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Abstract—The “certificate authority” model for authenticating
public keys of websites has been attacked in recent years, and
several proposals have been made to reinforce it. We develop and
extend “certificate transparency”, a proposal in this direction, so
that it efficiently handles certificate revocation. We show how
this extension can be used to build a secure end-to-end email
or messaging system using PKI with no requirement to trust
certificate authorities, or to rely on complex peer-to-peer key-
signing arrangements such as PGP. We believe this finally makes
end-to-end encrypted email as usable as encrypted web browsing
is today, addressing the concerns of a classic paper explaining the
difficulties users face in encrypting emails (“Why Johnny can’t
encrypt”, 1999). Underlying these ideas is a new attacker model
appropriate for cloud computing, which we call “malicious-but-
cautious”.

1 Introduction

1.1 Background and motivation

Public-key cryptography relies on entities being able to
obtain authentic copies of other entities’ public keys. For
example, suppose a user wishes to log in to their bank account
through their web browser. The web session will be secured by
the public key of the bank. If the user’s web browser accepts
the wrong public key for the bank, then the traffic (including
login credentials) can be intercepted and manipulated by an
attacker.

In order to avoid such attacks, certificate authorities (CAs)
are used assure an entity about the public key of another
one. In the example given, the browser is presented with a
public key certificate for the bank, which is intended to be
unforgeable evidence that the given public key is the correct
one for the bank. The certificate is digitally signed by a
CA. The browser is pre-configured to accept certificates from
certain known CAs. A typical installation of Firefox has about
100 CAs in its database.

Aside from cryptography issues [41], [29], [28], there are
two big problems with the CA model. Firstly, CAs must be
assumed to be trustworthy. If a CA is dishonest or com-
promised, it may issue certificates asserting the authenticity
of fake keys; those keys could be created by an attacker or
by the CA itself. Unfortunately, the assumption of honesty
does not scale up very well. As already mentioned, a browser
typically has hundreds of CAs registered in it, and the user

cannot be expected to have evaluated the trustworthiness of
all of them. This fact has been exploited by attackers. If an
attacker manages to insert a malicious CA into the user’s
browser, the attacker can get the browser to accept fake keys
for standard services (such as bank web sites and webmail
sites). Then the attacker can intercept and manipulate the user’s
traffic with those sites. Many attacks based on these ideas have
been reported [12], [20], [16], [44], [46], [35]. In 2011, two
CAs were compromised: Comodo [26] and DigiNotar [7]. In
both cases, certificates for high-profile sites were illegitimately
obtained, and in the second case, reportedly used in an MITM
attack [8].

A second problem with the CA model is key revocation.
If a certificate owner loses control of its private key, it needs
to revoke the certificate before its expiration date. Currently,
web browsers attempt to check revocation on the fly: the
browser queries the CA to verify that a certificate hasn’t been
revoked. Unfortunately, that solution doesn’t work well; it
poses a large burden on CAs to respond to such requests;
it can be defeated by attackers that block such requests; and
it has privacy implications for web users.

Several interesting solutions have been proposed to address
these problems. (For a good survey, see [13].) Certificate
pinning addresses the problem of untrustworthy CAs, by
restricting in the client browser parameters concerning the set
of CAs that are considered entitled to certify the key for a
given domain [1], [21]. Crowd-sourcing techniques have been
proposed in order to detect untrustworthy CAs, by enabling a
browser to obtain warnings if the certificates it is offered are
out of line with those that other people are being offered [11],
[17], [14], [4]. In another direction, certificate transparency [6]
is an approach which aims to prevent certificate authorities
from issuing public key certificates for a domain without
being visible to the owner of the domain. The core idea is
that a public append-only log is maintained, showing all the
certificates that have been issued. A certificate is accepted only
if it is accompanied by a proof that it has been inserted into
the log.

Solutions for revocation management have also been pro-
posed; they mostly involve periodically pushing revocation
lists to browsers, in order to remove the need for on-the-fly
revocation checking [18], [2]. However, this solution creates
a window during which the browser’s revocation lists are out
of date until the next push. Revocation transparency [5] is



an extension of certificate transparency that aims to deal with
revocation, although (as we later explain) we believe it does
not scale up, since it requires space and time that is linear in
the number of revocations.

1.2 Extending certificate transparency

Certificate transparency solves the problem that CAs are
required to be trusted. It uses public logs and optionally gossip
protocols to ensure that CAs leave persistent evidence of all
the certificates they issue. In that way, the activities of a CA
are visible (“transparent”) to its users and to observers. Users
accept a certificate only if it is accompanied by a proof that
it is included in the log. The proofs are short and efficiently
verifiable by browsers. Even if there are 109 certificates, the
proofs amount to 1KB or 2KB of data.

Unfortunately, certificate transparency does not handle revo-
cation efficiently. The core proposal in the IETF draft [6] does
not specify any revocation mechanism. An informal proposal
for handling revocation exists [5], but adopting it has the side-
effect of dramatically reducing the efficiency of certificate
transparency. Roughly speaking, the size of proofs goes from
1KB or 2KB to tens or hundreds of GB.

We extend certificate transparency to handle revocation
efficiently. In our extension, proofs that a key is current (i.e.,
issued and not revoked) are as efficient as proofs of issuance
in certificate transparency. Proofs of absence (i.e., proofs that
a CA has not issued any certificates for a subject) are also as
efficient. Thus, all the proofs that browsers request are efficient
in our extension.

