
One-Sided Adaptively Secure Two-Party Computation

Carmit Hazay∗ Arpita Patra†

Abstract

Adaptive security is a strong security notion that captures additional security threats that are not ad-
dressed by static corruptions. For instance, it captures real-world scenarios where “hackers” actively
break into computers, possibly while they are executing secure protocols. Studying this setting is inter-
esting from both theoretical and practical points of view. A primary building block in designing adap-
tively secure protocols is a non-committing encryption (NCE) that implements secure communication
channels in the presence of adaptive corruptions. Current constructions require a number of public key
operations that grows linearly with the length of the message. Furthermore, general two-party protocols
require a number of NCE calls that is linear in the circuit size.

In this paper we study the two-party setting in which at most one of the parties is adaptively corrupted,
which we believe is the right security notion in the two-party setting. We study the feasibility of (1) NCE
with constant number of public key operations for large message spaces. (2) Oblivious transfer with
constant number of public key operations for large sender’s input spaces, and (3) constant round secure
computation protocols with a number of NCE calls, and an overall number of public key operations,
that are independent of the circuit size. Our study demonstrates that such primitives indeed exist in the
presence of single corruptions, while this is not known for fully adaptive security (where both parties
may get corrupted).

Keywords: Secure Two-Party Computation, Adaptive Security, Non-Committing Encryption, Oblivious Transfer

∗Department of Computer Engineering, Bar-Ilan University, Israel. Email: carmit.hazay@biu.ac.il.
†Department of Computer Science, University of Bristol, United Kingdom. Email: arpita.patra@bristol.ac.uk.

1 Introduction

1.1 Background

Secure two-party computation. In the setting of secure two-party computation, two parties with private
inputs wish to jointly compute some function of their inputs while preserving certain security properties
like privacy, correctness and more. In this setting, security is formalized by viewing a protocol execution
as if the computation is executed in an ideal setting where the parties send inputs to a trusted party that
performs the computation and returns its result (also known by simulation-based security). Starting with the
work of [Yao82, GMW87], it is by now well known that (in various settings) any polynomial-time function
can be compiled into a secure function evaluation protocol with practical complexity; see [BDOZ11, LP12,
DPSZ12, NNOB12] for a few recent works. The security proofs of these constructions assume that a party is
statically corrupted. Meaning, corruptions take place at the outset of the protocol execution and the identities
of the corrupted parties are fixed throughout the computation. Adaptive security is a stronger notion where
corruptions takes place at any point during the course of the protocol execution. That is, upon corruption
the adversary sees the internal data of the corrupted party which includes its input, randomness and the
incoming messages. This notion is much stronger than static security due to the fact that the adversary may
choose at any point which party to corrupt, even after the protocol is completed! It therefore models more
accurately real world threats.

Typically, when dealing with adaptive corruptions we distinguish between corruptions with erasures and
without erasures. In the former case honest parties are trusted to erase data if are instructed to do so by the
protocol, whereas in the latter case no such assumption is made. This assumption is often problematic since
it relies on the willingness of the honest parties to carry out this instruction without the ability to verify its
execution. In settings where the parties are distrustful it may not be a good idea to base security on such an
assumption. In addition, it is generally unrealistic to trust parties to fully erase data since this may depend
on the operating system. Nevertheless, assuming that there are no erasures comes with a price since the
complexity of adaptively secure protocols without erasures is much higher than the analogue complexity of
protocols that rely on erasures. In this paper we do not rely on erasures.

Adaptive security. It is known by now that security against adaptive attacks captures important real-
world concerns that are not addressed by static corruptions. For instance, such attacks capture scenarios
where “hackers” actively break into computers, possibly while they are running secure protocols, or when
the adversary learns from the communication which parties are worth to corrupt more than others. This later
issue can be demonstrated by the following example. Consider a protocol where some party (denoted by the
dealer) shares a secret among a public set of

√
n parties, picked at random from a larger set of n parties. This

scheme is insecure in the adaptive model if the adversary corrupts
√
n parties since it can always corrupt the

particular set of parties that share the secret. In the static setting the adversary corrupts the exact same set of
parties that share the secret with a negligible probability in n.

Other difficulties also arise when proving security. Consider the following protocol for transferring a
message: A receiver picks a public key and sends it to a sender that uses it to encrypt its message. Then,
security in the static model is simple and relies on the semantic security of the underlying encryption scheme.
However, this protocol is insecure in the adaptive model since standard semantically secure encryption binds
the receiver to a single message (meaning, given the public key, a ciphertext can only be decrypted into a
single value). Thus, upon corrupting the receiver at the end of the protocol execution it would not be possible
to “explain” the simulated ciphertext with respect to the real message. This implies that adaptive security is
much harder to achieve.

1

Adaptively secure two-party computation. In the two-party setting there are scenarios where the system
is comprised from two devices communicating between themselves without being part of a bigger system.
For instance, consider a scenario where two devices share an access to an encrypted database that contains
highly sensitive data (like passwords). Moreover, the devices communicate via secure computation but do
not communicate with other devices due to high risk of breaking into the database. Thus, attacking one
of the devices does not disclose any useful information about the content of the database, while attacking
both devices is a much harder task. It is reasonable to assume that the devices are not necessarily statically
corrupted since they are protected by other means, while attackers may constantly try to break into these
devices (even while running secure computation).

In 2011, RSA secureID authentication products were breached by hackers that leveraged the stolen in-
formation from RSA in order to attack the U.S. defence contractor Lockheed Martin. The attackers targeted
SecurID data as part of a broader scheme to steal defense secrets and related intellectual property. Distribut-
ing the SecureID secret keys between two devices potentially enables to defend against such an attack since
in order to access these keys the attackers need to adaptively corrupt both devices, which is less likely to
occur. Many other applications face similar threats when attempt to securely protect their databases.

We therefore focus on a security notion that seems the most appropriate in this context. In this paper, we
study secure two-party computation with single adaptive corruptions in the non-erasure model where at most
one party is adaptively corrupted. To distinguish this notion from fully adaptive security, where both parties
may get corrupted, we denote it by one-sided adaptive security. Our goal in this work is to make progress
in the study of the efficiency of two-party protocols with one-sided security. Our measure of efficiency is
the number of public key encryption (PKE) operations captured by the number of exponentiations in several
important groups (e.g., groups where the DDH assumption is hard and composite order groups where the
assumptions DCR and QR are hard), and further considered in prior works such as [GWZ09]. Finally, our
proofs are given in the universal composable (UC) setting [Can01] with a common reference string (CRS)
setup. The reductions of our non-committing encryption and oblivious transfer with one-sided security are
tight. The reductions of our general two-party protocols are tighter than in prior works since we do not
need to encrypt the entire communication using non-committing encryption; see more details below. All our
theorems are not known to hold in the fully adaptive setting.

1.2 Our Results

One-sided NCE with constant overhead. A non-committing encryption (NCE) scheme [CFGN96] im-
plements secure channels in the presence of adaptive corruptions and is an important building block in
designing adaptively secure protocols. In [DN00], Damgård and Nielsen presented a theoretical improve-
ment in the one-sided setting by designing an NCE under strictly weaker assumptions than simulatable
public key encryption scheme (the assumption for fully adaptive NCE). Nevertheless, all known one-
sided [CFGN96, DN00] and fully adaptive NCE constructions [DN00, CDSMW09a] require O(1) PKE
operations for each transmitted bit. It was unknown whether this bound can be reduced for one-sided NCEs
and even matched with the overhead of standard PKEs.

We suggest a new approach for designing NCEs secure against one-sided adaptive attacks. Our protocols
are built on two cryptographic building blocks that are non-committing with respect to a single party. We
denote these by NCE for the sender and NCE for the receiver. Non-committing for the receiver (NCER)
implies that one can efficiently generate a secret key that decrypts a simulated ciphertext into any plaintext.
Whereas non-committing for the sender (NCES) implies that one can efficiently generate randomness for
any plaintext for proving that a ciphertext, encrypted under a fake key, encrypts this plaintext. A core
building block in our one-sided construction is (a variant) of the following protocol, in which the receiver
generates two sets of public/secret keys; one pair of keys for each public key system, and sends these public

2

keys to the sender. Next, the sender partitions its message into two shares and encrypts the distinct shares
under the distinct public keys. Finally, the receiver decrypts the ciphertexts and reconstructs the message.
Both NCES and NCER are semantically secure PKEs that as efficient as standard PKEs. Informally, we
prove that,

Theorem 1.1 (Informal) Assume the existence of NCER and NCES with constant number of PKE operations
for message space {0, 1}q and simulatable PKE. Then there exists a one-sided NCE with constant number
of PKE operations for message space {0, 1}q, where q = O(n) and n is the security parameter.

Importantly, the security of this protocol only works if the simulator knows the identity of the corrupted
party since fake public keys and ciphertexts cannot be explained as valid ones. We resolve this issue by
slightly modifying this protocol using somewhat NCE [GWZ09] in order to encrypt only three bits. Namely,
we use somewhat NCE to encrypt the choice of having fake/valid keys and ciphertexts (which only requires
a single non-committing bit per choice). This enables the simulator to “explain” fake keys/ciphertext as
valid and vice versa using only a constant number of asymmetric operations. In this work we consider two
implementations of NCER and NCES. For polynomial-size message spaces the implementations are secure
under the DDH assumption, whereas for exponential-size message spaces security holds under the DCR
assumption. The NCER implementations are taken from [JL00, CHK05]. NCES was further discussed
in [FHKW10] and realized under the DDH assumption in [BHY09] using the closely related notion of lossy
encryption.1 In this paper we realize NCES under the DCR assumption.

One-sided oblivious transfer with constant overhead. We use our one-sided NCEs to implement 1-out-
of-2 oblivious transfer (OT) between a sender and a receiver. We consider a generic framework that abstracts
the statically secure OT of [PVW08] that is based on a dual-mode PKE primitive, while encrypting only a
small portion of the communication using our one-sided NCE. Our construction requires a constant number
of PKE operations for an input space {0, 1}q of the sender, where q = O(n). This is significantly better
than the fully adaptively secure OT of [GWZ09] (currently the most efficient fully adaptive construction),
that requires O(q) such operations. We prove that:

Theorem 1.2 (Informal) Assume the existence of one-sided NCE with constant number of PKE operations
for message space {0, 1}q and dual-mode PKE. Then there exists a one-sided OT with constant number of
PKE operations for sender’s input space {0, 1}q, where q = O(n) and n is the security parameter.

We build our one-sided OT based on the PVW protocol with the following modifications. (1) First, we
require that the sender sends its ciphertexts via a one-sided non-committing channel (based on our previous
result, this only inflates the overhead by a constant). (2) We fix the common parameters of the dual-mode
PKE in a single mode (instead of alternating between two modes as in the [GWZ09] protocol). To ensure
correctness, we employ a special type of ZK PoK which uses a novel technique; see below for more details.
Finally, we discuss two instantiations based on the DDH and QR assumptions.

Constant round one-sided secure computation. Theoretically, it is well known that any statically secure
protocol can be transformed into a one-sided adaptively secure protocol by encrypting the entire commu-
nication using NCE. This approach, adopted by [KO04], implies that the number of PKE operations grows
linearly with the circuit size times a computational security parameter.2 A different approach in the OT-
hybrid model was taken in [IPS08] and achieved a similar overhead as well.

1This notion differs from NCES by not requiring an efficient opening algorithm that enables to equivocate the ciphertext’s
randomness. We further observe that the notion of NCES is also similar to mixed commitments [DN02].

2We note that this statement is valid regarding protocols that do not employ fully homomorphic encryptions (FHE). To this end,
we only consider protocols that do not take the FHE approach. As a side note, it was recently observed in [KTZ13] that adaptive
security is impossible for FHE satisfying compactness.

3

In this work we demonstrate the feasibility of designing generic constant round protocols based on
Yao’s garbled circuit technique with one-sided security, tolerating semi-honest and malicious attacks. Our
main observation implies that one-sided security can be obtained even if only the keys corresponding to
the inputs and output wires are communicated via a one-sided adaptively secure channel. This implies that
the bulk of communication is transmitted as in the static setting. Using our one-sided secure primitives
we obtain protocols that outperform the constant round one-sided constructions of [KO04, IPS08] and all
known generic fully adaptively secure two-party protocols. Our proofs take a different simulation approach,
circumventing the difficulties arise due to the simulation technique from [LP09] that builds a fake circuit
(which cannot be applied in the adaptive setting). Specifically, we prove that

Theorem 1.3 (Informal) Under the assumptions of achieving statically secure two-party computation and
one-sided OT with constant number of PKE operations for sender’s input space {0, 1}q, where q = O(n)
and n is the security parameter, there exists a constant round one-sided semi-honest adaptively secure two-
party protocol that requiresO(|C|) private key operations andO(|input|+ |output|) public key operations.

In order to obtain one-sided security against malicious attacks we adapt the cut-and-choose based pro-
tocol introduced in [LP12]. The idea of the cut-and-choose technique is to ask one party to send s garbled
circuits and later open half of them by the choice of the other party. This ensures that with very high prob-
ability the majority of the unopened circuits are valid. Proving security in the one-sided setting requires
dealing with new subtleties and requires a modified cut-and-choose OT protocol, since [LP12] defines the
public parameters of their cut-and-choose OT protocol in a way that precludes the equivocation of the re-
ceiver’s input. Our result in the malicious setting follows.

Theorem 1.4 (Informal.) Under the assumptions of achieving static security in [LP12], one-sided cut-and-
choose OT with constant number of PKE operations for sender’s input space {0, 1}q, where q = O(n) and n
is the security parameter, and simulatable PKE, there exists a constant round one-sided malicious adaptively
secure two-party protocol that requires O(s · |C|) private key operations and O(s · (|input|+ |output|))
public key operations where s is a statistical parameter that determines the cut-and-choose soundness error.

This asymptotic efficiency is significantly better than the efficiency of the prior protocols [KO04, IPS08].

Witness equivocal UC ZK PoK for compound statements. As a side result, we demonstrate a technique
for efficiently generating statically secure UC ZK PoK for known Σ-protocols. Our protocols use a new
approach where the prover commits to an additional transcript which enables to extract the witness with a
constant overhead.

We further focus on compound statements (where the statement is comprised of sub-statements for
which the prover only knows a subset of the witnesses), and denote a UC ZK PoK by witness equivocal if
the simulator knows the witnesses for all sub-statements but not which subset is given to the real prover.
We extend our proofs for this notion to the adaptive setting as well. In particular, the simulator must be
able to convince an adaptive adversary that it does not know a different subset of witnesses. This notion is
weaker than the typical one-sided security notion (that requires simulation without the knowledge of any
witness), but is still meaningful in designing one-sided secure protocols. In this work, we build witness
equivocal UC ZK PoKs for a class of fundamental compound Σ-protocols, without relying on NCE. Our
protocols are round efficient and achieve a negligible soundness error. Finally, they are proven secure in the
UC framework [Can01].

To conclude, our results may imply that one-sided security is strictly easier to achieve than fully adaptive
security, and for some applications this is indeed the right notion to consider. We leave open the feasibility
of constant round one-sided secure protocols in the multi-party setting. Currently, it is not clear how to

4

extend our techniques beyond the two-party setting (such as within the [BMR90] protocol), and achieve
secure constructions with a number of PKE operations that does not depend on the circuit size.

1.3 Prior Work

We describe prior work on NCE, adaptively secure OT and two-party computation.

Non-committing encryption. One-sided NCE was introduced in [CFGN96] which demonstrated feasi-
bility of the primitive under the RSA assumption. Next, NCE was studied in [DN00, CDSMW09a]. The
construction of [DN00] requires constant rounds on the average and is based on simulatable PKE, whereas
[CDSMW09a] presents an improved expected two rounds NCE based on a weaker primitive. [DN00] fur-
ther presented a one-sided NCE based on a weakened simulatable PKE notion. The computational overhead
of these constructions is O(1) PKE operations for each transmitted bit. An exception is the somewhat NCE
introduced in [GWZ09] (see Section 3.3 for more details). This primitive enables to send arbitrarily long
messages at the cost of log ` PKE operations, where ` is the equivocality parameter that determines the
number of messages the simulator needs to explain. This construction improves over NCEs for sufficiently
small `’s. Finally, in [Nie02] Nielsen proved that adaptively secure non-interactive encryption scheme must
have a decryption key that is at least as long as the transmitted message.

