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Abstract. The trace inverse function Tr(x−1) over the finite field F2n

is a class of very important Boolean functions in stream ciphers, which
possesses many good properties, including high algebraic degree, high
nonlinearity, ideal autocorrelation, etc. In this work we discuss properties
of Tr(x−1) in resistance to (fast) algebraic attacks. As a result, we prove
that the algebraic immunity of Tr(x−1) arrives the upper bound given
by Y. Nawaz et al when n ≥ 4, that is, AI(Tr(x−1)) = d2

√
ne − 2,

which shows that D.K. Dalai’ conjecture on the algebraic immunity of
Tr(x−1) is correct for almost all positive integers n. What is more, we
further demonstrate some weak properties of Tr(x−1) in resistance to
fast algebraic attacks.
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1 Introduction

Boolean functions have wide applications in cryptography [1]. One of very im-
portant topics is the discussion of cryptographic properties and constructions
of Boolean functions in symmetric ciphers, which are mainly motivated by non-
linear filter/combiner generators (mainly using single-output Boolean functions
as a building block) in stream ciphers and S-boxes (mainly using multi-output
Boolean functions as a building block) in block ciphers. Since 70’s in the 20th
century, Boolean functions have been paid attention widely, and so far many
fruitful and profound results on Boolean functions have been achieved [2].

The inverse function x−1 over the finite field F2n is an important multi-output
Boolean function, which is first introduced by K. Nyberg [3]. The inverse function
x−1 possesses many good cryptographic properties, including permutation, high
algebraic degree, high nonlinearity, almost optimal differential uniformity, etc,
and has been adopted in many symmetric algorithms, for example, AES [4] in
block ciphers, SNOW 2.0/3G [5, 6], ZUC [7] in stream ciphers, and so on.

The trace function Tr(λx) over the finite field F2n is another important
Boolean function, which characters all linear functions from the extension field
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to the basic field [8]. The composite Tr(λx−1) of these two functions has been
adopted by many stream ciphers, including SFINKS [9](eStream project), the
simple counter stream cipher proposed by W. Si and C.S. Ding [10].

Recently an important progress in cryptanalysis areas is algebraic attacks and
fast algebraic attacks presented by N. Courtois and W. Meier [11, 12]. Algebraic
attacks and fast algebraic attacks are very powerful analysis tools and can be
applies to almost all cryptographic algorithms [13–15]. In order to resist against
algebraic attacks, the concept of the algebraic immunity is introduced [11] and
has been paid attention widely [16–19]. Therefore it is necessary to discuss the
algebraic immunity of Tr(λx−1) in the sense of both itself cryptographic prop-
erties and security evaluations of those adopting them as a building component
in resistance to algebraic attacks. In this paper we mainly deal with the alge-
braic immunity of Tr(λx−1). Since Tr(λx−1) has the same algebraic immunity
as Tr(x−1) for any nonzero λ ∈ F2n [21], thus we only focus on Tr(x−1).

1.1 Known results on the algebraic immunity of Tr(x−1)

In FSE 2006 Y. Nawaz et al [20] gave an upper bound of the algebraic immunity
of Tr(x−1) over F2n by multiplying a very special Boolean function, that is,

AI(Tr(x−1)) ≤ b
√
nc+ d n

b
√
nc
e − 2, (1)

where AI(Tr(x−1)) denotes the algebraic immunity of Tr(x−1), which will be
defined in the next section.

In 2008 V.V. Bayev [21] further provided a lower bound of the algebraic
immunity of Tr(x−1) when n ≥ 5 and constructed a large class of Boolean
functions defined by their trace form with algebraic immunity O(

√
n), that is,

AI(Tr(x−1)) ≥ b2
√
n+ 4c − 4. (2)

It is easy to see that the lower bound given by V.V. Bayev is bounded by a
constant difference no more than 4 compared to the upper bound given by Y.
Nawaz et al.

Recently D.K. Dalai [22] (See IACR eprint 2013/273) presented a method
of computing algebraic immunities by means of incident matrices and utilized it
to verify the upper bound given by Y. Nawaz et al when n ≤ 21. On the basis
of experiments, he further conjectured the algebraic immunity of Tr(x−1) just
arrives the upper bound given by Y. Nawaz et al, that is,

Conjecture 1 (Dalai’s Conjecture)

AI(Tr(x−1)) = b
√
nc+ d n

b
√
nc
e − 2. (3)



1.2 Main works in the paper

In this paper two contributions are made: one is to prove that Dalai’s conjecture
is correct for almost all positive integers n, that is, they arrives the upper bound
given by Y. Nawaz et al, see Theorem 1; the other is to demonstrate some weak
properties of Tr(x−1) in resistance to fast algebraic attacks, see Propositions 3
and 4 in Section 5.

Theorem 1 (Main Theorem) Let n ≥ 4 and Tr(x−1) be the trace inverse
function over F2n . Then

AI(Tr(x−1)) = d2
√
ne − 2. (4)

Remark 1 It is surprising that the researchers [20–22] seem to prefer b
√
nc +

d n
b
√
nce to d2

√
ne in their papers though they are always equal for all positive

integers n and the latter seems more simpler than the former.