1.3 End-to-end encrypted mail

Public-key cryptography was invented to allow users to send
encrypted mail1; nevertheless, 35 years later, in practice it is
rather hard for users to encrypt their mail in a systematic
way. “Why Johnny can’t encrypt” is a 1999 classic paper [23]
explaining why PGP encryption for email has failed to take
off. This failure of adoption of encryption for mail is in marked
contrast with the encryption for the web, where encrypted
browsing is routinely done by billions of users each day.
Numerous efforts to improve this situation have been made
(a brief review is in §2.4), but none of them simultaneously
satisfy the requirements of usability (users should not be
required to understand anything about keys, or to take any
special actions) and security (encryption should be end-to-
end, and there should be no trusted parties).

Certificate transparency was developed for web certificates,
but we demonstrate in this paper that, once extended to handle
revocation efficiently, it has the ability to solve the problem
of end-to-end encrypted email too. As mentioned, the core
property of certificate transparency is that it allows CAs to be
untrusted. By using (our extension of) certificate transparency

1Indeed, the first line of the 1978 RSA paper is: The era of “electronic
mail” may soon be upon us; we must ensure that [. . . ] messages are private.

as a foundation, we detail a method in which an untrusted
provider can act both as a CA and as a provider of the email
service. This allows users to send encrypted mail without
having to understand anything about keys or certificates, and
without having to rely on any trusted parties.

1.4 Our contribution

We develop and extend the idea of certificate transparency,
and we apply it to email encryption. In particular,
• We rework certificate transparency so that it properly

handles revocation, in space/time which is logarithmic
in the number of revocations.

• We show how it can be used to build a usable and secure
email or messaging service using PKI with no trusted
parties.

• We develop a new attacker model appropriate for cloud
computing, which we call “malicious-but-cautious”.

Structure of paper: In section 2, we review some background
material on which the paper relies. Section 3 details our
extension to certificate transparency, which we call certificate
issuance and revocation transparency (CIRT) to emphasise
that it efficiently handles certificate revocation as well as
issuance. In section 4, we describe the application of CIRT
to email, and show that it enables end-to-end encrypted email
without requiring any trusted parties (such as CAs), and
without requiring any additional understanding or effort from
users. Discussion of our attacker model, called the “malicious
but cautious” attacker, is made in section 5.

2 Background

We review some of the background material on which the
paper relies.

2.1 Merkle trees

A Merkle tree is a tree in which every node is labelled with
the hash of the labels of its children nodes, and possibly some
other values. Suppose a node has n children labelled with
hash values v1, . . . , vn, and has data d. Then the hash value
label of the node is the hash of v1, . . . , vn, d. Merkle trees
allow efficient proofs that they contain certain data. To prove
that a certain data item d is part of a Merkle tree requires an
amount of data proportional to the log of the number of nodes
of the tree. (This contrasts with hash lists, where the amount
is proportional to the number of nodes.)

Example: Figure 1 shows a Merkle tree containing data
items c1, . . . , c6 stored at the leaf nodes (in this tree, there
are no data items stored at non-leaf nodes). Figure 2 shows
a larger Merkle tree containing data items c1, . . . , c32 (again
in this case stored only at leaves). To demonstrate that c11 is
present in the tree, it is sufficient to provide the additional data
c12, h5, h14, h16, h20, i.e. one data item per layer of the tree.
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Fig. 1. A Merkle tree containing items c1, . . . , c6.

The recipient of this data can then verify the correctness of the
root hash h21. Proving that one Merkle tree extends another
can also be done in logarithmic space and time, by providing
at most one hash value per layer. For example, to demonstrate
that the tree of Figure 2 is an extension of the one in Figure
1, it is sufficient to provide the data h4, h17, h20.

2.2 Certificate transparency

Certificate transparency [6], [9], [40] is a technique invented
by Google that aims to prevent TLS [33], [47], [32] certificate
authorities from issuing public key certificates for a domain
without being visible to the owner of the domain. It is aimed
at website certificates, and the technology is being built into
Google Chrome.

The core idea is that a public log is maintained, showing
all the certificates that have been issued. The log is append-
only. Anyone can append a certificate to the log. Auditors can
obtain two types of proofs: (a) a proof that the log contains
a given certificate, and (b) a proof that a snapshot of the log
is an extension of another snapshot (i.e., only appends have
taken place between the two snapshot).

Abstractly, we may consider a certificate as a signed pair
(subj , pk subj ), asserting that a subject subj ’s public key
is pk subj . In certificate transparency, the CA’s database of
certificates is maintained as a Merkle tree in which these pairs
are stored left-to-right in chronological order at the leaves of
the tree (Figures 1 and 2). Items are added chronologically,
by extending the tree to the right. A certificate is accepted
by a browser only if it is accompanied by a proof that the
subject-key pair has been inserted into the log. Observers can
check that the log is maintained as append-only. To perform
such a check, the observer submits to the CA the hash value
of the log at two different times. The CA returns a proof that
the log corresponding to the later hash value is an extension
of the log at the earlier time. The properties of Merkle trees
ensure that insertion into the log, and both proofs (the proof
of presence in the log, and the proof of extension of the log),
can be done in time/space O(log n).

Linearity: It is vital that the log is a single linear record. If the
log maintainer can create different versions of the log to show
to different users, the security is lost. Linearity is maintained
in two ways. Firstly, whenever a user interacts with the log,
it requests proof that the current snapshot is an extension
of the previously cached snapshot. This is best done before
authentication, to avoid the possibility that a version specially
constructed for a particular user is being used. Second, gossip
protocols [15] can be used to disseminate values of the log.
This means that users of the log (that is, client browsers) need
to have a way to exchange with other users the value of the
hash of the log that they have received. At any time, a user
can request proof that the snapshot currently offered by the
log is an extension of a previous snapshot received through
direct communication with other users.

