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Abstract. Universal hashes are usually based on some multivariate
polynomials in message and key blocks (elements of some underlying ring
R). These are implemented by using multiplications (which dominates
the computational time) and additions. Two such hashes are pseudo dot-
product (PDP) hash and Bernstein-Rabin-Winograd (BRW) hash which
require n/2 multiplications for n message blocks. In this paper we ob-
serve that these are optimum in number of multiplications by showing
that at least n/2 multiplications or non-linear operations are necessary.
We also extend this lower bound for any multi-block hash construction,
i.e., the hash output is an element of Rd. We show that d block hash
outputs requires at least (d− 1) + n/2 non-linear operations. The widely
used Toeplitz construction for d block hash output requires nd/2 multi-
plications when it is applied for PDP. In this paper, we propose a d-block
universal hash EHC requiring (d− 1) + n/2 multiplications and hence it
is optimum and the bound is tight. Our construction is roughly d times
faster than Toeplitz construction. Moreover, it has similar parllelizibility
and key size as in Toeplitz construction.

Keywords: Universal Hash, AXU hash, multivariate polynomial, error
correcting code, Vandermonde matrix, Toeplitz hash.

1 Introduction

Universal hash function and its close variants ∆U hash [10, 13, 40, 41, 42]
are used as building blocks of several cryptographic constructions, e.g., message
authentication codes [10, 48], domain extension of pseudorandom functions [2,
4], extractors [15, 32] and quasi-randomness [43]. It also has close connection
with error correcting codes and other combinatorial objects [13, 42].

Informally, a universal hash function h takes two inputs a key k and a message
m, and produces a fixed-length output hk(m) := h(k,m). For a universal (or
∆U) hash function h the following holds: for any pair of distinct messages the
collision (or differential) probability is small when the key is chosen uniformly
from its key space. A very popular application of universal hash is to obtain a
domain extension of pseudorandom function or PRF. When h has low collision
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probability and f is a PRF, then the composition function f◦h is a PRF [4]. Thus
h behaves as a preprocessor to reduce the problem of designing arbitrary size
input PRF to a fixed small size input PRF. This method is only useful when we
use a much faster h (than a PRF). So our main question of this paper is that how
fast a universal hash function could be? It has been answered [26, 28] in terms of
order by showing asymptotic lower bounds in circuit level computational models.
As these bounds ignore constant factor, there is no way to know which hash
functions are optimum. Moreover, almost all known hash functions achieve these
bounds. Hence our target question of this paper is to obtain a concrete lower
bound and to show the tightness of the bound by producing examples. To
answer it, we consider the algebraic computation model (see Knuth [24] Volume
2) in which a polynomial or a rational function is computed by using addition and
multiplication (or division) over an underlying ring (or a field) R in a sequence
determined by the algorithm. As multiplication is much more costly operation
than addition, we are more interested in multiplication complexity, the minimum
number of multiplications required to compute hash functions. Note that almost
all known universal hashes are based on some polynomials over a ring or field
R and hence their multiplication complexity could be compared. This would
essentially compare the actual time taken to compute hash values provided the
other overheads such as addition is not much.

1.1 Our contribution and outline of the paper

In the following we assume a universal hash function hashes all messages from
Rn and hence multiplication complexity is measured in terms of n.

Optimality of pseudo dot-product and BRW hash. In this paper we
prove that a hash function with low differential probability must have
multiplication complexity at least n/2 (see Theorem 4). We show it by
proving the other way, i.e., if a function has multiplication complexity less than
n/2 then there are two distinct messages from Rn whose differential probability
is one. The pseudo dot-product [45] based hash PDP (e.g. NMH hash [14] and
its efficient variants NMH∗ [14], NH [4] and others [8, 21]) and Bernstein-Rabin-
Winograd or BRW hash [7, 36] are two types of examples which achieve this
bound. Even though our lower bound is intuitive, to the best of our knowledge,
it was not known before.

Optimality of multiple block hash. We also extend this bound for multiple
block hash outputs (such as Toeplitz construction [26] or independent applica-
tions of a single block hash function). In Theorem 6, we prove that to obtain
d block hash outputs (the hash output is now an element of Rd) we need
at least (d− 1) +n/2 multiplications. Surprisingly, no construction is known
so far achieving this lower bound for d > 1. Note that both Toeplitz and inde-
pendent invocation applied to the PDP requires nd/2 multiplications. So there
is a scope of improving hash construction. In this paper, we provide a d-block
∆-universal hash, called EHC or encode-hash-combiner (see Algorithm
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1), using an error correcting code [27] and a linear combiner based on the Van-
dermonde matrix, which requires exactly (d − 1) + n/2 multiplications. Hence,
the construction is optimum and our bound is tight. In terms of key size and
parallelizibilty, both Toeplitz and EHC are similar. The basic idea of EHC is de-
scribed in [17]. However, they used the error correcting code for both encoding
and combiner layers which are not practically implementable. The main reason is
due to linear space complexity of their constructions. However, our construction
requires constant time or memory proportional to the hash size.

Outline of the paper After providing all basic necessary definitions in sec-
tion 2, we present a survey on existing constructions and analysis methods in
section 3. We provide our proposed ∆ universal hash functions in section 4. In
section 5, we present a brief survey on results of lower bound on the number
of multiplications for a polynomial. Later in the same section, we provide the
lower bounds on the the number of non-linear operations for a universal hash
function. Finally, we conclude with possible future research directions.

