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Abstract

One of the criteria for substitutions used in block ciphers is the absence of fixed
points. In this paper we show that this criterion must be extended taking into
consideration a mixing key function. In practice, we give a description of AES
when fixed points are reached. Additionally, it is shown that modulo addition has
more advantages then XOR operation.
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1 Introduction

Substitution boxes (S-boxes) map an n-bit input message to an m-bit
output message. They provide confusion in symmetric algorithms. For
different tasks S-boxes are used in various forms. In stream ciphers a
substitution is represented usually as a vectorial Boolean function [1]. Per-
mutations constitute a subclass of substitutions and are commonly used
in block ciphers as lookup tables. Regardless of ciphers an S-box can be
converted from one form to another one.

Substitutions must satisfy various criteria for providing high level of
protection against different types of attacks [2]. A substitution satisfying
all criteria is perfect. However, such substitutions do not exist up to date.
Therefore, in practice, substitutions satisfying several important criteria
are used. They are called optimal S-boxes. Optimality criteria vary from
cipher to cipher. Generating permutations with optimal criteria is a quite
difficult task, especially for a large n and m. The problem of generating a
set of S-boxes with similar properties can be particularly solved by using
EA- or CCZ-equivalence [3, 4].
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One of criteria is absence of fixed points. It is used in many ciphers for
increasing resistance against statistical attacks [5]. Designers of modern
ciphers try to get rid of the fixed points. This is achieved by using affine
equivalence, which is a special case of EA-equivalence. The S-box of ad-
vanced encryption standard (AES) was constructed using this technique
[5, 6]. But the application of this method does not totally prevent the
appearance of fixed points. In this paper we show an isomorphic form of
AES when fixed points are reached.

Two ciphers Ei and Ej are isomorphic to each other if there exist invert-
ible maps φ : xi 7→ xj, ψ : yi 7→ yj and χ : ki 7→ kj such that yi = Ei(x

i, ki)
and yj = Ej(x

j, kj) are equal for all xi, ki, xj and kj [7, 8]. Obviously, the
cipher could have a lot of isomorphic basic transformations as well as full
encryption procedures. The cipher BES is a well-known example of iso-
morphic AES [9]. Another example of isomorphic AES is the description
of encryption procedure using system of equation of degree 2 [10]. We give
one more description of AES which includes a substitution with a fixed
point while almost all transformations are unmodified.

2 Preliminaries

Arbitrary substitution can be represented at least in three different forms:
algebraic normal form (ANF), over field F2n and lookup table. Most of
substitutions used in block ciphers have a table representation because of
simplicity of description and understanding [11]. Meanwhile arbitrary S-
box S can be always associated with a vectorial Boolean function F in
F2n[x]. If a substitution is a permutation then F is defined uniquely [12].

The natural way of representing F as a function from Fn2 to Fm2 is by its
algebraic normal form:

∑
I⊆{1,...,n}

aI

(∏
i∈I

xi

)
, aI ∈ Fm2 ,

the sum is being calculated in Fm2 [1]. The algebraic degree of F is the
degree of its ANF. F is called affine if it has algebraic degree at most 1

2



and it is called linear if it is affine and F (0) = 0. A vectorial Boolean
function given in table representation can be easily transformed to ANF
form and vice versa.

Two functions F,G : Fn2 7→ Fm2 are called extended affine equivalent
(EA-equivalent) if there exist an affine permutation A1 of Fm2 , an affine
permutation A2 of Fn2 and a linear function L3 from Fn2 to Fm2 such that

F (x) = A1 ◦G ◦ A2(x) + L3(x). (1)

Clearly, A1 and A2 can be presented as A1(x) = L1(x) + c1 and A2(x) =
L2(x) + c2 for some linear permutations L1 and L2 and some c1 ∈ Fm2 ,
c2 ∈ Fn2 . Two functions F and G are linear equivalent if equation (1) is
hold for L3(x) = 0, c1 = 0, c2 = 0. If the equation (1) is preserved only for
L3(x) = 0, then functions F and G are called affine equivalent [13].

In matrix form EA-equivalence is represented as follows

F (x) = M1 ·G(M2 · x⊕ V2)⊕M3 · x⊕ V1

where elements of {M1,M2,M3, V1, V2} have dimensions {m×m,n×n,m×
n,m, n} [3].