2.2.1 Revocation transparency: In certificate transparency,
one can prove that a certificate is in the log, but there is no
notion of whether it is still current. Revocation transparency
[5] is an extension of certificate transparency that aims to
deal with revocation. Two alternative methods for revocation
transparency are proposed. The first method stores revocations
in a data structure called a sparse Merkle tree, which is a
Merkle tree in which most of the leaves are zero. A path in this
tree has length 256, and represents the hash of a certificate. The
path ends in a 1 or 0 leaf according to whether the certificate
is revoked or not. The tree is thus a binary tree with 2256

leaves, but because it is sparse, these leaves do not have to be
stored individually. To revoke a certificate, one alters the sparse
Merkle tree so that the relevant path terminates in a 1, and one
enters a record of this action in the certificate-transparency
append-only log. Unfortunately, checking whether a certificate
has been revoked is inefficient. One method is to track the
revocations by a separate mechanism, an action which is
linear in the number of revocations, which in turn can be
assumed proportional to the number of issued certificates.
Alternatively, one can check the entire certificate-transparency
log for revocation records, but this is again linear in the
number of issued certificates. In §3.2, we show that proofs
requiring linear space and time require data sizes measured in
tens or hundreds of gigabytes, which makes them impractical.

As mentioned, the sparse Merkle tree is one of the proposed
data structures for revocation transparency. The other one is a
sorted list organised as a search tree. It is also used in con-
junction with the certificate-transparency log. But, similarly to
the sparse Merkle tree, the ideas only address how revocations
should be stored. Checking revocations remains linear in the
number of issued certificates.

2.3 Other approaches to handling certificates se-
curely

There are many other proposals for ensuring the authenticity
of public key certificates. Early ones are based on croud-
sourcing, where a user’s assurance that a certificate is genuine
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Fig. 2. A Merkle tree containing items c1, . . . , c32. To demonstrate that c11 is present in the tree, it is sufficient to provide the additional data
c12, h5, h14, h16, h20. To demonstrate that this tree is an extension of the one in the previous figure, it is sufficient to provide the data h4, h17, h20.

is increased if other users have received the same certificate.
Proposals in this vein include the SSL Observatory [25];
Certificate Patrol [24]; Perspectives [48]; DoubleCheck [30];
CertLock [45]; Covergence [42]; and TACK (2012) [43]. There
are also approaches based on using DNS, such as DANE [36];
and CAge (13’) [38].

Sovereign Keys [34] is, like certificate transparency, based
on the idea of a public log. Another recent proposal that
mixes several ideas and also relies heavily on public logs is
Accountable Key Infrastructure (AKI) [39].

2.4 End-to-end email encryption

As well as being useful to authenticate public keys for
organisations and web sites, public-key certificates can be
used for individuals, allowing end-to-end encrypted email. If
Alice wishes to send an encrypted email to Bob, she needs
to obtain an authentic copy of Bob’s public key. There are
two main standards in use for public key encryption of email,
called S/MIME2 and PGP3. They both require the user’s client
software to maintain the user’s private key, and the public keys
of the people she exchanges email with. The main conceptual
difference between S/MIME and PGP is the way in which a
user verifies that he has an authentic copy of another user’s
public key. In S/MIME, public keys come with a certificate
from a CA. If Bob is an employee of a large corporation such
as Boeing, his company may act as a certificate authority for
his email public key. But if Bob’s email address is from a
smaller organisation or is not a company address, there is no
natural certificate authority. If there is one, then as previously
mentioned, users have to assume it is honest, which may
not be a reasonable assumption. For these reasons, S/MIME

2S/MIME stands for Secure MIME, and was designed in 1995 as an
extension of the MIME format. MIME stands for Multipurpose Internet Mail
Extensions and is the standard for email attachments. S/MIME version 3
(1999) is standardised by IETF.

3The first version of PGP was designed in 1991. The name, Pretty Good
Privacy, is intended to be humorously ironic. OpenPGP, created in 1997, is
an open specification being standardised by IETF.

really works only in a large corporation environment, where
the corporation can act as a CA for all its employees. It is
natural for both employees and external users that correspond
with employees to trust the corporation for email related to
its business. S/MIME works less well for small organisations,
because they may not wish to take on the complexities of
being a CA.

PGP is targeted at individual email users rather than corpo-
rate users, and aims to avoid the requirement of “authorities”
that certify public keys. This recognises that, in the case of
individuals, there are no entities that can fulfil the requirements
of being a CA (namely: well-known, trusted by all users,
and free to use). To solve this, PGP spreads the certifying
role across a set of users, each of whom are somewhat
trusted and somewhat known to the sender and receiver, with
the expectation that, taken together, this comprises enough
evidence for the authenticity of the public key. By signing
each other’s keys in a peer-to-peer fashion, PGP users create
a “web of trust” that works not because of some highly trusted
pillars like CAs, but because all the users support the trust web
in a small way.

2.4.1 Inhibitors to take-up of email encryption: In spite
of support on all major client software and significant efforts
at supporting take-up, very few people use encrypted mail.
Yet, there are substantial motivations, including compliance
requirements as well as confidentiality requirements. End-to-
end encrypted mail seems to have a dedicated following among
a small number of people in very specific sectors.

“Why Johnny can’t encrypt” is a 1999 classic paper [23]
explaining why PGP encryption for email has failed to take
off. Other papers have developed the explanation further. The
reasons encrypted email is not routinely used are:

• It is too complicated for users to understand the model.
S/MIME is presented to users in a gobbledygook way,
asking them to understand public and private keys, key
servers, certificates, certificate authorities, etc. Most users



don’t want to have to spend time learning this sort of stuff.
The pain outweighs the gain.