2 Definitions: Universal and ∆-universal hash function

∆U Hash Function. A hash function h is a (K, D,R)-family of functions
{hk := h(k, ·) : D → R}k∈K defined on its domain or message space D, taking
values on a group R, called output space and indexed by the key space K.
Usual choices of R are (i) Zp (the field of modulo a prime p), (ii) Z2w (the ring
of modulo 2w) (iii) F2n (Galois field of size 2n) and (iv) Rd1 with coordinate
wise operation, where R1 is one of the previous choices. In the last example
when d > 1, h is also called multi or d-block hash. An element of R (or R1 for
the multi-block) is called block. In general, we write R1 even for d = 1. However,
the output space is always denoted by R = Rd1, d ≥ 1. Except for (Zp)d, R can
be viewed as the set {0, 1}N by using the canonical encodings and we say that
hash size is N .

Definition 1 (ε-∆U hash function). A (K, D,R)-family h is called ε-∆U
(universal) hash function if for any two distinct x and x′ in D and a δ ∈ R,
the δ-differential probability diffh,δ[x, x

′] := PrK[hK(x)−hK(x′) = δ] ≤ ε where
the random variable K is uniformly distributed over the set K.

Unless mentioned explicitly, we always mean key K to be chosen uniformly from
its key space. The maximum δ-differential probability over all possible of two
distinct inputs x, x′ is denoted by ∆h,δ. The maximum differential probability
∆h := maxδ∆h,δ. If the addition is bit-wise xor “⊕” on R = {0, 1}N , we call
the hash family ε-AXU (almost-xor-universal) hash function [37].

Universal Hash Function. When δ = 0, the 0-differential event is equivalent
to collision. So we write diffh,0[x, x′] and ∆h,0 by collh[x, x′] and collh respectively
and we call them collision probabilities.
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Definition 2 (ε-U hash function). A hash family h is called ε-universal (or
ε-U) if collh := maxx 6=x′ PrK[hK(x) = hK(x′)] ≤ ε.

Balanced Hash Function. We call h ε-balanced [23, 31] on a subset D′ ⊆ D
if Pr[hK(x) = y] ≤ ε for all x ∈ D′, y ∈ R. If D′ = D then we call it ε-balanced.
Note that ε is always at least 1/|R| for ε-∆U (shown in [42]) and ε-balanced
function (easy to check from definition) but not necessarily for an ε-U hash
function [42]. An ε-balanced functions are useful to prove ε-∆U property when-
ever hK ’s are linear [23]. More precisely, for a linear hash, ε-∆U is equivalent to
ε-balanced function on R \ {0}.

3 Analysis Methods of Universal Hash Functions

Convert ∆U to an universal hash function. Let h be an ε-∆U (K, D,R)-
hash function. Then h′ defined below is an ε-universal hash on a domain D×R.

h′k(m, z) = hk(m) + z, m ∈ D, z ∈ R.

For example, when R is a field of size q with addition “+” and multiplication
“·”, it is easy to see that m1 7→ K · m1 is a q−1-∆U hash function and hence
(m1,m2) 7→ m1 + K ·m2 is a q−1-U hash function where m1,m2,K ∈ R.

Multi-linear hash. The hash mapping (m1, . . . ,ml) 7→ m1 ·K1 + · · ·+ml ·Kl is
an q−1-∆U hash function (it is a sum hash and hence one may apply Lemma 2).
It is known as multi-linear hash ML[13, 48]. Hence m1 ·K1 + · · ·+ml ·Kl+ml+1

is an q−1-∆U hash function. Later MMH was proposed [14] with a performance
record. It is a multi-linear hash with a specific choice of R = Z264 and a post-
processor. All these constructions above requires (at least) n multiplications and
n many independent key blocks.

(Linear) Poly-hash. By counting roots of a polynomial, one can show that
(m1, . . . ,ml) 7→ m1 ·K +m2 ·K2 + · · ·+ml ·Kl is an l× q−1-∆U hash function
and hence m0 +m1 ·K +m2 ·K2 + · · ·+ml ·Kl is an l× q−1-U hash function.
These are known as poly-hash [3, 9, 44] which mainly differ by padding rule and
choices of R. Padding rule is crucial when we hash variable size messages. We call
it linear poly hash as it is linear in message blocks. For example, Ghash used in
GCM [22], poly1305 [6], polyQ, polyR [25] (combination of two poly-hashes), and
others [20, 18] etc. The speed report of these constructions are given in [30, 40].

Bernstein-Rabin-Winograd hash or BRW [7, 36] hash is a multi-variate poly-
nomial hash which is non-linear in message blocks. It requires n/2 multiplication
and one key. As the algorithm is recursive and binary tree based, it requires
O(log n) storage. This construction uses minimum number of keys (single block)
and requires minimum number of multiplications (as we show in Theorem ??).
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3.1 Composition of universal hashes

The conversion for the other direction costs an independent invocation of ∆U-
hash function. More precisely, given an ε1-universal (K, D,D′)-hash function h
and ε2-∆U (K′, D′, R)-hash function h′ the composition hash function defined
below

(h′ ◦ h)k,k′(m) = h′k′(hk(m)), ∀m ∈ D
is (ε1 + ε2)-∆U-hash function on D. This can be shown in two cases: (i) The
collision of h′ ◦ h implies collision of h or h′ (with different inputs) and hence
we are done as these two functions have independent keys. (ii) The non-zero
differential of h′ ◦ h implies non-collision of h and differential of h′ which can
happen with probability at most ε2.

Whenever h′ is assumed to be only ε2-U hash function, the composition is
(ε1 + ε2)-U-hash function [40]. One can inductively extend it for a composition
of any number of universal hash functions hr ◦ · · · ◦ h1 as long as their domain
and output spaces are compatible, i.e., composition is well defined. Whenever
the last hash function in the composition is universal (or ∆U) so is the composed
hash function. This composition results are useful to play with domain and range
for different choices and has been used in several constructions [4, 39, 25].