An element a ∈ Fn2 is a fixed point of F : Fn2 7→ Fm2 if F (a) = a. The
absence of fixed points criterion is defined as follows.

Proposition 1 A substitution must not have fixed point, i.e.

F (a) 6= a, ∀a ∈ Fn2 .

For any positive integers n and m, a function F from Fn2 to Fm2 is called
differentially δ-uniform if for every a ∈ Fn2 \ {0} and every b ∈ Fm2 , the
equation F (x) + F (x + a) = b admits at most δ solutions [1]. Vectorial
Boolean functions used as S-boxes in block ciphers must have low differen-
tial uniformity to allow high resistance to differential cryptanalysis [14].

The nonlinearity criterion is closely connected to the notion of Walsh
transform which can be described as the function

λ(u, v) =
∑
x∈Fn

2

(−1)v·F (x)+u·x,
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where ”·” denotes inner products in Fn2 and Fm2 respectively [1]. A substi-
tution has an optimum resistance to linear cryptanalysis if the maximum
absolute value of Walsh coefficients is small [15]. Substitutions with the
smallest value of λ(u, v) exist for odd n only.

These two criteria are major while selecting substitutions for new ci-
phers. However, there are many others criteria like propagation crite-
rion, absolute indicator, correlation immunity, strict avalanche criterion,
etc [1, 2, 16]. It has been still not proven the importance of the crite-
ria. For example, the substitution used in AES does not satisfy most of
them [17]. Moreover, no theoretical or practical attacks were proposed on
modern block ciphers based on these criteria.

Let E : {0, 1}l×{0, 1}k 7→ {0, 1}l be a function taking a key K of length
k bits and input message (plaintext) M of length l bits and return output
message (ciphertext) E(M,K). For each key K let EK : {0, 1}l 7→ {0, 1}l
be the function defined by EK(M) = E(M,K). Then E is a block cipher if
EK and E−1

K are efficiently computable and EK is a permutation for every
K.

Most of the modern block ciphers are based on an iterative procedure.
In Fig. 1 the iterative function is depicted as the round function. A general
iterative cipher can be mathematically presented as follows

EK(M) = PWkr+1
◦

r∏
i=2

(Rki) ◦ IWk1(M),

where R is a round procedure, IW is a prewhitening procedure and PW is
a postwhitening procedure. In Fig. 1 a key schedule is an algorithm that
takes the master key K as input and produces the subkeys k1, k2, . . . , kr+1

for all stages of encryption algorithm.
A mixing key procedure of a block cipher is an algorithm which injects

a round key into an encryption procedure. In the majority of the mod-
ern block ciphers, the mixing key function is implemented as exclusive or
(XOR) operation because of low-cost implementations.
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Figure 1: General Structure of An Iterative Block Cipher

3 A Brief Description of AES

AES is a substitution permutation network (SPN) block cipher that sup-
ports a fixed block size of 128 bits and a key size of 128, 192 or 256 bits [6].
The number of rounds depends on the key size and is equal to 10, 12 or 14
respectively. The round function consists of four functions: AddroundKey
(σk), SubBytes (γ), ShiftRows (π) and MixColumns (θ).

The whole encryption algorithm is described as follows (Fig. 2)

EK(M) = σkr+1
◦ π ◦ γ ◦

r∏
i=2

(σki ◦ θ ◦ π ◦ γ) ◦ σk1(M).
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Figure 2: Encryption Algorithm of AES

The SubBytes transformation processes the state of the cipher using a
nonlinear byte substitution table that operates on each of the state bytes
independently [6]. The S-box of AES was generated by finding the inverse
element in the field F28 followed by applying affine polynomial. In terms
of equation (1) the transformation has a form

F (x) = A1(x
−1) = L1(x

−1) + c1.