1.3 The organization of the paper

The rest of the paper is organized as below: In Section 2 some preliminaries
including basic concepts and notations are provided. In Section 3 a key concept,
i.e., mono-integers, is introduced, and then some properties on mono-integers are
derived. Based on mono-integers, an entire proof on the main theorem is given
in Section 4, and further some weak properties of Tr(x−1) in resistance against
fast algebraic attacks are demonstrated in Section 5.

2 Preliminaries

2.1 Boolean functions

Let F2 be the binary field with elements 0 and 1. For a given integer n ≥ 4, we
denote by Zn, Fn2 and F2n the residue class ring modulo n, the vector space of
dimension n over F2 and the finite field with 2n elements respectively.

Let f(x0, x1, · · · , xn−1) be a mapping from Fn2 to F2, which is called an
n-variables Boolean function. Denote by Bn the set of all possible n-variables
Boolean functions. For any f(x0, x1, · · · , xn−1) ∈ Bn, f(x0, x1, · · · , xn−1) can be
uniquely represented as a multivariate polynomial over F2, that is,

f(x0, x1, · · · , xn−1) =
∑
I⊆Zn

cI

(∏
i∈I

xi

)
, cI ∈ F2, (5)

which is called the algebraic normal form of f(x0, x1, · · · , xn−1). The algebraic
degree of f(x0, x1, · · · , xn−1), denoted by deg(f(x0, x1, · · · , xn−1)), is defined as

deg(f(x0, x1, · · · , xn−1)) = max{|I||I ⊆ Zn and cI 6= 0},

where |I| means the size of the set I.



Let φ be an arbitrary isomorphism from Fn2 onto F2n . Then

f(φ−1(x)) =

2n−1∑
k=0

ckx
k, ck ∈ F2n

is called a polynomial representation of f(x0, x1, · · · , xn−1). We write f(φ−1(x))
as f(x) in short without confusion. For distinguishing from the degree of the
polynomial f(x), we call the algebraic degree of f(φ−1(x)) the Boolean algebraic
degree of f(x), denoted by degB(f(x)). It is easy to see that

degB(f(x)) = deg(f(φ−1(x))) = max{wH(k)|ck 6= 0, 0 ≤ k ≤ 2n − 1},

where wH(k) denotes the Hamming weight of k in the binary representation.

2.2 Trace inverse function

Let Tr(x) be the trace function over F2n , which is defined as

Tr(x) =

n−1∑
i=0

x2
i

.

The trace function Tr(x) is a linear Boolean function from F2n to F2. Let x−1 be
the inverse function over F2n . In this paper we make convention that 0−1 = 0
and 00 = 0 (here 0 denotes the zero element in F2 or F2n). Then the trace
inverse function Tr(x−1) is written as

Tr(x−1) =

n−1∑
i=0

(x−1)2
i

=

n−1∑
i=0

x−2
i

.

It is easy to verify that Tr(x−1) is a Boolean function over F2n and has the
Boolean algebraic degree n− 1.

One of main works in this paper is to determine the algebraic immunity of
Tr(x−1) over F2n , which is defined as the minimal Boolean algebraic degree of
nonzero annihilators f(x) of Tr(x−1) or Tr(x−1)+1, and denoted by AI(Tr(x−1)).
For any given Boolean function f(x) with degB(f(x)) = d, denote

Dt(f) = { 0 ≤ k ≤ 2n − 1 | wH(k) = t, ck 6= 0 } , 0 ≤ t ≤ d.

So f(x) can be written as

f(x) =

d∑
t=0

∑
k∈Dt(f)

ckx
k.

Note that x2
n

= x for any x ∈ F2n , we have

(Tr(x−1) + δ)f(x) =

d∑
t=0

∑
k∈Dt(f)

ck

(
δxk +

n−1∑
i=0

xk−2
i mod(2n−1)

)
, (6)



where δ ∈ F2.
Our main idea is to observe when the monomial xk−2

i mod(2n−1) occurs only
one time in the expansion of (Tr(x−1) + δ)f(x). If there exists such an integer k

such that xk−2
i mod(2n−1) occurs exactly one time in equality (6), then we have

(Tr(x−1) + δ)f(x) 6= 0, that is, f(x) must be not an annihilator of both Tr(x−1)
and Tr(x−1) + 1.

2.3 Loop runs of integers

For a given integer 0 < k < 2n−1, we are interested in its loop runs in the binary
representation. Set k = k[n−1]k[n−2] · · · k[1]k[0] =

∑n=1
i=0 k[i]2

i, where k[i] means
the i-th bit of k in the binary representation and takes 0 or 1 for 0 ≤ i ≤ n− 1.
Joint all bits of k head to tail and form a circle. We call some consecutive 1s (or

0s) in the circle a loop one run (or loop zero run) of k, and denote by b

x︷ ︸︸ ︷
b · · · b b

the x successive b’s, where b = 0 or 1, b means the complement of b, and x is
called the length of the loop b run. For any given integer 0 < k < 2n − 1, we
only focus on the number of loop one (or zero) runs, the maximal length of loop
one runs and the maximal length of loop zero runs of k, denoted by τ(k), r(k)
and s(k) respectively.