3.2 Pseudo dot-product

The notion of pseudo dot product hash is introduced for preprocessing some
cost in matrix multiplications [45]. The construction NMH [14] uses this idea.
NMH∗ and NH are variants of these construction. Later on NH has been modified
to propose some more constructions [19, 21, 8, 31]. A general form of pseudo
dot-product PDP is (m1 + K2)(m2 + K1) + . . . + (m2l−1 + K2l)(m2l + K2l−1)
which is same as multi-linear hash plus two functions of messages and keys
separately. The main advantage of PDP is that it requires l multiplications to
hash 2l message blocks. We first prove a general statement which is used to prove
∆U propert of PDP.

Lemma 1. Let h be an ε-∆U (K, D,R)-hash function where R is an additive
group. Then the following (K, D,R)-hash function h′

h′k(m) = hk(m) + f(k) + g(m). (1)

is ε-∆U hash function for any two functions f and g mapping to R.

Proof. For anym 6= m′ and δ, h′k(m)−h′k(m′) = δ implies that hk(m)−hk(m′) =
δ′ := δ + g(m′)− g(m) and hence the result follows. ut

Corollary 1 (Pseudo dot-product hash). Let R be a field of size q. The
hash function (m1,m2, . . . ,m2l−1,m2l) 7→ (m1 +K1)(m2 +K2) + . . .+ (m2l−1 +
K2l−1)(m2l + K2l) is q−1-∆U hash function for a fixed l.

Corollary 2 (Square hash [11]). Let R be a field of size q. The hash function
(m1,m2, . . . ,ml) 7→ (m1 + K1)2 + · · ·+ (ml + Kl)

2 is q−1-∆U hash function for
a fixed l.
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3.3 Message Space Extension: Sum Hash Construction

Now we provide some easy generic tools to hash larger message. Let h be an
ε-∆U hash function from D to R with key space K. A hash function is called
sum hash (based on h), denoted hsum if it is defined as

hsum
k1,...,ks(m1, . . . ,ms) =

s∑
i=1

hki(mi), (2)

The multi-linear hash ML and PDP are two examples of sum-hash.

Lemma 2. If h is an ε-∆U hash function from D to R with key space K then
hsum is an ε-∆U (Ks, Ds, R)-hash function.

Proof. One can verify it in a straightforward manner once we condition all keys
Kj ’s except a key Ki for which mi 6= m′i (the ith elements of two distinct inputs
m and m′). ut

The above sum-hash is defined for a fixed number of message blocks. Now we
define a method which works for arbitrary domain D := {0, 1}≤t. To achieve
this, we need a padding rule which maps D to D+ = ∪i≥1D

i. A padding rule
pad : D → D+ is called D′-restricted if it is an injective function and for all
m ∈ D and pad(m) = (m1, . . . ,ms) we have ms ∈ D′.

Lemma 3 (Extension for D := {0, 1}≤t). Let h be an ε-∆U (K, D,R)-hash
function and ε-balanced on D′ ⊆ D and pad : D → D≤L be a D′-restricted
padding rule. The sum-hash hpad,sum, defined below, is an ε-∆U (KL, {0, 1}≤t, R)-
hash function.

hpad,sum
K1,...,KL

(m) =
s∑
i=1

hKi
(mi), pad(m) = (m1, . . . ,ms) (3)

The proof is similar to fixed length sum-hash except that for two messages with
different block numbers. In this case, the larger message uses an independent
key for the last block which is not used for the shorter message and hence the
follows by using balanced property of the hash. Note that ML is clearly not
universal hash function for variable length messages. It is a sum hash applied
on the hash m ·K which is not balanced on the field R (the 0 message maps to
0 with probability one). However, it is q−1-balanced for R \ {0}. Hence for any
padding rule pad which is injective and the last block is not zero will lead to
an universal hash for ML construction. For example, the popular “10-padding”
pads a bit 1 and then a sequence of zeros, if required, to make it a tuple of the
binary field elements. This ensures that the last block has the bit 1 and hence
it is non-zero. Surprisingly, the pseudo dot-product is 2q−1-balanced on R and
hence any injective padding rule for PDP will give a 2q−1-∆U hash function.
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An Alternate Method A generic way to handle arbitrary length is as fol-
lows: Let h be an ε-∆U hash function on Di, 1 ≤ i ≤ R and h′ be an ε-
∆U hash function on {0, 1}r. Suppose Len : {1, 2, . . . , R} → {0, 1}r is an
injective function, such as lenght encoding function. Then the hash function
Hk,k′(m) = hk(m) + h′k′(lm) where m ∈ Di and lm = Len(i) is an an ε-∆U
hash function on D := ∪iDi. In other words, h is an ∆U hash functions for fixed
length messages and h′ is an ∆U hash function defined on length then the sum
of these two functions is an ∆U hash function on variable length input.

3.4 Toeplitz construction: A method for Multi-block Hash

One straightforward method to have a d-block universal hash is to apply d
independent invocation of universal hash h. More precisely, for d independent
keys K1, . . . ,Kd, we define a d-block hash as h(d) = (hK1

(m), . . . , hKd
(m)). We

call it block-wise hash. It is easy to see that if h is ε-U (or ∆U) then h(d) is εd-U
(or ∆U) hash function. The construction has d times larger key size. However,
for a sum-hash hsum we can apply Toeplitz construction, denoted hT,d, which
requires only d additional key blocks where h is an ε-∆U (K, D,R)-hash function.

hT,di (m1, . . . ,ml) = hKi
(m1) + hKi+1

(m2) + . . .+ hKl+i−1
(ml), 1 ≤ i ≤ d. (4)

We define hT,dK1,...,Kl+d−1
(m) = (hT,d1 , . . . , hT,dd ). Note that it requires d− 1 addi-

tional keys than the sum construction for single-block hash. However the number
of hash computations is multiplied by d times. Later we propose a better ap-
proach for a d-block construction which requires much less multiplications.

