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Abstract

In this paper, we present a new class of public key cryptosystems by modifying K(XII)SE(1)PKC [1], referred

to as K(XIII)SE(1)PKC, and a particular class of K(XIII)SE(1)PKC, Kp(XIII)SE(1)PKC. We show that

K(XIII)SE(1)PKC would improve both the coding rate and the security, compared with K(XII)SE(1)PKC.

We also show that Kp(XIII)SE(1)PKC realizes the coding rate of exactly 1.0. In a sharp contrast with

the conventional code based PKC (CB·PKC) that uses Goppa code, in K(XII)SE(1)PKC, K(XIII)SE(1)PKC

and Kp(XIII)SE(1)PKC, we do not care for the security of the primitive polynominal that generates the

Reed-Solomon code.
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1 Introduction

Various studies have been made of the public key cryptosystem(PKC). The security of the PKC’s proposed

so far, in most cases, depends on the difficulty of discrete logarithm problem or factoring problem. For

this reason, it is desired to investigate another classes of PKC’s that do not rely on the difficulty of these

two problems. The multivariate PKC is one of the very promising candidates of a member of such classes.

However, most of the multivariate PKC’s are constructed by the simultaneous equations of degree larger

than or equal to 2 [2] ∼ [7]. Recently the author proposed a several classes of linear multivariate PKC’s

that are constructed by many sets of linear equations [8] ∼ [11] based on error-correcting codes. It should

be noted that McEliece PKC [12], a class of code based PKC(CB·PKC), can be regarded as a class of the

linear multivariate PKC. Excellent analyses and survey are given, for example, in Refs. [13] and [14].

In this paper, we present a new class of public key cryptosystems, by modifying K(XII)SE(1)PKC [1],

referred to as K(XIII)SE(1)PKC, Kp(XIII)SE(1)PKC. We show that K(XIII)SE(1)PKC would improve both

the coding rate and the security, compared with K(XII)SE(1)PKC. We also show that Kp(XIII)SE(1)PKC

realizes the coding rate of exactly 1.0. In a sharp contrast with the conventional code based PKC (CB·PKC)

that uses Goppa code, in K(XII)SE(1)PKC, K(XIII)SE(1)PKC and Kp(XIII)SE(1)PKC, we do not care for the

security of the primitive polynominal that generates the Reed-Solomon code.
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Throughout this paper, when the variable vi takes on a value ṽi, we shall denote the corresponding vector

v = (v1, v2, · · · , vn) as
ṽ = (ṽ1, ṽ2, · · · , ṽn). (1)

The vector v = (v1, v2, · · · , vn) will be represented by polynomial as

v(x) = v1 + v2x+ · · ·+ vnx
n−1. (2)

The ũ, ũ(x) et al. will be defined in a similar manner.

Let us define several symbols.

a : I·message added on the check symbols of code word as an error vector, (a1, a2, · · · , at)
over F2m , where we assume that ai ̸= 0 ; i = 1, 2, · · · , t, for K(XIII)SE(1)PKC.

m : II·message, (m1,m2, · · · ,mη) over F2m .

µi : carrier for II·message m ; i = 1, 2, · · · , k.
vi : code word over F2m for µi ; i = 1, 2, · · · , k.
ui : secret key over F2m ; i = 1, 2, · · · , g.

G(x) : generator polynomial of degree g, over F2m .

E : exponent to which G(x) belongs, exponent of G(x) for short.

{vi(x)} : Reed-Solomon code of length E, generated by G(x).

j⃝ : location of erasure error on µi ; j = 1, 2, · · · , η.

µi j⃝ : coefficient of x j⃝ ; i = 1, 2, · · · , k; j = 1, 2, · · · , η.

[i] : location of message symbol ai on ciphertext.

(i) : location of ui randomly selected according to a random choice of [i] ; i = 1, 2, · · · , k.
|C| : length of ciphertext.

Ps[Âi] : probability that event Ai is successfully estimated by an exhaustive attack.

#S : order of set S.

2 K(XIII)SE(1)PKC

2.1 Theoretical background of present paper

In 1970’s, the various works were made of the jointly optimization problems for realizing a high speed and

a reliable digital transmission system. One of the most popularly known and highly focused result is the

optimum decoding scheme, for partial response type channels, with Vitebi decoding [15]. The author was also

much involved in the study of the jointly optimization problems for source and channel coding, syndrome

coding (see Fig.1), based on algebraic coding theory. However unfortunately syndrome coding itself was

considered not worthy of note, although another coding scheme such as vector quantization [16] was the

center of attention among the researchers working on source coding theory.
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Fig. 1: Syndrome coding

In Feb.1986, the author presented a survey paper on cryptgraphy [17]. In Ref. [17], the author suggested

the using of McEliece PKC on noisy channel and presented a very simple scheme of joint coding for encryption

and error control coding, based on McEliece PKC.

