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Abstract. Ring signatures allow a signer to anonymously sign a message on behalf of a set of arbitrarily
chosen signers called a “ring”. Blind signatures, on the other hand, allow a user to obtain a signature on
a message while maintaining the privacy of the message. Blind ring signatures combine properties of both
primitives and hence provide a strong notion of anonymity where the privacy of both the identity of the signer
and the message is preserved. Blind ring signatures find applications in various systems; including multi-
authority e-voting and distributed e-cash systems.
In this paper we provide the first provably secure blind ring signature construction that does not rely on random
oracles, which solves an open problem raised by Herranz and Laguillaumie at ISC 2006. We present different
instantiations all of which are round-optimal (i.e. have a two-move signing protocol), yield sub-linear size
signatures, and meet strong security requirements. In order to realize our constructions efficiently, we construct
a sub-linear size set membership proof which works in the different bilinear group settings, which may be of
independent interest.
As a secondary contribution, we show how to generically combine our set membership proof with any secure
signature scheme meeting some conditions to obtain ring signatures whose security does not rely on random
oracles. All our constructions work over the efficient prime-order bilinear group setting and yield signatures
of sub-linear size. In addition, our constructions meet strong security requirements: namely, anonymity holds
under full key exposure and unforgeability holds against insider-corruption. Finally, we provide some example
instantiations of the generic construction.

1 Introduction

Background. A Ring Signature (RS), introduced by Rivest, Shamir and Tauman [48], allows a signer to
choose an arbitrary set of signers called a “ring” and anonymously sign a message on behalf of the ring
providing that the signer himself is a member of the ring. Generating the signature does not require the
cooperation of other members of the ring and hence they need not even be aware of their inclusion in
the ring.

Besides correctness, the security of ring signatures [48, 9] requires anonymity and unforgeability.
Informally, anonymity requires that a signature does not reveal the identity of the ring member who
produced it. On the other hand, unforgeability requires that an adversary cannot forge new signatures
on behalf of an honest ring. In [9], the authors provide various variants of those requirements. We will
prove the security of our constructions under the strongest definitions provided in [9].

Like group blind signatures [41], blind ring signatures extend blind signatures to the multi-signer
setting. However, in contrast to the former, the latter provide more flexibility in the choice of the group
as it is done in an ad hoc manner without requiring prior cooperation or join protocols. In addition,
anonymity of the signer is not revocable. Besides the three security properties required from traditional
ring signatures, the security of blind ring signatures requires blindness which informally states that
members of the ring cannot learn which message is being signed on behalf of the ring. Also, they cannot
match a signature to its signing session.
Applications. For applications of ring signatures see, e.g. [48, 42, 24]. They were originally used for
anonymous leaking of authoritative secrets. Another application of ring signatures are designated-verifier
signatures [39].



Applications of blind ring signatures include distributed e-cash systems [41], where a client’s e-coin
is signed by a member of a coalition of banks chosen in an ad hoc manner. The choice of the coalition
could be specified by either the issuing bank or the client himself. Other applications of the primitive
include multi-authority e-voting, e.g. [22], and e-auction systems.

Related Work. BLIND RING SIGNATURES. Only a few blind ring signature schemes [18, 53, 37, 54]
were proposed. All of those constructions are secure in the Random Oracle Model (ROM) [8]. The
scheme in [18] yields signatures of linear size and its security requires both random oracles and the
generic group model [51]. In [53], the authors presented a static blind ring signature scheme that requires
both random oracles and the generic group model. This scheme requires that the group (i.e. the ring) is
fixed and hence it yields signatures of constant size. The schemes in [37, 54] also yield signatures of
linear size. We note here that the blindness requirement of [37] was proven using a different game than
the standard definition for blindness [40, 46] where the adversary only interacts once with the challenger
and does not get to see the final signature.

RING SIGNATURES. The original construction by Rivest, Shamir and Tauman [48] is based on trapdoor
permutations and is secure in the random oracle model. Subsequently, other constructions relying on
random oracles followed [5, 13, 38, 24, 43].

A few constructions which do not rely on random oracles were proposed. Bender et al. [9] gave a
generic construction requiring generic ZAPs [25], making it inefficient. They also gave two constructions
for two-signer rings. Other constructions which do not require random oracles include [50, 19, 15, 49,
16]. The constructions in [49, 16] use a weaker notion of unforgeability than the one we use in this paper.

All existing constructions apart from [19] (which yields sub-linear size signatures in composite-
order groups in the Common Reference String (CRS) model) and [24, 43] (which yield signatures of
constant size in the ROM) yield signatures of linear size.

Motivation. All the existing blind ring signature schemes [18, 53, 37, 54] require random oracles. Since
the random oracle is an assumption that cannot be realized securely in practice [17], many protocol de-
signers strive for constructions in the standard model. Moreover, all existing constructions (apart from
[53] in which the ring is static) yield signatures whose size grows linearly with the size of the ring. It
is therefore desirable to design more efficient schemes. Furthermore, it is nowadays a common prac-
tice to base the security of cryptographic protocols on non-interactive complexity assumptions that are
falsifiable [47].

In addition, most of the existing ring signature constructions which do not rely on random oracles
are either specific to the (inefficient) composite-order bilinear group setting and/or yield signatures of
linear size.

The Challenges. The subtlety one faces when designing blind ring signatures lies in the dual privacy
requirement: that is the dilemma of having parts of the witness of the same proof of knowledge coming
from different parties who do not trust each other. On the one hand, the signer needs to hide his identity
and parts of the signature that could identify him (i.e. the anonymity requirement). On the other hand,
the user needs to hide the message and parts of the signature which could reveal the linkage between a
signature and its signing session (i.e. the blindness requirement). One might consider addressing such
an issue by resorting to secure multiparty computation, however, such an approach would massively
degrade the efficiency of the resulting construction.

Due to the nature of random oracles, in the random oracle model this obstacle is easier to tackle
by, for instance, using divertible proofs of knowledge e.g. [23, 44]. In the standard model, the issue is
more subtle. To get around this issue, we exploit some properties of Groth-Sahai proofs [35], namely:
the randomizability of the proofs [7] and the ability to transform some proofs without knowledge of
the original witness [32, 30]. This way we obtain the required divertibility needed to achieve the dual
privacy requirement.
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The second technical challenge is that unforgeability of ring-related signatures requires that the
signature is bound to the ring in order to prevent the adversary from transforming a signature by some
ring into a signature by a different ring. The scenario is more serious when the construction involves a
malleable proof system such as the Groth-Sahai proof system which we use in our constructions. This is
because the malleability of the proof system allows one to easily transform a proof for some statement
into another proof for a related statement.