Adaptively secure oblivious transfer. [Bea97, CLOS02] designed semi-honest adaptively secure OT (us-
ing NCE) and then compiled it into the malicious setting using generic ZK proofs. More recently, in a
weaker model that assumes erasures, Lindell [Lin09] used the method of [WW06] to design an efficient
transformation from any static OT to a semi-honest composable adaptively secure OT. Another recent work
by Garay et al. [GWZ09] presented a UC adaptively secure OT, building on the static OT of [PVW08] and
somewhat NCE. This paper introduces an OT protocol with security under a weaker semi-adaptive notion,
that is then compiled into a fully adaptively secure OT by encrypting the transcript of the protocol using
somewhat NCE.3 Finally, [CDSMW09b] presented an improved compiler for a UC adaptively secure OT in
the malicious setting (using NCE as well).

Adaptively secure two-party computation. In the non-erasure model, adaptively secure computation has
been extensively studied [CLOS02, DN03, CDD+04, KO04, IPS08, Lin09, CDSMW09a, CDSMW09b,
GS12]. Starting with the work of [CLOS02], it is known by now how to adaptively compute any well-
formed two-party functionality. The followup work of [DN03] showed how to use a threshold encryption
to achieve UC adaptive security but requires honest majority. A generic compiler from static to adaptive
security was shown in [CDD+04] (yet without considering post-execution corruptions). Then the work by
Katz and Ostrovsky [KO04] studied the round complexity in the one-sided setting. Their protocol is the first
round efficient construction, yet it takes the naive approach of encrypting the entire communication using
NCE. Moreover, the work of [IPS08] provided a UC adaptively secure protocol given an adaptively secure
OT. Their compiler generates one-sided schemes that either require a number of adaptively secure OTs that
is proportional to the circuit’s size, or a super constant number of rounds. Finally, a recent work by Garg and
Sahai [GS12] shows adaptively secure constant round protocols tolerating n − 1 out of n corrupted parties
using a non-black box simulation approach. Their approach uses the OT hybrid compiler of [IPS08].

In the erasure model, one of the earliest works by Beaver and Haber [BH92] showed an efficient
generic transformation from adaptively secure protocols with ideally secure communication channels, to
adaptively secure protocols with standard (authenticated) communication channels. A more recent work by
Lindell [Lin09] presents an efficient semi-honest constant round two-party protocol with adaptive security.

3We stress that the semi-adaptive notion is incomparable to the one-sided notion since the former assumes that either one party
is statically corrupted or none of the parties get corrupted.

5

2 Preliminaries

We denote the security parameter by n. A function µ(·) is negligible if for every polynomial p(·) there exists
a value N such that for all n > N it holds that µ(n) < 1

p(n) . We denote by a← A the random sampling of
element a from a set A and write PPT for probabilistic polynomial-time. We denote the message spaces of
our non-committing encryption schemes and the message space of the sender in our OT protocols by {0, 1}q
for q = O(n).

We specify the definitions of computational indistinguishability and statistical distance.

Definition 2.1 (Computational indistinguishability by circuits) LetX = {Xn(a)}n∈IN,a∈{0,1}∗ and Y =
{Yn(a)}n∈IN,a∈{0,1}∗ be distribution ensembles. We say that X and Y are computationally indistinguish-
able, denoted X ≈c Y , if for every family {Cn}n∈IN of polynomial-size circuits, there exists a negligible
function µ(·) such that for all a ∈ {0, 1}∗,

|Pr[Cn(Xn(a)) = 1]− Pr[Cn(Yn(a)) = 1]| < µ(n).

Definition 2.2 (Statistical distance) Let Xn and Yn be random variables accepting values taken from a
finite domain Ω ⊆ {0, 1}n. The statistical distance between Xn and Yn is

SD(Xn, Yn) =
1

2

∑
ω∈Ω

|Pr[Xn = ω]− Pr[Yn = ω]|.

We say that Xn and Yn are ε-close if their statistical distance is at most SD(Xn, Yn) ≤ ε(n). We say that
Xn and Yn are statistically close, denoted Xn ≈s Yn, if ε(n) is negligible in n.

2.1 Public Key Encryption Scheme

We specify the definitions of public key encryption and IND-CPA.

Definition 2.3 (PKE) We say that Π = (Gen,Enc,Dec) is a public-key encryption scheme if Gen,Enc,Dec
are polynomial-time algorithms specified as follows:

• Gen, given a security parameter n (in unary), outputs keys (PK, SK), where PK is a public key and
SK is a secret key. We denote this by (PK, SK)← Gen(1n).

• Enc, given the public key PK and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← EncPK(m); and when emphasizing the randomness r used for encryption, we
denote this by c← EncPK(m; r).

• Dec, given the public key PK, secret key SK and a ciphertext c, outputs a plaintext message m s.t.
there exists randomness r for which c = EncPK(m; r) (or ⊥ if no such message exists). We denote
this by m← DecPK,SK(c).

For a public key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform adversary ADV = (ADV1,ADV2),
we consider the following IND-CPA game:

(PK, SK)← Gen(1n).

(m0,m1, history)← ADV1(PK), s.t. |m0| = |m1|.
c← EncPK(mb), where b ∈R {0, 1}.
b′ ← ADV2(c, history).

ADV wins if b′ = b.

Denote by AdvΠ,ADV(n) the probability that ADV wins the IND-CPA game.

6

Definition 2.4 (IND-CPA) A public key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable en-
cryptions under chosen plaintext attacks (IND-CPA), if for every non-uniform adversary ADV = (ADV1,ADV2)
there exists a negligible function negl such that AdvΠ,ADV(n) ≤ 1

2 + negl(n).

2.2 Simulatable Public Key Encryption

A simulatable public key encryption scheme is an IND-CPA secure PKE with four additional algorithms.
I.e., an oblivious public key generator G̃en and a corresponding key faking algorithm G̃en

−1
, and an obliv-

ious ciphertext generator Ẽnc and a corresponding ciphertext faking algorithm Ẽnc
−1

. Intuitively, the key
faking algorithm is used to explain a legitimately generated public key as an obliviously generated public
key. Similarly, the ciphertext faking algorithm is used to explain a legitimately generated ciphertext as an
obliviously generated one.

Definition 2.5 (Simulatable PKE [DN00]) A Simulatable PKE is a tuple of algorithms (Gen,Enc,Dec, G̃en,

G̃en
−1
, Ẽnc, Ẽnc

−1
) that satisfy the following properties:

• IND-CPA. (Gen,Enc,Dec) is IND-CPA secure as in Definition 2.4.

• Oblivious public key generation. Consider the experiment (PK, SK)← Gen(1n), r ← G̃en
−1

(PK)

and PK′ ← G̃en(r′). Then, (r, PK) ≈c (r′, PK′).

• Oblivious ciphertext generation. For any message m in the appropriate domain, consider the

experiment (PK, SK) ← Gen(1n), c1 ← ẼncPK(r1), c2 ← Encpk(m; r2), r′1 ← Ẽnc
−1

(c2). Then
(PK, r1, c1) ≈c (PK, r′1, c2).

The El Gamal PKE [Gam85] is one example for simulatable PKE.

2.3 Dual-Mode PKE

A dual-mode PKE ΠDUAL is specified by the algorithms (Setup, dGen, dEnc, dDec,FindBranch,TrapKeyGen)
described below.

• Setup is the algorithm for generating system parameters. Given a security parameter n and a mode
µ ∈ {0, 1}, the algorithm outputs (CRS, t). The CRS is a common string for the remaining algorithms,
and t is a trapdoor value that enables either the FindBranch or TrapKeyGen algorithm depending on
the mode. The setup algorithm for messy and decryption mode are distinguished as SetupMessy and
SetupDecryption; namely SetupMessy := Setup(1n, 0) and SetupDecryption := Setup(1n, 1).

• dGen is the key generation algorithm that takes a bit α and the CRS as input. If α = 0, then it
generates left public and secret key pair. Otherwise, it creates right public and secret key pair.

• dEnc is the encryption algorithm that takes a bit β, a public key PK and a message m as input. If
β = 0, then it creates the left encryption of m, else it creates the right encryption.

• dDec decrypts a message given a ciphertext and a secret key SK.

• FindBranch finds whether a given public key (in messy mode) is left key or right key given the messy
mode trapdoor t.

7

• TrapKeyGen generates a public key and two secret keys using the decryption mode trapdoor t such
that both left encryption as well as the right encryption using the public key can be decrypted using
the secret keys.

Definition 2.6 (Dual-mode PKE) A dual-mode PKE is a tuple of algorithms described above that satisfy
the following properties:

1. Completeness. For every mode µ ∈ {0, 1}, every (CRS, t) ← Setup(1n, µ), every α ∈ {0, 1},
every (PK, SK) ← dGen(α), and every m ∈ {0, 1}`, decryption is correct when the public key type
matches the encryption type, i.e., dDecSK(dEncPK(m,α)) = m.

2. Indistinguishability of modes. The CRS generated by SetupMessy and SetupDecryption are com-
putationally indistinguishable, i.e., SetupMessy(1n) ≈c SetupDecryption(1n).

3. Trapdoor extraction of key type (messy mode). For every (CRS, t) ← SetupMessy(1n) and every
(possibly malformed) PK, FindBranch(t, PK) outputs the public key type α ∈ {0, 1}. Encryption at
branch 1 − α is then message-lossy; namely, for every m0,m1 ∈ {0, 1}`, dEncPK(m0, 1 − α) ≈s
dEncPK(m1, 1− α).

4. Trapdoor generation of keys decrypt both branches (decryption mode). For every (CRS, t) ←
SetupDecryption(1n), TrapKeyGen(t) outputs (PK, SK0, SK1) such that for every α, (PK, SKα) ≈c
dGen(α).

2.4 Hardness Assumptions

Our constructions rely on the following hardness assumptions.

Definition 2.7 (DDH) We say that the decisional Diffie-Hellman (DDH) problem is hard relative to G if for
all polynomial-sized circuits C = {Cn} there exists a negligible function negl such that∣∣∣Pr [Cn(G, q, g, gx, gy, gz) = 1]− Pr [Cn(G, q, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(n),

where (G, q, g)← G(1n) and the probabilities are taken over the choices of g and x, y, z ∈ Zq.

We require the DDH assumption to hold for prime order groups.

Definition 2.8 (DCR) We say that the Decisional Composite Residuosity (DCR) problem is hard relative to
G if for all polynomial-sized circuits C = {Cn} there exists a negligible function negl such that∣∣∣Pr

[
Cn(N, z) = 1| z = yN mod N2

]
− Pr

[
Cn(N, z) = 1| z = (1 +N)r · yN mod N2

] ∣∣∣ ≤ negl(n),

where N ← G(1n), N is a random n-bit RSA composite, r is chosen at random in ZN and the probabilities
are taken over the choices of N, y and r.

Definition 2.9 (QR) We say that the Quadratic Residuosity (QR) problem is hard relative to G if for all
polynomial-sized circuits C = {Cn} there exists a negligible function negl such that∣∣∣Pr [Cn(N, z) = 1| z ← QRN]− Pr [Cn(N, z) = 1| z ← JN \QRN]

∣∣∣ ≤ negl(n),

where N ← G(1n), N is a random n-bit RSA composite, JN denote the group of Jacobi symbol (+1)
elements of Z∗N , QRN = {x2 : x ∈ Z∗N} denote JN ’s subgroup of quadratic residues and the probabilities
are taken over the choices of N, z.

8

2.5 Security Definitions

In the following, we formalize the notion of UC one-sided adaptive security [Can01]. Formally, a two-
party computation protocol is cast by specifying the participating parties P0 and P1 and a functionality
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f0, f1) mapping pairs of inputs to pairs of outputs
(one for each party). That is, for every pair of inputs x0, x1 ∈ {0, 1}n the output pair is a random vari-
able (f0(x0, x1), f1(x0, x1)) ranging over pair of strings. The first party with input x0 wishes to receive
f0(x0, x1), while the second party with input x1 wishes to obtain f1(x0, x1).

2.5.1 One-sided Adaptive Security

We begin by introducing the formal definition of one-sided adaptive security in the UC framework. In the
two-party setting, a real execution of some protocol Πf that implements f is run between two parties P0

and P1 in the presence of an adversary ADV and an environment ENV (that is given an input z, a random
tape rENV and a security parameter n), and is modeled as a sequence of activations of the entities. ENV

is activated first and generates the inputs for the other entities. Then the protocol proceeds by having the
parties communicating with each other, and ADV exchanges messages with ENV. Upon completing the real
execution ENV outputs a bit.

In the ideal model, the computation involves an incorruptible trusted third party Ff which receives the
parties’ inputs, computes the function f on these inputs and returns to each party its respective output.
The parties are replaced by dummy parties that do not communicate with each other, such that whenever a
dummy party is activated it sends its input to the ideal functionality. Upon completing the ideal execution
ENV outputs a bit. We say that a protocol Πf UC realizes functionality Ff if for any real world adversary
ADV there is a ideal world adversary SIM such that no ENV can tell with non-negligible probability whether
it is interacting with ADV and the parties running Πf in a real execution or with SIM and the dummy parties
in an ideal execution. Details follow.

Execution in the real model. We now proceed with a real world execution, where a real two-party proto-
col is executed. Whenever ENV is activated it first and fixes input xi ∈ {0, 1}∗ for party Pi. Each party Pi
then starts the execution with an input xi ∈ {0, 1}∗, a random tape ri and a security parameter n. A one-
sided adversary ADV is a probabilistic polynomial-time interactive Turing machine that is given a random
tape rADV and a security parameter n. At the outset of the protocol, ADV receives some initial information
from ENV. Then the computation proceeds in rounds such that in each round ADV sees all the messages
sent between the parties. At the beginning of each round, ADV may choose to corrupt Pi∗ for i∗ ∈ {0, 1}.
Upon corrupting Pi∗ , ADV learns its input and the random tape, and obtains some auxiliary information
from ENV. In case ADV is malicious Pi∗ follows ADV’s instructions from the time it is corrupted. At the
end of the protocol execution the honest parties locally compute their outputs and output the value specified
by the protocol, whereas the corrupted party outputs a special symbol ⊥. The adversary ADV outputs an
arbitrary function of its internal state that includes, rADV, the messages received from ENV and the corrupted
party’s view. Next, a post-execution corruption process begins. Namely, ENV first learns the outputs. Then,
ADV and ENV interact in at most one additional round. If none of the parties is corrupted yet, ENV can ask
ADV to corrupt Pi∗ for i∗ ∈ {0, 1}, receiving back the state of this party. At the end ENV outputs a bit.

Let f be as specified above and Πf be a two-party protocol that computes f . We denote by the vari-
able OREALΠf ,ADV,ENV(n, x0, x1, z, ~r) the output of ENV on input z, random tape rENV and a security
parameter n upon interacting with ADV and parties P0, P1 that engage in protocol Πf on inputs rADV and
(x0, r0), (x1, r1), respectively, where ~r = (rENV, rADV, r0, r1). Let OREALΠf ,ADV,ENV(n, x0, x1, z) de-
note a random variable describing OREALΠf ,ADV,ENV(n, x0, x1, z, ~r) where the random tapes are chosen

9

uniformly. Let OREALΠf ,ADV,ENV denote the distribution ensemble:

{OREALΠf ,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN.

Execution in the ideal model. A one-sided ideal world adversary SIM is a probabilistic polynomial-time
interactive Turing machine that is given a random tape rSIM and a security parameter n. The ideal process is
defined with respect to a trusted party that implements functionality Ff as follows:

First corruption phase: SIM receives some auxiliary information from ENV. Next, SIM may decide
whether to corrupt party Pi∗ for i∗ ∈ {0, 1}. Upon corrupting party Pi∗ , SIM learns its input xi∗ .
In addition, ENV hands some auxiliary information to SIM.

Computation phase: In the semi-honest setting, each party forwards its input to the trusted party. In the
malicious settings, the corrupted party hands Ff the values handed to it by SIM. The trusted party
computes (y0, y1) = f(x0, x1) and hands each Pi the value yi. SIM receives the output of the cor-
rupted party.

Second corruption phase: SIM continues to another corruption phase, where it might choose to corrupt
Pi∗ for i∗ ∈ {0, 1} (in case it did not corrupt any party in the first corruption phase), where this choice
is made based on SIM’s random tape and all the information gathered so far. Upon corrupting Pi∗ ,
SIM learns its input xi∗ . ENV hands SIM some auxiliary information.

Output: The uncorrupted party P1−i∗ outputs y1−i∗ and the corrupted party outputs ⊥. SIM outputs an
arbitrary efficient function of its view. ENV learns all the outputs.