Lemma 4. h is ε-∆U (K, D,R1)-hash ⇒ hT,d is εd-∆U (Kl+d−1, Dl, Rd1)-hash.

Proof. For two distinct messages m 6= m′ it must differ at some index. Let i
be the first index where they differ i.e., mi 6= m′i and m1 = m′1, . . . ,mi−1 =
m′i−1. Now condition all keys except K′ := (Ki, . . . ,Ki+d−1). Denote Hi and
H ′i for the ith block hash outputs for the messages m and m′ respectively. Now,
Hd −H ′d = δd leads a differential equation of h for the key Ki+d−1 and so this
would contribute probability ε. Condition on any such Ki+d−1, the previous
equation Hd−1 − H ′d−1 = δd−1 can be expressed as an differential equation of
Ki+d−2 and so on. The result follows once we multiply all these probabilities. ut

The above proof argument has similarities in solving a system of upper trian-
gular linear equations. So we start from solving the last equation and once we
solve it we move to the previous one and so on until we solve the first one.

Toeplitz Construction applied to an arbitrary length. Now we describe
how Toeplitz construction can be used for arbitrary length inputs. If h is ε-
balanced on a set D′ ⊆ D then we need a padding rule which maps a binary
string to (m1, . . . ,ms) ∈ Ds such that ms ∈ D′. This condition is same as sum
hash construction for arbitrary length.
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Lemma 5 (Toeplitz construction for D := {0, 1}≤t). Let h be an ε-∆U
(K, D,R1)-hash function and ε-regular on D′ ⊆ D and pad be D′-restricted. Then
the Toeplitz hash hT,d,pad(m) = hT,d(pad(m)) : is an εd-∆U (KL+d−1, {0, 1}≤t, Rd1)-
hash function.

The proof is similar to the fixed length proof and hence we skip the proof.
The 10-padding rule (as mentioned for ML hash) for Toeplitz construction in
ML can be used [38]. Similarly, for PDP one can use any injective padding rule.
Other popular multi-block constructions are the following:

Generalized linear hash [38], LFSR-based hash [23], CRC construction or
Division hash [23, 40], Generalized division hash [40], Bucket hash [37], a
variant of Toeplitz construction [31] etc. are some examples of multi-block
hash.

Discussion: Toeplitz Construction applied to Multi-linear hash. Even
though Toeplitz Construction on F2n requires few additional key, the number
of multiplications is same as that of d independent invocations. More precisely,
we need sd multiplications to hash s blocks of size n. Alternatively, one can use
a larger field F2nd to get the same hash size which requires s/d multiplications
(note that the number of block is now reduced to s/d as the block size becomes
nd) of the field F2nd . So informally speaking Toeplitz construction can give better
performance than the later if F2nd multiplication costs more than d2 times F2n

multiplication. However, it is not true as one can always apply the Karatsuba
multiplier to have faster implementation which requires more area in hardware.
On the other hand, a simple implementation by a primitive element cost d2

times F2n multiplications and it requires the same and similar parallelizibility
as the Toeplitz version. Hence, we do not find any clear advantage of Toeplitz
construction. Moreover, Toeplitz version requires little bit extra key. The similar
discussion is valid when Toeplitz is applied to pseudo dot-product.

4 Our Constructions

4.1 Error-Correcting Coding

Let A be an alphabet. Any injective function e : D → An is called an encoding
function of length n. Any element in the image of the encoding function is called
code word. For any two elements x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ An we
define hamming distance dham(x, y) = |{i : xi 6= yi}|, the number of places
two n-tuples differ. We can extend the definition for arbitrary size. Let x =
(x1, . . . , xn) ∈ An, y = (y1, . . . , ym) ∈ Am where m ≤ n. We define d∗ham(x, y) =
(n − m) + dham(x′, y) where x′ = (x1, . . . , xm). The minimum distance for an
encoding function e : D → A+ := ∪i≥1A

i is defined as

d(e)
∆
= min
M 6=M ′∈D

d∗ham(e(M), e(M ′))
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We know from coding theory that for any coding e : Fk → Fn we have d(e) ≤
n−k+1 (singleton bound). Moreover, there is a linear code1 e, called MDS or
maximum distance separable code, such that d(e) = n−k+1. If the generator
matrix of MDS code is of the systematic form G = (Ik : Sk×(n−k)) with identity
matrix Ik then S is called MDS matrix. A characterization of MDS matrix is
that every square sub-matrix has full rank. There are some known systematic
form of MDS code based on Vandermonde matrix [5]. We call a matrix Sk×(n−k)

d-MDS if every square submatrix of size d has full rank. Thus, S is a MDS matrix
if and only if it is d-MDS for all 1 ≤ d ≤ min{k, n− k}. Now we give examples
of MDS and d-MDS matrix using a general form of Vandermonde matrix.

Vandermonde matrix We first define a general form of Vandermonde matrix
Vd := Vd(α1, . . . , αn) over a finite field Fq where d ≤ n are positive integers
and α1, . . . , αn are distinct elements of the field. It is an d × n matrix whose
(i, j)th entry is αi−1

j . If n = d then the matrix is invertible and it is popularly
known as Vandermonde matrix, denoted V (α1, . . . , αs). Moreover note that any
r′ columns of Vd are linearly independent where r′ ≤ d. In particular, Vd is a
d-MDS matrix.

Lemma 6. The matrix Vd defined above for n distinct elements α1, . . . , αn is
d-MDS matrix.

