
Cryptanalysis of the

Speck Family of Block Ciphers

Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel

Bauhaus-Universität Weimar, Germany
{farzaneh.abed, eik.list, stefan.lucks, jakob.wenzel}@uni-weimar.de

Abstract. Simon and Speck are two families of ultra-lightweight block
ciphers which were announced by the U.S. National Security Agency in
June 2013. Yet, the specification discusses only the design and the perfor-
mance of both cipher families and the task of analyzing their security has
been left to the were proposed by the U.S. National Security Agency in
June 2013. Yet, the specification paper discusses only the design and the
performance of both cipher families, the task of analyzing their security
has been left to the research community.
In this paper we present conventional differential as well as rectangle
attacks for almost all members of the Speck cipher family, where we
target up to 11/22, 12/23, 14/16, 15/29, and 18/34 rounds of the 32-,
48-, 64-, 96-, and 128-bit version, respectively.

Keywords: Differential cryptanalysis, block cipher, lightweight, Speck

1 Introduction

Lightweight ciphers are optimized to operate on resource-constrained devices
such as RFID tags, smartcards, or FPGAs that are limited with respect to their
memory, battery supply, and computing power. In such environments, hardware
and software efficiency is becoming more and more important. Besides ensur-
ing efficiency, preserving a reasonable security is a main challenge in this area
that getting a lot of attention and making it one of the ongoing research prob-
lem. During the last five years, many block ciphers have been developed to
address this problem, including but not limited to mCrypton [13], HIGHT [11],
PRESENT [5], KATAN [7], KLEIN [9], LED [10], and PRINCE [6].
In June 2013, the U.S. National Security Agency (NSA) contributed to this
ongoing research by proposing two ARX-based families of ultra-lightweight block
ciphers, called Simon and Speck, where the former is optimized for hardware
(like PRESENT, LED, or KATAN), and the latter for software implementations
(like KLEIN). Though, due to aggressive optimizations in their round function
and the used rotation constants, both families perform well in hard- and software.
The original paper of Simon and Speck presented only performance, specifica-
tions and implementation footprints [1,2], and was noticed by the cryptography
research community in the work by Saarinen and Engels [14] in Summer 2012.

Method Cipher Rounds Data Memory Time

Full Att. (CP) (Bytes)

Differential Speck32/64 22 11 231 233.0 245.2

Speck48/72 22 12 244 246.6 266.0

Speck48/96 23 12 244 246.6 266.0

Speck64/96 26 13 255 258.0 284.9

Speck64/128 27 13 255 258.0 284.9

Speck96/144 29 15 287 290.6 2132.7

Speck128/192 33 16 2121 2125.0 2182.6

Speck128/256 34 16 2121 2125.0 2182.6

Rectangle Speck32/64 22 11 230 233.6 261.1

Speck48/72 22 11 245 245.0 267.0

Speck48/96 23 12 245 248.2 291.0

Speck64/96 26 13 262 262.0 291.9

Speck64/128 27 14 262 264.3 2123.7

Speck96/144 29 15 291 291.0 2136.0

Speck128/192 33 17 2126 2126.0 2186.9

Speck128/256 34 18 2126 2128.3 2251.4

Table 1. Summary of our results on Speck.

The design team did not discuss any security assessment of these two ciphers
regarding their resistance against common attacks and left the task of analyzing
the security of their constructions to the research community.

Contribution. In this paper, we analyze Speck regarding to its resistance
against differentials cryptanalysis. We show conventional key-recovery attacks
on round-reduced versions of almost all family variants. Thereupon, we mount
rectangle attacks where we use parts of our characteristics to extend the number
of attacked rounds for the larger versions of the cipher. A complete summary of
our results can be seen in Table 1.

Outline. In what follows, we first review the necessary details of Speck in
Section 2. The sections 3 and 4 present our differential and rectangle key-recovery
attacks. We conclude our paper in Section 5. Before, we list the notations used
throughout this paper (see Table 2).

2 Speck

The Speck2n/k family is a simple ARX-based Feistel network, which processes
the input as two words. At the beginning of a round, the left word of the state
is rotated by α bits to the left, before the right word is added to it modulo 2n.
Next, a round key Ki−1 is XORed to the left half. The right word is then rotated
by β bits to the right, before the left word is XORed to the right. This procedure

2

n Word size.

2n State size.

k Size of the secret key in bits.

Pi, Ci Plaintext-ciphertext pair.

(Lr, Rr) Left (L) and right (R) halves of the state after encryption of Round r

in a Feistel-cipher.