Post-execution corruption phase: After the outputs are generated, SIM proceeds with ENV in at most
one round of interaction, where ENV can instruct SIM to corrupt Pi∗ for i∗ ∈ {0, 1} (if none of the
parties are corrupted yet). SIM generates some arbitrary answer and might choose to corrupt Pi∗ . The
interaction continues until ENV halts with an output.

We denote by OIDEALFf ,SIM,ENV(n, x0, x1, z, ~r) the output of ENV on input z, random tape rENV and
security parameter n upon interacting with SIM and parties P0, P1, running an ideal process with inputs rSIM

and x0, x1, respectively, where ~r = (rENV, rSIM). Let OIDEALFf ,SIM,ENV(n, x0, x1, z) denote a random
variable describing OIDEALFf ,SIM,ENV(n, x0, x1, z, ~r) when the random tapes rENV and rADV are chosen
uniformly. Let OIDEALFf ,SIM,ENV denote the distribution ensemble:

{OIDEALFf ,SIM,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

Then we define security as follows.

Definition 2.10 Let Ff and Πf be as defined above. Protocol Πf UC realizes Ff in the presence of one-
sided semi-honest/malicious adversaries if for every non-uniform probabilistic polynomial-time one-sided
semi-honest/malicious adversary ADV, there exists a non-uniform probabilistic polynomial-time ideal ad-
versary SIM such that:

{OIDEALFf ,SIM,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

≈c {OREALΠf ,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

where |x0| = |x1|.

10

Composition. In order to simplify our security proofs we consider a hybrid setting where the parties
implement some functionalities using ideals calls. We rely on the composition theorem introduced by
Canetti [Can01] in the adaptive setting. (Note that we are only interested in cases where the same party
is corrupted with respect to all composed protocols.)

2.5.2 Concrete Functionalities

We specify the definition of three important functionalities for this work.

Secure communication (SC). We define the functionality FSC (m,−) 7→ (−,m) for securely communi-
cating a message m from P0 to P1.

Oblivious transfer (OT). The 1-out-of-2 oblivious transfer functionality is defined byFOT ((x0, x1), σ)) 7→
(−, xσ). In a bit OT x0, x1 ∈ {0, 1}, whereas in a string OT x0, x1 ∈ {0, 1}n.

Zero-knowledge proofs of knowledge (ZK PoK). LetNP relationR associated with the languageLR =
{x| ∃w s.t. (x,w) ∈ R}. Then, we define the ZK PoK functionality for R by FRZKPoK ((x,w), x) 7→
(−, (x, b)) where b = Accept ifR(x,w) = 1 and b = Reject ifR(x,w) = 0.

3 Different Notions of Non-Committing Encryptions (NCE)

3.1 NCE for the Receiver

An NCE for the receiver is a semantically secure PKE with an additional property that enables generating
a secret key that decrypts a simulated (i.e., fake) ciphertext into any plaintext. Specifically, the scheme
operates in two modes. The “real mode” enables to encrypt and decrypt as in the standard definition of PKE.
The “simulated mode” enables to generate simulated ciphertexts that are computationally indistinguishable
from real ciphertexts. Moreover, using a special trapdoor one can produce a secret key that decrypts a fake
ciphertext into any plaintext. Intuitively, this implies that simulated ciphertexts are generated in a lossy
mode where the plaintext is not well defined given the ciphertext and the public key. This leaves enough
entropy for the secret key to be sampled in a way that determines the desired plaintext. We continue with a
formal definition of NCE for the receiver.

Definition 3.1 (NCE for the receiver (NCER)) An NCE for the receiver encryption scheme is a tuple of
algorithms (Gen,Enc,Enc∗,Dec,Equivocate) specified as follows:

– Gen,Enc,Dec are as specified in Definition 2.3.

– Enc∗, given the public key PK output a ciphertext c∗ and a trapdoor tc∗ .

– Equivocate, given the secret key SK, trapdoor tc∗ and a plaintext m, output SK∗ such that m ←
DecSK∗(c

∗).

Definition 3.2 (Secure NCER) An NCE for the receiver ΠNCR = (Gen,Enc,Dec,Enc∗,Equivocate) is
secure if it satisfies the following properties:

• Gen,Enc,Dec imply an IND-CPA secure encryption scheme as in Definition 2.4.

11

• The following ciphertext indistinguishability holds for any plaintextm: (PK, SK∗, c∗,m) and (PK, SK,
c,m) are computationally indistinguishable, for (PK, SK) ← Gen(1n), (c∗, tc∗) ← Enc∗(PK),
SK∗ ← Equivocate(SK, c∗, tc∗ ,m) and c← EncPK(m).

We now review two implementations of NCER under the DDH and DCR assumptions.

NCER under the DDH assumption for polynomial-size message spaces. NCER for polynomial mes-
sage space can be constructed under the DDH assumption [JL00, CHK05]. For simplicity we consider a
binary plaintext space. Let (g0, g0, p) ← G(1n) be an algorithm that given a security parameter n, re-
turns a group description G = Gg0,g1,p specified by its generators g0, g1 and its order p. Then define
ΠDDH

NCER = (Gen,Enc,Enc∗,Dec,Equivocate) as follows.

– Gen, given the security parameter n, set (g0, g1, p) ← G(1n). Choose uniformly random x, y ← Z2
p and

compute h = gx0g
y
1 . Output the secret key SK = (x, y) and the public key PK = (g0, g1, h).

– Enc, given the public key PK and a plaintext m ∈ G, choose a uniformly random r ← Z∗p. Output the
ciphertext (gr0, g

r
1,m · hr).

– Enc∗, given the public key PK choose uniformly random r1, r2, r3 ← Z∗p. Output the fake ciphertext
(gr10 , g

r2
0 , g

r3
0) and trapdoor tc∗ = (r1, r2, r3).

– Dec, given the secret key (x, y) and a ciphertext (c0, c1,Φ), output Φ · (cx0c
y
1)
−1.

– Equivocate, given (x, y), a simulated ciphertext c∗, trapdoor tc∗ = (r1, r2, r3) and a plaintext m ∈ G
output SK∗ = (x∗, y∗) by solving the system of linear equations induced by the exponents of the
public key and ciphertext c∗ = (gr10 , g

r2
0 , g

r3
0).4

Proposition 3.1 ([JL00, CHK05]) Assume that the DDH assumption is hard in G. Then ΠDDH
NCER is a secure

NCER.

It is easy to verify that real and simulated ciphertexts are computationally indistinguishable under the
DDH assumption since the only difference is with respect to the first two group elements, the third group
element induces a linear combination of the first two elements and the secret key in the exponent.

NCER under the DCR assumption for exponential-size message spaces. NCER for exponential mes-
sage space can be constructed under the DCR assumption [CHK05]. Let (p′, q′) ← G(1n) be an algorithm
that given a security parameter n returns two random n bit primes p′ and q′ such that p = 2p′ + 1 and q =
2q′+ 1 are also primes. Let N = pq and N ′ = p′q′. Define ΠDCR

NCER = (Gen,Enc,Enc∗,Dec,Equivocate) as
follows.

– Gen, given the security parameter n, run (p′, q′) ← G(1n) and set p = 2p′ + 1, q = 2q′ + 1, N = pq
and N ′ = p′q′. Choose random x0, x1 ← ZN2/4 and a random g′ ∈ Z∗N2 and compute g0 = g′2N ,
h0 = gx0 and h1 = gx1

0 . Output public key PK = (N, g0, h0, h1) and secret key SK = (x0, x1).

– Enc, given the public key PK and a plaintext m ∈ ZN , choose a uniformly random t← ZN/4 and output
ciphertext

c← EncPK(m; t) =
(
gt0 mod N2, (1 +N)mht0 mod N2, ht1 mod N2

)
.

4In order to compute such a secret key the Equivocate algorithm has to know logg0 g1 and logg0 m. The requirement of
knowing logg0 m makes this scheme work only for messages from polynomial-size spaces.

12

– Enc∗, given the public key PK choose uniformly random t← Zφ(N)/4, compute the fake ciphertext

c∗ ← (c∗0, c
∗
1, c
∗
2) =

(
(1 +N) · gt0 mod N2, (c∗0)x0 mod N2, (c∗0)x1 mod N2

)
.

– Dec, given the secret key (x0, x1) and a ciphertext (c0, c1, c2), check whether c2x1
0 = (c2)2; if not output

⊥. Then set m̂ = (c1/c
x0
0)N+1. If m̂ = 1 +mN for some m ∈ ZN , then output m; else output ⊥.

– Equivocate, given N ′, (x0, x1), a ciphertext (c0, c1, c2) and a plaintext m ∈ ZN , output SK∗ = (x∗0, x1),
where x∗0 ← ZNN ′ is the unique solution to the equations x∗0 = x mod N ′ and x∗0 = x0−m mod N .
These equations have a unique solution due to the fact that gcd(N,N ′) = 1 and the solution can be
obtained employing Chinese Remainder Theorem.

It can be verified that the secret key SK∗ matches the public key PK and also decrypts the ‘simulated’
ciphertext to the required message m. The first and third component of PK remains the same since
x1 has not been changed. Now gx

∗
0 = gx

∗
0 mod N ′ = gx0 mod N ′ = gx0 = h0. Using the fact that the

order of (1 +N) in Z∗N2 is N , we have(
c1

c
x∗0
0

)N+1

=

(
(1 +N)x0gtx0

0

(1 +N)x
∗
0g
tx∗0
0

)N+1

=
(

(1 +N)x0−x∗0 mod N
)N+1

= (1 +N)m = (1 +mN).

Proposition 3.2 ([CHK05]) Assume that the DCR assumption is hard in Z∗N2 . Then ΠDCR
NCR is a secure

NCER.

It is easy to verify that real and simulated ciphertexts are computationally indistinguishable under the
DCR assumption since the only difference is with respect to the first element (which is an 2N th power in a
real ciphertext and not an 2N th power in a simulated ciphertext). The other two elements are powers of the
first element. Furthermore SK = (x0, x1) and SK∗ = (x∗0, x1) are statistically close since x0 ← ZN2/4 and
x∗0 ← ZNN ′ and the uniform distribution over ZNN ′ and ZN2/4 is statistically close.

3.2 NCE for the Sender

NCE for the sender is a semantically secure PKE with an additional property that enables generating a
fake public key, such that any ciphertext encrypted under this key can be viewed as the encryption of any
message together with the matched randomness. Specifically, the scheme operates in two modes. The “real
mode” that enables to encrypt and decrypt as in standard PKEs and the “simulated mode” that enables to
generate simulated public keys and an additional trapdoor, such that the two modes keys are computationally
indistinguishable. In addition, given this trapdoor and a ciphertext generated using the simulated public key,
one can produce randomness that is consistent with any plaintext. We continue with a formal definition.

Definition 3.3 (NCE for the sender (NCES)) An NCE for the sender encryption scheme is a tuple of algo-
rithms (Gen,Gen∗,Enc,Dec,Equivocate) specified as follows:

– Gen,Enc,Dec are as specified in Definition 2.3.

– Gen∗ generates public key PK∗ and a trapdoor tPK∗ .

– Equivocate, given a ciphertext c∗ computed using PK∗, a trapdoor tPK∗ and a plaintext m, output r such
that c∗ ← Enc(m, r).

13

Definition 3.4 (Secure NCES) An NCE for the sender ΠNCES = (Gen,Gen∗,Enc,Dec,Equivocate) is se-
cure if if satisfies the following properties:

• Gen,Enc,Dec imply an IND-CPA secure encryption scheme as in Definition 2.4.

• The following public key indistinguishability holds for any plaintext m: (PK∗, r∗,m, c∗) and (PK, r,
m, c) are computationally indistinguishable, for (PK∗, tPK∗) ← Gen∗(1n), c∗ ← EncPK∗(m

′, r′),
r∗ ← Equivocate(c∗, tPK∗ ,m) and c← EncPK(m, r).

We review the DDH based implementation from [BHY09] and then present our DCR based implementation.

NCES under the DDH assumption for polynomial-size message spaces. For simplicity we consider a
binary plaintext space. Let (g0, g1, p) ← G(1n) be an algorithm that given a security parameter n returns
a group description G = Gg0,g1,p specified by its generators g0, g1 and its order p. Then define ΠDDH

NCES =
(Gen,Gen∗,Enc,Dec,Equivocate) as follows.

– Gen, given the security parameter n, set (g0, g1, p) ← G(1n). Choose uniformly random x ← Zp and
compute hi = gxi for all i ∈ {0, 1}. Output the secret key SK = x and the public key PK =
(g0, g1, h0, h1).

– Gen∗, given the security parameter n, set (g0, g1, p) ← G(1n). Choose uniformly random x0, x1 ← Z2
p

and hi = gxii for all i ∈ {0, 1}. Output the trapdoor tPK∗ = (x0, x1) and the public key PK∗ =
(g0, g1, h0, h1).

– Enc, given the public key PK (or PK∗) and a plaintext m ∈ G, choose a uniformly random s, t ← Zp.
Output the ciphertext

(
gs0g

t
1, g

m
0 · (hs0ht1)

)
.

– Dec, given the secret key x and a ciphertext (gc, hc), output hc · (gxc)−1.

– Equivocate, given the fake key PK∗ = (g0, g1, h0, h1), trapdoor tPK∗ , a ciphertext c∗ = EncPK∗(m; (s′, t′))
and a plaintextm, output (s, t) such that c∗ ← Enc(m; (s, t)) by solving the system of linear equations
induced by the exponents of the two elements in ciphertext.5

Proposition 3.3 Assume that the DDH assumption is hard in G. Then ΠDDH
NCES is a secure NCES.

Proof: It is easy to verify that real and simulated public keys are computationally indistinguishable under
the DDH assumption even in the presence of the randomness of the encryption. Proving indistinguishability
of a real and simulated public key in the presence of the randomness used for encryption is sufficient since a
ciphertext is a linear combination of the public key using the randomness for encryption both in the real as
well as in the simulated world. The proof follows by a reduction to the DDH assumption as follows. Given a
tuple (g0, g1, h0, h1) adversary ADVDDH that attempts to decide whether the give tuple is a DH tuple or not,
fixes this tuple as the public key, encrypts a message m under this key and output the public key, ciphertext,
m and the randomness it used to generate the ciphertext. It then invokes the adversary ADVDDH

NCES for our
scheme that can tell apart (with non-negligible probability) a simulated public key from a valid public key.
ADVDDH outputs what ADVDDH

NCES outputs. Clearly, ADVDDH can decide if a given tuple is a DH tuple.

5In order to compute such randomness the Equivocate algorithm has to know logg0 g1 and logg0 m. The requirement of
knowing logg0 m makes this scheme work only for messages from polynomial-size spaces.

14

NCES under the DCR assumption for exponential-size message spaces. In what follows, we intro-
duce a new NCE for the sender based on the security of the DCR assumption. This allows us to fix
the composite as part of the CRS when appropriate. Our scheme is based on the PKE from [CHK05],
building on earlier work by Cramer and Shoup [CS02]. Let N = pq be an RSA modulus, then define
ΠDCR

NCES = (Gen,Gen∗,Enc,Dec,Equivocate) an NCES as follows.

– Gen, given the security parameter n, generate an RSA modulus N = pq with p = 2p′+1 and q = 2q′+1
where p, q, p′, q′ are primes. Pick g′ ← Z∗N2 and α ← ZN2/4 and set g0 = g′2N mod N2 and
h0 = gα0 mod N2. Choose a random r ← ZN/4 and compute g1 = gr0 mod N2, h1 = ((1 + N) ·
hr0) mod N2. Output PK = (N, g0, h0, g1, h1) and secret key SK = α.

– Gen∗, given the security parameter n, generateN, g0, h0 as in Gen. Choose a random r ← ZN/4 and com-
pute g1 = gr0 mod N2, h1 = hr0 mod N2. Output PK∗ = (N, g0, h0, g1, h1) and trapdoor tPK∗ = r.

– Enc, given the public key PK = (N, g0, h0, g1, h1) (or PK∗) and a message m ∈ ZN , choose a random
t← ZN/4 and output the ciphertext

c← Enc(m; t) =
(
(gm1 g

t
0) mod N2, (hm1 h

t
0) mod N2

)
.

– Dec, given the public key PK = (N, g0, h0, g1, h1), secret key SK = α and ciphertext c = (gc, hc),
compute m̂ as follows and output m ∈ ZN such that m̂ = 1 +mN .

m̂ = (hc/g
α
c)N+1 = [(1 +N)m]N+1 = (1 +N)m.