Example 1 Set n = 8 and k = 26 = (00011010)2. Then 11 and 1 are two loop
one runs of 26, and 0000 and 0 are two loop zero runs of 26. So τ(26) = 2,
r(26) = 2 and s(26) = 4.

3 Mono-integers

For two given integers n ≥ 4 and 1 ≤ d < n, in this section we will be interested
in some integers 0 < k < 2n − 1 of weight d and i ∈ Zn making the monomial
xk−2

i mod(2n−1) occur exactly one time in the expansion of (Tr(x−1)+δ)f(x). In
order to character the above feature, we introduce a concept on mono-integers.

Definition 1 Let n and d be two integers such that n ≥ 4 and 1 ≤ d < n. An
integer 0 < k < 2n− 1 is called a mono-integer of size n and weight d if it meets
the following two conditions:

1. wH(k) = d; and
2. there exists an integer i ∈ Zn such that for any 0 < k′ < 2n − 1 with

wH(k′) ≤ d and j ∈ Zn, if

k − 2i ≡ k′ − 2j mod(2n − 1),

then k = k′ and i = j.

For any given n and d, denote byMn,d the set of all mono-integers of size n
and weight d. Here we provide some properties on k and i mentioned in Definition



1, which will be used in the next section. For simplicity, throughout the paper
we will make convention that the addition and subtraction on the exponents of
monomials are done in the residue class ring modulo (2n−1). So k−2i mod(2n−1)
can be written as k−2i in short, similarly k−2i+2j mod(2n−1) for k−2i+2j ,
and so on.

Lemma 1 Let k ∈ Mn,d and i be mentioned as Definition 1. When d ≥ 2, we
have

1. k[i+1] = k[i] = k[i−1] = 0; and
2. wH(k − 2i) > d.

Proof : Since Item 2 can be derived directly from Item 1, we only prove Item 1.
By Condition 2 in Definition 1, we have wH(k− 2i + 2j) > d for any i 6= j ∈ Zn.
First we claim k[i] = 0. This is because that if k[i] = 1, we take j such that
k[j] = 0, then wH(k−2i+ 2j) = d. A contradiction. Second, if k[i+1] = 1, we can
always take j 6= i such that (k− 2i)[j] = 1 due to d ≥ 2. Then wH(k− 2i + 2j) ≤
d. A contradiction. Finally, if k[i−1] = 1, take j = i − 1, and then we have
wH(k − 2i + 2j) = wH(k − 2i−1) = d− 1. A contradiction. So Item 1 holds. �

Corollary 1 When d ≥ 2, we have s(k) ≥ 3 for any k ∈Mn,d.

In order to check k ∈Mn,d, in practice we only need to check whether some
i’s indicating the second zero position in the maximal loop zero runs of k meet
Condition 2 in Definition 1 or not, which is illustrated in the following figure:

· · · 1
s(k)︷ ︸︸ ︷

0 · · · 0
i
0 1 · · · .

Roughly speaking, if one of such i’s does meet Condition 2 in Definition 1, then
k ∈Mn,d, otherwise, k 6∈ Mn,d. More precisely, we have the following conclusion
on k and i.

Lemma 2 (n ≥ 4) For any given 0 < k < 2n − 1 with wH(k) = d, k ∈Mn,d if
and only if either of the following two conditions holds

1. s(k) ≥ r(k) + 2; or
2. s(k) = r(k) + 1, r(k) ≥ 2 and k contains exactly one maximal loop one run

which is just the left neighbor of some maximal loop zero run of k.

Proof: When d = 1, since n ≥ 4, thus s(k) ≥ 3, and when d ≥ 2, by Corollary
1, we have s(k) ≥ 3 as well if k ∈ Mn,d. Therefore below we only consider the
case s(k) ≥ 3. In this case we can take i as indicated below

· · · 1
s(k)︷ ︸︸ ︷

0 · · · 0
i
0 1 · · · .



Then k − 2i can be written as

· · · 0
s(k)−1︷ ︸︸ ︷
1 · · · 1

i
01 · · · ,

and
wH(k − 2i) = (d− 1) + (s(k)− 1) = d+ s(k)− 2.