When constructing ring signatures, one can easily bind the signature to the ring by simply signing
both the message and the ring. For instance, this could be efficiently achieved by signing the hash of the
concatenation of both the message and the ring. Unfortunately, this approach does not work in a blind
signing protocol. That is because necessitating that the message remains hidden from the signer, one
needs to prove that such hashing was applied correctly without revealing the message, which cannot be
efficiently realized due to the complex structure of hash functions. To bind the signature to the ring w.r.t.
which it was produced, we deploy a different approach. We use a signature scheme that simultaneously
signs a pair of messages to construct a partially-blind signature scheme where we hide the actual message
from the signer but we include the details of the ring as the public information shared between the user
and the signer.

The remaining challenge which is inherent even in traditional ring signatures is the size of the sig-
natures. Almost all previous blind ring signatures e.g. [18, 37, 54] and most existing traditional ring
signatures e.g. [9, 50, 15] yield signatures whose size grows linearly with the size of the ring. This lim-
itation is usually inherited from the underlying OR proof used to prove that the signature verifies w.r.t.
a verification key contained in the ring without revealing which one it is. In [19], the authors used some
techniques from private information retrieval applications to construct a membership proof that has a
sub-linear size. Unfortunately, their protocol is limited to the rather inefficient composite-order bilinear
group setting. As a part of our contribution, we adapt their technique to the prime-order setting and thus
we construct a sub-linear size set membership proof that works in the 3 different settings of prime-order
bilinear groups. Although this on its own is not a major contribution, it is of independent interest as we
believe it could have further applications beyond the scope of this paper.
Our Contribution. Our main contribution is the first blind ring signature schemes that do not rely on
idealized assumptions. This solves a problem that remained open since 2006 [37]. To realize our con-
structions efficiently, we instantiate the idea used for the membership proof from [19] in the prime-order
bilinear group setting. All our constructions yield signatures of sub-linear size and thus are shorter than
those of previous constructions. In addition, our schemes meet stronger security requirements than those
used for previous constructions, and their security is based solely on falsifiable complexity assumptions.
We note here that it is still an open problem to get a ring signature scheme with constant-size signatures
in the standard model and hence we believe that our constructions are efficient.

Our final contribution is a generic construction that combines our set membership proof with any
signature scheme in the standard model satisfying some properties to get sub-linear size ring signatures
without random oracles. Again, our focus is on constructions in the efficient prime-order bilinear group
setting.
Paper Organization. The rest of the paper is organized as follows: In Section 2, we give some pre-
liminary definitions. In Section 3, we define blind ring signatures and present their security definitions.
In Section 4, we present a new set membership proof. In Section 5 we present our blind ring signature
constructions. Finally, in Section 6 we present our ring signature constructions.

2 Preliminaries

Notation. Given a probability distribution S, we denote by x← S the operation of selecting an element
according to S. If A is a probabilistic machine, we denote by A(x1, . . . , xn) the output distribution of
A on inputs (x1, . . . , xn). By p.p.t., we mean running in probabilistic polynomial time in the relevant
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security parameter. By [1, n], we denote the set {1, 2, . . . , n}. A function v(.) : N→ R+ is negligible in
c if for every polynomial p(.) and all sufficiently large values of c, it holds that v(c) < 1

p(c) .

2.1 Bilinear Groups

A bilinear group is a tuple P := (G1,G2,GT , p,G, G̃, e) where G1,G2 and GT are groups of a prime
order p and G and G̃ generate G1 and G2, respectively. The function e is a non-degenerate bilinear map
G1 × G2 −→ GT . We use multiplicative notation for all the groups although usually G1 and G2 are
chosen to be additive. We let G×1 := G1 \ {1G1} and G×2 := G2 \ {1G2}. For clarity, elements from G2

will be accented with˜.
Following [31], we categorize prime-order bilinear groups into three main types:

– Type-1: This is the symmetric pairing setting in which G1 = G2.
– Type-2: G1 6= G2 but there is an efficiently computable isomorphism ψ : G2 −→ G1.
– Type-3: Again G1 6= G2, but now there is no known efficiently computable isomorphism.

We assume that all three groups are cyclic and that there is an algorithm BGrpSetup that takes as input
a security parameter λ and a type tp ∈ {1, 2, 3} and outputs a description of bilinear groups of Type-tp.

2.2 Complexity Assumptions

We will use the following assumptions from the literature:

CDH. For a group G := 〈G〉 of a prime order p given (G,Ga, Gb) ∈ G3 for a, b ← Zp, it is hard to
compute Gab.

DDH. For a group G := 〈G〉 of a prime order p given (G,Ga, Gb, C) ∈ G4 for a, b← Zp, it is hard to
decide whether or not C = Gab.

Co-CDH [20]. In Type-2 bilinear groups given (G,Ga, G̃, G̃b) ∈ G2
1 × G2

2 for a, b ← Zp, it is hard to
compute Gab.

Co-CDH∗ [20]. In Type-3 bilinear groups given (G,Ga, Gb, G̃, G̃b) ∈ G3
1 × G2

2 for a, b ← Zp, it is
hard to compute Gab.

SXDH. The Decisional Diffie-Hellman (DDH) assumption holds in both groups G1 and G2.
DLIN [12]. For Type-1 bilinear groups where G1 = G2 = G and G generates G, given the tuple

(Ga, Gb, Gra, Gsb, Gt) where a, b, r, s, t ∈ Zp are unknown, it is hard to tell whether t = r + s or t
is random.

q-SDH [11]. For a group G := 〈G〉 of a prime order p given (G,Gx, . . . , Gx
q
) ∈ Gq+1 for x← Zp, it

is hard to output a pair (c,G
1
x+c ) ∈ Zp ×G for an arbitrary c ∈ Zp\{−x}.

WFCDH [29]. In symmetric bilinear groups, given (G,Ga, Gb) ∈ G3 for a, b← Zp, it is hard to output
a tuple (Gr, Gra, Grb, Grab) ∈ G×4 for an arbitrary r ∈ Zp.