– Equivocate, given Φ(N), the fake key PK∗ = (N, g0, h0, g1, h1), trapdoor tPK∗ = r, a ciphertext c∗ ←
EncPK∗(m; t) = (gc, hc) and a message m′, output t′ = (rm+ t− rm′) mod Φ(N)/4. It is easy to
see that

EncPK∗(m
′; t′) =

(
(gm

′
1 gt

′
0), hm

′
1 ht

′
0)
)

=
(

(grm
′

0 g
(rm+t−rm′)
0), (hrm

′
0 h

(rm+t−rm′)
0)

)
= c.

Next, we show that this scheme meets Definitions 3.4.

Proposition 3.4 Assume that the DCR assumption is hard in Z∗N2 . Then ΠDCR
NCES is a secure NCES.

Proof: Given the public key PK = (N, g0, h0, g1, h1) and two messages m,m′ ∈ ZN , we show that en-
cryptions of m and m′ are computationally close. Namely tuples, (1)

(
(gm1 g

t
0) mod N2, (hm1 h

t
0) mod N2

)
and (2)

(
(gm

′
1 gt0) mod N2, (hm

′
1 ht0) mod N2

)
are computationally close. This follows immediately from

the IND-CPA security proof for the modified scheme in [DJ03] (cf. Theorem 2 of [DJ03]).
The fact that fake and valid public keys are computationally indistinguishable follows from the IND-

CPA security of [CHK05] and [CS02] and the former proof (for the DDH based scheme). As the former key
is an encryption of zero whereas the latter key is an encryption of one.

3.3 Somewhat Non-Committing Encryption [GWZ09]

The idea of somewhat NCE is to exploit the fact that it is often unnecessary for the simulator to explain
a fake ciphertext for any plaintext. Instead, in many scenarios it suffices to explain a fake ciphertext with
respect to a small set of size ` determined in advance (where ` might be as small as 2). Therefore there are

15

two parameters that are considered here: a plaintext of bit length l and an equivocality parameter ` which
is the number of plaintexts that the simulator needs to explain a ciphertext for (namely, the non-committed
domain size). Note that for fully NCE ` = 2l. Somewhat NCE typically improves over fully NCE whenever
` is very small but the plaintext length is still large, say O(n) for n the security parameter.

[GWZ09] design somewhat NCE using three primitives: simulatable PKE (cf. Definition 2.2), NCE (for
the purpose of sending a short index of length log `), and a secret key encryption (SKE). Let (Gen,Enc,Dec,

G̃en, G̃en
−1
, Ẽnc, Ẽnc

−1
) be a simulatable PKE and (GenSKE,EncSKE,DecSKE) be an SKE in which the

ciphertexts are indistinguishable from uniformly random values of the same length. In more details,

Setup Phase.

• SEN sends a random index i ∈ [`] using NCE.

• SEN generates ` public keys. For j ∈ {1, . . . , `} \ {i}, the keys PKj ← G̃en(1n) are generated oblivi-
ously while (PKi, SKi)← Gen(1n). SEN sends the keys PK1, . . . , PK` and stores SKi.

• REC generatesK ← GenSKE(1n) and computes ci ← EncPKi
(K). REC also generates cj ← ẼncPKi

(1n)
obliviously for j ∈ {1, . . . , `} \ {i}. Finally it sends ciphertexts c1, . . . , c`.

• SEN decrypts the key K ← DecSKi
(ci). Both parties store K, i.

Transfer Phase.

• SEN computes Ci ← EncSKE

K (m) and chooses Cj for j ∈ {1, . . . , `} \ {i} uniformly at random of the
appropriate length. S sends (C1, . . . , C`).

• REC ignores everything other than Ci and decrypts m← DecSKE

K (Ci).

In case of no corruptions the simulator simulates both parties as follows: it first generates the keys and the
ciphertexts in the setup phase using Gen and Enc, and generates ` keys for a symmetric key encryption.
In the transfer phase the simulator uses these symmetric keys to encrypt all ` plaintexts. Assume that the
adversary corrupts a party at the end of this phase then the simulator obtains the message m, say the kth
element in [`]. It then explains the index of this element via the NCE and uses the key and ciphertext faking
algorithms to explain the other public key/ciphertext pairs as being obliviously generated. Given that the
kth simulatable PKE ciphertext encrypts the secret key K, it holds that the kth SKE ciphertext encrypts the
message m. This simulation strategy works for corruption at any point of the execution.

4 One-sided Adaptively Secure NCE

In this section we design one-sided NCE, building on NCE for the sender (NCES) and NCE for the receiver
(NCER). Namely, NCER implies that for any plaintext there exists an efficiently generated secret key that
decrypts a fake ciphertext into that plaintext (see Definition 3.1). Furthermore, NCES implies that for any
plaintext there exists efficiently generated randomness for proving that a ciphertext, encrypted under a fake
key, encrypts that plaintext (see Definition 3.3).

The idea of our protocol is to have the receiver create two public/secret key pairs where the first pair
is for NCES and the second pair is for NCER. The receiver sends the public keys and the sender encrypts
two shares of its message m, each share with a different key. Upon receiving the ciphertexts the receiver
recovers the message by decrypting the ciphertexts. Therefore, equivocality of the sender’s input can be
achieved if the public key of the NCES is fake, whereas, equivocality of the receiver’s input can be achieved
if the ciphertext of the NCER is fake. Nevertheless, this idea only works if the simulator is aware of the
identity of the corrupted party prior to the protocol execution in order to decide whether the keys or the
ciphertexts should be explained as valid upon corruption (since it cannot explain fake keys/ciphertext as
valid). We resolve this problem using somewhat NCE in order to commit to the choice of having fake/valid

16

keys and ciphertexts. Specifically, it enables the simulator to “explain” fake keys/ciphertext as valid and vice
versa using only a constant number of asymmetric operations, as each such non-committing bit requires an
equivocation space of size 2. (An overview of somewhat NCE is given in Section 3.3.)

Formally, denote by FSC (m,−) 7→ (−,m) the secure message transfer functionality, and let ΠNCES =
(Gen,Gen∗,Enc,Dec,Equivocate) and ΠNCER = (Gen,Enc,Enc∗,Dec,Equivocate) denote secure NCES
and NCER for a message space {0, 1}q. Consider the following one-sided protocol for FSC.

Protocol 1 (One-sided NCE (ΠOSC))

• Inputs: Sender SEN is given input message m ∈ {0, 1}q . Both parties are given security parameter 1n.

• The Protocol:

1. Message from the receiver. REC invokes Gen(1n) of ΠNCES and ΠNCER and obtains two public/secret
key pairs (PK0, SK0) and (PK1, SK1), respectively. REC sends PK1 on clear and PK0 using somewhat
NCE with equivocality parameter ` = 2.

2. Message from the sender. Upon receiving PK0 and PK1, SEN creates two shares of m, m0 and m1,
such that m = m0 ⊕m1. It then encrypts each mi using PKi, creating ciphertext ci, and sends c0 and
c1 using two instances of somewhat NCE with equivocality parameter ` = 2.

3. Output. Upon receiving c0, c1, REC decrypts ci using SKi and outputs the bitwise XOR of the decrypted
plaintexts.

Note that the message space of our one-sided NCE is equivalent to the message space of the NCES/NCER
schemes, where q can be as large as n. Therefore, our protocol transmits q-bits messages using a constant
number of PKE operations, as opposed to fully adaptive NCEs that require O(q) such operations. We pro-
vide two instantiations for the above protocol. One for polynomial-size message spaces using DDH based
NCES and NCER, and another for exponential-size message spaces using DCR based NCES and NCER.
We conclude with the following theorem and the complete proof.

Theorem 4.1 Assume the existence of NCER and NCES with constant number of PKE operations for mes-
sage space {0, 1}q and simulatable PKE. Then Protocol 1 UC realizes FSC in the presence of one-sided
adaptive malicious adversaries with constant number of PKE operations for message space {0, 1}q, where
q = O(n) and n is the security parameter.

Intuitively, security follows due to the fact that the simulator is not committed to either valid keys or
valid ciphertexts. Thus, upon corrupting one of the parties it is able to explain that party’s internal state,
while equivocating the communication and make it consistent with message m. For instance, if the sender
is corrupted after simulating its message, the simulator can explain PK0 as a fake key. Thus, the ciphertext
encrypted under this key can be explained with respect to any plaintext. More formally,

Proof: Let ADV be a malicious probabilistic polynomial-time adversary attacking Protocol 1 by adaptively
corrupting one of the parties. We construct an adversary SIM for the ideal functionality FSC such that no
environment ENV distinguishes with a non-negligible probability whether it is interacting with ADV in the
real setting or with SIM in the ideal setting. We recall that SIM interacts with the ideal functionality FSC

and the environment ENV. We refer to the interaction of SIM with FSC and ENV as the external interaction.
The interaction of SIM with the simulated ADV is the internal interaction. We explain the strategy of the
simulation for all corruption cases.

Simulating the communication with ENV. Every input value received by the simulator from ENV is writ-
ten on ADV’s input tape. Likewise, every output value written by ADV on its output tape is copied to
the simulator’s output tape (to be read by its environment ENV).

17

SEN is corrupted at the onset of the protocol. SIM begins by activating ADV and emulates the honest
receiver by sending to ADV, PK0 using the somewhat NCE and PK1 in clear. Upon receiving two
ciphertexts c0 and c1 from ADV, SIM extracts m by computing DecSK0(c0) ⊕ DecSK1(c1). SIM

externally forwards m to the ideal functionality FSC.

REC is corrupted at the onset of the protocol. SIM begins by activating ADV and obtains REC’s output
m from FSC. SIM invokes ADV and receives PK0 from ADV via the somewhat NCE and PK1 in
clear. Next, SIM completes the execution playing the role of the honest sender on input m. Note that
it does not make a difference whether REC generates invalid public keys since SIM knowsm and thus
perfectly emulates the receiver’s view.

If none of the parties is corrupted as above, SIM emulates the receiver’s message as follows. It creates
public/secret key pair (PK1, SK1) for ΠNCER and sends the public key in clear. It then creates a valid
public/secret key pair (PK0, SK0) and a fake public key with a trapdoor (PK∗0, tPK∗0) for ΠNCES (using Gen
and Gen∗, respectively). SIM sends (PK0, PK∗0) using somewhat NCE. Namely, the simulator does not send
the valid PK0 as the honest receiver would do, rather it encrypts both valid and invalid keys within the
somehwat NCE.

SEN is corrupted after Step 1 is concluded. Since no message was sent yet on behalf of the sender, SIM

completes the simulation playing the role of the honest sender using m.

REC is corrupted after Step 1 is concluded. Upon receivingm, SIM explains the receiver’s internal state
which is independent of the message m so far. Specifically, it reveals the randomness for generating
PK0, SK0 and PK1, SK1 and presents the randomness for the valid key PK0 being the message sent
by the somewhat NCE. SIM plays the role of the honest sender with input m as the message.

If none of the above corruption cases occur, SIM emulates the sender’s message as follows. It first chooses
two random shares m′0,m

′
1 and generates a pair of ciphertexts (c0, c

∗
0) for ΠNCES that encrypts m′0 using

PK0 and PK∗0. It then generates a pair of ciphertexts (c1, c
∗
1) for ΠNCER such that c1 is a valid encryption of

m′1 using the public key PK1, and c∗1 is a fake ciphertext generated using Enc∗ and PK1. SIM sends (c0, c
∗
0)

and (c∗1, c1) via two instances of somewhat NCE.

SEN is corrupted after Step 2 is concluded. Upon receiving a corruption instruction from ENV, SIM

corrupts the ideal SEN and obtains SEN’s input m. It then explains the sender’s internal state as
follows. It explains PK∗0 for being the public key sent by the receiver using the somewhat NCE.
Furthermore, it presents the randomness for c∗0 and c1 being the ciphertexts sent via the somewhat
NCE. Finally, it computes r′′ ← EquivocatePK∗0

(tPK∗0 ,m
′
0, r,m

′′
0) for m′′0 such that m = m′′0 ⊕ m′1

and r the randomness used to encrypt m′0, and presents r′′ as the randomness used to generate c∗0 that
encrypts m′′0 . The randomness used for generating c1 is revealed honestly.

REC is corrupted after Step 2 is concluded. Upon receiving a corruption instruction from ENV, SIM

corrupts the ideal REC and obtains REC’s output m. It then explains the receiver’s internal state as
follows. It presents the randomness for PK0 for being the public key sent via the somewhat NCE and
presents the randomness for generating (PK0, SK0). It then explains c0 and c∗1 for being sent via the
somewhat NCE. Finally, it generates a secret key SK∗1 so that m′′1 ← DecSK∗1(c∗1) and m′′1 ⊕m′0 = m.
That is, it explains (PK1, SK∗1) as the other pair of keys generated by the receiver.

We now show that for every corruption case described above, there is not any polynomial-time ENV that
distinguishes with a non-negligible probability the real execution with ADV and the simulated execution
with SIM.

18

SEN/REC is corrupted at the onset of the protocol. In these corruption cases there is no difference be-
tween the real execution and the simulated execution and the views are statistically indistinguishable.

SEN/REC is corrupted after Step 1 is concluded. In these cases the only difference between the real
and simulated executions is with respect to the somewhat NCE that delivers the public key of NCES.
Specifically, in the real execution it always delivers a valid public key while in the simulated exe-
cution it delivers a fake key. Indistinguishability follows from the security of the somewhat NCE.
Namely, assume that the receiver is corrupted. Then security is reduced to the security of the un-
derlying secret key encryption used within the somewhat NCE. In the reduction, the distinguisher
receives a ciphertext that either encrypts a random message or an invalid public key (where the former
ciphertext is indistinguishable from a uniform string chosen obliviously in the protocol of [GWZ09],
see Section 3.3 for the transfer phase). The distinguisher completes the setup phase as the honest
sender would do, receiving a secret key. Note that the receiver in our one-sided protocol plays the role
of the sender in the somewhat NCE protocol. Next, in the transfer phase the distinguisher plugs-in
the challenge ciphertext and computes another ciphertext of a valid public key using the secret key it
previously received, and outputs whatever the adversary does. A similar reduction can be built when
the sender is corrupted.

SEN/REC is corrupted after Step 2 is concluded. Here the adversary sees in the simulation either
a fake public key or a fake ciphertext. Indistinguishability follows from the security of ΠNCES and
ΠNCER and the security of somewhat NCE. More concretely, assume that the receiver is corrupted.
We build a distinguisher that receives either a valid or an invalid ciphertext and a corresponding
secret key that decrypts the ciphertext into the sender’s message. The distinguisher then uses these
values in its simulation of the one-sided NCE protocol and outputs whatever the adversary does. A
similar reduction can be built when the sender is corrupted where here the distinguisher attempts to
distinguish between a valid and invalid public keys.

5 One-Sided Adaptively Secure OT

A common approach to design an adaptive OT [Bea98, CLOS02] is by having the receiver generate two
public keys (PK0, PK1) such that it only knows the secret key associated with PKσ. The sender then
encrypts x0, x1 under these respective keys so that the receiver decrypts the σth ciphertext. The security
of this protocol in the adaptive setting holds if the underlying encryption scheme is an augmented non-
committing encryption scheme [CLOS02]. In this section we follow the approach from [GWZ09] and build
one-sided OT based on the static OT from [PVW08], which is based on a primitive called dual-mode PKE.

The [PVW08] OT. Dual-mode PKE is an IND-CPA secure encryption scheme that is initialized with
system parameters of two types. For each type one can generate two types of public/secret key pair, labeled
by the left key pair and the right key pair. Similarly, the encryption algorithm generates a left or a right
ciphertext. Moreover, if the key label matches the ciphertext label (i.e., a left ciphertext is generated under
the left public key), then the ciphertext can be correctly decrypted. (A formal definition of dual-mode PKE
is given in Section 2.3.) This primitive was introduced in [PVW08] which demonstrates its usefulness in
designing efficient statically secure OTs under various assumptions. First, the receiver generates a left key
if σ = 0, and a right key otherwise. In response, the sender generates a left ciphertext for x0 and a right
ciphertext for x1. The receiver then decrypts the σth ciphertext.