Li,j The i-th and j-th least-significant bit in L.

∆i An n-bit (XOR) difference, where only the i-th bit is active. with
0 ≤ i ≤ n− 1 and ∆0 denotes the least significant bit.

∆i,[j] An n-bit truncated difference, where only the i-th bit is active and the
j-th bit is unknown.

∆r Difference after Round r.

∆r p
−→
E

∆s A differential characteristic which yields the output difference ∆s with
probability p when encrypting over a (sub-)cipher E and starting
from an input difference ∆r.

Table 2. Notations used throughout this paper.

is depicted in Figure 1. The constants α and β are 8 and 3 for most versions of
the cipher, except for Speck32/64, which employs α = 7 and β = 2.

R
i−1 i−1

k
i

R
i i

L

L

k
i−1 i−1
l

k
i i
l

i+m−2
l ...

i
RF

Fig. 1. Schematic views on the round function (left) and the key schedule (right) of
Speck. RFi denotes the invocation of the round function, parametrized with i as the
key.

Key Schedule. In contrast to the best-known ARX cipher ThreeFish, the de-
signers of Speck have applied a key addition in each round. To generate the
round keys, the key schedule of Speck re-uses the round transformation. At
the beginning, m variables K0, ℓ0, . . . , ℓm−2 are initialized with the words of the
secret key: (K0, ℓ0, . . . , ℓm−2) ← (SK0, SK1, . . . , SKm) and the further round
keys Ki are generated with the help of the following procedure:

ℓi+m−1 = Ki
⊞ (ℓi ≫ α)⊕ i,

Ki+1 = (Ki
≪ β)⊕ ℓi+m−1.

3

Differential Characteristics. We constructed differential characteristics for
Speck by starting from a difference with a single active bit in the middle, and
propagate towards start and end. To minimize the number of active bits, we
build our trails on the events that the addition in each round will not produce
any carry bits. Tables 5, 6, 7, and 8 (see Appendix A) list our characteristics for
the individual versions of Speck in detail.

3 Differential Attacks on Speck

In the following, we describe our conventional differentials analysis of Speck.
Note that we describe only the attack on Speck32/64 in detail since this ver-
sion allows a simple practical verification. For attacks on the further versions
of Speck, we only provide the complexities and list the necessary details where
these attacks differ from those in the smallest version.

3.1 Key-Recovery Attack on Speck32/64

Here, we describe in brief an 11-round key-recovery attack on Speck32/64. To
do this, we use the characteristic from Table 5 over the rounds 4 − 11 of the
cipher:

∆4 = (∆3,10,12, ∆3,6,12,13,14)
p=2

−25

←−−−−−−→
rounds 4−11

(∆1,3,8,10,15, ∆5,8,10,12,15) = ∆11.

Then, later we guess key bits from the first rounds, which directly provide us with
information about the secret key. We also know that ∆R2 must be ∆4,8,11,12.

Attack Procedure. In the following, we simply denote by A a probabilistic
algorithm or adversary which aims to recover the secret key for this cipher. The
full attacking procedure can be split into a collection phase, and a filtering phase.
The steps for the collection phase are as following:

1. Choose 230 pairs (Ci, C
′
i) with Ci ⊕ C ′

i = ∆11.
2. Collect the corresponding plaintext pairs (Pi, P

′
i) from a decryption oracle,

where Pi = E−1

K (Ci) and P ′
i = E−1

K (C ′
i). Store all pairs (Pi, P

′
i) in a list P.

The filtering phase then consists of following steps:

3. For all key combinations K0:
3.1 Initialize count← 0.
3.2 For all pairs (Pi, P

′
i) ∈ P:

– Partially encrypt (Pi, P
′
i) to the state after the encryption of Round 2

and derive ∆R2.
– If ∆R2 = ∆4,8,11,12, then, for all values K1, further encrypt (Pi, P

′
i)

to the state after the encryption of Round 3 and check if ∆3 matches
the expected difference. If this is the case, then increment count. Note
that we do not guess any bits of the key in the third round, since the
key addition does not affect our target difference.

4

3.3 If count > 11, mark the current value K0 as the (or one of few) poten-
tially correct key candidates.

This attack works because of the following reasons: the probability that a pair
follows our differential characteric is given by 2−25. Hence, the probability that
no more than eleven correct pairs occur when using Speck can be approximated
by

Pr[false random] := PrPoisson[n = 230, p = 2−25, x ≤ 11] ≈ 1.70 · 10−5.