AWFCDH [29]. In asymmetric bilinear groups, given (G,Ga, G̃) ∈ G1
2 × G2 for a ← Zp, it is hard

to output a tuple (Gb, Gab, G̃b, G̃ab) ∈ G×1
2 ×G×2

2 for an arbitrary b ∈ Zp.
q-DHSDH [29]. In symmetric bilinear groups, given (G,H,K,Gx) ∈ G4 for x← Zp, and q−1 tuples

(Wi := (K ·Gui)
1

x+vi , U1,i := Gui , U2,i := Hui , V1,i := Gvi , V2,i := Hvi)q−1
i=1 , where ui, vi ← Zp,

it is hard to output a new tuple (W ∗, U∗1 , U
∗
2 , V

∗
1 , V

∗
2 ) of this form.

q-ADHSDH [29]. In asymmetric bilinear groups, given (G,F,K,Gx, G̃, G̃x) ∈ G4
1 ×G2

2 for x← Zp,
and q − 1 tuples (Wi := (K ·Gui)

1
x+vi , U1,i := Gui , Ũ2,i := G̃ui , V1,i := F vi , Ṽ2,i := G̃vi)q−1

i=1 for
ui, vi ← Zp, it is hard to output a new tuple (W ∗, U∗1 , Ũ2

∗
, V ∗1 , Ṽ2

∗
) of this form.
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2.3 Groth-Sahai (GS) Proofs

Groth and Sahai [35, 36] introduced a proof system in the CRS model that yields Non-Interactive
Witness-Indistinguishable (NIWI) and Zero-Knowledge (NIZK) proofs. The system can be instantiated
in composite-order or prime-order bilinear groups. The equations one can prove with the system are as
follows where in the description X1, . . . , Xm, Y1, . . . , Yn ∈ G, x1, . . . , xm, y1, . . . , yn ∈ Zp are secret
variables (hence underlined), whereas Ai, T ∈ G, ai, bi, ki,j , t ∈ Zp, tT ∈ GT are public constants.
Note that in the asymmetric setting, there are two types of MSM equations depending on which group
the elements belong to.

– Pairing Product Equation (PPE):
n∏
i=1

e(Ai, Yi) ·
m∏
i=1

n∏
j=1

e(Xi, Yj)ki,j = tT ·

– Multi-Scalar Multiplication Equation (MSME):
n∏
i=1

A
yi
i

m∏
i=1

Xi
bi

m∏
i=1

n∏
j=1

Xi
ki,jyj = T ·

– Quadratic Equation (QE) in Zp:
n∑
i=1

aiyi +
m∑
i=1

xibi +
m∑
i=1

n∑
j=1

xiyj = t·

The system consists of the following algorithms

(GSSetup,GSProve,GSVerify,GSExtract,GSSimSetup,GSSimProve)·

Algorithm GSSetup takes as input the description of a bilinear group P and outputs a soundness refer-
ence string crs and an extraction key xk. GSProve takes as input a reference string crs, a witness and a set
of equations, and outputs a proof Ω for the satisfiability of the equations. For clarity, we will underline
the elements of the witness in the description of the equations. GSVerify takes as input a reference string
crs, a proof Ω and a set of equations, and outputs 1 if the proof is valid or 0 otherwise. In the rest of the
paper we will omit the set of equations from the input to the GSVerify algorithm.

GSExtract takes as input a soundness reference string crs, the extraction key xk and a valid proof Ω,
and outputs the witness used in the proof. GSSimSetup takes as input a bilinear group P and outputs a
simulation string crsSim and a trapdoor key tr that allows to simulate proofs. GSSimProve takes as input
crsSim and the simulation trapdoor tr and produces a simulated proof ΩSim without a witness.

The system works by first committing to the elements of the witness (using the algorithm GSCommit)
and then producing a proof of satisfiability for each equation. If a witness component is involved in more
than one source equation, the same commitment is re-used when verifying the proofs which makes the
proofs correlated.

The proofs come in two flavors: the soundness setting yields extractable proofs, whereas the simula-
tion setting yields simulatable proofs. The system’s security requires that the distributions of strings crs
and crsSim are indistinguishable and simulated proofs are indistinguishable from real proofs.

As formalized by [7], GS proofs can be rerandomized by rerandomizing the associated GS com-
mitments and updating the proofs accordingly so that we obtain fresh proofs that are unlinkable to the
original ones. Rerandomizing a proof requires knowledge of neither the witness nor the associated ran-
domness used in the original GS commitments. We define an algorithm GSRandomize which takes as
input a CRS crs and a proof Ω, and outputs a proof Ω′ which is a randomized version of the proof Ω.

The proof system has the following properties:

– Perfect Completeness: On a correctly generated CRS, crs, and a valid proof Ω, the algorithm
GSVerify always accepts the proof.

– Perfect Soundness: On a correctly generated CRS, crs, it is impossible to generate a proof unless
the equations are satisfiable (i.e. unless the prover knows a witness).

– Composable Witness-Indistinguishability: The CRS crs output by GSSetup is computationally
indistinguishable from the CRS crsSim output by GSSimSetup. Also, for any p.p.t. adversary A that
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is given crsSim and is allowed to choose any statement y and two distinct witnesses w0 and w1 for
the statement y, the following probability is negligibly close to 1/2.

Pr
[
b← {0, 1};Ω ← GSProve(crsSim, wb, y); b′ ← A(Ω) : b = b′ ∧ (wi, y) ∈ R for i = 0, 1

]
·

– Composable Zero-Knowledge: Again, the CRS crs output by GSSetup is computationally indistin-
guishable from the CRS crsSim output by GSSimSetup. In addition, we have for any p.p.t. adversary
A that is given (crsSim, tr) and is allowed to choose any (w, y) ∈ R that

Pr
[
Ω ← GSProve(crsSim, w, y) : A(Ω) = 1

]
= Pr

[
ΩSim ← GSSimProve(crsSim, tr, y) : A(ΩSim) = 1

]
·

Pr
[
Ω ← GSProve(crsSim, w, y) : A(Ω) = 1

]
= Pr

[
ΩSim ← GSSimProve(crsSim, tr, y) : A(ΩSim) = 1

]
– Rerandomizability [7]: We have for all p.p.t. adversaries (A1,A2), the following probability is

negligbly close to 1/2

Pr

 (crs, xk)← GSSetup(P); (w, y,Ω, statefind)← A1(crs);
Ω0 ← GSProve(crs, w, y);Ω1 ← GSRandomize(crs, Ω); b← {0, 1};
b∗ ← A2(statefind, Ωb) : b∗ = b ∧ GSVerify(crs, Ω) = 1 ∧ (w, y) ∈ R

 ·
As shown in [7], GS proofs have composable randomizability, where randomizability holds even if
we switch to the simulation setting.