Proof. Let us take d columns i1, . . . , id then the submatrix is the Vandermonde
matrix of size d with d distinct elements αi1 , . . . , αid . As the Vandermonde matrix
is invertible the result follows. ut

4.2 A General Construction

Let e be an error correcting code from a message space D to A≤L with the
minimum distance d. For each l ≥ d, let Vd,l be a d-MDS matrix of dimension d×l
whose entries are from R1, the underlying ring. Let h be an ε-∆U and ε-balanced
hash function on A with the output space R1. We define a hash on D which is
a composition of three basic steps encoding or expansion, block-wise-Hash and
a linear combination. We apply the encoding function e to expand the message
m ∈ D to an l-tuple (m1, . . . ,ml) where l depends onm. In this process we ensure
at least d places would differ for two distinct messages. Then we apply the hash
h block-wise. Finally, we make a linear combiner on the hash blocks to obtain
d-block hash output. We call this general construction method EHC or encode-
hash-combiner. The description of it is given in Algorithm 1. The basic idea of the
construction is described in [17]. However, they used the error correcting code for
both encoding and combiner layers which are not practically implementable. The
main reason is due to linear space complexity of their constructions. However,
our construction requires constant time or memory proportional to the hash size.

1 There is a generator matrix Gk×n with elements from the field F such that e(x) =
x ·G.
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Input: m ∈ D
Output: h ∈ Rd

1

Key: k1, . . . , kL

Algorithm EHC(m)

1 e(m) = (m1, . . . ,ml) ∈ Dl. \\ Apply encoding function
2 For all j = 1 to l \\ Apply hash block-wise.
3 hj = hkj (mj)

4 H = Vd,l · (h1, . . . , hl)
tr \\ Apply d-MDS combiner .

5 Return H

Algorithm 1: A General ∆-universal hash construction. It uses an error
correcting code e : D → R+

1 with a minimum distance d and a family of
d-MDS matrix Vd×l, l ≥ d.

Theorem 1. If e has minimum distance d (i.e. d(e) = d) and h is ε-∆U and
ε-balanced function then the extend function H is εd-∆ universal hash function.

Proof. Let m 6= m′ and x = e(m) = (m1, . . . ,ml), x
′ = e(m′) = (x′1, . . . , x

′
l).

By definition of minimum distance of e, d∗(e(m), e(m′)) ≥ d. W.o.l.g we assume
that l ≥ l′ and i1 ≤ . . . ≤ id ≤ l are distinct indices at which the encoded
messages differ. We condition all keys except Ki1 , . . . ,Kid . Now for any δ ∈
Rd1, H(m) − H(m′) = δ implies that V · (aKi1

, . . . , aKi1
)tr = δ where aKij

=

hKij
(mij ) − hKij

(m′ij ) if ij ≤ l′, otherwise, aKij
= hKij

(mij ). Moreover, V is

the sub-matrix of Vd,l with the columns i1, . . . , id. Note that V is invertible and
hence given differential event is equivalent to (aKi1

, . . . , aKi1
)tr = V −1 · δ. So

the differential probability is at most εd. ut

4.3 Specific Instantiations

Specific Instantiations For Fixed Length Let d = 4. Let R1 be the Galois
field of size 2n and α be a primitive element. The following coding function
C4 has minimum distance 4. C4(m1, . . . ,mt) = (m1, . . . ,mt,mt+1,mt+2,mt+3)
where

- mt+1 =
⊕

imi,
- mt+2 =

⊕
imiα

i−1 and
- mt+3 =

⊕
imiα

2(i−1).
Let l = t + 3. The base hash function hi(k, k

′, x, x′) = (x ⊕ k) · (x′ ⊕ k′).
Finally the d-MDS matrix can be replaced by vandermonde matrix Vd,l :=
Vd(1, α, α

2, . . . , αl).

Theorem 2. The coding C4 defined above has minimum distance 4 for a fixed
length encoded message.

Proof. This coding has systemic form (I : S) where S = Vl(1, α, α
2). It is known

that S is 3-MDS matrix. Now we show that it is also 1-MDS and 2-MDS matrix.
Showing 1-MDS matrix is obvious as every entry of the matrix is non-zero. To
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show that S is 2-MDS we need to choose two columns of the three columns.
One can check easily that for any two columns and two rows the sub-matrix
is non-singular. If we include the first column then the sub-matrix is again a
Vandermonde matrix. If we choose the last two columns and i1 and ith2 rows
then the determinant of the sub-matrix is αi1+i2−2(αi2 − αi1). ut

It is easy to see that if we drop the last column or last two columns we
have error correcting code with distance 3 and 2 respectively. Similarly, one can
have a specific instantiation with d = 2. We do not know so far any coding
function for d > 4 which can be efficiently computed for any arbitrary length
input in an online manner without storing the whole message. However, for
short messages one can apply some pre-specified MDS codes. Note that it is not
necessary to apply MDS code. However, applying MDS-code make the key size
and the number of multiplication as low as possible.

Variable Length ∆U hash The above construction works for fixed size input.
Note that C4 does not have minimum distance (with extended definition) four.
We modify the definition to incorporate variable length. Note that we already
have seen how to incorporate variable length by hashing length with an indepen-
dent key. Now we provide a more efficient approach (for larger length inputs).
We first note that if the longer message m has at least d blocks more than shorter
one m′ then clearly m is involved by at least d additional keys which are not
required for m′. So conditioning on all other keys one can get desired bound.

Let r ≡ l mod d where r < d where e(m) = Dr. Note that r can be expressed
using d′ = log2 d bits. Let K(1), . . . ,K(d′) ∈ K be dedicated keys for length, i.e.
not used to process message. We define the modified hash as follows:

ECH∗(m) = ECH(m) + (K1 · d′, . . . ,Kd′ · d′),

To analyze it works, we consider three cases for e(m) ∈ Dl and e(m′) ∈ Dl′ .