19

The security of dual-mode PKE relies on the two indistinguishable modes of generating the system pa-
rameters: messy and decryption mode. In a messy mode the system parameters are generated together with
a messy trapdoor. Using this trapdoor, any public key (even malformed ones) can be labeled as a left or as a
right key. Moreover, when the key type does not match the ciphertext type, the ciphertext becomes statisti-
cally independent of the plaintext. The messy mode is used to ensure security when the receiver is corrupted
since it allows to extract the receiver’s input bit while hiding the sender’s other input. On the other hand, the
system parameters in a decryption mode are generated together with a decryption trapdoor that can be used
to decrypt both left and right ciphertexts. Moreover, left public keys are statistically indistinguishable from
right keys. The decryption mode is used to ensure security when the sender is corrupted since the decryp-
tion trapdoor enables to extract the sender’s inputs while statistically hiding the receiver’s input. [PVW08]
instantiated dual-mode PKE and their generic OT construction based on various assumptions, such as DDH,
QR and lattice-based assumptions. We recall their instantiation based on DDH in Appendix A. In a fol-
lowup work [GWZ09], Garay et al. extended the dual-mode definition into enhanced dual-model PKE in
order to enable equivocation of the sender’s input relative to the ciphertext that encrypts x1−σ in a messy
mode. Our protocol implies equivocation for the sender via our one-sided NCE which implies that we can
use the simpler dual-mode primitive.

Our construction. We build our one-sided OT based on the PVW protocol considering the following
modifications. (1) First, we require that the sender sends its ciphertexts using one-sided NCE (see Section 4).
(2) We fix the system parameters in a decryption mode, which immediately implies extractability of the
sender’s input and equivocality of the receiver’s input. We further achieve equivocality of the sender’s input
using our one-sided NCE. In order to ensure extractability of the receiver’s input we employ a special type
of ZK PoK. Namely, this proof exploits the fact that the simulator knows both witnesses for the proof yet it
does not know which witness will be used by the real receiver, since this choice depends on σ. Specifically,
it allows the simulator to use both witnesses and later convince the adversary that it indeed used a particular
witness. In addition, it enables to extract σ since the real receiver does not know both witnesses. We denote
these proofs for compound statements by witness equivocal and refer to Section 7.2 for more details.

Our construction is one-sided UC secure in the presence of malicious adversaries, and uses a number of
non-committed bits that is independent of the sender’s input size or the overall communication complexity.
We formally denote the dual-mode PKE of [PVW08] by ΠDUAL = (SetupMessy, SetupDecryption, dGen,
dEnc, dDec,FindBranch,TrapKeyGen) and describe our construction in the (FSC,FRLR

ZKPoK)-hybrid model,
where FSC is instantiated with one-sided NCE. Furthermore, the latter functionality is required to ensure the
correctness of the public key and is defined for a compound statement that is comprised from the following
two relations,

RLEFT =
{

(PK, r0) | (PK, SK)← dGen(CRS, 0; r0)
}
,

where CRS are the system parameters. Similarly, we defineRRIGHT for the right keys. Specifically, FRLR
ZKPoK

receives a public key PK and randomness rσ for σ ∈ {0, 1} and returns Accept if either σ = 0 and
PK = dGen(CRS, 0; r0), or σ = 1 and PK = dGen(CRS, 1; r1) holds. Security is proven by implementing
this functionality using a witness equivocal ZK PoK that allows the simulator to equivocate the witness
during the simulation (i.e., explaining the proof transcript with respect to either r0 or r1). We consider two
instantiations of dual-mode PKE (based on the DDH and QR assumptions). For each implementation we
design a concrete ZK PoK, proving that the prover knows rσ with respect to σ ∈ {0, 1}; see details below.

We define our OT protocol as follows,

Protocol 2 (One-sided OT (ΠOT))

• Inputs: Sender SEN has x0, x1 ∈ {0, 1}q and receiver REC has σ ∈ {0, 1}.

20

• CRS: CRS such that (CRS, t)← SetupDecryption.

• The Protocol:

1. REC sends SEN PK, where (PK, SK)← dGen(CRS, σ; rσ). REC calls FRLR
ZKPoK with (PK, rσ).

2. Upon receiving Accept from FRLR
ZKPoK and PK from REC, SEN generates c0 ← dEncPK(x0, 0) and

c1 ← dEncPK(x1, 1). SEN calls FSC twice with inputs c0 and c1, respectively.

3. Upon receiving (c0, c1), REC outputs dDecSK(cσ).

Theorem 5.1 Assume the existence of one-sided NCE with constant number of PKE operations for message
space {0, 1}q and dual-mode PKE. Then Protocol 2 UC realizes FOT in the (FSC,FRLR

ZKPoK)-hybrid model
in the presence of one-sided adaptive malicious adversaries with constant number of PKE operations for
sender’s input space {0, 1}q, where q = O(n) and n is the security parameter.

Proof: Let ADV be a probabilistic polynomial-time malicious adversary attacking Protocol2 by adaptively
corrupting one of the parties. We construct an adversary SIM for the ideal functionality FOT such that
no environment ENV distinguishes with a non-negligible probability whether it is interacting with ADV in
the real setting or with SIM in the ideal setting. We recall that SIM interacts with the ideal functionality
FOT and the environment ENV. We refer to the interaction of SIM with FOT and ENV as the external
interaction. The interaction of SIM with the simulated ADV is the internal interaction. Upon computing
(CRS, t)← SetupDecryption(1n), SIM proceeds as follows:

Simulating the communication with ENV. Every input value received by the simulator from ENV is writ-
ten on ADV’s input tape. Likewise, every output value written by ADV on its output tape is copied to
the simulator’s output tape (to be read by its environment ENV).

SEN is corrupted at the outset of the protocol. SIM begins by activating ADV and emulates the receiver
by running (PK, SK0, SK1) ← TrapKeyGen(t). It then sends PK and an Accept message to ADV

on behalf of FRLR
ZKPoK. Whenever ADV returns c0, c1 via FSC, SIM extracts SEN’s inputs x0, x1 by

invoking dDecSK0(c0) and dDecSK1(c1) as in static case. It then sends x0, x1 to FOT and completes
the execution playing the role of the receiver using an arbitrary σ.

Note that, in contrast to the hybrid execution where the receiver uses its real input σ to dGen in or-
der to create public/secret keys pair, the simulator does not know σ and thus creates the keys using
TrapKeyGen. Nevertheless, when the CRS is set in a decryption mode the left public key is statisti-
cally indistinguishable from right public key. Furthermore, the keys (PK, SKi) that are generated by
TrapKeyGen are statistically close to the keys generated by dGen with input bit i. This implies that
the hybrid and simulated executions are statistically close.

REC is corrupted at the outset of the protocol. SIM begins by activating ADV and receives its public
key PK and a witness rσ on behalf of FRLR

ZKPoK. Given rσ, SIM checks if PK is the left or the right key
and use it to extract the receiver’s input σ. It then sends σ to FOT, receiving back xσ. Finally, SIM

computes the sender’s message using xσ and an arbitrary x1−σ.

Unlike in the hybrid execution, the simulator uses an arbitrary x1−σ instead of the real x1−σ. How-
ever, a decryption mode implies computational privacy of x1−σ. Therefore, the hybrid view is also
computationally indistinguishable from the simulated view as in the static setting proven in [PVW08].

If none of the above corruption cases occur SIM invokes (PK, SK0, SK1)← TrapKeyGen(t) and sends PK
to the sender. Note that the simulator knows a witness r0 such that PK = dGen(CRS, 0; r0) and a witness
r1 such that PK = dGen(CRS, 1; r1).

21

SEN is corrupted between Steps 1 and 2. SIM trivially explains the the sender’s internal state since SEN
did not compute any message so far. The simulator completes the simulation by playing the role of
REC using arbitrary σ as in the case when the sender is corrupted at the outset of the execution.

Indistinguishability for this case follows similarly to the prior corruption case when SEN is corrupted
at the outset of the execution.

REC is corrupted between Steps 1 and 2. Upon corrupting the receiver SIM obtains σ, xσ from FOT and
explains the receiver’s internal state as follows. It first explains rσ as the witness given to FRLR

ZKPoK and
PK as the outcome of dGen(CRS, σ; rσ). The simulator completes the simulation playing the role of
the honest sender with xσ and an arbitrary x1−σ.

Indistinguishability for this case in the hybrid setting follows similarly to the prior corruption case,
since the only difference in the simulation is relative to the witness equivocality proof which only
makes a difference in the real execution.

If none of the above corruption cases occur then SIM chooses two arbitrary inputs x′0, x
′
1 for the sender and

encrypts them using the dual-mode encryption. Denote these ciphertexts by c′0, c
′
1. SIM pretends sending

these ciphertexts using FSC.

SEN is corrupted after Step 2. Upon corrupting the sender, SIM obtains (x0, x1) from FOT. It then
explains the sender’s internal state as follows. It first computes c0, c1 that encrypts x0 and x1 respec-
tively. It then explains c0 and c1 as being sent using FSC.

In the hybrid setting indistinguishability follows as in the prior corruption case of the sender, since
the simulator emulates the sender’s message via the one-sided non-committing channel. In the real
execution, security is reduced to the security of the one-sided encryption scheme implementation.

REC is corrupted after Step 2. Upon corrupting the receiver, SIM obtains REC’s input and output (σ, xσ)
from FOT. It then explains the receiver’s internal state as follows. It first explains rσ as the witness
given to FRLR

ZKPoK and PK as the outcome of dGen(CRS, σ; rσ). Finally, it explains the output of FSC

as cσ so that cσ is indeed a valid encryption of xσ.

Indistinguishability follows similarly to the prior corruption case of the receiver since the second
message is computed by the sender which is not corrupted.

Concrete instantiations. In the DDH-based instantiation the CRS is a Diffie-Hellman tuple (g0, g1, h0, h1)

and the trapdoor is logg0
g1. Moreover, the concrete ZK PoK functionality isFRDL,OR

ZKPoK which is invoked with
the statement and witness

(
((g0h0, g

r
σh

r
σ), (g1h1, g

r
σh

r
σ)), r

)
, such that PK = (grσ, h

r
σ), SK = r and r ← Zp.

(See Appendix A for the DDH based OT of [PVW08]).
In the QR-based instantiation the CRS is a quadratic residue y and the trapdoor is s such that y =

s2 mod N and N is an RSA composite. The concrete ZK PoK functionality is FRQR,OR
ZKPoK which is invoked

with the statement and witness
(
(y · PK, PK), r

)
, such that PK = r2/yσ, SK = r and r ← Z∗N .

6 Constant Round One-Sided Adaptively Secure Computation

In the following section we demonstrate the feasibility of one-sided adaptively secure two-party protocols in
the presence of semi-honest and malicious adversaries. Our constructions are constant round and UC secure
and use a number of non-committed bits that is independent of the circuit size, thus reduce the number of
PKE operations so that it only depends on the input and output lengths.

22

6.1 A High-Level Overview of Yao’s Garbling Technique

We briefly describe the garbling technique of Yao as described by Lindell and Pinkas in [LP09]. In this
construction, the desired function f is represented by a boolean circuit C that is computed gate by gate
from the input wires to the output wires. In the following, we distinguish four different types of wires used
in a given boolean circuit: (a) circuit-input wires; (b) circuit-output wires; (c) gate-input wires (that enter
some gate g); and (d) gate-output wires (that leave some gate g). The underlying idea is to associate every
wire w with two random values, say k0

w, k
1
w, such that k0

w represents the bit 0 and k1
w represents the bit

1. The garbled table for each gate maps random input values to random output values, with the property
that given two input values it is only possible to learn the output value that corresponds to the output bit.
This is accomplished by viewing the four potential inputs to the gate k0

1, k
1
1 (values associated with the

first input wire) and k0
2, k

1
2 (values associated with the second input wire), as encryption keys. So that the

output key values k0
3, k

1
3 are encrypted under the appropriate input keys. For instance, let g be a NAND

gate. Then, k1
3 (that corresponds to bit 1) is encrypted under the pair of keys associated with the values

(0, 0), (0, 1), (1, 0). Whereas, k0
3 is encrypted under the pair of keys associated with (1, 1) which yields

the following four ciphertexts

Enck0
1
(Enck0

2
(k1

3)), Enck0
1
(Enck1

2
(k1

3)), Enck1
1
(Enck0

2
(k1

3)) and Enck1
1
(Enck1

2
(k0

3)),

where Enc is a private key encryption scheme (Gen,Enc,Dec) that has indistinguishable encryptions for
multiple messages, and an elusive efficiently verifiable range; see [LP09] for the formal definitions. These
ciphertexts are randomly permuted in order to obtain the garbled table for gate g. Then, given the input wire
keys kα1 , k

β
2 that correspond to the bits α and β and the garbled table containing the four encryptions, it is

possible to obtain the output wire key kg(α,β)
3 . The description of the garbled circuit is concluded with the

output decryption tables, mapping the random values on the circuit output wires back to their corresponding
boolean values.

6.2 One-Sided Yao for Semi-Honest Adversaries

Our first construction adapts the semi-honest two-party protocol [Yao82, LP09] into the one-sided adaptive
setting at a cost of O(|C|) private key operations and O(|input|+ |output|) public key operations. Using
our one-sided secure primitives we obtain efficient protocols that outperform the constant round one-sided
constructions of [KO04, IPS08] and all known fully adaptively secure two-party protocols. Namely, we show
that one-sided security can be obtained by only communicating the keys corresponding to the input/output
wires via a non-committing channel. This implies that the number of PKE operations does not depend on
the garbled circuit size as in prior work.

Informally, the input keys that correspond to P0’s input are transferred to P1 using somewhat NCE with
equivocation parameter ` = 2, whereas P1’s input keys are sent using one-sided OT. Next, the entire garbled
circuit (without the output decryption table) is sent to P1 using a standard communication channel. P1

evaluates the garbled circuit and finds the keys for the output wires. The parties then run a one-sided bit OT
for each output key where P1 plays the role of the receiver, and learns the output bit that corresponds to its
output wire. Finally, P1 sends P0 the output using one-sided NCE. We note that obtaining the output via one-
sided OT is crucial to our proof since it enables us to circumvent the difficulties arise when implementing the
simulation technique from [LP09] that uses a fake circuit. To carry out these OTs successfully we require
that the keys associated with a output wire have distinct most significant bits that are fixed independently of
the bits they correspond to. For simplicity we only consider deterministic and same-output functionalities.
This can be further generalized using the reductions specified in [Gol04]. The formal description of our
one-sided semi-honest protocol ΠSH

f is given below in the FOT-hybrid model.

23

Protocol 3 (One-sided adaptively secure semi-honest Yao (ΠSH
f))

• Inputs: P0 has x0 ∈ {0, 1}n and P1 has x1 ∈ {0, 1}n. Let x0 = x10, . . . , x
n
0 and x1 = x11, . . . , x

n
1 .

• Auxiliary Input: A boolean circuit C such that for every x0, x1 ∈ {0, 1}n, C(x, y) = f(x, y) where f :
{0, 1}n × {0, 1}n → {0, 1}n. Furthermore, we assume that C is such that if a circuit-output wire leaves some
gate, then the gate has no other wires leading from it into other gates (i.e. no circuit-output wire is also a
gate-output wire). Likewise, a circuit-input wire that is also a circuit-output wire enters no gates.

• The Protocol:

1. Setup and garbling circuit computation. P0 constructs garbled circuitG(C) as described in Section 6.1
subject to the constraint that the keys corresponding to each circuit-output wire have a distinct most
significant bit.

2. Transferring the garbled circuit and input keys to P1. Let (k0i , k
1
i) be the key pair corresponding to

the circuit-input wire that takes the ith bit of x0 and let (k0n+i, k
1
n+i) be the key pair corresponding to the

circuit-input wire that takes the ith bit of x1. Then,

(a) For all i ∈ [1, . . . , n], P0 sends kx
i
0
i using an instance of somewhat NCE with ` = 2.

(b) For all i ∈ [1, . . . , n], P0 and P1 call FOT with input (k0n+i, k
1
n+i) and xi1, respectively. Let kx

i
1
n+i

denotes P1’s ith output.
(c) P0 sends G(C) without the output decryption table to P1.

3. Circuit evaluation and interactive output computation. P1 evaluates G(C) on the above input keys
and obtains the keys that correspond to f(x0, x1) in the circuit-output wires. Let (k02n+i, k

1
2n+i) be the

key pair corresponding to the ith circuit-output wire with distinct most significant bits. Also assume P1

obtains key kα2n+i corresponding to the ith circuit-output wire of G(C). Then,

(a) For all i ∈ [1, . . . , n], P0 and P1 call FOT in which P0’s input equals (0, 1) if the most significant
bit of k02n+i is 0, and (1, 0) otherwise. P1’s input is the most significant bit of kα2n+i.

(b) P1 computes f(x0, x1) by concatenating the bits received from the above n calls.