For more details on how the proof system can be instantiated in the different settings see [36, 34].

2.4 (Partially) Blind Signatures

Blind Signatures (BS) [21] allow a user to obtain a signature on a message hidden from the signer.
Partially Blind Signatures (PBS) [3] are an extension of blind signatures where unlike blind signatures,
part of the message to be signed is shared public information info which is known to both parties.

The signing protocol in these schemes is interactive 〈PBSObtain(pk,m, info),PBSSign(sk, info)〉
between a user who knows a message m and a signer who possesses a secret signing key sk and both
parties know the public information info. If the protocol is completed successfully, the user obtains a
signature Σ on the message m and the information info.

The security of partially blind signatures [6] is similar to that of blind signatures [40, 46] and consists
besides correctness of blindness and unforgeability. Intuitively, blindness requires that an adversarial
signer does not learn the message being signed and he cannot match a signature to its signing session. In
the game, the adversary (modeling an adversarial signer) chooses two messagesm0 andm1 and common
information info and then interacts with the honest user who requests signatures on those messages in
an arbitrary order unknown to the adversary. The same information info is used in both interactions. If
completed successfully, the adversary gets the two final signatures and wins if it tells the order in which
the messages were signed with a probability that is non-negligibly greater than 1/2.

On the other hand, unforgeability deals with an adversarial user whose goal is to obtain k+1 distinct
message/signature pairs after only k interactions w.r.t. the public information info with the honest signer.
A Partially Blind Signature Scheme [29, 30]. In [29, 2], the authors gave a blind signature scheme
whose security reduces to the DLIN, WFCDH and q-DHSDH/q-ADHSDH assumptions in the sym-
metric setting or the SXDH, AWFCDH and q-ADHSDH assumptions in the asymmetric setting. The
message space of the scheme isM := {(Gm, G̃m)|m ∈ Zp}. To get a partially blind scheme, we use a
variant of their blind scheme based on the modified signature scheme from [30] whose message space is
M× Zp as highlighted in [30].

6



The high-level idea behind the scheme is that the user commits to his message and sends the com-
mitment along with GS proofs to prove that it is well-formed to the signer. The signer uses his secret key
to produce a signature on the commitment and the public information info. When the user receives the
signature, he uses the randomness he used in the commitment to modify the signature from one on the
commitment to one on the message itself. The final signature is a set of GS proofs of knowledge of such
a signature. The blindness of the scheme is ensured by the NIWI/NIZK properties of GS proofs and the
fact that the first-round commitment is information-theoretically hiding. The scheme in the asymmetric
setting is in given Figure 1.

PBSSetup(1λ):
− (G1,G2,GT , p,G, G̃, e)← BGrpSetup(1λ, 3).
− P := (G1,G2,GT , p,G, G̃, e).
− (crs, xk)← GSSetup(P).
− F,K,L, T ← G1.
− Return paramPBS := (P, crs, F,K,L, T ).

PBSKeyGen(paramPBS):
− Choose a← Zp and set A := Ga and Ã := G̃a.
− sk := a, pk := (A, Ã). Return (sk, pk).
BSVerify(pk, (M, M̃), Σ, info):
− Parse Σ as Ωsig.
− Return 1 if GSVerify(crs, Ωsig) = 1 Else Return 0.

The signing protocol 〈PBSObtain(pk, (M, M̃), info),PBSSign(sk, info)〉

PBSObtain→ PBSSign Choose s← Zp and compute S := Gs, S̃ := G̃s and C := M · T s.
− Ω ← GSProve

“
crs, (M, M̃, S, S̃),

n
e(M, G̃) = e(G, M̃) ∧ e(S, G̃) = e(G, S̃)

∧ e(M, G̃)e(T, S̃) = e(C, G̃)
o”

.
Send (C,Ω) to PBSSign.

PBSSign→ PBSObtain Abort if GSVerify(crs, Ω) 6= 1. Otherwise, choose u, v ← Zp and compute:
U ′ := Gu, V := F v , W := (K · Tu · C · Linfo)

1
a+v , Ũ ′ := G̃u, Ṽ := G̃v .

Send σ := (W,U ′, Ũ ′, V, Ṽ ) to PBSObtain.

PBSObtain Compute U := U ′ · S and Ũ := Ũ ′ · S̃.
Abort if e(U, G̃) 6= e(G, Ũ), e(F, Ṽ ) 6= e(V, G̃) or e(W, Ã · Ṽ ) 6= e(K ·M · Linfo, G̃)e(T, Ũ).

− Ωsig ← GSProve
“
crs, (V, Ṽ ,W,U, Ũ),

n
e(V , G̃) = e(F, Ṽ ) ∧ e(U, G̃) = e(G, Ũ)

∧ e(W, Ã · Ṽ )e(T−1, Ũ) = e(K ·M · Linfo, G̃)
o”

.
Output Σ := Ωsig.

Fig. 1. The partially blind signature scheme (in the asymmetric setting) [29, 30]

2.5 Ring Signatures

A ring signature is a tuple RS := (RSSetup,RSKeyGen,RSSign,RSVerify) of p.p.t. algorithms. Those
algorithms are defined as follows; where to aid notation all algorithms (bar RSSetup and RSKeyGen)
take as implicit input paramRS (output by RSSetup):

– RSSetup(1λ) takes as input a security parameter λ and outputs common public parameters paramRS.
– RSKeyGen(paramRS) takes as input paramRS and outputs a pair of secret/public keys (sk, pk).
– RSSign(ski,m,R) takes as input a secret key ski, a message m ∈ M (where M is the message

space) and a ring R := {pk1, . . . , pkn} with the condition that pki ∈ R and outputs a signature Σ
on the message m.

– RSVerify(m,Σ,R) takes as input a message m, a ring signature Σ and a ringR and outputs 1 if the
signature is on the message m w.r.t. ringR or 0 otherwise.

The security properties required from ring signatures are informally as follows:

– Correctness: All honestly generated signatures are accepted by the RSVerify algorithm.
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– Anonymity: An adversary cannot tell which ring member produced a signature.
– Unforgeability: An adversary cannot output a valid signatureΣ∗ on a messagem∗ and w.r.t. an hon-

est ringR∗ unless the adversary obtained such a signature by querying the sign oracle on (m∗,R∗).