1. If l = l′ then the previous theorem for fixed length works.
2. If l ≥ l′ + d then as we discussed above the differential probability will be

low.
3. Otherwise, modulo d the reduced length r and r′ will be different. So we

can condition all keys except K(1), . . . ,K(d′) and low differential probability
follows from the fact that the product hash is ∆U.

Theorem 3. If h is an ε-∆U hash function then the construction EHC∗ is εd-
∆U hash function for variable length inputs.

5 Lower Bound on Non-Linear Operations

Definition 3. An algebraic computation A is defined by the tuple of linear
functions (L1, . . . , L2t, L

1, . . . , Ld) where L2i−1 and L2i are linear functions over
variables m = (m1, . . . ,ml), k = (k1, . . . , ks), v1, . . . , vi−1, 1 ≤ i ≤ t and Li’s are
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linear over m, k and v1, . . . , vt. When we identify vi by L2i−1 · L2i recursively
1 ≤ i ≤ t, Li are multivariate polynomials (MVP). We call t the multiplication
complexity of A.

We also say that A computes the d-tuple of function (L1, . . . , Ld). Note that while
counting multiplication complexity, we ignore the constant multiplications which
are required in computing L. This is fine when we are interested in providing
lower bounds. However, for a concrete construction, one should clearly mention
the constant multiplications also as it could be significant for a large number of
such multiplications.

Let R be a ring. A linear function in the variables x1, . . . , xs over R is a
function of the form L(x1, . . . , xs) = a0 + a1x1 + . . . + asxs where ai ∈ R. We
denote the constant term a0 by cL. We also simply write the linear function by
L(x) where x = (x1, . . . , xs) is the vector of variables. We add or subtract two
vectors coordinate-wise. Note that if cL = 0 then L(x− x′) = L(x)− L(x′).

Notation. We denote the partial sum a1x1 + . . .+aixi by L[x[1..i]] where x[1..i]
represents x1, . . . , xi. If L is a linear function in the vectors of variables x and y
then clearly, L = a0 + L[x] + L[y].

Lemma 7. [42] Let H be a ε-∆U hash function from S to T then ε ≥ 1
|T | .

Lemma 8. Let R be a finite ring. Let V : K×M ∗→ Rt be a hash function and
L is a linear function on Rt. For any functions f and g, the following keyed
function H

H(K,x) = L(V (K,x)) + f(x) + g(K)

is ε-∆U hash function if and only if V is ε-∆U hash function. Moreover, ε ≥ 1
|R|t .

Proof. By above lemma we have x 6= x′ and δ1 such that PrK [V (K,x) −
V (K,x′) = δ1] ≥ 1

|T | . Let δ = L(δ1) + (f(x) − f(x′)) and hence V (K,x) −
V (K,x′) = δ1 ⇔ H(K,x)−H(K,x′) = δ. This proves the result. ut

5.1 Minimum number of multiplications for ∆U hash function.

Now we show our first lower bound on the number of multiplications for a ∆U
hash function over a field F which is computable by addition and multiplication.
Clearly, it must be a multivariate polynomial in key and message block and we
call it multivariate polynomial or MVP hash function. The theorem shows that
a ∆U MVP hash function requiring s multiplications can process at most 2s
blocks of messages. In other words, any MVP hash function computable in s
multiplications processing 2s+ 1 message blocks has differential probability one.
Intuitive reason is that if we multiply s times then there are 2s many linear
functions of message m only. Thus, mapping 2s+ 1 blocks to 2s linear functions
would not be injective and hence we can find a collision. The detail follows.

Theorem 4. Let H(K,m1, . . . ,ml) be a MVP hash computable by using s mul-
tiplications with 2s + 1 ≤ l. Then there are two distinct vectors a, a′ ∈ Fl and
δ ∈ F such that H(K, a) = H(K, a′) + δ. for all keys K
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Proof. AsH can be computed by smultiplications we have 2s+1 linear functions
`1, `2, . . . , `2s and L such that `2i−1 and `2i are linear functions over m,K and
v1, . . . , vi−1 where vi = `2i−1 · `2i. Moreover, L is a linear function over m,K
and v = (v1, . . . , vs) with H = L. Note that there are 2s many linear equations
`i[m]’s (the partial linear functions on x only) over at least 2s + 1 variables
m1, . . . ,ml, we must have a non-zero solution ∆ ∈ Fl of `i[m]’s. More precisely,
there is non-zero ∆ ∈ Fl such that `i[∆] = 0 for all 1 ≤ i ≤ 2s. Let a ∈ Fl be
any vector and a′ = a + ∆. Let us denote vi(K, a) and vi(K, a

′) by vi and v′i
respectively.

Claim: vi = v′i for all 1 ≤ i ≤ s.
We prove the claim by induction on i. Note that

v1 = (`1[a] + `1[K] + c`1) · (`2[a] + `2[K] + c`2)

and similarly for v′1. We already know that `1[a] = `1[a′], `2[a] = `2[a′] and hence
v1 = v′1. Suppose the result is true for all j < i. Then,

vi = (`2i−1[a] + `2i−1[K] + `2i−1[v1, . . . , vi−1] + c`i)

×(`2i[a] + `2i[K] + `2i[v1, . . . , vi−1] + c`2)

and similarly for v′i. By using equality `2i−1[a] = `2i−1[a′] and `2i[a] = `2i[a
′],

and the induction hypothesis v1 = v′1, . . . , vi−1 = v′i−1 we have vi = v′i.

