x ∈ {0, 1}n (accepting
or rejecting), we have: ∏

j∈[m]

Mj,~x[`(j)] = C(x)Qacc + (1− C(x))Qrej ,

which implies that∏
j∈[m]

Nj,~x[`(j)] = (
∏
j∈[m]

Zj−1Mj,~x[`(j)]Yj) =
(∏
j∈[m−1]

det(Yj)
)
(C(x)Qacc + (1− C(x))Qrej)Ym . (1)

23

We note that (C(x)Qacc + (1−C(x))Qrej)
−1 = (C(x)Q−1

acc + (1−C(x))Q−1
rej) (to see this, check the

two possible values for C(x)). Therefore Eq. (1) is equivalent to

(C(x)Q−1
acc + (1− C(x))Q−1

rej)
∏
j∈[m]

Nj,~x[`(j)] =
(∏
j∈[m−1]

det(Yj)
)
Ym . (2)

Let us multiply both sides of the equation by
∏
j βprogj ,~x[`(j)], and recall that by definition

Dj,~x[`(j)] = βprogj ,~x[`(j)] · Nj,~x[`(j)]. We get

(C(x)Q−1
acc + (1− C(x))Q−1

rej)
∏
j∈[m]

Dj,~x[`(j)] = (
∏
j

βprogj ,~x[`(j)])
(∏
j∈[m−1]

det(Yj)
)
Ym . (3)

We now multiply both sides of the equation by
∏
T

∏
i∈T βbindT ,i,xi =

∏
T δbindT ,x|T , and by∏

i βcci,xi =
∏
i δcci,xi :

(C(x)Q−1
acc + (1− C(x))Q−1

rej) · (
∏
i

δcci,xi) · (
∏
T

δbindT ,x|T) ·
(∏
j∈[m]

Dj,~x[`(j)]

)
=

(
∏
i

βcci,xi) · (
∏
T

∏
i∈T

βbindT ,i,xi) · (
∏
j

βprogj ,~x[`(j)])
(∏
j∈[m−1]

det(Yj)
)
Ym . (4)

Finally, we note that

(
∏
i

βcci,xi) · (
∏
T

∏
i∈T

βbindT ,i,xi) · (
∏
j

βprogj ,~x[`(j)]) =
∏
i

(
∏

grp∈L(i)

βgrp,i,xi) =
∏
i

γi . (5)

Combining Eq. (4) and Eq. (5), we get that

δchk = (
∏
i

γi) · (
∏

j∈[m−1]

det(Yj)) · Ym[1, 1]

= (C(x)Q−1
acc + (1− C(x))Q−1

rej) · (
∏
i

δcci,xi) · (
∏
T

δbindT ,x|T) ·
(∏
j∈[m]

Dj,~x[`(j)]

)
[1, 1] ,

which is indeed a multilinear function of the variables associated with y, which depends only on
C(x), and can be computed in time poly(m).

3.1.2 The Zero-Testing Procedure

In this section, we describe how the simulator S, given oracle access to the circuit C, performs
the following zero-testing procedure. Given an arithmetic circuit that computes a cross-linear
polynomial f(~ρ, ~δ, ~D), the simulator has to decide whether when (~ρ, ~δ, ~D) are chosen according to the
distribution ODistC , f is equivalent to the zero polynomial. We denote this by f(~ρ, ~δ, ~D)|ODistC ≡ 0.
We recall that the distribution ODistC depends only on C.

We recall from Section 3.1.1, that the ~ρ variables are completely uniform and independent.
The ~δ, ~D variables poly(m)-degree polynomials in underlying variables β,Y, which are themselves
uniformly random. Thus, any multi-linear function h of (~ρ, ~δ, ~D) (and in particular f and all of its
terms), is a polynomial of total degree poly(m) � p (where Zp = R, the underlying ring for the

24

encoding scheme) over a set of variables that are chosen independently and uniformly at random
(the ρ’s, β’s and Y’s). By the Schwartz-Zippel Lemma, either h(~ρ, ~δ, ~D)|ODistC is zero everywhere, or

it is only zero with negligible probability. Therefore, sampling from the distribution h(~ρ, ~δ, ~D)|ODistC
lets us zero-test.