For detailed definitions and variants of those properties, we refer the reader to [9]. We use the strongest
variants from [9], namely: anonymity under full key exposure and unforgeability against insider-corru-
ption.

3 Blind Ring Signatures

Definition 1 (Blind Ring Signatures). A Blind Ring Signature (BRS) is a tuple of p.p.t. algorithms
(BRSSetup,BRSKeyGen, 〈BRSObtain,BRSSign〉,BRSVerify). Those algorithms are defined as fol-
lows; where to aid notation all algorithms (bar BRSSetup and BRSKeyGen) take as implicit input
paramBRS (output by BRSSetup):

– BRSSetup(1λ) takes as input a security parameter λ and outputs public parameters paramBRS.
– BRSKeyGen(paramBRS) is run by a signer Signeri to generate his pair of secret/public keys (sk, pk).
– 〈BRSObtain(m,R),BRSSign(ski,R)〉 is an interactive two-party protocol between a user User

and a signer in the ring R where pki ∈ R. If the protocol completes successfully, User obtains a
blind ring signature Σ on the message m. If any of the parties abort, User outputs ⊥. This protocol
is initiated by a call to BRSObtain. The choice of the ring could be influenced by either the signer
or the user.

– BRSVerify(m,Σ,R) verifies if the blind ring signature Σ is on the message m w.r.t. the ringR.

A tuple BRS := (BRSSetup,BRSKeyGen, 〈BRSObtain,BRSSign〉,BRSVerify) is a secure blind ring
signature if it has correctness, anonymity, unforgeability and blindness which are defined as follows:

Definition 2 (Correctness). A blind ring signature BRS is correct if for any λ ∈ N, any polynomial
n(·), any {(pki, ski)}

n(λ)
i=1 output by BRSKeyGen, any message m in the message space M and any

index i ∈ [1, n(λ)] if Σ is the output of the honest interaction 〈BRSObtain(m,R),BRSSign(ski,R)〉
whereR = {pk1, . . . , pkn(λ)} then BRSVerify accepts the signature Σ.

ANONYMITY. We use a strong definition for anonymity where we allow the adversary to use corrupt
keys as well as obtaining the secret keys for the two challenge signers i0 and i1 and hence capturing
security against full key exposure and adversarially-chosen keys [9].

Definition 3 (Anonymity). A blind ring signature BRS satisfies anonymity if for any λ ∈ N and poly-
nomial n(·) the success probability of any p.p.t. adversary A in the following game is negligibly close
to 1/2:

1. The challenger generates paramBRS and key pairs {(pki, ski)}
n(λ)
i=1 using BRSKeyGen(paramBRS).

A is given paramBRS and S := {pki}
n(λ)
i=1 .

2. Throughout the game, A has access to a sign oracle OSign with which it interacts to obtain signa-
tures on messages and by signers in rings of its choice (providing that the signer’s public key is in
R and S). A can also ask for the secret key of any signer to be revealed at any stage of the game.

3. A outputs two distinct indices i0 and i1 and a ringR with the only condition that pki0 , pki1 ∈ R. It
then interacts with the challenger to get a signature by signer Signerib where b← {0, 1}.

4. A outputs a bit b′ and succeeds if b = b′.

UNFORGEABILITY. Informally, a blind ring signature is unforgeable if the adversary cannot output a
blind ring signature w.r.t. to a ring R of honest signers that was never produced by the sign oracle. Due
to the blind nature of the signing protocol and as in standard blind signatures, we follow the (k, k + 1)-
unforgeability definition [40, 46]. The following definition also protects against insider corruption [9]:
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Definition 4 (Unforgeability). A blind ring signature BRS is unforgeable if for any λ ∈ N, and poly-
nomial n(·) the success probability of any p.p.t. adversary A in the following game is negligible:

1. The challenger generates paramBRS and key pairs {(pki, ski)}
n(λ)
i=1 using BRSKeyGen(paramBRS).

A is given paramBRS and S := {pki}
n(λ)
i=1 .

2. Throughout the game, A has access to the same oracles as in the anonymity game (Definition 3).
3. A outputs k+1 pairs of message/signature {(mi, Σi)}k+1

i=1 , and a ringR∗.A wins if all the following
conditions hold:
(a) All k + 1 signatures verify correctly (w.r.t. ringR∗) and all the messages are distinct.
(b) All members of the ringR∗ are honest.
(c) A engaged in at most k interactions with the sign oracle w.r.t. ringR∗.

Note that our definition above is not of strong unforgeability, i.e., we do not require that the adversary
cannot output a new signature on an old message.
BLINDNESS. Informally, a blind ring signature is blind if an adversary (modeling a dishonest behavior
of signers in the ring) does not learn the message it is signing. Moreover, it cannot link a signature to its
signing session.

Definition 5 (Blindness). A blind ring signature BRS satisfies blindness if for any λ ∈ N and polyno-
mial n(·) the success probability of any p.p.t. adversary A in the following game is negligibly close to
1/2:

1. The challenger generates paramBRS and sends it to A.
2. A outputs a ringR (the keys of which are possibly adversarially chosen) and two messages m0 and
m1.

3. The honest user interacts with the adversary concurrently to get signatures on those two messages in
an arbitrary order unknown to the adversary by choosing a bit b← {0, 1}. A is sent the signatures
Σb, Σ1−b. If any of the interactions did not finish or any of the signatures do not verify w.r.t.R, A is
not informed about the other signature.

4. A outputs a bit b′ and wins if b = b′.

As noted by [37], since the ring is public, it is a natural requirement that the two challenge signatures
are signed w.r.t. the same ring. Otherwise, blindness can be trivially broken if different rings were used.

Unlike the blindness definition used in [37], which does not give the final challenge signatures to
the adversary, we give the adversary the two final signatures. This is important because blindness should
capture the case that a blind signature is not linkable to its signing session. Take, for example, the e-cash
application where the issuing bank eventually gets to see the coins when they are deposited. Also, unlike
[37], our definition allows the adversary to use corrupt keys of its choice which again provides a strong
definition of blindness [1, 45].