• S/MIME assumes a hierarchical certificate-authority sys-
tem for certifying keys which is expensive and cumber-
some even for companies, and it appears to be prohibitive
for SMEs and individuals. PGP is aimed more at in-
dividuals, having a peer-to-peer certifying arrangement,
but this also has proved impossible for any but the most
determined users to master.

• Even when set up on one platform (e.g., work desktop),
the set-up has to be done again on other platforms (laptop,
phone) and is different each time. Again, users have to
copy keys around between devices, and the set-up is
different in different contexts (desktop, mobile, webmail,
etc.).

2.4.2 Identity-based encryption: Identity-based encryption
(IBE) [3], [10] aims to solve the problem of having to
certify public keys for individuals, by instead offering the
possibility of using a string representing their identity (e.g.,
their email address string) as the public key. An identity
provider publishes a single public key (certified in the usual
way), and then, for each registered email address, it computes
a private key for the holder of the email address, and securely
transmits it to him. The encryption primitive takes as input
the provider’s public key, the email address of the addressee,
and the message, and returns a ciphertext. The ciphertext can
now be decrypted using the private key given by the provider
to the email address holder.

IBE is an attractive solution, because people are used to the
idea that a person is represented by a human-readable string
like an email address, rather than a public key. Unfortunately,
in IBE the identity provider computes the private keys for all
users, which means that the identity provider can decrypt any
ciphertext: this is called the key-escrow problem. Key escrow
can be considered reasonable in a corporate setting, where
mail is owned by the organisation, but not in other settings.
Another difficulty with IBE is key revocation, since the public
key is the email address.

Certificateless encryption [19] solves the key-escrow prob-
lem of IBE by allowing users to create by themselves a
public/private pair, which act in conjunction with, respectively,
the public email address and private key created by the
provider. In this setting, the encryption primitive takes as input
the provider’s public key, the addressee’s additional public
item, the email address of the addressee, and the message,
and returns a ciphertext. The ciphertext can now be decrypted
using the additional private item, and the private key given
by the provider to the email address holder. The identity
provider can’t decrypt because it doesn’t have the private item.
The public item does not need to be certified, justifying the
name “certificateless”, because a third party that fakes the
public item is not in possession of the private key from the
identity provider and therefore cannot decrypt. A remaining

weakness is that the identity provider can fake the public
item, allowing it to mount “active” attacks, but this is still
an improvement over IBE where the identity provider can
passively decrypt. Certificateless encryption does not solve the
revocation problem.

3 Certificate issuance and revocation trans-
parency (CIRT)

We detail our extension of certificate transparency, in par-
ticular showing how a certificate authority can create efficient
proofs that a given key is current (issued and not revoked).

3.1 Proving correct management of certificates

We propose a method which allows users of public keys to
rely on certificate authorities without having to trust them. To
put this another way, the method allows CAs to prove to users
that they have behaved correctly. This solves the core problem
related to certificate authorities. It also allows companies to
provide end-to-end encrypted email in a form that is as user-
friendly as ordinary email is today.

The method uses many ideas from certificate transparency
(§2.2). In particular, a public append-only log is maintained
of the certificates issued by a given certificate authority. In
our method, the maintainer of the log can offer a proof that
a certain certificate is current in the log, i.e., it has not been
replaced or revoked. This is in contrast with certificate trans-
parency, where proofs are that a certain certificate is present
in the log, but not necessarily current. There are attempts to
make certificate revocation work with certificate transparency,
but as mentioned in §2.2.1 they require space/time which is
linear (rather than logarithmic) in the number of certificates
issued, and therefore the methods do not scale up. We describe
and quantify this scalability aspect in §3.2.

A certificate prover (CP) is an entity that maintains a public
log of certificates issued by a certificate authority. CP is able to
issue proofs of extension of the log (that is, that the log is only
ever appended), and proofs of currency of a given certificate.
Suppose that CP’s log consists of a collection of certificates:

db = [cert(Alice, pkAlice), cert(Bob, pkBob), . . .] .

To demonstrate its correct behaviour, CP must offer the
services listed in Figure 3. It is important that these operations
are done efficiently. More precisely, the data structure used for
db must allow these operations to be done so that the time and
transferred data is proportional to O(log n) or better, where
n is the number of certificates stored.

The database of certificates is maintained as a pair of
Merkle trees. In the first tree, items are stored left-to-right in
chronological order, as in certificate transparency. We call this
tree ChronTree. Certificates are added chronologically, by ex-
tending the tree to the right (see Figures 1 and 2). Revocation
of a certificate is done by adding a new (perhaps null) key
for the subject. Thus, a key for a subject is considered current



input result

– h(db): the hash of the current database

(subj , pk subj ) Insertion: the certificate
cert(subj , pk subj ) is inserted into the
database.

(subj , pk subj ) Revocation: the certificate
cert(subj , pk subj ) is marked as revoked
in the database.

h(db), h(db′) Extension proof: a proof that db′ is an
append-only extension of db. We write
this as h(db) v h(db′)

h(db), subj Currency proof: a proof that
cert(subj , pk subj ) is current according to
db

h(db), subj Absence proof: a proof that there are no
certificates for subj in db

Fig. 3. Services offered by a certificate prover.

only if there is no later item for the subject. Using this tree,
insertion, revocation and the extension proof are O(log n),
by exploiting the properties of Merkle trees. However, as in
certificate transparency, the currency proof is O(n) because
one has to show that a given key has not been revoked; this
involves enumerating all the transactions that took place after
the key was inserted. Similarly, an absence proof involves
enumerating the whole tree.