Thus, V : K×Fl → Fs, mapping (K,x) to (v1(K,x), . . . , vs(K,x)) has collision
probability 1. The hash function H(K,x) is defined as L[V (K,x)]+L[K]+L[x]+
cL. So by using above lemma the result follows. ut

Corollary 3. The pseudo dot product hash PDP is optimum in number of mul-
tiplications.

Remark 1. 1. The above result holds even if we ignore the cost involving key
only, such as stretching the key by using pseudorandom bit generator or
squaring the key (it does for BRW hash) etc. Hence the BRW hash is also
optimum if key processing is allowed.

2. From the proof one can actually efficiently construct a, a′ and δ. We only
need to solve 2s equations `i[x]. By previous remark, the result can be simi-
larly extended if we ignore cost involving message only, e.g., we apply cryp-
tographic hash to message blocks. More precisely, vi is defined as product
of fi and gi where fi = f1

i (x) + f2
i (K) + f3

i (v1, . . . , vi−1) and similarly gi.
By using non-injectivity of x 7→ (f1, g1, . . . , fs, gs) we can argue that there
are distinct a and a′ such that the fi and gi values for a and a′ are same.
However, this gives an existential proof of a and a′ (which is sufficient to
conclude the above theorem).

3. Our bound is applicable when we replace multiplication by any function.
More precisely, we have the following result.
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Theorem 5. Let H(x1, . . . , xl, y1, . . . , yk) be a function where x1, . . ., xl,
y1, . . ., yk are variables. Let fi : Fk × Fri → F be some functions, 1 ≤
i ≤ m. Suppose H(·)) can be computed by si invocations of fi, 1 ≤ i ≤ m.
If l ≥

∑
i siri + 1 then there are two distinct vectors a = (a1, . . . , al) and

a′ = (a′1, . . . , a
′
l) from Fl and δ ∈ F such that

H(a, y1, . . . , yk) = H(a′, y1, . . . , yk) + δ, ∀y1, . . . , yk.

The proof is similar to the above theorem and hence we skip.

Now we extend our first theorem to a multi-block hash output, e.g. Toeplitz
hash function. So we work in the field F however, the hash output is an element
of Fd for some d ≥ 1. Thus, it can be written as (H1, . . . ,Hd). Again we restrict
to those hash functions which can be computed by adding and multiplying (like
previous remark, we will allow any processing involving message or key only).
So Hi is a MVP hash function and we call H to be d-MVP hash function.

Theorem 6. Let H = (H1, . . . ,Hd) be a vector of d polynomials in m = (m1,
. . ., ml) and K over a field F which can be computed by s multiplications. If
l ≥ 2(s− r) + 1 with r ≤ d, then there are a 6= a′, elements of Fr and δ ∈ F such
that

PrK[HK(a) = HK(a′) + δ] ≥ 1

|F|r
.

Proof. Suppose H can be computed by exactly s multiplications then we have
2s+ d linear functions `1, `2, . . . , `2s and L1, . . . , Ld such that

(i) `2i−1 and `2i are linear functions over m,K and v1, . . . , vi−1

(ii) vi = `2i−1 · `2i and
(iii) Li’s are linear functions over x, y and v = (v1, . . . , vs).
Moreover, Hi = Li for all 1 ≤ i ≤ d. The linear functions `i and Li can be

written as `i[m] + `i[K] + `i[v] + c`i and Li[m] + Li[K] + Li[v] + cLi
.

The first 2(s − r) many linear equations `i[m]’s over 2(s − r) + 1 variables
will have a non-zero solution ∆ ∈ Fl. Let a be any vector and a′ = a+∆. It is
easy to see that vi(a,K) = vi(a

′,K) for all i ≤ s− r. Now consider the mapping
f : Fk → Fs−r mapping

K 7→ (vs−r+1(a,K)− vs−r+1(a′,K), . . . , vs(a,K)− vs(a′,K)).

There must exist δ1 ∈ Fr such that PrK [f(y) = δ1] ≥ 1
|F|r . Now we define

δ = (Li[M ] − Li[M ′] + Li(δ1))i. For this choice of a, a′ and δ the result holds.
This completes the proof. ut

Corollary 4. The construction EHC is optimum when a MDS error correcting
code is used. Thus the specific instantiations of EHC, given in section 4.3, is
optimum for d-block hash outputs, 2 ≤ d ≤ 4.
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6 Conclusion and Research Problem

We already know that there is a close connection between error correcting code
and universal hash. Here we apply error correcting code and Vandermonde ma-
trix to construct a multi-block universal hash which require minimum number
of multiplication. The minimum is guaranteed by showing a lower bound on
the number of multiplication required. Previously in different context the lower
bound on the number of multiplication has been considered. In this paper for the
first time we study “concrete lower bound” (in terms of order a lower bound was
known) for universal hash function. Similar lower bound was known for compu-
tations of polynomial of specific forms. See Appendix for a brief survey on it.
However, we would like to note that those results can not be directly applicable
as the contexts are different.

To get a lower bound we take the popular algebraic computation model in
which the time of multiplications are separated. We try to equate all the linear
functions which are multiplied. Our construction performs better than Toeplitz
construction in terms of number of multiplication.

This paper studies the relationship between complexity and security of uni-
versal hash. There are some relationship known for complexity and key-size
however the picture is incomplete. Moreover, nothing is known involving these
three important parameters: (i) security level, (ii) complexity, and (iii) key size.
This could be possible future research direction in this topic. Our construction
optimizes d block hash output for sum hash functions. It would be interesting
to see how one adopts this for multi block polynomial hash using few keys.