4 Sub-linear Size Set Membership Proof over Prime-Order Groups

In this section we construct a non-interactive set membership proof. The proof allows a prover to prove
that a value Xγ is contained in some set {X1, . . . , XN} ∈ GN . Our construction is based on the under-
lying idea of the proof in [19] which is specific to the composite-order bilinear group setting and is based
on the subgroup decision assumption [14]. Unlike the proof in [19], our proof is more general and works
in both composite-order and prime-order bilinear groups. However, for efficiency reasons our focus is
on the prime-order setting. We provide different instantiations over the 3 main types of the prime-order
setting as summarized in Table 1. We note that it might also be possible to use the recent techniques, e.g.
[28], for translating composite-order based protocols to the prime-order setting to obtain a variant of the
original protocol in [19] in the prime-order setting.
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The idea from [19] is to represent the set by a square n × n matrix where n = d
√
Ne. If N is not

square, we can repeat X1 as many times as required to obtain a set whose size is square. As we will see,
this does not affect the complexity of the proof. The prover knows a secret valueXγ and wants to produce
a non-interactive proof that such a value is contained in a square n × n matrix X without revealing the
secret value. Thus, we construct a proof for the statement Ωmem := PoK{(Xγ ∈ G) : Xγ ∈ X}, where
the matrix is

X =

X1,1 X1,2 . . . X1,n
...

...
. . .

...
Xn,1 Xn,2 . . . Xn,n


For ease of composition, the proof we give here is in the symmetric setting and is based on the DLIN as-
sumption and can be instantiated in the asymmetric setting as summarized in Table 1. Let (G,GT , p,G, e)
be a description of symmetric bilinear groups. We summarize the proof in the following steps where we
assume that Xγ = Xα,β (i.e. Xγ lies in row α and column β) and crs is the reference string used for the
proof system:

1. The prover chooses 2 secret binary vectors y, z ∈ {0, 1}n as follows

yi =
{

1 if i = α,
0 if i 6= α

zi =
{

1 if i = β,
0 if i 6= β

The vectors y, z will be used to anonymously single out the row and the column containing the
secret value, respectively. The prover first needs to prove that each element of those vectors has a
value ∈ {0, 1} which is done by the following QE proofs

Ωyi ← GSProve
(
crs, (yi),

{
yi(yi − 1) = 0

})
,

Ωzi ← GSProve
(
crs, (zi),

{
zi(zi − 1) = 0

})
·

Additionally, the prover needs to prove that each vector contains only a single value of 1. This
could be achieved by generating two extra proofs for the equations

∑n
i=1 yi = 1 and

∑n
i=1 zi = 1,

respectively, which only adds two linear QE proofs and no extra commitments to the complexity.
Alternatively, if witness-indistinguishability is sufficient, one can prove this for free by exploiting
the homomorphic property of GS commitments (which are ElGamal ciphertexts [26] in the SXDH
instantiation and Linear ciphertexts [12] in the DLIN instantiation). Thus, by choosing the GS ran-
domness used for committing to one of those GS commitments to be the inverse of the sum of the
corresponding randomness used for committing to the remaining values in the vector and then by
multiplying the GS commitments to the values in each vector, the randomness cancels out and we
can recover the sum of the values in the vector which allows the verifier to verify such a claim. Let
Cyi ← GSCommit(yi, τyi) and Czi ← GSCommit(zi, τzi) be the GS commitments used in commit-
ting to yi and zi, respectively. We set τyn := −

∑n−1
i=1 τyi and τzn := −

∑n−1
i=1 τzi .

Note that since the randomness τy1 , . . . , τyn−1 and τz1 , . . . , τzn−1 is chosen uniformly, the random-
ness τyn and τzn is also uniform.
The verifier can verify that indeed each vector contains only a single value of 1 by checking that∏n
i Cyi =

∏n
i Czi = GSCommit(1, 0), i.e. the product is equal to a trivial GS commitment to 1.

In total, this step requires 2n GS commitments and 2n QE proofs.
2. The prover anonymously singles out the row containing his secret value. To do so, for each column
j in the matrix compute Xα,j :=

∏n
i=1X

yi
i,j . Note that Xα contains the messages in row α of the

matrix X. The prover generates the following MSME proofs to prove that each Xα,j was computed
correctly

ΩXα,j ← GSProve

(
crs, (Xα,j , y1, . . . , yn),

{
n∏
i=1

X
yi
i,j ·X

−1
α,j = 1

})
·
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3. Finally, the prover proves that the value Xγ is contained in the secret vector Xα. This is achieved
by the following MSME proof

ΩXγ ← GSProve

(
crs, (Xγ , Xα,1, . . . , Xα,n, z1, . . . , zn),

{
n∏
i=1

X
zi
α,i ·X

−1
γ = 1

})
·

The membership proof is Ωmem :=
((

Cy,Cz,CXα , CXγ
)
,
(
Ωy, Ωz,ΩXα , ΩXγ

))
.

To verify the proof, the verifier verifies the proofs Ωyi , Ωzi , ΩXα,i for all i ∈ [1, n] and ΩXγ and
additionally checks that

∏n
i Cyi =

∏n
i Czi = GSCommit(1, 0).

Note that when the proof is instantiated over asymmetric bilinear groups we need to commit to the
vectors y and z in both groups G1 and G2 and provide a proof of their equality.

Theorem 1. The set membership proof is correct, sound and zero-knowledge.

Proof. Correctness and soundness follow from the correctness and soundness of GS proofs and the fact
that by checking that

∏n
i Cyi = GSCommit(1, 0) and

∏n
i Czi = GSCommit(1, 0), the verifier ensures

that only one non-zero value is contained in each vector.
The proof is zero-knowledge since all the equations we prove are simulatable at no extra cost. Simply

by using trivial witnesses (i.e. 0 for exponent values and 1 for group elements), we can simulate all the
proofs.

Complexity of the Proof. We summarize in Table 1 the size (in group elements) of the proof in the
different GS instantiations.

Component/Instantiation DLIN
DDHG1 + DLING2 SXDH

G1 G2 G1 G2

GS Commitments 9n+ 3 4n 9n+ 3 4n 6n+ 2
GS proofs 21n+ 9 12n+ 4 15n+ 3 12n+ 4 10n+ 2

Total 30n+ 12 16n+ 4 24n+ 6 16n+ 4 16n+ 4
Table 1. Complexity of the proof

We note here that in the asymmetric setting, the total size of the proof is irrespective of whether the
set is in GN

1 or GN
2 . Although the size of the commitments and proofs are swapped between the two

cases, the total size remains the same.
To speed up verification, one can apply batch verification techniques [33, 10] to Groth-Sahai proofs.