In this point, we also need to consider the probability of a false positive key. The
probability that a pair produces the ∆3 by random is 2−32. So, for one specific
value of the guessed keys, the probability that more than eleven false-positive
pairs occur is

1− PrPoisson[n = 230, p = 2−32, x ≤ 11] ≈ 2−53.38.

Since A guesses 32 key bits, the probability that any key candidate produces
more than eleven false-positive pairs is about

Pr[false real] := 1− PrPoisson[n = 232, p = 2−53.38, x ≤ 0] ≈ 3.67 · 10−7.

Concluding, the error probability of A becomes very close to 0, if it interprets
a key candidate as the secret key when at least eleven pairs satisfy ∆3. At the
end, A can use those correct text pairs for its found key candidate, and perform
further partial encryptions over the rounds 4 and 5, to identify the correct values
of K2 and K3.

Attack Complexity. The straight-forward application of our attack requires
231 chosen ciphertexts. Concerning the memory complexity, A can store either a
list of counters for all key candidates or a list of all plaintext pairs – the latter op-
tion gives us a memory complexity of 231 · 32/8 = 233 bytes. The computational
effort for the collection phase, Ctexts, is equivalent to 231 full decryptions per-
formed by the oracle. The filtering effort, Cfilter, is twofold. First, for 216 values
K0, we encrypt all pairs over the first two rounds. All pairs satisfying ∆R2 and
happening with probability 2−16 in average, are further encrypted over Round 3
for all values K1. The brute-force effort to find the remaining bits of K2 and
K3, Cbruteforce, can be overestimated by 232 full encryptions. Summing up, we
have

2 · 230
︸ ︷︷ ︸

Ctexts

+

(

216 ·
2

11
+ 2−16 · 216+16 ·

1

11

)

· 2 · 230

︸ ︷︷ ︸

Cfilter

+ 232
︸︷︷︸

Cbruteforce

≈ 245.2 encryptions.

For the further versions of Speck, we can apply a similar procedure and get the
following results which are summarized in Table 3.

5

State Key Rds. Pr[diff.] Prs. Known bits Key Thresh.

size size at ∆2 at ∆3 bits prs.

32 64 11 2−25 230 16 32 32 > 11

48 all 12 2−38 243 24 48 48 > 11

64 all 13 2−49 254 32 64 64 > 11

96 all 15 2−81 286 48 96 96 > 11

128 all 16 2−115 2120 64 128 128 > 11

Table 3. Parameters of our differential attacks on Speck2n/k. Rds. = rounds, prs. =
pairs.

4 Rectangle Attacks on Speck

4.1 Boomerang and Rectangle Attacks

Boomerangs [15] are differential-based attacks that allow an adversary to con-
catenate two “short” differential characteristics, which is beneficial for primitives
where “long” characteristics would have a very low probability. Boomerang at-
tacks have been first introduced by Wagner in 1999 [15], and were later trans-
formed into a chosen-plaintext attack by Kelsey, Kohno, and Schneier [12], which
they called it an amplified boomerang. In 2001, Biham, Dunkelman, and Keller
added further improvements and renamed it to the rectangle attack [3]. In 2002,
the same authors made more improvements for boomerang- and rectangle-based
key-recovery attacks [4]. In 2010, Dunkelman, Keller, and Shamir [8] extended
the technique by introducing the sandwich attack, where the adversary can in-
sert a round between the two sub-ciphers if they have a differential with high
characteristic probability.

Boomerang Attacks. In the basic setting of the attack, an adversary A first
decomposes a given cipher E into two sub-ciphers E = E2 ◦ E1, where it uses
two differentials

α
p
−−→
E1

β and γ
q
−−→
E2

δ,

with probability p and q, respectively. Then, A collects a pair (P, P ′) with P ⊕
P ′ = α and asks an encryption oracle for their corresponding ciphertexts (C,C ′).
As a next, it derives two new ciphertexts D = C ⊕ δ and D′ = C ′ ⊕ δ, and asks
the decryption oracle for their corresponding plaintexts (Q,Q′). If Q ⊕ Q′ =
α, then the adversary obtains a correct quartet. Each quartet (P, P ′, Q,Q′),
has a probability of p2, where their respective outputs after E1, (R,R′, S, S′),
applies: R ⊕ R′ = β and S ⊕ S′ = β. At this point, one is interested in the
case when R ⊕ S = γ and automatically R′ ⊕ S′ = γ , which is called the
boomerang property. With probability q2, the ciphertexts of such a quartet will
produce the differences C ⊕D = δ and C ′ ⊕D′ = δ and one obtains the correct
quartet. Assuming that the adversary collects m pairs with difference α, then,
the expected number of correct quartets is m2 · 2−n · (pq)2.