Note that for any j ∈ Zn, we have

wH(k − 2i + 2j) ≥ wH(k − 2i)− (r(k − 2i)− 1) = d+ s(k)− 1− r(k − 2i),

where the equality holds if and only if j’s are token as indicated below:

k − 2i k − 2i + 2j

· · · 0
r(k−2i)︷ ︸︸ ︷
1 · · · 1

j
0 · · · ⇒ · · · 1

r(k−2i)︷ ︸︸ ︷
0 · · · 0

j
0 · · ·

Since Condition 2 in Definition 1 holds if and only if k − 2i has exactly one
maximal loop one run and i just locates at the starting position among this
maximal loop one run. It is easy to check that the above event occurs only
under the following two cases: 1) s(k) ≥ r(k) + 2; 2) s(k) = r(k) + 1 and k
contains exactly one maximal loop one run which is just the left neighbor of
some maximal loop zero run of k. The latter is illustrated in the following figure

k k − 2i

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
r(k)+1︷ ︸︸ ︷
0 · · · 0

i
0 1 · · · ⇒ · · · 0

r(k)−1︷ ︸︸ ︷
1 · · · 1 0

r(k)︷ ︸︸ ︷
1 · · · 1

i
01 · · ·

Note that r(k) = s(k)− 1 ≥ 2, the desired conclusion follows. �
The following corollary further gives an efficient and necessary condition on

Mn,d =Wn,d, that is,

Corollary 2 Let n ≥ 4 and 1 ≤ d < n. Then Mn,d = Wn,d if and only if for
any 1 ≤ τ ≤ d, we have

dn− d
τ
e ≥ d− τ + 3. (7)

Proof : By the definitions of s(k) and r(k), we have

s(k) ≥ dn− d
τ(k)

e and r(k) ≤ d− τ(k) + 1

for any k ∈ Wn,d. Since Mn,d = Wn,d is equivalent to s(k) ≥ r(k) + 2 for any
k ∈ Wn,d, that is, inequality (7) holds. �

Corollary 3 1. M4,1 =W4,1;
2. Mn,d =Wn,d for any n ≥ 5 and 1 ≤ d ≤ b2

√
n+ 4c − 5.



Proof : Item 1 is trivial, and we only prove Item 2. Obviously, by Corollary 2,
if d meets n−d

τ ≥ d − τ + 3 for any 1 ≤ τ ≤ d, then d meets inequality (7) as

well, which implies that Mn,d =Wn,d. Note that (d− τ + 3)τ ≤ (d+3
2 )2 for any

1 ≤ τ ≤ d, further if d meets n − d ≥ (d+3
2 )2, we have Mn,d = Wn,d as well.

Note that the latter is equivalent to d ≤ b2
√
n+ 4c − 5, thus Item 2 holds. �

4 Proof of Main Theorem

Note that b
√
nc + d n

b
√
nce = d2

√
ne for all positive integers n, we denote d0 =

d2
√
ne − 2 for simplicity. In order to prove the main theorem, we only need to

prove d ≥ d0 for any nonzero annihilator f(x) of Tr(x−1) or Tr(x−1) + 1 with
Boolean algebraic degree d. Based on mono-integers introduced in the previous
section we can do it. Before the proof of the above theorem we provide some
conclusions related to mono-integers.

Proposition 1 Let f(x) be a Boolean function with degB(f(x)) = d over F2n

and Dd(f) be defined as above, where 1 ≤ d < n. If Dd(f) ∩Mn,d 6= ∅, then
(Tr(x−1) + δ)f(x) 6= 0 for δ = 0, 1.

Proof : Let k ∈ Dd(f)∩Mn,d. By the definition of mono-integers, the monomial

xk−2
i mod(2n−1) occurs exactly one time in the expansion of (Tr(x−1) + δ)f(x)

for some i ∈ Zn. So (Tr(x−1) + δ)f(x) 6= 0. �

Corollary 4 Let f(x) be an annihilator of Tr(x−1) + δ for some δ ∈ F2 with
degB(f(x)) = d. Then for any k ∈ Dd(f), we have k 6∈ Mn,d.

Below we always assume that f(x) is an annihilator of Tr(x−1) or Tr(x−1)+1
with degB(f(x)) = d. By Corollary 3, we have d ≥ 2.

Lemma 3 Let d ≥ 2 and Dt(f) be defined as above, where 1 ≤ t ≤ d. Then

1. for any k ∈ Dd(f), we have s(k) ≤ r(k) + 1; and
2. for any k ∈ Dd−1(f), we have s(k) ≤ r(k)+3. In particular, when k contains

exactly one maximal loop one runs which is just the left neighbor of some
maximal loop zero runs, we have s(k) ≤ r(k) + 2.

Proof : Item 1 follows directly from Lemma 2. Below we consider Item 2. Suppose
that there exists an k ∈ Dd−1(f) such that s(k) ≥ r(k) + 4. Without loss of
generality, let k have the form

· · · 1
≥r(k)+4︷ ︸︸ ︷
0 · · · 0

j
0
i
0 1 · · ·

and take i and j as indicated above. Set k′ = k − 2i + 2j . Then k′ ∈ Dd(f) and
has the form

· · · 1
≥r(k)+2︷ ︸︸ ︷
0 · · · 0

j
1
i
01 · · · .