To address this limitation, we additionally store the database
as another Merkle tree, this time organised as a binary
search tree, which we call LexTree. More precisely, the items
(subj , (pk subj ,1, pk subj ,2, . . .)) are stored at leaf and non-
leaf nodes such that a left-right traversal yields the data in
lexicographic order of the subject subj . Figure 4 shows an
example, where the items di have the form

di =
(
subji, (certi,1, certi,2, . . .)

)
and subj1, . . . , subj11 are in lexicographic order. The size
of the list of certificates (certi,1, certi,2, . . .) is bounded by
a constant N in LexTree; in other words, we only store
up to N − 1 revoked keys, and throw older ones away. A
list of keys is stored for each subject, of which only the
last one is the current one (the others are revoked). Here,
insertion, revocation, currency proofs and absence proofs are
O(log n). For example, a proof that cert(Alice, pkAlice) is
current consists of showing that d = (Alice,LAlice) is in
LexTree (which is done in logarithmic time, using standard
Merkle tree proofs), and showing that pkAlice is the last item
in LAlice , which is done in constant time since the length of
LAlice is bounded by a constant. Absence proofs (e.g., a proof
that there are no keys for Bob in LexTree) can be done by
showing that (subj1 ,Lsubj1 ) and (subj2 ,Lsubj2 ) are adjacent
in the left-right traversal of LexTree, while lexicographically
we have subj1 ≤ Bob ≤ subj2; this is also O(log n).

d8
h(d8,h(d4,h(d2,h(d1),h(d3)),h(d6,h(d5),h(d7))),h(d10,h(d9),h(d11))

d4
h(d4,h(d2,h(d1),h(d3)),h(d6,h(d5),h(d7)))

d2
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d1
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h(d9)
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Fig. 4. An example of LexTree. The data items di have the form(
subji, (certi,1, certi,2, . . .)

)
, and subj1, . . . , subj11 are in lexicographic

order.

However, to prove extension between db1 and db2 proof is
now O(n) because one has to consider each item that has
been added between db1 and db2.

To obtain efficient proofs for both certificate currency and
database extension, we use the two trees together. The database
is a pair of Merkle trees (ChronTree, LexTree). Insertion
and revocation are done on both trees together, to ensure
consistency. Extension and currency proofs are done using
ChronTree and LexTree respectively, so all the operations may
be done in time and space O(log n).

The definition of h(db) is the Merkle hash value at the root
of ChronTree, concatenated with that at the root of LexTree.
One still has to verify that the two parts of the data structure
are maintained consistently with each other. This verification
requires O(n) time and space, but it does not have to be
computed by any particular user’s browser. There are two ways
that can be used to achieve this efficiently.

• Random checking by users’ client software. The client
software specifies a set of randomly chosen paths in
ChronTree (resp. LexTree) and requests proof that the
certificates on those paths are correctly present in LexTree
(resp. ChronTree).

• Public auditor. The auditor receives all the updates from
CP and maintains its own version of the two trees. It
compares the h(db) with the one reported by the log.
Anyone can be a public auditor.

In summary, we extend certificate transparency by using
two data structures, which are optimised for different kinds
of proofs of transparency, and observers and users perform
audits and random checks to ensure that the two data structures
are maintained consistently. As in certificate transparency,
linearity of the log is vital, and we use extension proofs and
gossip protocols to ensure it (explained in §2.2).



Coverage of random checking: We briefly demonstrate that
the random checking mentioned above is sufficient in terms
of the likelihood of detecting cheating. Suppose we want to
have a probability of 0.5 or more of achieving such detection.

Suppose there are n users, and each user logs in on average
once per day, and one random check is made at each login.
Then there are n random checks per day. Suppose a proportion
v of the real users are “victims” (that is, out of n real users, the
provider is cheating on nv of them by including a certificate
for them in LexTree but not ChronTree, or ChronTree but not
LexTree.) Then the probability of non-detection on a single
check is 1 − v, and the probability of non-detection within t
days when there are n checks per day is

(1− v)nt

Suppose we set this at 0.5. Assuming that v is small (e.g.,
0 ≤ v ≤ 0.1), and approximating ln 2 as 1, this is equivalent
to:

nvt = 1

Thus, the time to detect cheating with probability 0.5 depends
on n and v, and is better when both n and v are large. We
plot two of these variables against each other (with the third
one fixed, as indicated) in the graphs of Figure 5.

3.2 Space and time

In this section, we demonstrate the importance of the log
proofs requiring space/time proportional to O(log n) rather
than O(n), by calculating some typical values. We suppose
the database is required to store keys for one billion (109)
subjects, who register with the service over a 10 year period.
We also suppose that, on average, 5% of the keys are revoked
each year. This amounts to 270,000 sign-ups per day and
140,000 revocations per day, a total of 410,000 transactions
per day. Insertion and revocation each involve in the order
of log2 109 ≈ 30 operations on each tree. This will take
negligible time.

Extension proof: Suppose a user has used the service and
cached h(db1), and ten days later uses the service again and
obtains h(db2). The user’s software requests a proof that
h(db1) v h(db2). This proof is provided by CP by comparing
ChronTree1 and ChronTree2 corresponding to the two hashes.
Thanks to the property of Merkle trees, the size of proof that
CP provides is independent of the number of transactions that
have taken place between db1 and db2 (in our example, it is
about 1.4 million transactions). The proof consists of about
30 hash values, together with 30 other values. This is about
2 KB of data.