6

For a random permutation, the number of correct quartets would be m2 · 2−2n.
So, in order to mount the attack, it must apply that pq > 2−n/2. However, in
this case, the adversary can count more correct quartets than the one would
expect from a random permutation and it can distinguish E from random.

Amplified Boomerang/Rectangle Attacks. The standard boomerang pro-
cedure explained above represents an adaptive chosen plain-/ciphertext attack.
Since this is a less practical scenario, Kelsey, Kohno, and Schneier developed
amplified boomerangs which are pure chosen-plaintext attacks.

Following their method, the adversary chooses 2
n/2+2

pq plaintext pairs and let
the oracle to encrypt them. Since any two pairs can be used to form a quartet,

this gives the adversary 2
n+3

p2q2 possible quartets. The difference γ holds with

probability 2−n after E0, so one can expect a few correct quartets for which
holds C ⊕D = C ′ ⊕D′ = δ.

4.2 Rectangle Attack on Speck32/64

In this section, we present rectangle attacks on round-reduced versions of Speck.
For α→ β and γ → δ, we use only those parts of our characteristic in Appendix A
which have a high probability.
In the following, we describe an 11-round rectangle attack on Speck32/64 in
detail. Since our attacks on the further versions of Speck work similar, we only
specify the used trails and their complexities here. For the smallest version we
use the trails

α = (∆11,12, ∆4)
p=2

−6

−−−−−→
E0

(∆15, ∆1,3,10,15) = β,

and

γ = (∆11,12, ∆4)
q=2

−6

−−−−−→
E1

(∆15, ∆1,3,10,15) = δ.

Here, E0 represents the rounds 4-7, and E1 the rounds 8-11. The procedure for
our attacks is as follows:

1. Choose 2
n/2+2

pq = 2
32/2+2

2−62−6 = 230 ciphertext pairs.

2. Initialize a set K of 2|K
0|+|K1| = 216+16 = 232 counters for all subkey bits in

K0 and K1.
3. Ask an oracle for the decryption (P,Q) of all chosen ciphertext pairs and

store them in a hash table.
4. For all possible values of the subkeys K0‖K1:

4.1 Encrypt all pairs (P,Q) over the first three rounds, and store the results
as (S, T).

4.2 For all combination of pairs (S, T), (S′, T ′), check whether their differ-
ence is equal to α, (S ⊕ S′ = T ⊕ T ′ = α). If yes, then increment the
counter for the current key candidate.

5. Output the key candidate with the maximal count in K.

7

Attack Complexity. The attack requires 231 chosen ciphertexts as a data
complexity. Concerning the memory complexity, A need to store the ecncryption
of all plaintext pairs beside the list of counters. So, it becomes 231 · 32/8+232 ≈
233.6 bytes. The computational effort for the collection phase, Ctexts, is equivalent
to 231 full decryptions performed by the oracle. The filtering effort consists of
encrypting 230 pairs for 232 key candidates over the first three rounds. The
brute-force effort to find the remaining bits of K2 and K3, Cbruteforce, can be
overestimated by 232 full encryptions. Summing up, we have

2 · 230
︸ ︷︷ ︸

Ctexts

+

(

232 ·
3

11

)

· 2 · 230

︸ ︷︷ ︸

Cfilter

+ 232
︸︷︷︸

Cbruteforce

≈ 261.1 encryptions.

We can apply a similar procedure in order to mount attacks on the further
versions of Speck. The parameters of our attacks with error probabilities of the
adversary are summarized in Table 4.

State Key Rounds (pq)2 Cdata Cmemory Ctime

size size

32 64 11 2−24 230 233.6 261.1

48 72 11 2−36 245 245.0 267.0

48 96 12 2−36 245 248.2 291.0

64 96 13 2−54 262 262.0 291.9

64 128 14 2−54 262 264.3 2123.7

96 144 15 2−80 291 291.0 2136.0

128 192 17 2−118 2126 2126.0 2186.9

128 256 18 2−118 2126 2128.3 2251.4

Table 4. Parameters of our rectangle attacks on Speck2n/k.