4. Output communication. P1 sends y using an instance of one-sided NCE.

Theorem 6.1 (One-sided semi-honest) Let f be a deterministic same-output functionality and assume that
the encryption scheme for garbling has indistinguishable encryptions under chosen plaintext attacks, and
an elusive and efficiently verifiable range. Furthermore, assume that FOT is realized in the presence of one-
sided semi-honest adversaries with constant number of PKE operations for sender’s input space {0, 1}q,
where q = O(n) and n is the security parameter. Then Protocol 3 UC realizes Ff in the presence of one-
sided semi-honest adversaries at a cost of O(|C|) private key operations and O(|input|+ |output|) public
key operations.

We note that the ideal OT calls in Step 2 can be realized using string one-sided OTs, whereas the OT calls
in Step 3 can be replaced with bit one-sided OTs.

Proof: Our proof is shown in the FOT-hybrid model. Let ADV be a probabilistic polynomial-time semi-
honest adversary attacking Protocol 3 by adaptively corrupting one of the parties. We construct an adversary
SIM for the ideal functionality Ff such that no environment ENV distinguishes with a non-negligible prob-
ability whether it is interacting with ADV in the real setting or with SIM in the ideal setting. We recall that
SIM interacts with the ideal functionality Ff and the environment ENV. We refer to the interaction of SIM

with Ff and ENV as the external interaction. The interaction of SIM with the simulated ADV is the internal
interaction. We now explain the actions of the simulation for the following corruption cases: (1) No corrup-
tion takes place; (2) Corruption takes place at the outset. (3) Corruption takes place between Steps 2 and 3.
(4) Corruption takes place between Steps 3 and 4. (5) Corruption takes place at the end. We now describe
the simulator for all these cases considering the corruption of each party. These cases cover all potential
cases of corruption.

24

No corruption. When no corruptions take place the simulator simulates both P0 and P1 as follows:

1. Setup and garbling circuit C. SIM chooses 2n random keys for P0’s input denoted by k0
1, k

1
1, . . . ,

k0
n, k

1
n, 2n random keys for P1’s input denoted by k0

n+1, k
1
n+1, . . . , k

0
2n, k

1
n and 2n random keys for the

output denoted by k0
2n+1, k

1
2n+1, . . . , k

0
3n, k

1
3n, such that the most significant bit of k0

2n+i and k1
2n+1

for all i = 1, . . . , n is distinct. SIM completes the construction of the garbled circuit G(C) for C as
the honest P0 would do.

2. Transferring the garbled circuit and input keys to P1. In order to transfer the keys that correspond
to the input of P1, SIM simulates P0 (playing the role of SEN) on inputs (k0

n+i, k
1
n+i) and P1 (playing

the role of REC) on input 0 within the ith FOT, for i = 1, . . . , n.

For i = 1, . . . , n, SIM simulates P0 sending k0
i via somewhat NCE with ` = 2.

Finally, SIM simulates P0 sending G(C) without the output table.

3. Circuit evaluation and Interactive Output computation. SIM simulates P0 (playing the role of
REC) and P1 (playing the role of SEN) engaging in n ideal OT calls, such that for every i the input
of P0 equals (0, 1) if the most significant bit of k0

2n+i is 0, and (1, 0) otherwise. The input of P1 is
always 0.

4. Output Communication. SIM sends P1 the string 0n using a one-sided NCE channel.

Corruption at the outset of the protocol execution.

• P0 is corrupted. SIM receives P0’s input x0 and its output y. It then plays the role of P1 as in the
no corruptions case except that in the final step SIM simulates P1 sending y via a one-sided NCE
channel.

• P1 is corrupted. SIM receives P1’s input x1 and its output y. It then plays the role of P0 as in the no
corruptions case except that in the output computation phase, SIM simulates P0 sending input (yi, yi)
via the ith call of FOT. This ensures that ADV outputs y irrespective of the keys it inputs.

Corruption between Steps 2 and 3.

• P0 is corrupted. The simulator simulates P0 and P1 as in Steps 1 and 2 of the no corruptions case.
Upon corrupting P0 the simulator receives P0’s input x0 and its output y. It then explains the internal
state of P0 until Step 2 as follows. The setup and the garbling circuit construction are trivially ex-
plained. Moreover, P0’s input to FOT calls for the key transfer are explained as in the simulation of no
corruption. Finally, P0’s input to the ith invocation of the somewhat NCE is explained as kx

i
0
i where

xi0 is the ith bit of xi. SIM completes the simulation playing the role of P1 as in the no corruptions
case except that in the final step it simulates P1 sending y via the one-sided NCE.

• P1 is corrupted. SIM simulates P0 and P1 as in the no corruptions case in Steps 1 and 2. Upon
corrupting P1 the simulator receives P1’s input x1 and its output y. It then explains the internal
state of P1 as follows. P1’s input and output pair for the ith FOT key transfer call are explained as
(xi1, k

xi1
n+i). Moreover, P0’s input to the somewhat NCE channel is explained as k0

i . SIM completes the
simulation playing the role of P0 as in the no corruptions case, except that in the output computation
phase it simulates P0 sending input (yi, yi) to the ith call of FOT.

25

Corruption between Steps 3 and 4.

• P0 is corrupted. The simulator simulates P0 and P1 as in Steps 1, 2 and 3 of the no corruptions case.
Upon corrupting P0 the simulator receives P0’s input x0 and its output y. It then explains the internal
state of P0 as follows. The consistency check up to Step 2 is as in the previous corruption case for
P0. In Step 3, P0’s input to FOT for the output computation phase is explained as in the simulation for
the no corruptions case. SIM completes the simulation playing the role of P1 as in the no corruptions
case, except that in the final step SIM simulates P1 sending input y via a one-sided NCE channel. This
ensures that ADV receives y as the circuit output.

• P1 is corrupted. The simulator simulates P0 and P1 as in the Steps 1, 2 and 3 of the no corruptions
case. Upon corrupting P1 the simulator receives P1’s input x1 and its output y. It then explains the
internal state of P1 as follows. The consistency check up to Step 2 is as in the previous corruption
case for P1. In Step 3, P1’s input and output pair for the ith FOT call in the output computation phase
is explained as b, yi, where b is the most significant bit of the key that is associated with the ith output
wire. SIM completes the simulation playing the role of P0 as in the no corruptions case.

Corruption at the end.

• P1 is corrupted. Upon corrupting P1 the simulator receives P1’s input x1 and its output y. It then
explains the internal state of P1 as follows. The consistency check up to Step 3 is as in the previous
corruption case for P1. In Step 4, it explains P1’s input to the somewhat NCE channel as y.

This completes the description of all corruption cases. Note that the only differences between the simulation
and the hybrid executions is with respect to the information sent via the somewhat and one-sided NCE
channels and the oblivious transfer. These however are computationally indistinguishable due to the IND-
CPA security of the encryption schemes and the one-sided security of the OT.

6.3 Security against Malicious Adversaries

Next, we modify ΠSH
f and adapt the cut-and-choose OT protocol introduced in [LP12] in order to achieve

security against malicious adversaries. The idea of the cut-and-choose technique is to ask P0 to send s
garbled circuits and later open half of them (aka, check circuits) by the choice of P1. This ensures that
with very high probability the majority of the unopened circuits (aka, evaluation circuits) are valid. The
cut-and-choose OT primitive of [LP12] allows P1 to choose a secret random subset J of size s/2 for which
it learns both keys for each input wire that corresponds to the check circuits, and the keys associated with
its input with respect to the evaluation circuits.

In order to ensure that P0 hands P1 consistent input keys for all the circuits, the [LP12] protocol en-
sures that the keys associated with P0’s input are obtained via a Diffie-Hellman pseudorandom synthe-
sizer [NR95]. Namely, P0 chooses values ga

0
1 , ga

1
1 , . . . , ga

0
n , ga

1
n and gc1 , . . . , gcs , where n is the input/output

length, s is the cut-and-choose parameter and g is a generator of a prime order group G. So that the pair of
keys associated with the ith input of P0 in the jth circuit is (ga

0
i cj , ga

1
i cj).6 Given values {ga0

i , ga
1
i , gcj} and

any subset of keys associated with P0’s input, the remaining keys associated with its input are pseudoran-
dom by the DDH assumption. Furthermore, when the keys are prepared this way P0 can efficiently prove
that it used the same input for all circuits. P1 then evaluates the evaluation circuits and takes the majority
value for the final output. In Section 6.3.1 we demonstrate how to adapt the cut-and-choose OT protocol

6The actual key pair used in the circuit garbling is derived from (ga
0
i cj , ga

1
i cj) using an extractor. A universal hash function is

used in [LP12] for this purpose, where the seeds for the function are picked by P0 before it knows J .

26

into the one-sided setting using the building blocks introduced in this paper. This requires dealing with new
subtleties regarding the system parameters and the ZK proofs. Formally, we prove

Theorem 6.2 (One-sided malicious) Let f be a deterministic same-output functionality and assume that
the encryption scheme for garbling has indistinguishable encryptions under chosen plaintext attacks, an
elusive and efficiently verifiable range, and that the DDH and DCR assumptions are hard in the respective
groups. Then Protocol ΠMAL

f UC realizes Ff in the presence of one-sided malicious adversaries at a cost of
O(s·|C|) private key operations andO(s·(|input|+ |output|)) public key operations where s is a statistical
parameter that determines the cut-and-choose soundness error.

Specifically, the concrete DCR assumption implies cut-and-choose OT with constant number of PKE op-
erations for sender’s input space {0, 1}q, where q = O(n) and n is the security parameter. Overall, the
efficiency of ΠMAL

f isO(s · |C|) private key operations andO(s · (|input|+ |output|)) public key operations
where s is a statistical parameter that determines the cut-and-choose soundness error.

6.3.1 One-sided Single Choice Cut-and-Choose OT

We describe next the single choice cut-and-choose OT functionality FCCOT from [LP12] and present a
protocol that implements this functionality with UC one-sided malicious security. In Section 6.3.2 we briefly
describe our batch single choice cut-and-choose OT construction using a single choice cut-and-choose OT,
which is used as a building block in our two-party protocol. Formally, FCCOT is defined as follows

1. Inputs:

(a) SEN inputs a vector of pairs {(xj0, x
j
1)}sj=1.

(b) REC inputs a bit σ and a set of indices J ⊂ [s] of size exactly s/2.

2. Output: If J is not of size s/2, then SEN and REC receive ⊥ as output. Otherwise,

(a) For all j ∈ J , REC obtains the pair (xj0, x
j
1).

(b) For all j 6∈ J , REC obtains xjσ .

This functionality is implemented in [LP12] by invoking the DDH based [PVW08] OT s times (see
Appendix A for the complete details), where the receiver generates the system parameters in a decryption
mode for s/2 indices corresponding to J and the remaining system parameters are generated in a messy
mode. The decryption mode trapdoor enables the receiver to learn both sender’s inputs for the instances
corresponding to J . This idea is coupled with two proofs that are run by the receiver: (i) a ZK PoK for
proving that half of the system parameters set is in a messy mode which essentially boils down to a ZK PoK
realizing functionality FRDDH,COMP(s,s/2)

ZKPoK (namely, the statement is a set of s tuples and the prover proves
the knowledge of s/2 Diffie-Hellman tuples within this set). (ii) A ZK PoK to ensure that the same input
bit σ has been used for all s instances which boils down to a ZK proof realizing functionality FRDDH,OR(s)

ZKPoK

(namely, the statement contains two sets of tuples, each of size s, for which the prover proves that one of the
sets contains DH tuples). See Section 7.2 for more details on the ZK PoK functionalities.

Our first step towards making the [LP12] construction one-sided adaptively secure is to invoke our
one-sided OT scheme s times with all system parameters in a decryption mode. Notably, we cannot use the
messy mode for the s/2 instances not in J as in the static settings since that would preclude the equivocation
of the receiver’s bit. Similarly to [LP12], our constructions have two phases; a setup phase and a transfer
phase. In the setup phase, the receiver generates the system parameters in a decryption mode for the s/2 OTs
corresponding to indices in J , while the remaining system parameters are generated in the same mode but in
a way that does not allow REC to learn the trapdoor. This is obtained by fixing two random generators g0, g1,

27

so that the receiver sets the first component of every CRS from the system parameters to be g0. Moreover,
the second component in positions j 6∈ J is a power of g1, else this element is a power of g0. Note that
REC does not know logg0

g1 which is the decryption mode trapdoor for j 6∈ J . To ensure correctness, REC
proves that it knows the discrete logarithm of the second element with respect to g1 of at least s/2 pairs.
This is achieved using a witness equivocal proof for functionality FRDL,COMP(s,s/2)

ZKPoK described in Section 7.2.
In the transfer phase, the receiver uses these system parameters to create a public/secret key pair for

each OT execution, for keys not in the set J . For the rest of the OT executions the receiver invokes the
TrapKeyGen algorithm of the dual-mode PKE and obtains a public key and two secret keys that enable it to
decrypt both of the sender’s inputs. In order to ensure that the receiver uses the same input bit σ for all OTs
the receiver proves its behavior using the proof specified above. Finally, we prove the equivocality of the
sender’s input and the receiver’s output based on our one-sided NCE.

Formally, let the DDH based dual-mode PKE of [PVW08] be specified by ΠDUAL = (SetupMessy,
SetupDecryption, dGen, dEnc, dDec,FindBranch,TrapKeyGen). We denote our one-sided OT by ΠCCOT

and present it in the (FSC,F
RDL,COMP(s,s/2)
ZKPoK ,FRDDH,OR(s)

ZKPoK)-hybrid model.

Protocol 4 (One-sided adaptive single choice cut-and-choose OT (ΠCCOT))

• Inputs: SEN inputs a vector of pairs {(xi0, xi1)}si=1 and REC inputs a bit σ and a set of indices J ⊂ [s] of
size exactly s/2.

• Auxiliary Inputs: Both parties hold a security parameter 1n and G, p, where G is an efficient representation
of a group of order p and p is of length n.

• CRS: The CRS consists of a pair of random group elements g0, g1 from G.

• Setup phase:

1. REC chooses a random xj ∈ Zp and sets gj1 = g
xj

0 for all j ∈ J and gj1 = g
xj

1 otherwise.

For all j, REC chooses a random yj ∈ Zp and sets CRSj =
(
g0, g

j
1, h

j
0 = (g0)yj , hj1 = (gj1)yj

)
. It then

sends {CRSj}sj=1 to SEN.
Furthermore, for all j ∈ J , REC stores the decryption mode trapdoor tj = xj .

2. REC calls FRDL,COMP(s,s/2)
ZKPoK with ({g1, gj1}sj=1, {xj}j∈J) to prove the knowledge of the discrete loga-

rithms of s/2 values within the second element in {CRSj}j and with respect to g1.

• Transfer phase (repeated in parallel for all j):

1. For all j 6∈ J , REC computes (PKj , SKj) = ((gj , hj), rj)← dGen(CRSj , σ).
For all j ∈ J , REC computes (PKj , SK0

j , SK1
j) = ((gj , hj), rj , rj/tj)← TrapKeyGen(CRSj , tj).

Finally, REC sends the set {PKj}sj=1 and stores the secret keys.

2. REC calls FRDDH,OR(s)
ZKPoK with input (({(g0, hj0, gj , hj)}sj=1, {(g

j
1, h

j
1, gj , hj)}sj=1), {rj}sj=1) to prove that

all the tuples in one of the sets {(g0, hj0, gj , hj)}sj=1 or {(gj1, h
j
1, gj , hj)}sj=1 are DH tuples.

3. For all j, SEN generates cj0 ← dEncPKj
(xj0, 0) and cj1 ← dEncPKj

(xj1, 1). Let cj0 = (cj00, c
j
01) and

cj1 = (cj10, c
j
11). SEN calls FSC with cj01 and cj11.

• Output: Upon receiving (cj01, c
j
11) from FSC,

1. REC outputs xjσ ← dDecSKj
(cjσ) for all j /∈ J .

2. REC outputs (xj0, x
j
1)← (dDecSK0

j
(cj0), dDecSK1

j
(cj1)) for all j ∈ J .

Theorem 6.3 Assume that the DDH assumption is hard in G. Then Protocol 4 UC realizes FCCOT in the
(FSC,F

RDL,COMP(s,s/2)
ZKPoK ,FRDDH,OR(s)

ZKPoK)-hybrid model in the presence of one-sided malicious adversaries.