Currency proof: Suppose a user wishes to obtain the current
key, with proof, for joeblogs@example.com. This proof is
provided by CP using LexTree, which is also a Merkle tree.
Because this tree is organised in order of subject identities,

all the information about joeblogs is in the same place. CP
merely has to prove the presence of the list of keys stored for
joeblogs. Exploiting the properties of Merkle trees, the proof
again consists of about 30 hashes and 30 other values, again
2 KB of data.

Necessity of both trees: Note that it is vital to store both
trees. A currency proof done with LexTree, or an extension
proof done with ChronTree, would be prohibitively expensive.
To illustrate this, consider again the user that previously stored
h(db1), and ten days later uses the service and obtains h(db2).
The user’s software requests a proof that h(db1) v h(db2),
and the proof is provided by CP by comparing LexTree1 and
LexTree2. Because the 4.1 million transactions that took place
in the last 10 days are scattered throughout the tree, CP has to
provide each transaction in turn along with the data required
to verify it. This amount of data is 4.1 million times 2 KB,
or about 10 GB. This is too much data and takes the user’s
software too long to download and process.

Consistency proof: Suppose an auditor wishes to check the
consistency of the database represented by h(db2). The naive
approach is to request a full account of all the sign-ups
and revocations, and recompute (ChronTree, LexTree). This
requires downloading all 109 certificates (which is in the order
of 109 × 60 bytes, or 60 GB).

This can be improved considerably, but it is still O(m)
where m is the number of transactions that have taken place
since the last audit. Suppose the auditor has previously con-
ducted an audit for h(db1) done the previous day. The auditor
now requests the transactions that have taken place in the last
day, i.e., between h(db1) and h(db2). As mentioned, there are
410,000 transactions per day. He also requests the necessary
parts of the Merkle trees to verify each transaction, one by one.
As above, about 2 KB of data is required per transaction. So
the auditor needs to download 800 MB per day. If he chooses
to audit every hour instead, it is 30 MB of data for each audit.

Summary of method: Users efficiently verify short proofs
that the certificate prover is honest in respect of the data
of concern to the user (her own certificates and those of
her associates). An auditor monitors larger proofs that the
certificate prover is maintaining data structures consistently.

4 Application to email

The ideas of the preceding sections imply a way to manage
email encryption key certificates which yields a system for
end-to-end email encryption enjoying high degrees of security
and user friendliness.

The core idea is that the email provider can at once be the
certificate authority for its users, the maintainer of the CA log,
and also the provider of storage for encrypted email. By using
(our extension of) certificate transparency, the provider acting
in this way is not required to be trusted by users.
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Fig. 5. Plots showing the coverage of random checking of the consistency of ChronTree and LexTree. Here, n is the number of users, and also the number
of consistency checks per day. The time in days to detect inconsistency with probability 0.5 or greater is t, while v is the proportion of certificate subjects
about whom the CA tries to cheat. The graphs show that cheating is detected within a few hours (0.1 days) provided there are enough subjects (e.g., more
than 1000) and the victim rate v is not too small.

Although our provider is not required to be trusted, we
assume it is not totally malicious either. Service providers
today are large corporations, such as Google, Amazon, and
Microsoft; they should not be trusted, although of course they
do make great efforts to protect users’ data from third-party
attackers, and they have much to lose if those users take
their custom elsewhere. The email system we detail below
uses certificate transparency to ensure that the service provider
cannot cheat without leaving evidence of its having cheated;
moreover, that evidence is

• Persistent: the service provider cannot avoid leaving it,
and cannot erase it;

• Readily verifiable: one can see that the evidence is
indeed evidence that the service provider has cheated;

• Transferable: the evidence is meaningful to arbitrary
observers, not just to the victim.

More precisely, the provider could, if it wished, certify a
bogus key for a user, and then decrypt subsequent mail for
the user. However, because this would be quickly detected,
the provider will not launch such an attack. If the provider is
a large organisation with a reputation to protect, it will not
launch any attacks that could lead to evidence of its cheating.

4.1 The protocol

A user is assumed to have a mail provider (MP) that
provides an email address and sending/receiving services (such
as SMTP and IMAP), as well as email storage. The user
also subscribes to a certificate prover service (CP). CP is a
CA which maintains an certificate issuance and revocation
transparency (CIRT) log of its certificates. In practice (as
indicated above), we expect MP and CP to be the same
provider. However, a user wishing to preserve an existing
email address with an existing MP could use the services of
a separate CP.

In brief, the protocol works as follows:

• Users have private/public keys, which are created and
managed by the client email browser application.

• CP certifies the users’ public keys, and maintains a

database relating each public keys and email address4.
It uses CIRT to maintain an append-only log of the
certificates it issues and revokes.

Users’ software automatically requests the log hashes and
requests and validates proofs of extension and certificate
currency, as detailed in the following sections.

4.1.1 Sign-up, sending, and receiving mail:

Alice signs up: Assume that Alice has downloaded an
appropriate application, or installed an extension in her Out-
look/Thunderbird, or is using an appropriately configured web
app. For simplicity, we refer to Alice’s client program as the
application. At sign-up time, Alice’s client software registers
with CP her new or existing email address that she has with
MP; then it creates her secret and public keys, and stores them
in encrypted form with CP. The key for this encryption is noted
k below. In more detail:

1) The application fetches current h(db) from CP, and
stores it.

2) Alice enters user-name, say “alice@example.com”, and
chooses a new password pw . The software chooses an
encryption key k, which is stored securely on Alice’s
device. (Alternatively, to avoid storing k on the device,
the authentication password pw and key k could be
derived from a strong passphrase chosen by the user.)

3) CP creates an account for Alice, with user name “al-
ice@example.com” and password pw .