By Lemma 2, k′ ∈ Mn,d. A contradiction. The second part of Item 2 can be
deduced directly by Item 2 of Lemma 2. So the conclusion follows. �

Below We prove Theorem 1 under the cases r(k) ≥ 2 and r(k) = 1 respec-
tively.

4.1 The case r(k) ≥ 2

In this section we will prove Theorem 1 under the case r(k) ≥ 2 for some
k ∈ Dd(f). First when s(k) < r(k), we have the following conclusion:

Lemma 4 (s(k) < r(k)) Let k ∈ Dd(f). If s(k) < r(k), then d ≥ d0.

Proof : By the definition of s(k) and r(k), we have

s(k) ≥ n− d
τ

and r(k) ≤ d− τ + 1,

where τ(k) = τ . Thus we have

n− d
τ
≤ s(k) ≤ r(k)− 1 ≤ d− τ

⇒ n− d ≤ (d− τ)τ ≤ d2

4

⇒ d ≥ d2
√
n+ 1e − 2 ≥ d0.

�
Lemma 4 shows that we only need to consider the cases s(k) = r(k) + 1 and

s(k) = r(k) when r(k) ≥ 2.

Lemma 5 Let k ∈ Dd(f). If s(k) = r(k) + 1 ≥ 3, then the length of the loop
zero run after any maximal loop one run in k must be 1.

Proof : By the position relation of the maximal loop one runs and maximal loop
zero runs of k, we subdivided k into two cases: adjacent and non-adjacent, which
are illustrate in the following figure:

k k′ = k − 2i + 2j

· · · 1
r(k)+1︷ ︸︸ ︷
0 · · · 0

i
0 1 · · · 0

r(k)︷ ︸︸ ︷
1 · · · 1

j

x︷ ︸︸ ︷
0 · · · 0 1 · · · ⇒ · · · 0

r(k)︷ ︸︸ ︷
1 · · · 1

i
01 · · · 1

r(k)+x︷ ︸︸ ︷
0 · · · 0

j
1 · · ·

and
k k′ = k − 2i + 2j

· · · 1
r(k)+1︷ ︸︸ ︷
0 · · · 0

i
0

r(k)︷ ︸︸ ︷
1 · · · 1

j

x︷ ︸︸ ︷
0 · · · 0 1 · · · ⇒ · · · 0

r(k)+1︷ ︸︸ ︷
1 · · · 1

i

r(k)+x︷ ︸︸ ︷
0 · · · 0

j
1 · · ·

In order to eliminate the monomial xk−2
i

of Tr(x−1 + δ)f(x), f(x) must contain
another monomial ck′x

k′ , that is, k′ ∈ Dd(f). Note that when x ≥ 2, we have
k′ ∈ Mn,d by Lemma 2, which contradicts with Dd(f) ∪ Mn,d = ∅. So the
conclusion follows. �



Lemma 6 (s(k) = r(k) + 1) Let k ∈ Dd(f). If s(k) = r(k) + 1 and r(k) <
d− τ + 1, then d ≥ d0.

Proof : By Lemma 5, it is known that k contains at least one loop zero run of
length 1, thus we have

s(k) ≥ n− d− 1

τ − 1
.

Thus we have

n− d− 1

τ − 1
≤ s(k) = r(k) + 1 ≤ d− τ + 1

⇒ n− d− 1 ≤ (d− τ + 1)(τ − 1) ≤ d2

4
⇒ d ≥ d2

√
ne − 2 = d0.

�

Lemma 7 (s(k) = r(k) + 1) Let k ∈ Dd(f). If s(k) = r(k) + 1 and r(k) =
d− τ + 1 ≥ 2, then d ≥ d0.

Proof : The condition r(k) = d − τ + 1 implies that k contains exactly one
maximal loop one run and all except this maximal loop one run are loop one
runs of length 1. Without loss of generality, let k have the form:

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1 01

x︷ ︸︸ ︷
0 · · · 0 1 · · · .

We first claim x ≤ r(k). Assume that x = r(k) + 1, we take i and j as indicated
below:

k k′ = k − 2i + 2j

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
j

01

r(k)+1︷ ︸︸ ︷
0 · · · 0

i
0 1 · · · ⇒ · · · 1

r(k)+2︷ ︸︸ ︷
0 · · · 0

j
00

r(k)︷ ︸︸ ︷
1 · · · 1

i
01 · · ·

and set k′ = k − 2i + 2j . Then k′ ∈ Dd(f). But by Lemma 2, k′ ∈ Mn,d. A
contradiction. So x ≤ r(k).

Below we subdivide k into two cases:

– Case 1: k has the form:

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1 01

x︷ ︸︸ ︷
0 · · · 0 1 · · · 1

r(k)+1︷ ︸︸ ︷
0 · · · 00

i
1
j

y︷ ︸︸ ︷
0 · · · 0 1 · · · ,

and i and j are taken as indicated above. Set k′ = k − 2i + 2j . Then k′ ∈
Dd−1(f) and has the form

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1 01

x︷ ︸︸ ︷
0 · · · 0 1 · · · 1

r(k)+2+y︷ ︸︸ ︷
0 · · · 00 1 · · · .