Since f is a cross-linear, it can be written as f =
∑

g∈G g(~ρ) · hg(~δ, ~D), where g(~ρ) is a cross-

linear monomial, and hg(~δ, ~D) only contains variables that are associated with g. We further notice
that each cross-linear monomial defines an assignment yg in the obvious way: if the variable ρgrp,val
appears in g, then yg(grp) = val.

The simulator will perform zero-testing by going over the terms and inspecting them one by one
(or at least attempting to go over all of them). Since the ~ρ variables are uniform and independent
of each other and of the ~δ, ~D, it follows that f(~ρ, ~δ, ~D)|ODistC ≡ 0 if and only if for all g ∈ G we

have hg(~δ, ~D)|ODistC ≡ 0. The simulator, therefore, will attempt to go over all possible terms g and

check for each of them whether hg(~δ, ~D)|ODistC ≡ 0. An outline of the zero-test procedure follows:

1. Repeat B(n) = poly(n) times (for a polynomial B(n) which may depend on the running time
of A and will be explained later):

(a) Find an arithmetic circuit that computes one of the cross-linear terms t(~ρ, ~δ, ~D) = g(~ρ) ·
hg(~δ, ~D) of f . Also compute the assignment yg.

This is done by finding a maximal set of ~ρ that can be set to zero without zeroing out
f altogether. Such a maximal set is easy to find by finding a ρ value that was not set
to 0 yet, setting it to 0 and checking whether f remains nonzero (which is tested using
Schwartz-Zippel). This process converges since a value that is set to 0 is never unset.
The set of surviving ρ variables define yg, and the resulting circuit computes t.

(b) For the term t, find whether hg(~δ, ~D)|ODistC ≡ 0. If not, output nonzero.

(c) Set f := f − t (and find the appropriate arithmetic circuit). If f(~ρ, ~δ, ~D) ≡ 0 (over the
variables ~ρ, ~δ, ~D, not their ODistC value), output zero.

2. Output nonzero.

We begin by explaining how to perform Step 1b of the above procedure. Namely, how to check,
given a cross-linear term t, whether hg(~δ, ~D)|ODistC ≡ 0. This follows from the two lemmas below,
depending whether yg is consistent and full, or not (which can be checked efficiently).

Lemma 3.10. Let g(~ρ) be a cross-linear monomial. If the assignment yg is not full and consistent,

then hg(~δ, ~D)|ODistC ≡ 0 if and only if hg(~δ, ~D) ≡ 0.

Consequently, in such case there is an efficient way to determine whether hg(~δ, ~D)|ODistC ≡ 0.

Proof. This follows from Lemma 3.8, which asserts that in this case, the ~δ, ~D variables associated
with ~ρ are (statistically close to being) jointly uniform and independent.

Since checking whether hg(~δ, ~D) ≡ 0 can be done efficiently by assigning random values, the

simulator can also efficiently test whether hg(~δ, ~D)|ODistC ≡ 0.

Lemma 3.11. Let g(~ρ) be a cross-linear monomial. If the assignment yg is full and consistent,
then there is an efficient sampler for the variables associated with g, according to ODistC .

Consequently, in such case there is an efficient way to determine whether hg(~δ, ~D)|ODistC ≡ 0.

25

Proof. This follows from Lemma 3.9. Let x ∈ {0, 1}n be the input with which yg is consistent.

Then the distribution of the ~δ, ~D associated with g only depend on C(x). In particular, all of these
variables except δchk are independent and uniformly random. Thus, their joint distribution can be
simulated, and moreover by Lemma 3.9, they uniquely determine the value of δchk. Given C(x),
we can compute δchk efficiently, and thus we can sample from the distribution ODistC and perform
a zero test.

We conclude that if f contains less than B(n) terms, the zero test will be carried out successfully.
Furthermore, even if f contains more than B(n) terms, but at least one of them is inconsistent, then
we will still output the correct value. This is due to Step 2 and Lemma 3.10. The only remaining
case is when there are more than B(n) full and consistent terms. We show that there exists some
polynomial B(·) for which this will contradict the bounded speedup hypothesis (BSH).

Suppose that no such polynomial B(n) exists, This means that we are in a situation where A
can (with non-negligible probability) generate a polynomial-size arithmetic circuit, that computes
a sum of super-polynomially many full and consistent terms. The following lemma shows that this
implies a 3SAT solver that contradicts the BSH. (The lemma gives a randomized solver, which can
be converted into a polynomial-size circuit via a standard averaging argument.) This completes
the proof.