5 Conclusion

In this work, we analyzed the security of the lightweight block cipher family
Speck by applying differential and rectangle as summarized in Table 1. To the
best of our knowledge, our results are the first security analysis for Speck, since
the proposal did not include any form of security assessment. We could easily
find conventional differentials for all versions of the cipher which helped us to
mount differential and boomerang attacks on versions with up to half of the total
number of rounds.
Since Speck has a very simple ARX structure, any new attack on generalized
ARX ciphers such as ThreeFish would be a threat to the security of Speck.
However, one positive security aspect of the NSA construction is the round-
wise key addition and the simple, yet powerful key schedule, which protects
very effectively against slide and meet-in-the-middle attacks over a reasonable

8

number of rounds, as we noted during our studies. The security analysis in this
paper can be seen as a starting point for upcoming research on the Speck block
cipher family. It would be interesting to see further investigation by using more
sophisticated methods of cryptanalysis or improvements of our current results.

6 Acknowledgment

We would like to thank Ivica Nikolić for giving us helpful comments.

References

1. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. Performance of the SIMON and SPECK Families of
Lightweight Block Ciphers. Technical report, National Security Agency, May 2012.

2. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of
Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013.
http://eprint.iacr.org/.

3. Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rect-
angling the Serpent. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of
Lecture Notes in Computer Science, pages 340–357. Springer, 2001.

4. Eli Biham, Orr Dunkelman, and Nathan Keller. New Results on Boomerang and
Rectangle Attacks. In Joan Daemen and Vincent Rijmen, editors, FSE, volume
2365 of Lecture Notes in Computer Science, pages 1–16. Springer, 2002.

5. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 450–466. Springer, 2007.

6. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalcin. PRINCE -
A Low-Latency Block Cipher for Pervasive Computing Applications - Extended
Abstract. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658
of Lecture Notes in Computer Science, pages 208–225. Springer, 2012.

7. Christophe De Cannière and Orr Dunkelman and Miroslav Knezevic. KATAN and
KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers.
In CHES, pages 272–288, 2009.

8. Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-Key
Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony. In Tal
Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages
393–410. Springer, 2010.

9. Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A New Family of
Lightweight Block Ciphers. In Ari Juels and Christof Paar, editors, RFIDSec,
volume 7055 of Lecture Notes in Computer Science, pages 1–18. Springer, 2011.

10. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES, volume
6917 of Lecture Notes in Computer Science, pages 326–341. Springer, 2011.

9

http://eprint.iacr.org/

11. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok Koo,
Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim, Jongsung
Kim, and Seongtaek Chee. HIGHT: A New Block Cipher Suitable for Low-Resource
Device. In Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249 of
Lecture Notes in Computer Science, pages 46–59. Springer, 2006.

12. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang Attacks
Against Reduced-Round MARS and Serpent. In Fast Software Encryption, pages
75–93, 2000.

13. Chae Hoon Lim and Tymur Korkishko. mCrypton - A Lightweight Block Cipher
for Security of Low-Cost RFID Tags and Sensors. In JooSeok Song, Taekyoung
Kwon, and Moti Yung, editors, WISA, volume 3786 of Lecture Notes in Computer

Science, pages 243–258. Springer, 2005.
14. Markku-Juhani O. Saarinen and Daniel Engels. A Do-It-All-Cipher for RFID:

Design Requirements (Extended Abstract). Cryptology ePrint Archive, Report
2012/317, 2012. http://eprint.iacr.org/.

15. David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE, volume
1636 of Lecture Notes in Computer Science, pages 156–170. Springer, 1999.

A Differential Characteristics for Speck2n/k

Rd. Speck32/k Speck48/k

∆Li ∆Ri ℓ ∆Li ∆Ri ℓ

0 ∆10,11,15 ∆4,8,11,12 ∆0,3,8,9,11,20,22 ∆0,3,6,9,11,16

1 ∆3,10,12 ∆3,6,12,13,14
0

∆1,6,9,11,12,14,19 ∆1,3,11
0

2 ∆5,15 ∆0,8,14
−6

∆4,6,17,22 ∆14,17,22
−7

3 ∆0,9 ∆2,9,10
−4

∆9,17,20 ∆1,9
−5

4 ∆11,12 ∆4
−5

∆12 ∆4
−3

5 ∆6 0
−3

0 ∆7
−1

6 ∆15 ∆15
0

∆7 ∆7,10
−1

7 ∆8,15 ∆1,8,15
−1

∆7,10,23 ∆7,13,23
−2

8 ∆15 ∆1,3,10,15
−2

∆2,7,13,15 ∆7,10,13,15,16
−4

9 ∆1,3,8,10,15 ∆5,8,10,12,15
−4

∆5,10,13,15,16,18,23 ∆5,15,19,23
−7

10 ∆2,7,8,10,19,21,23 ∆7,10,18,19,21−23
−8

Σ −25 −38

Table 5. Differential characteristics for the smaller variants of Speck2n/k. ℓ denotes
log2(Pr).