By Lemma 3 we have y = 1. The above result shows that k contains at least
two loop zero runs of length 1 and one loop zero runs with length no more
than r(k), thus we have

s(k) ≥ n− d− 2 + 1

τ − 2
=
n− d− 1

τ − 2
.

So
n− d− 1

τ − 2
≤ s(k) = r(k) + 1 = d− τ + 2,

which follows d ≥ d0.
– Case 2: k has the form:

· · · 1
r(k)+1︷ ︸︸ ︷
0 · · · 0

i
0

r(k)︷ ︸︸ ︷
1 · · · 1

j
01

x︷ ︸︸ ︷
0 · · · 0 10 · · · ,

and i and j are taken as indicated above. Set k′ = k−2i+2j . Then k′ ∈ Dd(f)
and has the form

· · · 0
r(k)+1︷ ︸︸ ︷
1 · · · 1

i
1

r(k)+1︷ ︸︸ ︷
0 · · · 0

j
0 1

x︷ ︸︸ ︷
0 · · · 0 10 · · · .

Take i′ and j′ as indicated below:

· · · 0
r(k)+1︷ ︸︸ ︷
1 · · · 11

r(k)+1︷ ︸︸ ︷
0 · · · 00

i′
1
j′

x︷ ︸︸ ︷
0 · · · 0 10 · · · ,

and set k′′ = k′ − 2i
′
+ 2j

′
. Then k′′ ∈ Dd−1(f) and has the form

· · · 0
r(k)+1︷ ︸︸ ︷
1 · · · 11

r(k)+2+x︷ ︸︸ ︷
0 · · · 00

i′
0
j′

0 · · · 0 10 · · · .

By Item 2 of Lemma 3, we have x = 1. So

s(k′) ≥ n− d− 1

τ(k′)− 1
=
n− d− 1

τ − 2
.

Note that s(k′) = r(k′) = r(k) + 1 = d− τ + 2, thus

n− d− 1

τ − 2
≤ d− τ + 2,

which follows d ≥ d0.

Combine the above two cases, we can get the desired conclusion. �
Finally we give a proof of the case s(k) = r(k) ≥ 2.

Lemma 8 (s(k) = r(k)) Let k ∈ Dd(f). If s(k) = r(k) ≥ 2, then d ≥ d0.



Proof : First, if r(k) < d− τ + 1, we have

n− d
τ
≤ s(k) = r(k) ≤ d− τ,

which follows d ≥ d0.
Second, when r(k) = d− τ + 1, we divide k into two cases:

– Case 1: k contains exactly one maximal loop zero run. Then we have

s(k) ≥ n− d+ (τ − 1)

τ
.

Since s(k) = r(k) ≤ d− τ + 1, thus

n− d+ (τ − 1)

τ
≤ d− τ + 1,

which follows d ≥ d0.
– Case 2: k contains at least two maximal loop zero runs. Without loss of

generality, let k have the form

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
x︷ ︸︸ ︷

0 · · · 0 1 · · · 1
r(k)︷ ︸︸ ︷

0 · · · 0 1

y︷ ︸︸ ︷
0 · · · 0 1 · · · .

Since we have proved the case x = r(k) (see the proof on k′ at Case 2 in
Lemma 7), thus below we always assume x < r(k). Take i as indicated below:

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
j1

x︷ ︸︸ ︷
0 · · · 0 1 · · · 1

r(k)︷ ︸︸ ︷
0 · · · 0

i
1
j2

y︷ ︸︸ ︷
0 · · · 0 1 · · · ,

and here j can be taken two possible values which are indicated above, that
is, j1 and j2. When j = j1, set k′ = k − 2i + 2j1 . Then k′ ∈ Dd(f) and has
the form

· · · 1
r(k)+x︷ ︸︸ ︷

0 · · · 0
j1

0 · · · 0 1 · · · 0
r(k)+1︷ ︸︸ ︷
1 · · · 1

i
1

y︷ ︸︸ ︷
0 · · · 0 1 · · · .

By Item 1 of Lemma 3, we have x ≤ 2. When x = 2, by Lemma 7, we can
obtain d ≥ d0. When x = 1, note that

n− d− 1

τ − 1
≤ s(k) = r(k) ≤ d− τ + 1,

we have d ≥ d0 as well.
When j = j2, set k′ = k − 2i + 2j2 . Then we have k′ ∈ Dd−1(f) and

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
x︷ ︸︸ ︷

0 · · · 0 1 · · · 1
r(k)+1+y︷ ︸︸ ︷
0 · · · 0 1 · · · .

By Item 2 of Lemma 3, we have y ≤ 2. Note that x < r(k), thus we have

n− d− y + 1

τ − 1
≤ s(k) = r(k) ≤ d− τ + 1,

which follows d ≥ d0.