The substitution table generated by vectorial Boolean function F :
F28 7→ F28 satisfies the following criteria

• the maximum value of non-trivial XOR difference transformation prob-
ability is 2−6,

• the maximum absolute value of linear approximation probability bias
is 2−4,

• the minimum degree of the component functions is 7 [5, 18].
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It should be noticed that the chosen polynomial x−1 allows to describe the
S-box and the whole cipher by overdefined system of equations with degree
2 [19]. But in the same time it is resistant to differential, linear and many
other cryptanalytical methods. In addition to the general properties, the
constant of the AES S-box has been chosen in such way that it has no
fixed points [5].

The MixColumns transformation takes all the columns of the state and
mixes their data (independently of one another) to produce new columns
[6]. This transformation could be represented in different ways. One of
them is the matrix multiplication. For an input state x and 4 × 4 matrix
M the output state y of the transformation is described as

y = M · x.

The matrix with maximum distance separable (MDS) property is used
in AES. In terms of Rijndael the MDS property associates with a branch
number (β)

β = minx 6=0(W (x) +W (y)),

where W (z) is the byte weight of a vector z.
From the definition of MDS matrix, it is known that the maximum

differential branch number of m by m matrix is m+1 [11, 20]. Hence, MDS
matrices have the perfect diffusion property for byte-oriented ciphers.

Multiplication in a field F2n is a linear transformation with respect to
XOR, so it preserves the linear property [9]

θ(x+ y) = θ(y) + θ(y).

The ShiftRows transformation processes the state by cyclically shifting
the last three rows of the state by different offsets [6]. More precisely, row
i is moved to the left by i byte positions for 0 ≤ i ≤ 3. The ShiftRows is
also a linear function that preserves π(x+ y) = π(y) + π(y) property.

Both MixColumns and ShiftRows transformations help to ensure that
the number of active S-boxes is large even after few rounds [5]. These
functions are the basis of protection offered by the AES against differential
and linear cryptanalysis.
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AddRoundKey transformation is the mixing key function in which a
round key is added to the state using XOR operation. The length of a
round key is equal to the size of the state. XOR operation of two n-bit
length vectors a and b can be performed bit by bit n times. Therefore,
AddRoundKey operation of AES can be done independently of each byte.

4 A New Cipher Isomorphic to AES

There exist several examples of ciphers isomorphic to AES. For example,
the big encryption system (BES) describes AES over F28 [9]. On the other
hand, the cipher AES can be also represented as the system of multivariate
equations of the 2nd degree over F2 [19]. These two examples are based
on the algebraic features of the substitution. However, there is another
approach based on linear properties of the basic functions (MixColumns
and ShiftRows).

The cipher AES is based on Rijndael that was proposed by Daemen and
Rijmen to AES process [21]. Authors have used design simplicity principle,
which led to performance improvement and code compactness properties
of the cipher on a wide range of platforms. For increasing decryption per-
formance of software implementation they have used precomputed lookup
tables and the linear properties of the basic functions.

The original decryption algorithm for arbitrary ciphertext C mathemat-
ically can be represented as follows (Fig. 3(a)) [6]

DK(C) = σk1 ◦ γ−1 ◦ π−1 ◦
r∏
i=2

(θ−1 ◦ σkr−i+2
◦ γ−1 ◦ π−1) ◦ σkr+1

(C).

For using precomputed tables it is necessary to transform the decryption
round function to the similar one of encryption algorithm. Since functions
γ−1 and π−1 are computed independently they have a commutative prop-
erty γ−1 ◦ π−1 = π−1 ◦ γ−1 [5, 9]. In Section 3 it was stated that functions
θ−1 and σ are linear w.r.t. XOR, hence

θ−1 ◦ σkr−i+2
= σθ−1(kr−i+2) ◦ θ−1
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(a) Original (b) Algorithm for the Fast Software Implementa-
tion

Figure 3: Decryption Algorithm of AES

Thus, the whole decryption algorithm has the form (Fig. 3(b))

DK(C) = σk1 ◦ π−1 ◦ γ−1 ◦
r∏
i=2

(σθ−1(kr−i+2) ◦ θ−1 ◦ π−1 ◦ γ−1) ◦ σkr+1
(C).

Usage of such elementary transformations helps to achieve a significant
acceleration of the decryption procedure due to the isomorphic properties
of the basic functions [5].