10

http://eprint.iacr.org/

Rd. Speck64/k

∆Li ∆Ri ℓ

0 ∆6,17,22,27,28 ∆14,17,27

1 ∆9,17,19,20,27,30 ∆9,19,27
0

2 ∆1,11,12,22,27 ∆1,11,27,30
−7

3 ∆1,3,4,11,14,19,25,27,30 ∆3,11,19,25,27
−9

4 ∆6,17,22,28 ∆14,17,30
−9

5 ∆9,17,20 ∆1,9
−5

6 ∆12 ∆4
−3

7 0 ∆7
−1

8 ∆7 ∆7,10
−1

9 ∆7,10,31 ∆7,13,31
−2

10 ∆2,7,13,23 ∆7,10,13,16,23
−4

11 ∆5,7,10,13,15,16,23,26,31 ∆5,7,15,19,23,31
−8

Σ −49

Table 6. Differential characteristics for Speck64/k. ℓ denotes log2(Pr).

Rd. Speck96/k

∆Li ∆Ri ℓ

0 ∆0,1,5,6,10,12,16,26,27,37,38 ∆1,2,5,18,27,37,46

1 ∆1,4,5,8,19,27,29,30,37,40,41,45 ∆19,21,27,29,37,41,45
0

2 ∆0,11,22,27,32,33,44 ∆11,24,27,30,33,40
−13

3 ∆3,11,14,19,25,27,30,33,36 ∆3,11,19,25,43
−11

4 ∆6,17,22,28 ∆14,17,46
−9

5 ∆9,17,20 ∆1,9
−5

6 ∆12 ∆4
−3

7 0 ∆7
−1

8 ∆7 ∆7,10
−1

9 ∆7,10,47 ∆7,13,47
−2

10 ∆2,7,13,39 ∆7,10,13,16,39
−4

11 ∆5,7,10,13,16,31,39,42,47 ∆5,7,19,31,39,47
−8

12 ∆2,7,8,19,23,34,45 ∆7,10,19,22,23,42,45
−10

13 ∆0,7,10,11,15,19,22,23,26,37,45,47 ∆7,11,13,15,19,23,25,37,47
−12

Σ −81

Table 7. Differential characteristics for Speck96/k. ℓ denotes log2(Pr).

11

Rd. Speck128/k

∆Li ∆Ri ℓ

0 ∆5,10,16,26,27,37,38,42,48,49,54,58,60 ∆5,18,27,34,37,46,49,50,2

1 ∆5,8,19,27,29,30,37,40,41,49,52,61 ∆19,21,27,29,41,53,61
0

2 ∆11,22,27,32,33,44,0 ∆11,24,27,30,33,56
−13

3 ∆11,14,19,25,27,30,33,36,3 ∆11,19,25,59,3
−11

4 ∆6,17,22,28 ∆14,17,62
−9

5 ∆20,17,9 ∆9,1
−5

6 ∆12 ∆4
−3

7 0 ∆7
−1

8 ∆7 ∆7,10
−1

9 ∆7,10,63 ∆7,13,63
−3

10 ∆7,13,55,2 ∆7,10,13,16,55
−4

11 ∆5,7,10,13,16,47,55,58,63 ∆5,7,19,47,55,63
−8

12 ∆7,8,19,39,50,61,2 ∆7,10,19,22,39,58,61
−11

13 ∆7,10,11,19,22,31,39,42,53,61,63,0 ∆7,11,13,19,25,31,39,53,63
−12

14 ∆7,13,14,19,23,25,34,39,45,55,56,2,3 ∆7,10,13,16,19,22,23,25,28,39,42,45,55,3
−17

Σ −115

Table 8. Differential characteristics for Speck128/k. ℓ denotes log2(Pr).

12

	Cryptanalysis of the Speck Family of Block Ciphers
	Introduction
	Speck
	Differential Attacks on Speck
	Key-Recovery Attack on Speck32/64

	Rectangle Attacks on Speck
	Boomerang and Rectangle Attacks
	Rectangle Attack on Speck32/64

	Conclusion
	Acknowledgment
	Differential Characteristics for Speck2n/k