Combine the above all cases, we can get the desired conclusion. �



4.2 The case r(k) = 1

In this section we will prove Theorem 1 under the case r(k) = 1 for some
k ∈ Dd(f). Note that r(k) = 1 implies τ = τ(k) = d and ri = 1 for all 1 ≤ i ≤ τ .
By Lemma 2, we have s(k) ≤ 2. The following conclusion shows that k does not
contain two adjacent loop zero runs of length 2.

Lemma 9 For any k ∈ Dd(f), if r(k) = 1, then k does not contain the substring
100100.

Proof : Suppose that k contains the substring 100
i
1
j
00 and i and j are taken

as indicated above. Set k′ = k − 2i + 2j . Then k′ ∈ Dd−1(f) and contains the
substring 100

i
0
j
00, which contradicts with Item 2 in Lemma 3. So the conclusion

holds. �

Proposition 2 Let n ≥ 4 and f(x) be an annihilator of Tr(x−1) + δ for some
δ ∈ F2 with degB(f(x)) = d ≥ 2. If there exists an k ∈ Dd(f) such that r(k) = 1,
then d ≥ d0.

Proof : We will adopt reductio ad absurdum to prove the above conclusion, that
is, assume that there exists an annihilator of Tr(x−1) or Tr(x−1) + 1 whose
Boolean algebraic degree d is less than d0. It is noticed that if the Boolean
algebraic degree of f(x) is less than d0 − 1, we always find another function
g(x), which is a multiple of f(x) and has the Boolean algebraic degree d0 − 1,
such that (Tr(x−1) + δ)g(x) = 0 for some δ ∈ F2. Therefore below we always
assume d = d0 − 1.

Table 1 lists the values of the 3-tuples (n, n − d, d) for 4 ≤ n ≤ 25. The
case n = 4 is trivial, and it is easy to verify that for any k ∈ Dd(f), when
n = 6, 8, 9, 11, 12, 13, 14, 15, 17, 18, 21, k always contains two adjacent loop zero
runs of length 2, and when n = 16, 19, 20 and n ≥ 22, k has at least one loop
zero runs with length no less than 3, which contradicts with Lemmas 9 and 3
respectively. Thus we have d ≥ d0.

Table 1. The values of the 3-tuples (n, n− d, d) for 4 ≤ n ≤ 25

n 4 5 6 7 8 9 10 11 12 13 14

n− d 3 3 4 4 5 6 6 7 8 8 9

d 1 2 2 3 3 3 4 4 4 5 5

n 15 16 17 18 19 20 21 22 23 24 25

n− d 10 11 11 12 13 14 14 15 16 17 17

d 5 5 6 6 6 6 7 7 7 7 8

When n = 5, k has the form 10010 for any k ∈ D2(f). Take i and j as
indicated below: 100

i
1
j
0, and set k′ = k − 2i + 2j . Then k′ ∈ D1(f) and has the

form 10000, which contradicts with Item 2 of Lemma 3. So d ≥ d0.



When n = 7, k has the form 1001010 for any k ∈ D3(f). Take i and j as
indicated below: 100

i
1
j
010, and set k′ = k− 2i + 2j . Then k′ ∈ D2(f) and has the

form 1000010. Take i′ as indicated below: 10000
i′
10. Then j′ can be taken two

possible values, that is, j1 and j2, indicated as below: 1000
j1

0
i′

1
j2

0. When j′ = j1,

set k′′ = k′ − 2i
′

+ 2j1 , then k′′ ∈ D3(f) and has the form 1000110, which is
corresponding to the case r(k

′′
) ≥ 2 and has been proven in Section 4.1. When

j = j2, set k(3) = k′ − 2i
′

+ 2j2 , then k(3) ∈ D1(f) and has the form 1000000.
Take i′′ as indicated below: 1000000

i′′
. Then k(3) − 2i

′′
has the form 0111111. It

is easy to verify that for any i′′ 6= j3 ∈ Z7, we have r(k(3)−2i
′′

+ 2j3) ≥ 2, which
implies that d ≥ d0.

When n = 10, since s(k) ≤ 2, k has just the form 1001010010 by Lemma 9.
Similarly to the case n = 7, we have d ≥ d0 as well and do not repeat it here.

Combine the above all cases, and we can get the desired conclusion. �

5 Weak properties in resistance to fast algebraic attacks

When n is a bit larger, it is easy to see that d0 is far smaller than dn2 e, which
shows that Tr(λx−1) has weak properties in resistance to algebraic attacks. In
this section we will further demonstrate that Tr(λx−1) has weak properties in
resistance to fast algebraic attacks as well.

Proposition 3 Let n ≥ 5 and 2 ≤ d < d0, and f(x) be a Boolean function of
the form

∑
k∈Wn,d

ckx
k over F2n . Denote gδ(x) = (Tr(x−1)+δ)f(x) for δ = 0, 1.

Then we have
degB(gδ(x)) = d+ max

k∈Dd(f)
s(k)− 1. (8)

In particular, we have

degB(gδ(x)) ≥ d+ dn
d
e − 2, (9)

where the equality holds if and only if s(k) = dnd e − 1 for all k ∈ Dd(f).