28

Proof: Let ADV be a probabilistic polynomial-time malicious adversary attacking Protocol 4 by that
adaptively corrupting one of the parties. We construct an adversary SIM for the ideal functionality of a
single choice cut-and-choose oblivious transfer FCCOT such that no environment ENV distinguishes with
a non-negligible probability whether it is interacting with ADV in the real setting or with SIM in the ideal
setting. We recall that SIM interacts with the ideal functionality and the environment ENV. We refer to the
interaction of SIM with the ideal functionality FCCOT and ENV as the external interaction. The interaction
of SIM with the simulated ADV is the internal interaction. We now explain the actions of the simulator for
all corruption cases. SIM begins by creating a CRS (g0, g1) and storing x = logg0

g1. It then proceeds as
follows:

Simulating the communication with ENV. Every input value received by the simulator from ENV is writ-
ten on ADV’s input tape. Likewise, every output value written by ADV on its output tape is copied to
the simulator’s output tape (to be read by its environment ENV).

The sender is corrupted at the onset of the protocol. SIM begins by activating ADV and emulates the
receiver as follows. In the setup phase it picks s system parameters in a decryption mode in which
it knows their trapdoors. Namely for each j = 1, . . . , s, it creates CRSj = (g0, g

j
1, h

j
0, h

j
1) where

gj1 = (g0)xj , hj0 = (g0)yj and hj1 = (gj1)yj = (g
xj
0)yj for random xj’s and yj’s, and records the

trapdoor tj = xj . The simulator further computes x′j = logg1
gj1 for all j using the knowledge of

x = logg0
g1. It then chooses an arbitrary set J ′ of size s/2 and sends Accept to ADV on behalf of

FRDL,COMP(s,s/2)
ZKPoK for the statement {g1, g

j
1}sj=1. Note that the simulator knows discrete log for each

pair of (g1, g
j
1) in the statement.

SIM also emulates REC by sending the adversary the system parameters.

In the transfer phase the simulator invokes TrapKeyGen for all j = 1, . . . , s and computes (PKj , SK0
j ,

SK1
j) = ((gj , hj), rj , rj/tj) ← TrapKeyGen(CRSj , tj) for j = 1, . . . , s, and sends the public keys

to SEN. It further sends Accept to ADV on behalf of FRDDH,OR(s)
ZKPoK . Upon receiving ADV’s message,

SIM extracts the sender’s input (xj0, x
j
1) using SK0

j , SK1
j for every j = 1, . . . , s and sends it to the

ideal functionality FCCOT.

Note that the adversary’s views differ only with respect to the ZK statements, since in a decryption
mode the receiver’s bit is perfectly hidden as well as the subset picked by the receiver. Now, since the
proofs are run via ideal calls the simulated and hybrid views are statistically close.

The receiver is corrupted at the onset of the protocol. SIM begins by activating ADV and emulates the
sender by receiving the witnesses on the behalf of the ZK PoK functionalities in the setup and transfer
phases. It extracts J and σ and sends them to FCCOT, receiving back (xj0, x

j
1) for j ∈ J and xjσ for

j 6∈ J . SIM chooses an arbitrary xj1−σ for all j 6∈ J and emulates the role of SEN using inputs
(xj0, x

j
1) for all j = 1, . . . , s.

The difference between the simulated and hybrid views is with respect to keys xj1−σ for all j 6∈ J for
which the simulator uses arbitrary values. Security is implied by the dual-mode privacy when a left
ciphertext is computed with a right key (or vice versa).

If none of the parties gets corrupted at the onset of the protocol execution SIM plays the role of the re-
ceiver in the setup phase using an arbitrary subset J ′ for the receiver. Note that SIM knows all the wit-
nesses for the proof in the setup phase (i.e., the discrete logarithms of {gj1}sj=1 with respect to g1 for
all s values). It can thus equivocate the proof with respect to the real set J . SIM further plays the

29

role of the receiver in the transfer phase using an arbitrary σ′ for the receiver. Specifically the simula-
tor simulates the receiver by invoking TrapKeyGen for all j = 1, . . . , s, computing (PKj , SK0

j , SK1
j) =

((gj , hj), rj , rj/tj)← TrapKeyGen(CRSj , tj). It then sends the public keys to SEN and an Accept mes-

sage on behalf ofFRDDH,OR(s)
ZKPoK . Note that SIM knows witnesses for both sub statements {(g0, h

j
0, gj , hj)}sj=1

and {(gj1, h
j
1, gj , hj)}sj=1, which equal {rj}sj=1 for the first set and {rj/tj}sj=1 for the second set.

The sender is corrupted between Steps 2 and 3. Upon corrupting SEN, SIM explains the internal state
of the sender by honestly presenting the randomness used so far on the sender’s behalf. Finally, SIM

completes the execution in the transfer phase by playing the role of the receiver using an arbitrarily
chosen σ′. Security in this case follows using the same argument as in the previous corruption case.

The receiver is corrupted between Steps 2 and 3. Upon corrupting REC, SIM receives J and σ from
FCCOT. It then explains the internal state of REC as follows. It first explains the witness for the ZK
PoK functionality FRDL,COMP(s,s/2)

ZKPoK as the discrete logarithms of {gj1}sj 6∈J with respect to g1. It also

explains the witness for FRDDH,OR(s)
ZKPoK as the witness for σth set. Finally, it plays the role of the sender

as in the previous corruption case. Security follows similarity to the previous corruption case. (In the
real execution we rely on the witness equivocality of the ZK proofs).

If none of the parties gets corrupted yet SIM plays the role of the sender in the transfer phase using arbitrary
(x′j0 , x

′j
1) for j = 1, . . . , s.

The sender is corrupted after simulating the Sender’s message in the data transfer phase. Upon
corrupting SEN, SIM receives (xj0, x

j
1) for j = 1, . . . , s from FCCOT. It then explains the internal

state of SEN by explaining the inputs to FSC as the encryptions for the real inputs. Security follows
from the fact that the receiver’s input is statistically hidden given the public keys.

The receiver is corrupted after simulating the Sender’s message in the data transfer phase. Upon
corrupting REC, SIM receives J , σ, {xj0, x

j
1}j∈J and {xjσ}j 6∈J from FCCOT. It then explains the

internal state of REC as in the previous corruption case and in addition, it explains the messages
received from FSC as the encryptions of {xj0, x

j
1}j∈J and {xjσ}j 6∈J . Security follows due to the same

argument as in the previous corruption case.

6.3.2 Malicious One-Sided Adaptively Secure Two-Party Computation

First, we remark that the single choice cut-and-choose protocol is executed for every input bit of P1 in the
main two-party computation protocol, but with respect to the same set J . In order to ensure that the same
J is indeed used the parties engage in a batch single choice cut-and-choose OT where a single setup phase
is run first, followed by n parallel invocations of the transfer phase. We note that CRS and the set J are
fixed in the setup phase and remain the same for all n parallel invocations of the transfer phase. We denote
the batch functionality by FBATCH

CCOT and the protocol by ΠBATCH
CCOT .

We are now ready to describe the steps of our generic protocol ΠMAL
f computing any functionality f on

inputs x0 and x1. We continue with a high-level overview of [LP12] adapted to the one-sided setting.

Step 1. P0 constructs s copies of Yao’s garbled circuit for computing the function f . All wires keys are
picked at random. Keys that are associated with P0’s input wires are picked as follows. P0 picks n
pairs of random values ((a0

1, a
1
1), . . . , (a0

n, a
1
n)) and (c1, . . . , cs) and sets the keys associated with the

30

ith input wire of the jth circuit as the pair (ga
0
i cj , ga

1
i cj). These values constitute commitments to all

2ns keys of P0.7 This set of keys forms a pseudorandom synthesizer [NR95], implying that if some
subset of the keys is revealed then the remaining keys are still pseudorandom. We also require that
each pair of keys that is associated with a circuit output wire differs within the most significant bit.

Step 2. The parties call FBATCH
CCOT where P0 inputs the key pairs associated with P1’s input and P1 inputs

its input x1 and a random subset J ⊂ [s] of size s/2. P1 receives from FBATCH
CCOT the keys that

are associated with its input wires for the s/2 circuits indexed by J (denoted the check circuits).
In addition, it receives the keys corresponding to its input for the remaining circuits (denoted the
evaluation circuits).

Step 3. P0 sends P1 s copies of the garbled circuit (except for the output tables) and the values ((ga
0
1 , ga

1
1),

. . . , (ga
0
n , ga

1
n), (gc1 , . . . , gcs)) which are the commitments to the input keys on the wires associated

with P0’s input. At this point P0 is committed to all the keys associated with the s circuits.

Step 4. P1 reveals J and proves that it used this subset in the cut-and-choose OT protocol by sending the
keys that are associated with P1’s first input bit in each check circuit. Note that P1 knows the keys
corresponding to both bits only for the check circuits.

Step 5. In order to let P1 know the keys for the input wires of P0 within the check circuits, P0 sends cj for
j ∈ J . P1 computes the key pair (ga

0
i cj , ga

1
i cj).

Step 6. P1 verifies the validity of the check circuits using all the keys associated with their input wires. This
ensures that the evaluation circuits are correct with high probability.

Step 7. In order to complete the evaluation phase P1 is given the keys for the input wires of P0. P0 must
be forced to give the keys that are associated with the same input for all circuits. Specifically, the
following code is executed for all input bits of P0:

1. For every evaluation circuit Cj , P0 sends yi,j = ga
xi0
i cj using an instance of somewhat NCE with

` = 2, where xi0 is the ith input bit of P0.

2. P0 then proves that ax
i
0
i is in common for all keys associated with the ith input bit, which is re-

duced to showing that either the set {(g, ga
xi0
i , gcj , yi,j)}sj=1 or the set {(g, ga

1−xi0
i , gcj , yi,j)}sj=1

is comprised of DH tuples. Notably, it is sufficient to use a single UC ZK proof for the simpler
relation RDDH,OR since the above statement can be compressed into a compound statement of
two DH tuples as follows: P0 first chooses s random values γ1, . . . , γs ∈ Zp and sends them to
P1. Both parties compute g̃ =

∏s
j=1(gcj)γj , ỹ =

∏s
j=1(yi,j)

γj , of which P0 proves that either

(g, ga
xi0
i , g̃, ỹ) or (g, ga

1−xi0
i , g̃, ỹ) is a DH tuple.

Step 8. Upon receiving Accept from FRDDH,OR
ZKPoK , P1 completes the evaluation of the circuits. Namely, for

every i ∈ [1, . . . , ns] P0 and P1 call FOT in which P0’s input equals (0, 1) if the most significant bit
of the output wire key is associated with 0, and (1, 0) otherwise. Moreover, P1’s input is the most
significant bit of its output key. P1 concatenates the bits obtained from these OTs and sets the majority
of these values as the output y.

7Recall that the actual symmetric keys of the ith input within the jth circuit are derived from (ga
0
i cj , ga

1
i cj) using randomness

extractor such as a universal hash function.

31

Step 9. P1 sends y using an instance of one-sided NCE.

To ensure the one-sided security of ΠMAL
f we realize the functionalities used in the protocol as follows: (1)

FBATCH
CCOT is realized in Step 2 using our one-sided batch single choice cut-and-choose OT. This implies the

equivocation of P1’s input. (2) The statement of FRDDH,OR
ZKPoK is transferred in Step 7.1 via a somewhat NCE

with ` = 2. To obtain a witness equivocal proof for functionality FRDDH,OR
ZKPoK (invoked in Step 7.2), it is

sufficient to employ a standard static proof realizing this ZK functionality where the prover sends the third
message of the proof using a somewhat NCE with ` = 2 (this is due to the fact that we anyway send the
statement using a somewhat NCE). Specifically, a statically secure proof is sufficient whenever both the
statement and the third message of the (Σ-protocol) proof can be equivocated. This implies the equivocation
of P0’s input. (3) Finally, in Step 8 the FOT calls are realized using one-sided bit OT. This implies output
equivocation.

7 Efficient Statically Secure and Witness Equivocal UC ZK PoKs

We present two results in this section. First, we show a technique for generating efficient statically secure
UC ZK PoK for various Σ-protocols. Our protocols take a new approach where the prover commits to an
additional transcript which, in turn, enables witness extraction without using rewinding. Our instantiations
imply UC ZK PoK constructions that incur constant overhead and achieve negligible soundness error.

Next, we show how to generate efficient witness equivocal UC ZK PoK for various compound Σ-
protocols. The additional feature that witness equivocal UC ZK PoK offers over statically secure UC ZK
PoK is that it allows the simulator to equivocate the simulated proof upon corrupting the prover. Interest-
ingly, we build witness equivocal UC ZK PoKs for a class of fundamental compound Σ-protocols without
relying on NCE. Our approach yields witness equivocal UC ZK PoK only for compound statements where
the simulator knows the witnesses for all sub-statements (but not the real witness). This notion is weaker
than the notion of one-sided UC ZK PoK where the simulator is required to simulate the proof obliviously
of the witness, and later prove consistency with respect to the real witness. Our protocols are round efficient
with constant overhead and ensure a negligible soundness error.

We briefly describe our technique for generating efficient UC ZK PoK for Σ-protocols. Recall that in
order to obtain a UC secure ZK PoK for a Σ-protocol it suffices to build a straight line simulator and witness
extractor in the CRS model. A straight line simulator can be obtained by using standard techniques of
committing the challenge of the verifier at the onset of the proof using UC commitments [DN02]. In what
follows, we will focus on designing straight line extractors. We begin with a generalization of our UC ZK
PoKs for Σ-protocols for relations of the form RΓ =

{
((G̃, H̃, y), x)| y = Γ(x)

}
defined with respect to a

one-way homomorphic mapping Γ : G̃→ H̃ from a source group (G̃,⊕) to a target group (H̃,�). (Where
Γ is homomorphic if Γ(x0 ⊕ x1) = Γ(x0)� Γ(x1)).8 Loosely speaking, given a Σ-protocol ΠΓ forRΓ we
modify ΠΓ by instructing the prover to send two responses z, z′ to a pair of distinct challenges c, c′ queried
by the verifier. The former response z is sent on clear and publicly verified as specified in ΠΓ, whereas the
latter response z′ is encrypted using a homomorphic PKE with plaintext space G̃. Moreover, the validity of
z′ is carried out by a UC ZK proof of consistency. Clearly, the efficiency of the new proof depends heavily
on the overhead of this ZK proof. Observe also that an extractor can be easily constructed for this proof by
placing a public key for the homomorphic PKE in the CRS, of which the extractor knows the corresponding
secret key. Our technique also generalizes to proofs for compound statements [CDS94].

8This notation covers many basic relations such as discrete logarithm and quadratic residuosity.

32

7.1 Efficient Statically Secure UC ZK PoK for Σ-Protocols

DL-based UC secure ZK PoK. We continue with illustrating our technique on the Σ-protocol for proving
the knowledge of a discrete logarithm in a prime order group G. We instantiate (G̃,⊕) with (Zp,+) for
operation + denoting addition in Zp, and (H̃,�) with (G, ·) for operation · denoting multiplication in G.
Furthermore, the one-way group homomorphism is defined by Γ(x) = EXP(x) = gx where g is a generator
of G and induces the relation

RDL = {((G, g, h), x)| h = gx} .
We first apply our technique on the Σ-protocol due to [Sch89] and instantiate the homomorphic PKE with
the additively homomorphic PKE of Paillier [Pai99] defined by EncPK(x; r) = (1 + N)x · rN mod N2

where N is an RSA composite. Formally,

Protocol 5 (UC ZK PoK of DL (ΠDL))

• CRS: A public key PK for Paillier PKE.

• Joint statement: The description of a group G of prime order p and a generator g, and the public statement h.

• Auxiliary input for the prover: x ∈ Zp such that h = gx.

• The Protocol:

1. Prover P picks a random r ← Zp and sends the verifier a = gr.
2. Verifier V returns random challenges c, c′ ← Zp.
3. P sends z ← r+cx mod p and encrypts z′ ← r+c′x mod p using PK, generating ciphertext e. P sends
z and e to V and proves in UC ZK that the plaintext of e and the discrete log of ahc

′
are the same.

4. V accepts if the ZK proof is verified correctly and gz = ahc.

The proof used in Step 3 is obtained from a Σ-protocol for the following relation

R1 =
{

((N, PK, e,G, g, h), (x, α))| e = (1 +N)xαN mod N2 ∧ h = gx
}
.