Obviously, the same technique can be applied to the encryption algo-
rithm. However, our task is to find a representation of the cipher in which
properties of a new substitution will differ from the original one. For sim-
plicity of description, let us assume that the round keys are independent
of each other. Then the encryption procedure takes a form (Fig. 4(a))

EK(M) = π ◦ σπ−1(kr+1) ◦ γ ◦
r∏
i=2

(θ ◦ π ◦ σπ−1◦θ−1(ki) ◦ γ) ◦ σk1(M).
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(a) Modified Encryption Algorithm (b) Isomorphic Encryption Algorithm with a
Fixed Point

Figure 4: Isomorphism of AES

The equation shows that the last ShiftRows operation is redundant in
terms of resistance to attacks. As it was stated above the availability of this
function is necessary for fast implementation of the decryption procedure.

Arbitrary permutation S can be represented as a vectorial Boolean func-
tion F : F2n 7→ F2n which has the form [3]

F (x) = F ′(x) + F (0).

Since the characteristic of the field is 2, the constant can be moved to the
round keys. Let ξ be a function in which the constant F (0) is XORed with
all bytes of a state. If the round keys π−1 ◦ θ−1 ◦ ξ(ki) are denoted by k′i
then encryption procedure takes the form (Fig. 4(b))

EK(M) = π ◦ σπ−1◦ξ(kr+1) ◦ γ′ ◦
r∏
i=2

(θ ◦ π ◦ σk′i ◦ γ
′) ◦ σk1(M),

where γ′ is the SubBytes function which consists of the substitution of the
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form F (x) = L(x−1).
Fig. 4(b) shows that the structure of the cipher remains unchanged.

Clearly, if adversary finds a round key for modified cipher she also auto-
matically obtains corresponding round key of the original cipher because
of the linear dependence of the keys ki and k′i. However, the new substi-
tution F (x) = L(x−1) has the fixed point in x = 0. Consequently, the
substitution of AES doesn’t satisfy the absence of fixed points criterion.

Described feature of the cipher appears from the fact that the operation
XOR is linear with respect to MixColumns and ShiftRows. If one replaces
the mixing key function with some nonlinear function (i.e. addition modulo
2n), then it would be impossible to find an isomorphic cipher of such a form.
From this point of view a mixed key function based on modulo addition is
cryptographically stronger than a function based on XOR operation .

Furthermore, fixed points are directly connected with cyclic properties
of substitutions. Inserting an invertible linear function (τ) into the en-
cryption procedure gives a new isomorphic cipher (Fig. 5(a)). Herewith,
the linearized polynomial can be added to the round key and the inverse
function can be a part of the new substitution (Fig. 5(b)). The cyclic
properties of the new substitution will depend on the selected function τ .

Thereby, the cyclic and the absence of fixed points properties of a sub-
stitution can be controlled by adversary in the case of a linear mixing key
function. Thus, a new criterion for substitutions follows from the descrip-
tion above.

Proposition 2 Substitutions S1, S2, . . ., Sn used in a confusion layer must
belong to different classes of equivalence.

Clearly, if substitutions are in the same class (i.e. EA-equivalent) then
adversary can find an isomorphic cipher which consists of one substitution
and modified linear layer. Consequently, there will be no advantages to
use multiple substitutions. The criterion has to be considered both in the
design of new ciphers and in the analysis of existing ones [22, 23]. Since
CCZ-equivalence is the most general case of known equivalence, it makes
sense to check whether substitutions belong to different CCZ-equivalence
classes.
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(a) Initial Cipher (b) Isomorphic Cipher

Figure 5: Modified AES with an Invertible Linear Function

5 Conclusions

It was shown that the absence of fixed points criterion works only in case
if S-box is considered as a separate function. There are isomorphic repre-
sentations of ciphers in which this criterion is not met. The new method of
AES description allows to reconsider some of criteria for substitutions from
the practical point of view. This may lead to a weakening of the cipher
strength.

Since an invertible linear function can be added to encryption proce-
dure, the adversary can control both the cyclic and absence of fixed points
properties of substitutions. It was shown that mixing key function based
on modulo addition is more resistant with respect to the absence of fixed
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points criterion than function based on XOR operation.
Isomorphism of ciphers adds additional restrictions on using multiple

substitutions. The proposed criterion can be used to reduce the number of
isomorphic ciphers, thereby reducing the probability of finding the weakest
one.