Lemma 3.12. For n, λ ∈ N, and X ⊆ {0, 1}n, let f be any cross-linear polynomial of (~ρ, ~δ, ~D) s.t.

f =
∑
x∈X

gx(~ρ) · hgx(~δ, ~D)

where ∀x ∈ X, gx is a full ρ-monomial which is consistent with x, and hgx 6≡ 0.
Then there exists a polynomial-size circuit Af s.t. for any 3-CNF formula Φ on n-bit inputs,

the circuit Af on input Φ decides whether there exist x ∈ X that satisfies Φ. I.e.:

∀ 3-CNF Φ : Pr
Af

[A(Φ) = 1∃x∈X:Φ(x)=1] ≥ 1− negl(λ)

Proof. Given a 3CNF formula Φ, we construct a distribution DistΦ over (~ρ, ~δ, ~D) s.t. f(~ρ, ~δ, ~D)|DistΦ ≡
0 iff there is no satisfying assignment for Φ in X. By efficiently sampling in this distribution, we can
perform a zero-test and obtain a (probabilistic) algorithm as claimed in the lemma. We emphasize
that the distribution DistΦ is quite different from the distribution ODistC we considered elsewhere
in this section, and in fact it is completely independent of the circuit C.

To construct DistΦ, consider all triples T = {i1, i2, i3}. For each T , consider all clauses in
Φ that are supported over exactly xi1 , xi2 , xi3 . If one of these clauses is not satisfied by setting
(xi1 , xi2 , xi3) = ~v, then set ρbindT ,~v ← 0. Otherwise, leave it unassigned. We claim that after these
assignment, f will be equivalent to 0 if and only if there is no x ∈ X for which Φ(x) = 1.

To see this, consider f after making the aforementioned 0 assignments. Any term that is
consistent with x s.t. Φ(x) = 0 will be zeroed, because at least one clause will be unsatisfied, and
the ρbindT ,~v that corresponds to the variables of this clause will be zeroed. Therefore, we will be
left with only the terms that correspond to inputs that are accepting w.r.t Φ.

Now, by choosing all unassigned variables to be uniformly random, and using the Schwartz-
Zippel Lemma, we get a zero tester. Notice that this only uses black-box access to f :we only
assign 0 to some variables and random values to others and check the result. (as stated above, this
procedure does not use C at all).

26

4 Obfuscating P
In this section we show how to leverage the obfuscator for NC1 into one that works for all of P.
This is done using homomorphic encryption. We start with some background in Section 4.1 and
present the obfuscator in Section 4.2.

4.1 Homomorphic Encryption

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval) is a
quadruple of ppt algorithms as follows (λ is the security parameter):

• Key generation (pk, evk, sk) = HE.Keygen(1λ): Outputs a public encryption key pk, a
public evaluation key evk and a secret decryption key sk.

• Encryption c = HE.Encpk(m): Using the public key pk, encrypts a message m into a
ciphertext c.

• Decryption m = HE.Decsk(c): Using the secret key sk, decrypts a ciphertext c to recover
the message m.

• Homomorphic evaluation cf = HE.Evalevk(f, c1, . . . , c`): Using the evaluation key evk,
applies a function f to c1, . . . , c`, and outputs a ciphertext cf . This function is deterministic.

A homomorphic encryption scheme is said to be secure if it is semantically secure (note that
the adversary is given both pk and evk).

Homomorphism w.r.t a class of circuits is defined next.

Definition 4.1 (C-homomorphism). A scheme HE is C-homomorphic, for a class of circuits C, if
for any circuit C ∈ C, and any set of inputs m1, . . . ,m`, it holds that

Pr [HE.Decsk(HE.Evalevk(f, c1, . . . , c`)) 6= f(m1, . . . ,m`)] = negl(λ) ,

where (pk, evk, sk) = HE.Keygen(1λ) and ci = HE.Encpk(mi).

The existence of homomorphic encryption schemes with shallow decryption has been established
in previous works, starting with Gentry’s first scheme [Gen09]. The best security currently known
is achieved by [BV13], who base security on a standard worst-case lattice hardness assumption.