The author recently proposed a new class of code based PKC, K(XII)SE(1)PKC [1], on the basis of

syndrome coding. K(XIII)SE(1)PKC and Kp(XIII)SE(1)PKC presented in this paper are modified versions of

K(XII)SE(1)PKC.

2.2 Construction

Let the vector µi over F2m be defined by

µi = (µi1, µi2, · · · , µiK) ; i = 1, 2, · · · , k ;

µi ̸= µj for (i ̸= j),
(3)

where

K = E − g. (4)

Let µi(x) be

µi(x) = µi 1⃝x 1⃝ + µi 2⃝x 2⃝ + · · ·+ µi η⃝x η⃝ ; i = 1, 2, · · · , k, (5)

where the exponent i⃝ takes on a random value such that

0 ≤ i⃝ ≤ K − 1 ; i⃝ ̸= j⃝ for i ̸= j. (6)

We assume that µi j⃝ takes on a random value over F2m .

From Eq.(6), we see that the Hamming weight of µi is

w(µi) ≤ η ; i = 1, 2, · · · , k. (7)

Let carrier µi(x) be transformed into

µi(x)x
g ≡ ri(x) mod G(x) ; i = 1, 2, · · · , k,
= ri1 + ri2x+ · · ·+ rigx

g−1.
(8)

We then have the code word vi(x) as

vi(x) = µi(x)x
g + ri(x) ≡ 0 mod G(x). (9)

3



Let the code words of {vi} be

v1 = (µ11, µ12, · · · , µ1K , r11, r12, · · · , r1g),
v2 = (µ21, µ22, · · · , µ2K , r21, r22, · · · , r2g),

...

vk = (µk1, µk2, · · · , µkK , rk1, rk2, · · · , rkg).

(10)

Let Ar be

Ar =


r11, r12, · · · , r1g
r21, r22, · · · , r2g
...

...
...

rk1, rk2, · · · , rkg

 , (11)

where we let

ri = (ri1, ri2, · · · , rig). (12)

The matrix Ar is transformed into

Ar · PI =


u11, u12, · · · , u1g

u21, u22, · · · , u2g

...
...

...

uk1, uk2, · · · , ukg

 , (13)

where PI is a random column permutation matrix over F2m .

Let ui be

ui = (ui1, ui2, · · · , uig) ; i = 1, 2, · · · , k. (14)

We assume that the elements of the set {ui} are ordered as u1,u2, · · · ,uk. The set {ui} will be publicized.
We shall refer to subscript i as location i.

For I·message a = (a1, a2, · · · , at), Bob constructs the message polynomial :

at(x) = a1x
[1] + a2x

[2] + · · ·+ atx
[t];

0 ≤ [i] ≤ g − 1,
(15)

where the exponents [1], [2], · · · , [t] satisfies

1 ≤ [1] < [2] < · · · < [t− 1] < [t] ≤ g − 1. (16)

Throughout this paper (except Kp(XIII)SE(1)PKC), we assume that Bob randomly selects a set of expo-

nents {[i]}, all over again, for every given I·message.

Set of keys are :

Public key : {ui}
Secret key : {µi}, {ri}, Ar, PI

After constructiong at(x) = a1x
[1] + a2x

[2] + · · · + atx
[t], Bob selects the location of the public key

(1), (2), · · · , (η) based on the transformation :

φ({[i]}) = {(i)}, (17)

where the order of {(i)} is chosen as

#{(i)} = η < k. (18)
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After performing this transformation, Bob selects public keys u(1),u(2), · · · ,u(η) from {ui}.
Let the word w be

w = m1u(1) +m2u(2) + · · ·+mηu(η). (19)

The ciphertext C is

C = w + at. (20)

It should be noted that, in accordance with a random choice of locations (i)’s, the carrier µ(i)’s are

selected.

Theorem 1: Erasure error Eη(x) due to II·message m is

Eη(x) =

η∑
i=1

miµ(i) 1⃝x 1⃝ +

η∑
i=1

miµ(i) 2⃝x 2⃝

+ · · ·+
η∑

i=1

miµ(i) η⃝x η⃝
(21)

Proof : Straightforward 2

We also see from Eq.(21) that at results in random errors. The minimum distance, D, of the Reed-Solomon

code generated by G(x) of degree g is

D = g + 1. (22)

The following relation :

2t+ η + 1 = D, (23)

is required to hold so that the messages m and a may be correctly decoded.

Let Bµ over F2mbe

Bµ =


µ(1) 1⃝, µ(1) 2⃝, · · · , µ(1) η⃝
µ(2) 1⃝, µ(2) 2⃝, · · · , µ(2) η⃝

...