Namely, the goal is to prove consistency of discrete logarithms with respect to two different group orders
with generators (1 + N) and g, respectively. This can be achieved by combining the proof of knowledge
of discrete logarithms over the integers [DJN10] and the proof of plaintext knowledge for Pailler (we note
that [DJN10] shows a proof for consistent exponents, i.e., for DH tuples, but the same proof technique
works here as well). Namely, the prover selects at random y and β, computes e′ = (1 + N)yβN mod N2

and h′ = gy and sends e′, h′ to the verifier, who returns a random challenge c ∈ Zp. The prover then replies
with z = y + cx (over integers) and γ = αβc mod N . However, to ensure the privacy of x within y + cx,
y must be chosen so that its length is at least |c| + |x| + κ, where κ is a statistical parameter. The verifier
then accepts if (1 +N)zγN mod N2 = e′ec mod N2 and gz = h′hc. We further note that the above proof
requires a special care since it must ensure that the exact same value x is encrypted under Paillier rather than
x + ip, for p the order of G and i some integer. Nevertheless, an extractor that decrypts and learns x + ip
can still find x. Thus our extractor first learns z′ by decrypting the Paillier ciphertext and then extracts x
from z and z′. Finally, the above Σ-protocol and the PoK presented in Protocol 5 are proving in the UC
framework using standard techniques of committing the verifier’s challenge at the beginning of the proof
using UC commitment scheme [GK96]. We denote the UC ZK PoK forRDL as ΠDL.

Proposition 7.1 Assume that the DCR and DDH assumptions are hard in the respective groups. Then
Protocol 5 UC realizes FRDL

ZKPoK.

Informally, the proof follows by having the extractor pick a pair of keys (PK, SK) and place PK in the
CRS. Then, whenever receiving ciphertext e from the prover, the extractor decrypts it using SK and extracts
the witness from z and z′.

33

Consistency of discrete logarithms. Next, we consider a UC PoK for the following relation

RDDH = {((G, g0, g1, h0, h1), x)| h0 = gx0 ∧ h1 = gx1} .

Here (G̃,⊕) is instantiated with (Zp,+) and (H̃,�) with (G×G, ·). We further define by Γ(x) = (gx0 , g
x
1)

where g0, g1 are two generators in G. As above, we use Paillier PKE to encrypt the second reply of the
prover. The proof is an immediate extension of the Protocol 5 and the standard Σ-protocol for RDDH. The
underlying ZK proof for proving the correctness of the plaintext encrypted by the prover is an extension of
the proof for the relation used in Protocol 5. Specifically, the relation for the underlying ZK proof is:

R2 =
{

((N, PK, e,G, g0, g1, h0, h1), (x, α))| e = (1 +N)xαN mod N2 ∧ h0 = gx0 ∧ h1 = gx1
}
.

UC PoKs for N th root and quadratic residuosity. The proof we consider here is a proof of knowledge
of an N th root formally defined by,

RNR =
{

((u,N), v)| u = vN mod N2
}
.

We instantiate (G̃,⊕) with (Z∗N , ·) and (H̃,�) with (Z∗N2 , ·), where multiplication is computed in the re-
spective group. Furthermore, Γ(x) = xN mod N2. Note that in order to encrypt the message of the
prover we need to use a multiplicative PKE, and we therefore consider a variant of El Gamal PKE that
operates in Z∗N for a message space QRN . Specifically, encrypting a message m ∈ QRN is computed by
(e1, e2) = (gr mod N,m ·hr mod N) where g is a random element in QRN , h = gx mod N with a secret
key x ∈ Zφ(N)/4 and randomness r ← Zφ(N)/4. The security of this scheme is based on the composite
DDH assumption [DJ03] in Z∗N (defined below). In the proof below, the verifier is required to ensure that
z′N = au2c′ . This is achieved by raising the ciphertext e = (e1, e2) encrypting z′ to the power of N
component-wise modulo N2, and then have the prover prove that eN1 , e

N
2 /au

2c′ is a Diffie-Hellman tuple in
Z∗N2 . Such a ZK proof is provided in [DJN10]. Namely, we use 2c′ instead of c′ to ensure that z′ is in QRN .

The Composite DDH Assumption. Let N = pq be an RSA modulus and g is an element of QRN the group
of squares in Z∗N . Then values a and b are chosen uniformly at random in Zφ(N)/4 and the value y is either
random in QRN or satisfies y = gab mod N . Finally, the assumption asserts that for any polynomial-time
algorithm, the advantage in guessing which way y was sampled when given (N, g, ga mod N, gb mod N, y)
is negligibly close to 1/2.

Protocol 6 (UC ZK PoK forRNR (ΠNR))

• Joint statement: u ∈ Z∗N2 .

• Auxiliary input for the prover: v ∈ Z∗N such that u = vN mod N2.

• CRS: A composite N and a public key PK = (G, h = gx) for El Gamal PKE in Z∗N .

• The Protocol:

1. Prover P picks a random r′ ← Z∗N and sends verifier V the value a where a = rN mod N2 where
r ← r′2 mod N .

2. V returns random challenges c, c′ ← Z∗N .

3. P sets z ← rvc mod N and z′ ← rv2c
′

mod N , and encrypts z′ using PK (note that z′ ∈ QRN). Denote
the generated ciphertext by e = (e1, e2). P sends V values z and e and proves in UC ZK that the decryp-
tion of eN mod N2 corresponds to au2c

′
mod N2. That is, P proves that (Z∗N2 , g, h, eN1 , e

N
2 /au

2c′) is a
Diffie-Hellman tuple in Z∗N2 using the proof from [DJN10].

34

4. V accepts if he accepts in the ZK proof and if zN = auc mod N2.

Proposition 7.2 Assume that the DCR and composite DDH assumptions are hard in the respective groups.
Then Protocol 6 UC realizes FRNR

ZKPoK.

Finally, we consider a proof of knowledge of a square root that is formally defined by,

RQR =
{

((u,N), v)| u = v2 mod N
}
.

We instantiate (G̃,⊕) with (Z∗N , ·) and (H̃,�) with (QRN , ·), where multiplication is computed in the
respective groups. Furthermore, Γ(x) = x2 mod N . Following a similar technique used for the ZK PoK of
RNR we design a proof for FRQR

ZKPoK based on the QR and composite DDH assumptions.

Proposition 7.3 Assume that the QR and composite DDH assumptions are hard in the respective groups.
Then there exists a protocol ΠQR that UC realizes FRQR

ZKPoK.

7.2 Efficient Witness Equivocal UC ZK PoK for Compound Statements

The proof technique discussed above cannot be used in the adaptive setting since it does not allow witness
equivocation. Fortunately, in this work we only need to consider compound statements for which the simula-
tor knows all witnesses but does not know which one to use during the simulation, since this choice depends
on the input of the real prover. In compound statements for Σ-protocols the prover separates the challenge c
that is given by the verifier into two values; c1 and c2 such that c = c1 ⊕ c2. Assume w.l.o.g. that the prover
does not have a witness for the first statement, then it always chooses c1 in which it knows how to complete
the proof (similarly to what the simulator does), and uses its witness for the other statement to complete the
second proof on a given challenge c2. Note that the verifier cannot distinguish whether the prover knows the
first or the second witness (or both); see [CDS94] for more details.

Nevertheless, allowing the simulator to use all potential witnesses in the adaptive setting is not equiv-
ocal, since an adversary that corrupts the prover can detect a simulated execution by simply computing
multiple witnesses when given the prover’s internal state. In order to resolve this difficulty we instruct the
prover to obliviously sample the ciphertexts for the statements it does not know the witness for, i.e., sam-
pling a ciphertext without knowing the corresponding plaintext. This property holds with respect to both
homomorphic PKEs used in our proofs in order to encrypt the response for the second challenge.

This type of compound statements generalizes to s sub-statements for which the prover proves the
knowledge of witnesses of some subset. For this general case, [CDS94] suggest to split the challenge using
a perfect secret sharing scheme, e.g. Shamir’s secret sharing scheme. First, the sub-statements are divided
into two sets such that the prover knows the witnesses for the statements in set J , but not the witnesses for
the sub-statements in J̄ . The prover then creates challenges ci for the sub-statements in J̄ . Finally, the set
{cj}j∈J̄ and the verifier’s challenge c are interpreted as |J̄ | shares and the secret in a secret sharing scheme
with s participants and a threshold |J̄ | + 1. Thus, the values c and {cj}j∈J̄ completely define all the s
shares. In the special case where s = 2 the prover runs the honest verifier zero-knowledge simulator for
the sub-statements in J̄ using challenges {cj}j∈J̄ . For the sub-statements in J it defines the challenges as
defined by the shares {cj}j∈J̄ for the secret c and generates a response using its witnesses. The prover also
sends the s shares of c to the verifier who checks that indeed the shares define c with threshold |J̄ |+ 1. We
conclude with the following theorem.

Theorem 7.1 Assume the existence of homomorphic PKE with respect to a group H and operation �,
that supports oblivious and invertible sampling of ciphertexts. Then, for every Σ-protocol designed for
a compound statement as above and one-way group homomorphism Γ : G̃ → H̃, there exists a witness
equivocal UC ZK PoK that introduces a negligible soundness error and constant overhead.

35

We use the notation of ΠΓ,OR for denoting the compound extended proof of ΠΓ where both statements
are proven in RΓ and FRΓ,OR

ZKPoK to denote the ideal functionality for ΠΓ,OR. We consider a proof ΠDDH,OR(s)

where the statement is a combination of two sub-statements, each sub-statement contains s tuples. That is,
the statement is a proof of knowledge of which one of the two sets is DH tuples. Finally, we consider a proof
ΠΓ,COMP(s,t) where the statement consists of s sub-statements of RΓ and the prover proves the knowledge
of t sub-statements out of s (for some t < s).

References
[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption

and multiparty computation. In EUROCRYPT, pages 169–188, 2011.

[Bea97] Donald Beaver. Plug and play encryption. In CRYPTO, pages 75–89, 1997.

[Bea98] Donald Beaver. Adaptively secure oblivious transfer. In ASIACRYPT, pages 300–314, 1998.

[BH92] Donald Beaver and Stuart Haber. Cryptographic protocols provably secure against dynamic adver-
saries. In EUROCRYPT, pages 307–323, 1992.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for encryption
and commitment secure under selective opening. In EUROCRYPT, pages 1–35, 2009.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (ex-
tended abstract). In STOC, pages 503–513, 1990.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, pages 136–145, 2001.

[CDD+04] Ran Canetti, Ivan Damgård, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. Adaptive versus
non-adaptive security of multi-party protocols. J. Cryptology, 17(3):153–207, 2004.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In CRYPTO, pages 174–187, 1994.

[CDSMW09a] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved non-committing
encryption with applications to adaptively secure protocols. In ASIACRYPT, pages 287–302, 2009.

[CDSMW09b] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-box construc-
tions of adaptively secure protocols. In TCC, pages 387–402, 2009.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computa-
tion. In STOC, pages 639–648, 1996.

[CHK05] Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure, non-interactive public-key encryp-
tion. In TCC, pages 150–168, 2005.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In STOC, 2002.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen cipher-
text secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[DJ03] Ivan Damgård and Mads Jurik. A length-flexible threshold cryptosystem with applications. In ACISP,
pages 350–364, 2003.

[DJN10] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen. A generalization of paillier’s public-key system
with applications to electronic voting. Int. J. Inf. Sec., 9(6):371–385, 2010.

[DN00] Ivan Damgård and Jesper Buus Nielsen. Improved non-committing encryption schemes based on a
general complexity assumption. In CRYPTO, pages 432–450, 2000.

36

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally composable
commitment schemes with constant expansion factor. In CRYPTO, pages 581–596, 2002.

[DN03] Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient multiparty computation
from threshold homomorphic encryption. In CRYPTO, pages 247–264, 2003.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In CRYPTO, pages 643–662, 2012.

[FHKW10] Serge Fehr, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Encryption schemes secure against
chosen-ciphertext selective opening attacks. In EUROCRYPT, pages 381–402, 2010.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof systems
for np. J. Cryptology, 9(3):167–190, 1996.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University Press,
2004.

[GS12] Sanjam Garg and Amit Sahai. Adaptively secure multi-party computation with dishonest majority. In
CRYPTO, pages 105–123, 2012.

[GWZ09] Juan A. Garay, Daniel Wichs, and Hong-Sheng Zhou. Somewhat non-committing encryption and
efficient adaptively secure oblivious transfer. In CRYPTO, pages 505–523, 2009.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer -
efficiently. In CRYPTO, pages 572–591, 2008.

[JL00] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography: Introducing
concurrency, removing erasures. In EUROCRYPT, pages 221–242, 2000.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In CRYPTO,
pages 335–354, 2004.

[KTZ13] Jonathan Katz, Aishwarya Thiruvengadam, and Hong-Sheng Zhou. Feasibility and infeasibility of
adaptively secure fully homomorphic encryption. In Public Key Cryptography, pages 14–31, 2013.

[Lin09] Yehuda Lindell. Adaptively secure two-party computation with erasures. In CT-RSA, pages 117–132,
2009.

[LP09] Y. Lindell and B. Pinkas. A proof of security of yaos protocol for two-party computation. Journal of
Cryptology, 22(2):161–188, 2009.

[LP12] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious trans-
fer. J. Cryptology, 25(4):680–722, 2012.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In CRYPTO, pages 111–126, 2002.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new
approach to practical active-secure two-party computation. In CRYPTO, pages 681–700, 2012.

[NR95] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of
psuedo-random functions. In FOCS, pages 170–181, 1995.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EURO-
CRYPT, pages 223–238, 1999.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO, pages 554–571, 2008.

37

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In CRYPTO, pages 239–
252, 1989.

[WW06] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In EUROCRYPT, pages 222–232,
2006.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160–
164, 1982.

A The DDH-Based OT from [PVW08]

In this section we recall the DDH-based PVW OT construction [PVW08]. We begin with their DDH-based
dual-mode PKE ΠDUAL that is specified by the algorithms (SetupMessy, SetupDecryption, dGen, dEnc, dDec,
FindBranch,TrapKeyGen) described below.

• SetupMessy and SetupDecryption are the two algorithms for generating system parameters in messy
and decryption mode respectively. Both starts by choosing G = Gg,p specified by a generator g and
its prime order p.

SetupMessy(1n): Choose (g0, g1, h0, h1) such that g0, g1 are random generators in G and hi = gyii
for y0, y1 ∈ Zp. The CRS is (g0, g1, h0, h1) and the decryption trapdoor t is (y0, y1).

SetupDecryption(1n): Choose (g0, g1, h0, h1) such that g0 is a random generator in G and g1 = gx0
for x ∈ Zp and hi = gyi for y ∈ Zp. The CRS is (g0, g1, h0, h1) and the decryption trapdoor t is x.

• dGen is the key generation algorithm that takes a bit α and the CRS as input. If α = 0, then it
generates left public and secret key pair. Otherwise, it creates right public and secret key pair.

dGen(α): Choose r ← Zp. Let g = grα and h = hrα, then PK = (g, h) and SK = r.

• dEnc is the encryption algorithm that takes a bit β, a public key PK = (g, h) and a message m as
input. If β = 0, the it creates the left encryption of m, else it creates the right encryption. Given β, it
chooses u, v and computes the ciphertext as c← ((gβ)u(hβ)v, guhum).

• dDec decrypts a message given a ciphertext and a secret key SK. Given c = (c0, c1), it outputs
c1/(c0)SK.

• FindBranch(t, PK) finds whether a given public key (in messy mode) is left key or right key given the
messy mode trapdoor t = (y0, y1) such that y0 6= y1. Given a public key PK = (g, h) created when
the CRS is in messy mode, the algorithm says PK is a left key if h = gy0 and right key otherwise.

• TrapKeyGen(t) generates a public key and two secret keys using the decryption mode trapdoor t such
that both left encryption as well as the right encryption using the public key can be decrypted using the
secret keys. Given decryption mode trapdoor t, it picks a random t ∈ Zp and computes PK = (gr0, h

r
0)

and outputs PK, r, r/t.

Protocol 7 (UC static malicious OT)

• Inputs: Sender SEN has x0, x1 ∈ {0, 1} and receiver REC has σ ∈ {0, 1}.

• Auxiliary Input: A group description G = Gg,p specified by a generator g and its prime order p.

• CRS: (g0, g1, h0, h1) generated either by SetupMessy or SetupDecryption.

• The Protocol:

38

1. Message from the receiver. REC picks sends SEN PK, where (PK, SK)← dGen(σ).

2. Message from the sender. Upon receiving two elements PK = (g, h), SEN generates c0 ← dEncPK(x0, 0)
and c1 ← dEncPK(x1, 1) and sends (c0, c1) to REC.

3. Output. Upon receiving (c0 = (c00, c01), c1 = (c10, c11)), REC outputs dDecSK(cσ).

Theorem A.1 ([PVW08]) Assume that ΠDUAL is a dual-mode PKE. Then Protocol 7 UC realizes FOT in
the presence of static malicious adversaries.

39