Corollary 4.2 ([BV13]). Let s = s(λ) be a polynomial and let Cs be the class of size s circuits.
Then there exists a Cs-homomorphic encryption scheme with NC1 decryption circuit, whose security
is based on the worst-case hardness of the GapSVPpoly(n) problem.

We note that we do not need to assume circular security of the scheme. We only need the
standard worst-case lattice assumption that GapSVPpoly(n) is hard in the worst case.

4.2 The Obfuscator PObf

Our obfuscator PObf is a combines theNC1 obfuscator NC1Obf from Section 3 with a Cs-homomorphic
encryption scheme as in Corollary 4.2. It takes a circuit C, and outputs an obfuscated circuit that
reveals nothing except the size of C.

27

Obfuscator PObf, on input (1λ, C)

Input: Security parameter λ; Circuit C of size |C| = s.

Output: Obfuscated program for C.

Execution:

1. Consider the function family which runs an input circuit F of size s on a parameter x.
Formally: RunMex(F) = F (x). Note that the circuit size of RunMe is independent of x and
only depends on s, denote this value by t.

Let HE be Ct-homomorphic as guaranteed by Corollary 4.2. Generate keys (pk, evk, sk) =
HE.Keygen(1λ).

2. Encrypt the input circuit C: Ĉ = HE.Encpk(C).

3. Further consider the function family that applies RunMe homomorphically on the encryption
of C: EvalMeĈ(x) = HE.Evalevk(RunMex, Ĉ). Let m be the circuit size of EvalMe.

4. Consider the verified decryption function VerDec(v̂, w), where v̂ is an encryption of some bit
output by HE.Eval, and w ∈ {0, 1}m is a witness to the excecution of EvalMe. Namely, w is
the set of values for all wires in the execution of EvalMe on some input. The function VerDec
will first verify that w is indeed a valid witness to the computation, if not it will return 0 and
if yes it will return HE.Decsk(v̂).

Note that VerDec is computable in NC1.

5. Let O = NC1Obf(VerDec). Output the obfuscation (O, Ĉ, evk).

Evaluation, on input x

1. Compute v̂ = EvalMeĈ(x), and let w ∈ {0, 1}m be the set of values on the wires of EvalMe
during this computation.

2. Output O(v̂, w).

Correctness is immediate by the correctness of HE and NC1Obf. Security is proven next.

Lemma 4.3. If NC1Obf is virtual black-box secure in the generic GES model, and if HE is seman-
tically secure, then PObf is virtual black-box secure in the generic GES model.

Proof. For and adversary A, the simulator SP for PObf will work as follows.

1. Generate keys (pk, evk, sk) for the homomorphic encryption scheme.

2. Generate Ĉ as an encryption of (say) the size s circuit that always returns 1.

3. Consider the adversary A1 against NC1Obf(VerDec): This adversary starts by running PObf
with the aforementioned keys and Ĉ, and then runs A on the output obfuscated program.

Let S(·)
NC1 be the simulator for A1 w.r.t NC1Obf(VerDec).

28

4. Define the function VerDec′(v̂, w) as follows: First verify that w is indeed a witness to an
execution of EvalMe (with the aforementioned Ĉ). If not, return 0, if yes, extract from w the
input x to the computation (this is without loss of generality just the first n values in w).
Finally, output C(x).

Note that the function VerDec′(v̂, w) can be computed by SP using its oracle access to C.
(Note that unlike the original VerDec, the new VerDec′ does not need the secret key sk.)

5. Execute SVerDec′

NC1 . (Note that S(·)
NC1 is actually prescribed to work with a VerDec oracle and

not the one we provide.)

To see why the simulation process succeeds, we use a hybrid argument:

• In the first hybrid, we just run SCP as described above and output its output.

• We now change Ĉ to be the actual encryption of C, rather than an encryption of a dummy
circuit. The rest of SCP works the same. This hybrid is indistinguishable from the previous
one since SCP does not use the secret key, and therefore distinguishing this hybrid from the
previous one will break the semantic security of the homomorphic encryption scheme.

• We now replace VerDec′ with the prescribed VerDec. The witness verification that is being
performed by VerDec′, together with the correctness of the homomorphic evaluation process
guarantee that the output of SCP in this hybrid is negligibly close to the previous one.