µ(η) 1⃝, µ(η) 2⃝, · · · , µ(η) η⃝

 . (24)

All the row vectors of Bµ are selected based on a set of randomly chosen locations {(i)}.
Let PBµ

[NS] be the probability that Bµ over F2mproves non-singular under the condition that all the

elements are randomly chosen. The probability PBµ [NS] can be bounded by

PBµ [NS] > (1− 2−m)η ∼= 1− η2−m ; m >∼ 88. (25)

We see that, for m = 88, η = 64, t = 32, g = 128, k = 128, non-singular matrix Bµ can be generated

with sufficiently high probability of more than 1− 2.07× 10−25.

Thus even if Bob sends N = 1012 ciphertexts of size 1.41KB, the probability that one of the randomly

chosen Bµ’s proves singular takes on, from Chebyshev’s inequality ∗, an extremely small value of less than

2.07× 10−13.

We see thatEµ can be decoded by erasure and error decoding [19], as all the erasure locations 1⃝, 2⃝, · · · η⃝
are known to Alice. Let Su and Sũ be

Su = {u1,u2, · · · ,uk} (26)

and

Sũ = {ũ(1), ũ(2), · · · , ũ(η)}, (27)

∗ε = N−1 − PBµ [NS] = 10−12 − 2.07× 10−25.

P [ε] ≤
PBµ [NS](1−PBµ [NS])

Nε2
∼= 2.07×10−25

10−12 = 2.07× 10−13
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Let a subset of Su be Si such that

Sũ ⊂ Si (28)

and

#Si = g − t− i. (29)

2.3 Security considerations

Remark 1: The using of the Reed-Solomon codes is very attractive because they meet the very nice property

of maximum distance seprability. However, so far, the using of Reed-Solomon code has been supposed to

be a little dangerous as the generator polynomial can be estimated without much difficulty compared with

the Goppa code. However the author strongly feels that even if the generator polynomial is disclosed,

K(XII)SE(1)PKC can be made sufficiently secure as we discussed in Ref [1]. Accordingly we do not regard

G(x) as a secret key. However G(x) is not recommended to be publicized.

Attack 1: Attack on estimating carrier µi

Let the probability that carrier µi is estimated correctly be denoted Ps[µ̂i]. Then

Ps[µ̂i] =

(
K

η

)−1

(2m)−η. (30)

In order to be secure against Attack 1, we recommend Ps[µ̂i] be

Ps[µ̂i] ≤ 2−80 = 7.21× 10−25. (31)

In this paper, we let m be longer than 88 and η, larger than 8. As a result Ps[µ̂i] can be made much

smaller than 2−80. We conclude that K(XIII)SE(1)PKC can be secure against Attack 1.

Attack 2: Attack on II·message

Let us define the following steps of Attack 2:
Step 1 : Exhaustive attack for disclosing g − t− i error free symbols among the symbols of a given

ciphertext C.
The probability that Step 1 proves successful is

Ps[Step 1] =

(
g − t

g − t− i

)(
g

g − t− i

)−1

=
(g − t)!(t+ i)!

i!g!
.

(32)

Step 2 : Exhaustive attack for obtaining g − t− i elements from {ui} that includes ũ(1), ũ(2), · · · , ũ(η).

The probability of successfully obtaining g − t− i symbols that includes ũ(1), ũ(2), · · · , ũ(η) is

Ps[Step 2] =

(
k − η

g − t− η − i

)(
k

g − t− i

)−1

=
(k − η)!(g − t− i)!

k!(t− i)!
,

(33)

where we let g − t− η = t.

Let Ps[Step 1] ∗ Ps[Step 2] = Ps[Attack 2] be

Ps[Attack 2] = AB, (34)

where

A =
(g − t)!(k − η)!

g!k!
, (35)
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B =
(t+ i)!(g − t− i)!

i!(t− i)!

=
1

t!

(
t

i

)
(t+ i)!(g − t− i)!

<
1

t!

(
t

i

)
t!(g − t)!.

(36)

As the following relation holds (
t

i

)
<

(
t

t/2

)
. (37)

We now have the upper bound of B as

B <

(
t

t/2

)
(g − t)!. (38)

The upper bound of probability Ps[Attack 2] is

Ps[Attack 2] <
(k − η)!

g!k!

(
t

t/2

)
{(g − t)!}2. (39)

Example 1 : m = 96, k = 312, g = 212, t = 64, η = 84.

We see that the relation 2t+ η = g holds.

The probabilities PBµ
[NS], and Ps[Attack 1] are

PBµ [NS] > 1− η · 2−m = 1− 1.06× 10−27, (40)

Ps[Attack 2] <
(k − η)!

g!k!