4) The application creates public key pair pkAlice , skAlice .
5) The application stores

(Alice, pkAlice , {h(db), skAlice , . . .}k ) with CP.
6) The application makes a random check of log consis-

tency, as detailed in §3.1.
In these steps, Alice’s application stores her encrypted secret
keys with CP, along with the current snapshot of the hash of
the log which is also in the encrypted package. This is used
later to verify that the log is correctly operated “append-only”,

4Storing email addresses in the clear may be undesirable, for privacy and
anti-spam reasons. To avoid this, the database and the logs and accompanying
proofs can have hashes of addresses instead of real addresses.



and to prevent roll-back attacks in which CP sends Alice old
versions of her cached information.

Alice sends email message to Bob:
1) Prior to authenticating Alice to CP, Alice’s application

fetches current h(db′) from CP.
2) The application retrieves its locally stored h(dbs). Op-

tionally, it requests proof that h(dbs) v h(db′), and
verifies the proof. (This verification is not necessary,
since if it fails then a later verification will fail too;
but if we do it now we detect any misbehaviour by CP
slightly earlier.)

3) Alice requests and verifies proof that
cert(Alice, pkAlice) is current in db′.

4) The application authenticates Alice and fetches
(Alice, {h(db), pkAlice , skAlice , . . .}k ) from CP.

5) The application requests and verifies proof that h(dbs) v
h(db) and h(db) v h(db′). The application replaces its
locally stored h(dbs) with h(db′).

6) The application finds pkBob in db′ and requests and
verifies currency proof.

7) The application encrypts message for Bob with pkBob

and sends it to him.
8) The application makes a random check of log consis-

tency, as detailed in §3.1.
Step 1 and 2 ensure that CP is still maintaining the log in

append-only fashion. In step 3, Alice’s application verifies that
CP is correctly maintaining her certificate. Step 5 ensures that
the locally stored snapshot dbs is not later than the db stored
in the user’s account (db may in fact be later than dbs if the
user has checked her email on a different device, and thereby
updated db); and that the db stored in the account is prior to
the current db′. These two checks prevent roll-back attacks,
and attacks based on improper maintainance by CP of the log.

Bob receives mail from Alice: This process is similar. Bob’s
application retrieves his versions of h(dbs), h(db), and h(db′),
and:
• checks h(dbs) v h(db) v h(db′).
• checks (Bob, pkBob) is correct in db′.
• gets pkAlice from db′, and requests currency proof.
• decrypts Alice’s message and checks Alice’s signature5,

if present.

4.2 Usability considerations

The system we describe here finally allows Johnny to
encrypt his email (echoing the title of the classic 1999 paper
mentioned earlier [23]). Just as a web user is in practice
shielded from the requirement to have any real understanding
of public keys and certificates, with these ideas an encrypted-
email user can avoid having to understand the complexities of
S/MIME and PGP.

5We didn’t detail how the mail system supports digital signatures, but of
course they’re readily implemented too.
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Fig. 7. A malicious provider is assumed to be willing to use any available
strategy to attack, no matter what the consequence. A malicious but cautious
provider is assumed to launch no attacks that would leave readily verifiable
evidence of the attack. An honest but curious provider is assumed to launch
no attacks that would leave any trace (whether verifiable or not); he confines
himself to passive attacks. An honest provider is assumed to launch no attacks.

To use end-to-end encrypted mail that follows these ideas,
users will download and install the application (or browser
extension). As with any software, the user must download it
from a trusted source. The user launches the software, and
configure it to access their existing mail account (or set up a
new account). This step is the same as configuring any mail
software.

When the user starts her email browser, it optionally shows
one or more icons (or perhaps “lights”; see Figure 6) indicating
the result of a consistency check of the service provider. Each
icon corresponds to the result of a check made by an auditor
that the user has subscribed to. The icon will display a visual
representation (for example, the light is coloured green or red)
indicating “healthy” or “problem”. The user can sign up to
whatever auditor he likes, by appropriately configuring the
browser. The user can be his own auditor.

To send a message, the user enters the email address as
usual, assisted by a contacts manager and autocompletion in
the usual way. It’s vital to be sure to send the mail to the
intended address, since the address determines the encryption
key that the application will select (and verify the proofs
about). This is the counterpart in PGP of being sure to have the
right public key in her keychain with the right trust level in its
signers, except here it is something the user can understand.
It is natural to users that if they send a message to the wrong
recipient, then confidentiality of the message may be lost.

The application handles recipients for whom there are no
public keys (in this case the log produces a proof of absence
of any certificate for that user6). The application displays by
means of a visual indicator (e.g., by colouring the address)
whether the message to that recipient will be encrypted or
not.

In the envisioned GUI, there is no encrypt button and no
decrypt button. Messages are encrypted or decrypted automat-
ically in the cases in which the CIRT infrastructure reports an
appropriate key. There are no user dialogues or messages that
refer to keys or certificates.

6Note that a downgrading attack is impossible: absence is not failure to
prove presence, but is a proof of absence.



To:

Cc:

Subject:

Hi Joe, Bob's away on business.

joe.bloggs@example.com

alice@alice-n-bob.com

Meeting tonight

Healthiness checks

Google

Verisign

Univ Washington

✔
✔

✗✗

Fig. 6. Email user interface. Visual symbols and/or colours show whether the email will be encrypted for the recipient. On the right, some auditor reports
are available showing the correctness status of CP’s log.

4.3 Key and password management

As mentioned in the signing-up section of §4.1.1, there are
two options for arranging user authentication.
• Users’ passwords are high-entropy. In this option, the

user’s password pw is a high-entropy password, and not
disclosed to the server. The user authenticate to server
with kdf(pw, 1) for a suitable key derivation function
kdf , and uses k = kdf(pw, 2) as the key purse encryption
key. The password has to be high-entropy to prevent the
server (or anyone else) performing guessing attacks to
obtain k.