Proof : We first prove equality (8). Since s(k) ≥ 2 for any k ∈ Dd(f) when
d < d0, it is easy to see that

degB(gδ(x)) ≤ max
k∈Dd(f),i∈Zn

{wH(k), wH(k − 2i) } = d+ max
k∈Dd(f)

s(k)− 1.

Below we prove that degB(gδ(x) ≥ d + max
k∈Dd(f)

s(k) − 1. Without loss of

generality, let k ∈ Dd(f) with maximal s(k) among Dd(f), and take i ∈ Zn as

indicated below: · · · 1
s(k)︷ ︸︸ ︷

0 · · · 0
i

1 · · · . Then k − 2i has the form · · · 0
s(k)+1︷ ︸︸ ︷
1 · · · 1

i
1 · · · and

wH(k − 2i) = d+ s(k)− 1 > d.



By Lemma 4, we have s(k) ≥ r(k). When s(k) > r(k) or s(k) = r(k) but k
has exactly one maximal loop one run which is just at the left neighbor of the
maximal loop zero run of k, it is easy to see that k− 2i occurs exactly one time
in gδ(x), thus degB(gδ(x)) ≥ wH(k− 2i) = d+ s(k)− 1. Otherwise, we take j as
indicated below:

· · · 0
r(k)︷ ︸︸ ︷

1 · · · 1
j

0 · · · 1
s(k)︷ ︸︸ ︷

0 · · · 0
i

1 · · · ,

and set k′ = k − 2i + 2j . Then wH(k′) = d and has the form:

· · · 1
≥r(k)+1︷ ︸︸ ︷

0 · · · 0
j
· · · 0 · · · 0

≥s(k)+1︷ ︸︸ ︷
1 · · · 1

i
· · · 1 · · · .

If k′ ∈ Dd(f), since s(k′) ≥ r(k) + 1 = s(k) + 1 > s(k), it is a contradiction
with the pick of k, which shows that k− 2i occurs exactly one time in gδ(x). So
degB(gδ(x)) ≥ wH(k − 2i) = d+ s(k)− 1. So equality (8) follows.

Second, note that for any k ∈ Wn,d, we have

s(k) ≥ dn− d
τ(k)

e ≥ dn− d
d
e = dn

d
e − 1.

So the conclusion follows. �
Further for a general Boolean function f(x) with degB(f(x)) = d, we have

Proposition 4 Let n ≥ 7 and n 6= 9, and f(x) be a Boolean function with
degB(f(x)) = d, where 2 ≤ d ≤ b

√
nc. Denote gδ(x) = (Tr(x−1) + δ)f(x) for

δ = 0, 1. Then we have

degB(gδ(x)) ≥ d+ max
k∈Dd(f)

s(k)− 2. (10)

In particular, we have

degB(gδ(x)) ≥ d+ dn
d
e − 3. (11)

Proof : By Corollaries 2 and 3, it is easy to verify that Mn,d =Wn,d for n ≥ 7,
n 6= 9 and 2 ≤ d ≤ b

√
nc. For any k ∈ Dd(f), take i as indicated below:

· · · 1
s(k)︷ ︸︸ ︷

0 · · · 0
i
0. T hen wH(k) = d + s(k) − 2 and xk−2

i mod(2n−1) only occurs one

time in gδ(x). So the conclusion follows. �

Example 2 Let n ≥ 5 and 2 ≤ k ≤ b
√
nc. For any given nonzero λ ∈ F2n ,

denote fλ(x) = Tr(λxk) 6= 0, where wH(k) = d and s(k) = dnd e−1. Set gδ,λ(x) =
(Tr(x−1) + δ)fλ(x) for δ = 0, 1. By Proposition 3, we have degB(gδ,λ(x)) =
d+ dnd e − 2.



When Tr(x−1) (or Tr(αx−1)) is used as a component in stream ciphers, an
attacker can achieve good trade-off of time-memory-data by choosing carefully
different d, k and λ. For example, take n = 128, and some possible combination
of d and degB(gδ,λ(x)) are listed in Table 2.

Table 2 Possible combination of d and degB(gδ,λ(x))

d degB(gδ,λ(x))

2 64
4 34
8 22

Remark 2 By Proposition 4, it is possible to achieve gδ,λ(x) with lower Boolean
algebraic degree by choosing more complex fλ(x) when 2 ≤ d < b

√
nc. At this

time the Boolean algebraic degree of gδ,λ(x) will reduce at most 1 than those
listed in Table 2. When d = 8, if there exists fλ(x) such that degB(gδ,λ(x)) =
21 = AI(Tr(x−1)), then the attacker utilizes fλ(x) and gδ,λ(x) to launch fast
algebraic attacks and will take the same cost in the off-line phase as that by
algebraic attacks, however the cost taken by the attacker in the on-line phase
will be reduced dramatically down.
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