5 Blind Ring Signature Construction

Overview of the Construction. Some of the recent round-optimal blind signature constructions e.g. [4,
29] are instantiations of Fischlin’s generic construction [27], and combine the GS proof system with
commitment and signature schemes that are compatible with one another. The latter is referred to as
structure-preserving signatures [2]. In Fischlin’s construction, the user sends a commitment to the mes-
sage to the signer who in turn returns a signature on the commitment. The user then constructs the final
blind signature by encrypting both the signature and the commitment and providing a NIZK proof of
knowledge that the signature is valid on the commitment and that the commitment is to the message in
question.

We exploit some properties of GS proofs. First, the rerandomizability of the proofs [7]. Second, that
they are independent of the public terms in the equations being proven [32, 30], which as shown by [32],
allows transforming GS NIWI proofs into new NIWI/NIZK proofs by adding some/all of those public
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terms to the witness without knowledge of the original witness. The latter property was used by [32] to
construct a group blind signature scheme.

Additionally, we require that:

1. The verification equations of the signature scheme has the form that all the monomials (e.g. the
pairing in the case of PPE equations) involving the message are independent of the signing key, i.e.
they involve neither the verification key nor any signature component that depends on the signing
key so that we can exploit the second property above. An example scheme satisfying this condition
is the automorphic scheme from [29].

2. The signature scheme signs n+ 1 group elements or n group elements and an integer where n is the
size (in group elements) of the commitment so that we bind the signature to the ring. To this end, we
require a collision-resistant hash function H : {0, 1}∗ −→ MSIG to map the ring into the message
space of the signature scheme.

The high-level idea of our generic construction is as follows: The user sends a commitment to the
message to the signer. The signer signs the commitment along with the ring information and instead of
sending the signature to the user in the clear, sends a GS proof of knowledge Ω′sig of his public key and
the signature σ such that the signature is on the public commitment to the message and that it verifies
w.r.t. to the signer’s public key. In order to reduce the communication overhead, one does not need to
hide the whole signature and it is sufficient to just hide the components which depend on the secret
key. One might additionally need to hide other parts of the signature to ensure that the proof is in a
transformable form. In addition, using the set membership proof from Section 4, the signer generates a
proof Ω′mem to prove that his public key is in the ring. The signer sends proofs Ω′sig and Ω′mem plus any
remaining public components of the signature to the user.

If the proofs are valid, the user first rerandomizes the proofs Ω′sig and Ω′mem (and their GS com-
mitments) into Ωsig and Ωmem, respectively. The new proofs are now unlinkable to the original ones.
Additionally, he transforms the NIWI proof Ωsig into a NIZK proof by adding the commitment to the
message and the remaining public components of the signature to the witness of the proof. Finally, the
user adds a NIZK proof Ωcom to prove that the commitment is indeed to the message. The final blind
ring signature is a set of GS proofs (Ωsig, Ωmem, Ωcom) and their associated GS commitments. It is vital
that the proofs are correlated, i.e. proofs Ωsig and Ωmem involve the same public key, and proofs Ωsig

and Ωcom involve the same commitment. Thanks to the nature of GS proofs, in our instantiations this
correlation is directly realized by sharing the same GS commitment for those shared components of the
witness between the proofs.

Anonymity is ensured by the NIWI/NIZK properties of the proofs and the fact that any remaining
public components of the signature the user sees are independent of the signer’s key. Blindness follows
from the properties required by Fischlin’s generic construction plus the composable rerandomizability
[7] of the GS proof system. Finally, unforgeability is reduced to the unforgeability of the underlying
signature scheme, the soundness of the proofs, the binding property of the commitment scheme, and the
collision-resistant property of the hash function.

Efficient Instantiation. In order to get an efficient construction, we will base our signing protocol on a
variant of the blind signing protocol from [29] using the signature scheme from [30] which has a short
public key and is capable of signing a pair of group elements and an integer. Thus, obtaining a partially
blind signing protocol as illustrated in Figure 1. We note here that the blind signature in [29] deviates
from Fischlin’s generic construction [27] for blind signatures in that the final signature is on the message
itself rather than its commitment and it requires proofs of knowledge in the signature request protocol.

To obtain a blind ring signature on the message (M,M̃) ∈ G1 × G2, the user commits to the
message using Pedersen commitment C := M · T s for some random s ← Zp and computes S := Gs

and S̃ := G̃s. He then sends the commitment C along with GS proofs of knowledge Ω to prove that:
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Setting Signature Size Assumptions
Type-1 G30n+42 DLIN, q-ADHSDH and WFCDH
Type-2 G16n+22

1 + G24n+30
2 DDHG1 , DLING2 , q-ADHSDH and AWFCDH

Type-3 G16n+22
1 + G16n+20

2 SXDH, q-ADHSDH and AWFCDH
Table 2. Size of the blind ring signature in the different instantiations

the commitment C is indeed to the message M and that the message and the randomness pairs are
well-formed.

The signer first verifies the proofs and if they are valid, produces a signature σ on the commitment
C and the public integer H(R) (for some collision-resistant hash function H : {0, 1}∗ −→ Zp) using
the automorphic signature scheme [30] where σ contains the components (U ′, Ũ ′, V, Ṽ ,W ). However,
instead of sending the signature in the clear as in the scheme in [29], the signer sends a GS proof of
knowledge Ω′sig of his public verification key (A, Ã) and the signature σ such that the signature verifies
w.r.t. his key. Since the components U ′ and Ũ ′ of σ are independent of the signing key, we need not hide
them. Additionally, the signer generates a proof of membershipΩ′mem to prove that his key is in the ring.
The signer’s response is (Ω′sig, Ω

′
mem, U

′, Ũ ′).
The user first verifies the GS proofs Ω′sig and Ω′mem, and that the pair (U ′, Ũ ′) is well-formed. If

they are valid, the user rerandomizes those proofs using the algorithm GSRandomize. The new proofs
are unlinkable to the original ones. The user then transforms the proof Ωsig by making the signature
verifiy w.r.t. to the message itself rather than its commitment: he computes U := U ′ · S and Ũ :=
Ũ ′ · S̃, and transforms the last equation in Ωsig from e(W, Ã · Ṽ ) = e(K · C · LH(R), G̃)e(T, Ũ ′) into
e(W, Ã · Ṽ )e(T−1, Ũ) = e(K ·M ·LH(R), G̃). In addition, he hides the components (U, Ũ) by adding
a proof for the equation e(U, G̃) = e(G, Ũ). The final blind ring signature is Σ := (Ωsig, Ωmem).