(
t

t/2

)
{(g − t)!}2

= 1.78× 10−72,

(41)

yielding an extremely small value.

2.4 Encryption and decryption processes.

[Encryption process]

Step 1 : Given I·message ã = (ã1, ã2, · · · , ãt), Bob randomly chooses the locations :

[1], [2], · · · , [t].
Step 2 : Bob transforms I·message vector a into ãt(x) = ã1x

[1] + ã2x
[2] + · · ·+ ãtx

[t].

Step 3 : Bob transforms {[i]} into {(i)}, yielding ũ(1), ũ(2), · · · , ũ(η).

Step 4 : Given II·message m̃ = (m̃1, m̃2, · · · , m̃η), Bob calculates the word :

w̃ = m1ũ(1) +m2ũ(2) + · · ·+mηũ(η).

Step 5 : Bob calculates the ciphertext C̃ = w̃ + ãt.

Step 6 : Bob sends the ciphertext C̃ to Alice.
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[Decryption process]

Step 1 : Receieving the ciphertext C̃(= w̃ + ãt) from Bob, Alice calculates the following :

(w̃ + ãt)P
−1
I = r̃ + α̃t, where α̃t = ãtP

−1
I .

Let r̃ + α̃t be denoted r̃ + α̃t = C̃
−T

= (c̃−T
1 , c̃−T

2 , · · · , c̃−T
g ).

Step 2 : Given C̃
−T

, Alice decodes an erasure value Eη and α̃t,

for example, with Euclidean erasure and error decoding algorithm [18], [19].

Step 3 : Alice decodes ã = (ã1, ã2, · · · , ãt) by performing PI on α̃t.

Step 4 : Alice decodes {(̃i)} from {[̃i]}.
Step 5 : From Ẽη(x), II·message m is decoded by solving linear simultaneous equations given by Eq.(21).

3 A particular class of K(XIII)SE(1)PKC, Kp(XIII)SE(1)PKC

In Kp(XIII)SE(1)PKC, the locations for II· message are not randomly chosen but are predetermined. Without

loss of generality, let these predetermined locations be x0, x1, x2, · · · , xt−1. As a result at(x) is now

at(x) = a1 + a2x+ · · ·+ atx
t−1. (42)

Bob selects the locations {(i)} based on

φ({ai}) = {(i)}. (43)

Considering that at results in an erasure error, the coding rate ρ is

ρ =
t+ η

|c|
=

g

g
= 1.0. (44)

We see that the coding rate ρ takes on the value of exactly 1.0.

Attack 3: Exhaustive attack on disclosing the set of locations {(i)}
The probability, Ps[{(i)}], that {(i)} is successfully disclosed by an attacker is

Ps[{(i)}] =
(

k

η

)−1

. (45)

In order to be secure against Attack 3, we let Ps[{(i)}] be

Ps[{(i)}] < 2−80 = 8.27× 10−25. (46)

Example 2 : m = 88, k = 96, g = 64, t = η = 32

The probability Ps[{(i)}], coding rate ρ and the size of public key SPK are

Ps[{(i)}] =
(

96

32

)−1

= 3.36× 10−26, (47)

ρ =
η + t

|c|
= 1.0, (48)

SPK = mgk = 67.6(KB). (49)

We see that the coding rate ρ takes on exactly 1.0. We also see that the size of public key is smaller than

that of Example 1, by a factor of about 12.

The probability Ps[{(i)}] takes on a value less than 2−80. We thus conclude Kp(XIII)SE(1)PKC would re-

alizes a secure PKC with a smaller size of public key compared with K(XII)SE(1)PKC and K(XIII)SE(1)PKC.
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Besides Kp(XIII)SE(1)PKC realizes the coding rate of exactly 1.0, yeilding a simple digital signature scheme

compared with K(XIII)SE(1)PKC.

4 Conclusion

In this paper, we have presented a new class of public key cryptosystem by modifying K(XII)SE(1)PKC,

referred to as K(XIII)SE(1)PKC and Kp(XIII)SE(1)PKC. We have clarified the followings :

(i) K(XIII)SE(1)PKC would improve both the coding rate and the security, compared with

K(XII)SE(1)PKC.

(ii) In Kp(XIII)SE(1)PKC, the coding rate ρ takes on the value of exactly 1.0, yielding a simple

signature scheme compared with K(XIII)SE(1)PKC.

(iii) In a sharp contrast with the conventional CB·PKC that uses Goppa code, in K(XII)SE(1)PKC,

K(XIII)SE(1)PKC and Kp(XIII)SE(1)PKC, we do not care for the security of the primitive

polynominal that generates the Reed-Solomon code.
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