References

[1] Crama Y., Hammer P.L. Boolean Models and Methods in Mathemat-
ics Computer Science, and Engineering. Encyclopedia of Mathematics
and its Applications // Cambridge University Press. — 2010.

[2] Rijmen V. Cryptanalysis and design of iterated block ciphers, PhD
Thesis. // University of Leuven: 1997.

[3] Budaghyan L., Kazymyrov O. Verification of Restricted EA-
Equivalence for Vectorial Boolean Functions // Lecture Notes in Com-
puter Science. — 2012. — V. 7369. — P. 108-118.

[4] Carlet C., Charpin P., Zinoviev V. Codes, Bent Functions and Permu-
tations Suitable For DES-like Cryptosystems // Designs, Codes and
Cryptography. — 1998. V. 15 No 2. — P. 125156.

[5] Daemen J., Rijmen V. AES Proposal: Rijndael. —
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf,
10.03.2013.

[6] Announcing the ADVANCED ENCRYPTION STANDARD (AES) //
Federal Information Processing Standards Publication 197, United
States National Institute of Standards and Technology (NIST). —
2001.

[7] Rostovtsev A. Changing probabilities of differentials and linear sums
via isomorphisms of ciphers. — http://eprint.iacr.org/2009/117.pdf.
— 10.03.2013.

13



[8] Rimoldi A. On algebraic and statistical properties of AES-like ciphers,
PhD Thesis // University of Trento: 2009.

[9] Murphy S., Robshaw M. Essential Algebraic Structure within the AES
// Lecture Notes in Computer Science. — 2002. — V. 2442. — 1-16.

[10] Bard G.V. Algebraic cryptanalysis // Springer. — 2009.

[11] Knudsen L.R., Robshaw M. JB. The block cipher companion //
Springer. — 2011.

[12] Carlet C. Vectorial Boolean functions for cryptography. // Boolean
Models and Methods in Mathematics, Computer Science, and Engi-
neering 134. — 2010. P. 398-469.

[13] Budaghyan L., Carlet C., Pott A. New classes of almost bent and
almost perfect nonlinear polynomials // IEEE Trans. Inform. Theory.
— 2006. — P. 11411152.

[14] Biham E., Shamir A. Differential Cryptanalysis of DES-like Cryp-
tosystems // Lecture Notes in Computer Science. — 1991. — V. 537.
— P. 2-21.

[15] Matsui M. Linear cryptanalysis method for DES cipher // Lecture
Notes in Computer Science. — 1994. — V. 765. — P. 386-397.

[16] Burnett L. D. Heuristic Optimization of Boolean Functions and Substi-
tution Boxes for Cryptography, PhD Thesis // Queensland University
of Technology: 2005.

[17] Kazymyrov O., Kazymyrova V. Algebraic Aspects of
the Russian Hash Standard GOST R 34.11-2012. —
http://eprint.iacr.org/2013/556.pdf. — 04.09.2013.

[18] Nyberg K. Perfect nonlinear S-boxes // Lecture Notes in Computer
Science. — 1991. — V. 547. — P. 378-386.

[19] Courtois N., Pieprzyk J. Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations // Lecture Notes in Computer Science. —
2002. — V. 2501. — P. 267-287.

14



[20] Ailan W., Yunqiang L., Xiaoyong Z. Analysis of Corresponding Struc-
ture of Differential Branch of MDS Matrixes on Finite Field // Pro-
ceedings of the 2010 Third International Conference on Intelligent Net-
works and Intelligent Systems, ICINIS’10. — Washington, DC, 2010.
— P. 381-384.

[21] Nechvatal J. et al. Report on the development of the Advanced En-
cryption Standard (AES) // Technical report DTIC Document. —
2000.

[22] Kwon D. et al. New Block Cipher: ARIA // Proc. Information Security
and Cryptology, ICISC 2003. — Berlin, 2004. — P. 432445.

[23] Oliynykov R. et al. Results of Ukrainian Na-
tional Public Cryptographic Competition. —
http://www.sav.sk/journals/uploads/0317154006ogdr.pdf,
10.03.2013.

15