In the view of the performance, the ongoing future research of us is to have a
lightweight implementation of the universal hash function.
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Appendix: Brief Survey on the Computation of
a0 + a1x+ . . .+ anx

n

We provide a brief survey on the lower bound of multiplications for computing
a polynomial. Note that our interest in this paper is to provide a lower bound
on number of multiplications for computing a multi variate polynomial which is
an universal hash. Even though these two issues are very much related (some of
the ideas in proving results are also similar), some immediate differences can be
noted. For example, the existing bounds depend on the degree of the polynomials
whereas we provide bound on the number of message blocks (degree could be
arbitrarily higher). The existing works consider multivariate polynomials which
has a special form: P (a0, . . . , an, x1, . . . , xm) := a0 +

∑n
i=1 ai ·Φi(x1, x2, . . . , xm)

where Φi’s are rational functions of x1, . . . , xm. For an universal hash, the lower
bound of our paper works for any multivariate polynomial (or even rational
functions).

The function xn can be computed in at most 2dlog2 ne multiplications by
using well known “square and multiply” algorithm. One can also compute 1 +
x + . . . + xn−1 using at most 2dlog2 ne multiplications, one division and two
subtractions since it is same as xn−1

x−1 whenever x 6= 1. These are some simple
examples of polynomials and there are some specific methods to simplify some
polynomials. How does one can compute “generically” an arbitrary polynomial
f(x) = a0 + a1x + . . . + anx

n, ai ∈ R (an underlying ring or field), of degree
n with minimal number of operations, mainly multiplication and division? By
generically we mean an algorithm which takes any ai’s and x as its inputs and
computes the polynomial f(x) (similar to an algorithm in uniform model). We
know Horner’s rule [16]2 to compute f(x) in n multiplications and n additions.

2 Around 1669, Isaac Newton used the same idea which was later known as Newton’s
method of root finding (see 4.6.4, page 486 of [24])
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§Minimum Number of Multiplications. Can we do better than n multipli-
cations for computing an arbitrary polynomial? Or, can we prove that there are
some polynomials for which n multiplications and division are necessary? The
above question regarding the minimum number of multiplications to compute a
given polynomial of small degree, was first investigated by Ostrowski [33]. He
showed that at least n multiplications are required to evaluate a polynomial f(x)
of degree n for 1 ≤ n ≤ 4. The results were further proved for any positive in-
teger n by Pan [34] and a more general statement by Winograd [46]. Moreover,
even if divisions are allowed, at least n multiplications/divisions are necessary to
evaluate it. Belega [1] moreover proved that at least n additions or subtractions
are required to compute f .

§ General statement: The general statement by Winograd gives a lower
bound for computation of any multivariate polynomial of the form

P (a0, . . . , an, x1, . . . , xm) := a0 +
n∑
i=1

ai · Φi(x1, x2, . . . , xm)

where Φi’s are rational functions of x1, . . . , xm. If the rank (the maximum number
of linear independent elements) of the set S = {1, Φ1, . . . , Φn} is u + 1 then at
least u multiplication and division are necessary. In particular, when m = 1,
Φi(x1) = xi1 we have P = f(x1) and u = n. Thus, the result of Pan [34] is a
simple corollary of it. When m = n, Φi(x1, . . . , xn) = xi and a0 = 0 we have the
classical dot-product a1 ·x1 + . . .+ an ·xn and the rank is again n+ 1. So it also
proves that to compute the dot-product we need at least n multiplications.

§ Evaluation of a given Polynomial with Preprocessing. In the above
results all types of multiplications are counted. More formally, the computation
of the multivariate polynomial F (a0, . . . , an, x) = a0+a1x+. . .+anx

n have been
considered in which coefficients are treated as variables or inputs of algorithms.
One of the main motivations of the above issue is to evaluate approximation poly-
nomials of some non-algebraic functions, such as trigonometric functions. As the
polynomials (i.e., ai’s) are known before hand, one can do some preprocessing
or adaptation on coefficients to reduce some multiplications. To capture this no-
tion, one can still consider the computation of F but the operations involving
only ai’s are said to be the preprocessing of ai’s. Knuth [24] (see Theorem E,
4.6.4), Eve [12], Motzkin [29] and Pan [34] provide methods for F requiring
dn2 e multiplications ignoring the cost of preprocessing. However, these require
preprocessing of finding roots of higher degree equations which involves a lot of
computation and may not be exact due to numerical approximation. However, it
is an one-time cost and is based on only coefficients. Later on, whenever we want
to compute the polynomial for a given x, it can be computed faster requiring
about dn2 e multiplications. Rabin-Winograd [36] and Paterson-Stockmeyer [35]
provide methods which require rational preprocessing on coefficients (i.e., com-
puting rational functions of coefficients only) and afterwards about n

2 +O(log n)
multiplications for a given x.

§ Minimum Number of Multiplications after Preprocessing. We have
already seen that total n multiplication is necessary to compute F generically
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and Horner’s rule is one algorithm which shows the tightness of the lower bound.
Similarly, with preprocessing, dn/2emultiplications for computing the mul-
tivariate polynomial F has been proved to be optimum by Motzkin [29]
and later on a more general statement by Winograd [46, 47]. The bound dn/2e
does not work for computing a known polynomial f since multiplication by con-
stant could be replaced by addition, e.g. in Z, ai · x = x+ . . .+ x (ai times). In
fact, Paterson and Stockmeyer [35] provided methods which require about
O(
√
n) multiplications and showed the bound is optimum. Note that this

method does not compute the polynomial generically which means that for every
polynomial f(x) = a0 +a1x+ . . .+anx

n there is an algorithm Ca0,...,an depend-
ing on the coefficients which computes f(x) given x in O(

√
n) multiplications.

This result and those by [29, 36, 46, 47] (one algorithm works for F , i.e. for all
polynomials f) can be compared with non-uniform and uniform complexity of
Turing machine respectively. This justifies two different bounds of computation
of a polynomial.