• Users’ passwords are known to the server. In this option,
the key purse encryption key k is stored on the user’s
device. The password need not be high-entropy because
the server can prevent on-line guessing attacks.

These two alternatives are fundemantal to any cloud com-
puting application in which users have encryption keys which
are confidential from the cloud provider; Wuala [27] and
ConfiChair [31] are examples, and their designers have the
same two options.

4.3.1 High entropy password: This option is the most
flexible, since the user can access the services from any device
without needing to provision it with the key purse encryption
key k. The main disadvantage, however, is that the server can
try offline guessing attack on pw in order to derive k.

If users want to change their password, this can be done
easily: the client application need only decrypt and re-encrypt
key purse, using the keys derived from the old and new
passwords respectively.

If a user loses her password, the system can’t offer any
recovery mechanism (as in Wuala [27]). At best, the user can
prove ownership of the account by out-of-band means; this
will allow her to revoke her public key and re-initialise the
account, but she won’t have access to her existing email store.

4.3.2 Device key: This option is more secure, but it requires a
means to migrate k to new devices. We detail such a protocol
in Figure 8, based on SPEKE [37].

Requests from a user to change her password are handled
by the usual means; requests to change the k are handled by
decrypting the key purse with the old k, and encrypting with
the new one. In the case of a lost password, the usual kind of
recovery mechanisms can be used.

If the key k is lost, then the user loses access to their
historic data, but can use knowledge of their password to
prove ownership of the account; as above, this will allow her
to revoke her public key and re-initialise the account. Note,
however, that since the user will typically have k on multiple
devices, it is unlikely that she loses it completely.

5 Conclusions

5.1 Summary

We have extended certificate transparency to handle re-
vocation efficiently, resulting in a system we call certificate
issuance and revocation transparency. This contributes to its
usefulness on the web. We apply this certificated transparency
to email, allowing an email provider to certify keys for its users
without requiring them to trust it. This yields a system for
end-to-end encrypted email which is both usable (users don’t
have to understand anything about keys or certificates, or take
special actions), and secure (mail is end-to-end encrypted and
there are no third parties required to be trusted). In contrast
with S/MIME, PGP, IBE and certificateless encryption, the
CA (or identity provider) is prevented from launching attacks
on its users. This means that end-to-end email encryption can
finally be made as user-friendly and accessible as secure web
browsing.



New device Old device Server

(pw)x

(pw)x

enc((pw)xy, k), (pw)y

enc((pw)xy, k), (pw)y

Fig. 8. Protocol to allow migration of the encryption key k from one device to another, based on SPEKE [37]. The user creates a request on her new device
(pw)x based on a randomly chosen x; here we assume pw is a representation of the password in a suitable Schnorr group. Next, the user’s application on
her old device retrieves the request from the server, and creates an encryption key ((pw)x)y by selecting another random y. The key k is encrypted with
(pw)xy and sent to the server along with (pw)y . Then the user returns to the new device to retrieve that information, decrypt k, and install it on the device.

5.2 Discussion: cloud

Underlying these ideas is an attacker model appropriate
for cloud computing. In most cloud-based applications today,
users are required to fully trust the cloud provider. “Fully
trusted” is unacceptably optimistic; researchers are attempting
to change that, for example with fully homomorphic encryp-
tion, so that, on the contrary, the cloud provider could be
considered fully malicious. But that is unduly pessimistic.
Cloud providers are large organisations with reputations to
preserve, and they compete to attract customers. Therefore,
they will not attack their users at any cost; they will not
launch attacks that leave verifiable evidence. Thus, they are
in reality somewhere between the extremes of “malicious”
and “trustworthy” (Figure 7). “Honest-but-curious” already
lies between these extremes; it says that the attacker launches
passive attacks but not active ones. However, there is no
reason to suppose a cloud provider will refrain from active
attacks. We adopt the term “malicious-but-cautious”; the cloud
provider is assumed to be malicious if he can get away with
it, but cautious in not leaving any verifiable evidence of its
misbehaviour. This attacker model is related to the covert
adversary of [22], but it additionally assumes that the cloud
provider acts to protect its users from third-party attacks.

Systems based on this model (such as the email system
we detailed) deny the possibility of monetising users’ data,
e.g. for content-related advertising, as pioneered by Google
and now done by other providers. One might ask whether
providers would be willing to go on providing hosting services
for free, without this revenue opportunity. That question is
beyond the scope of the paper, but nevertheless we can’t resist
speculating about it. The most successful internet companies
today offered services long before they had any idea how they
could be monetised, so we don’t expect that to be an obstacle
in practice. Moreover, user applications may be willing to leak
some data to the provider, such as the fact that a particular
message mentions “hotel” and “Paris”, allowing the provider

to serve adverts for hotels in Paris without having the whole
plaintext message. Finally, we expect that when users fully
realise the consequences of paying for services with their data,
they will prefer to pay modest amounts of money and keep
their data private.

A more serious obstacle to take-up of such an email system
may appear to be spam. If mail is decrypted by the receiver,
it prevents the server from deleting messages after applying
spam detection. This requires spam handling on the client side,
which is less convenient than handling it on the server. Spam
can also be mitigated if users configure their mail browsers
not to accept encrypted mail unless it is also signed by users
they are already in contact with.

5.3 Future work

In future work, we intend to perform rigorous security anal-
ysis of certificate issuance and transparency, in the malicious-
but-cautious model. That involves defining the model formally.
We will also analyse the email protocol in that model.
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