• We now replace SVerDec
NC1 with the actual execution of A1. The virtual black box property

guarantees that this hybrid is indistinguishable from the previous one.

However, this hybrid is exactly identical to a proper execution of A(PObf(C)).

The simulation’s correctness follows.

References

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. SIAM
J. Comput., 36(4):845–888, 2006.

[AW07] Ben Adida and Douglas Wikström. How to shuffle in public. In Salil P. Vadhan, editor,
TCC, volume 4392 of Lecture Notes in Computer Science, pages 555–574. Springer,
2007.

[Bab85] László Babai. Trading group theory for randomness. In STOC, pages 421–429, 1985.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. In Juris Hartmanis, editor, STOC, pages 1–5.
ACM, 1986. Full version in [Bar89].

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point obfusca-
tion. In CRYPTO, pages 520–537, 2010.

29

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6, 2012. Preliminary version in CRYPTO 2001.

[BR13a] Zvika Brakerski and Guy N. Rothblum. obfuscating conjunctions. In Ran Canetti
and Juan A. Garay, editors, CRYPTO (2), volume 8043 of Lecture Notes in Computer
Science, pages 416–434. Springer, 2013. Full version in http://eprint.iacr.org/

2013/471.

[BR13b] Zvika Brakerski and Guy N. Rothblum. Black-box obfuscation for d-CNFs. Cryptology
ePrint Archive, 2013. http://eprint.iacr.org/.

[BV13] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure as pke. Cryp-
tology ePrint Archive, Report 2013/541, 2013. http://eprint.iacr.org/.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In CRYPTO, pages 455–469, 1997.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multibit
output. In EUROCRYPT, pages 489–508, 2008.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In Jeffrey Scott Vitter, editor, STOC, pages 209–218.
ACM, 1998. Full version in [CGH04].

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO (1),
volume 8042 of Lecture Notes in Computer Science, pages 476–493. Springer, 2013.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way probabilistic
hash functions (preliminary version). In Jeffrey Scott Vitter, editor, STOC, pages
131–140. ACM, 1998.

[CRV10] Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyperplane mem-
bership. In TCC, pages 72–89, 2010.

[CV13] Ran Canetti and Vinod Vaikuntanathan. Obfuscating branching programs using black-
box pseudo-free groups. Cryptology ePrint Archive, Report 2013/500, 2013. http:

//eprint.iacr.org/.

[DS05] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial informa-
tion. In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 654–663. ACM,
2005.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In STOC, pages 554–563, 1994.

30

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, STOC, pages 169–178. ACM, 2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT, volume
7881 of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. Cryptology ePrint Archive, Report 2013/451, 2013. To appear in FOCS 2013.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with
auxiliary input. In FOCS, pages 553–562, 2005.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Salil P.
Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 194–
213. Springer, 2007.

[HMLS10] Dennis Hofheinz, John Malone-Lee, and Martijn Stam. Obfuscation for cryptographic
purposes. J. Cryptology, 23(1):121–168, 2010.

[HRSV11] Susan Hohenberger, Guy N. Rothblum, Abhi Shelat, and Vinod Vaikuntanathan. Se-
curely obfuscating re-encryption. J. Cryptology, 24(4):694–719, 2011.

[IP99] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In IEEE Conference
on Computational Complexity, pages 237–240. IEEE Computer Society, 1999.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon, editor,
STOC, pages 20–31. ACM, 1988.

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for
obfuscation. In EUROCRYPT, pages 20–39, 2004.

[Mau05] Ueli . Maurer. Abstract models of computation in cryptography. In Nigel P. Smart,
editor, IMA Int. Conf., volume 3796 of Lecture Notes in Computer Science, pages
1–12. Springer, 2005.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 96–109. Springer,
2003.

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomor-
phisms. In Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter
Fumy, editor, EUROCRYPT, volume 1233 of Lecture Notes in Computer Science,
pages 256–266. Springer, 1997.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. Cryptology ePrint Archive, Report 2013/454, 2013. http:

//eprint.iacr.org/.

31

[Wee05] Hoeteck Wee. On obfuscating point functions. In Harold N. Gabow and Ronald Fagin,
editors, STOC, pages 523–532. ACM, 2005.

32