The detailed construction in the asymmetric setting is as follows:

– BRSSetup(1λ):
• RunP ← BGrpSetup(1λ, 3) and (crs, xk)← GSSetup(P). ParseP as (G1,G2,GT , p,G, G̃, e).
• Choose a suitable collision-resistant hash functionH : {0, 1}∗ −→ Zp and F,K,L, T ← G1.
• Set paramBRS := (P, crs,H, F,K,L, T ). Return paramBRS.

– BRSKeyGen(paramBRS):
• Choose a← Zp and set A := Ga and Ã := G̃a. Set sk := a, pk := (A, Ã). Return (sk, pk).

– The signing protocol 〈BRSObtain((M,M̃),R),BRSSign(sk,R)〉 is in Figure 2.
– BRSVerify((M, M̃), Σ,R)
• Parse Σ as (Ωmem, Ωsig).
• Return 1 if GSVerify(crs, Ωmem) = 1 and GSVerify(crs, Ωsig) = 1. Otherwise, return 0.

Theorem 2. The construction is a secure blind ring signature scheme.

The full proof is in Appendix A.
Efficiency of the Construction. As mentioned earlier, our construction is the first realization in the
standard model and also the first to offer sub-linear signatures instead of linear ones. Table 2 summarizes
the size of the signature as well as the required assumptions for the different instantiations. Type-1
instantiation uses the DLIN instantiation of GS proofs, Type-2 uses GS proofs based on DDH in G1 and
DLIN in G2 as used in [34], and Type-3 uses the SXDH instantiation of the proofs.

To give example concrete figures, we consider a security level equivalent to 128-bit symmetric key
security. For a ring consisting of 10,000 members, the Type-1 instantiation, where the size of elements
of group G are 512-bit, yields signatures of size of approximately 190 kB. At the same security level
in the asymmetric setting where elements of G1 are of size 256-bit and those of G2 are of size 512-bit,
the signature size is 203 kB and 152 kB in the Type-2 and Type-3 instantiations, respectively. Again, the
verification of the signature can be made more efficient by batch verifying Groth-Sahai proofs [33, 10].
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BRSObtain→ BRSSign − Choose s← Zp and compute S := Gs, S̃ := G̃s and C := M · T s.
− Ω ← GSProve

“
crs, (M, M̃, S, S̃),

n
e(M, G̃) = e(G, M̃) ∧ e(S, G̃) = e(G, S̃)

∧ e(T, S̃)e(M, G̃) = e(C, G̃)
o”

.
− Send (C,Ω) to BRSSign.

BRSSign→ BRSObtain − If GSVerify(crs, Ω) 6= 1 Then Abort().
− Choose u, v ← Zp and set U ′ := Gu, V := F v , W := (K · Tu · C · LH(R))

1
a+v ,

Ũ ′ := G̃u, Ṽ := G̃v .

− Ω′sig ← GSProve
“
crs, (V, Ṽ ,W, Ã),

n
e(V , G̃) = e(F, Ṽ )

∧ e(W, Ã · Ṽ ) = e(K · C · LH(R), G̃)e(T, Ũ ′)
o”

.

− Compute the membership proof Ω′mem ← GSProve
“
crs, (Ã),

n
Ã ∈ RÃ

o”
. 1

− Send (Ω′sig, Ω
′
mem, U

′, Ũ ′) to BRSObtain.

BRSObtain − Abort if e(U ′, G̃) 6= e(G, Ũ ′), GSVerify(crs, Ω′sig) 6= 1 or GSVerify(crs, Ω′mem) 6= 1.
− Compute U := U ′ · S and Ũ := Ũ ′ · S̃.
− Ωsig ← GSRandomize(Ω′sig), Ωmem ← GSRandomize(Ω′mem) and transform Ωsig as follows:

− Ωsig ← GSProve
“
crs, (V, Ṽ ,W, Ã, U, Ũ),

n
e(V , G̃) = e(F, Ṽ ) ∧ e(U, G̃) = e(G, Ũ)

∧ e(W, Ã · Ṽ )e(T−1, Ũ) = e(K ·M · LH(R), G̃)
o”

.
− Output Σ := (Ωsig, Ωmem).

Fig. 2. The signing protocol

6 Generic Construction of Ring Signatures over Prime-Order Bilinear Groups

Here we provide a generic construction for ring signatures without random oracles by combining the set
membership proof from Section 4 with any compatible signature scheme.

Let Sig := ([SigSetup], SigKeyGen,SigSign, SigVerify) be an existentially unforgeable signature
scheme secure against adaptive chosen-message attack that works in any of the 3 main types (cf. Section
2.1) of prime-order bilinear groups. Let MSig be its message space, (sk, pk) be its key pair and σ :=
(σ1, . . . , σn) be its signatures for some positive integer n with the condition that for any i ∈ [1, n], σi is
a group element if it depends on sk. 2 Our construction is as follows:

– RSSetup(1λ): Run P ← BGrpSetup(1λ, tp) for tp ∈ [1, 3], (crs, xk) ← GSSetup(P). Choose a
collision-resistant hash function H : {0, 1}∗ −→MSig. The public parameters is then paramRS :=
(P, crs,H). Note that if Sig requires setup, then the output of SigSetup is also added to paramRS.

– RSKeyGen(paramRS): Run SigKeyGen to obtain (sk, pk).
– RSSign(ski,m,R): To sign a message m ∈ {0, 1}∗ w.r.t. a ring R := {pk1, . . . , pkN} with the

condition that pki ∈ R, run σ ← SigSign(ski,H(m,R)) . Then generate the following two Groth-
Sahai proofs where σ̄ is the subset of σ which depends on the secret key sk.

Ωmem ← GSProve{crs, (pki), {pki ∈ R}},
Ωsig ← GSProve{crs, (pki, σ̄), {SigVerify(pki,H(m,R), σ) = 1}}.

The ring signature is then Σ := (Ωmem, Ωsig, {σ} \ {σ̄}). Again, the two proofs must be correlated,
i.e. they involve the same public key pki.

1 We only prove membership for one component of the key. The verifier can verify that all keys in the ring are well-formed.
Alternatively, one can add a proof for the equation e(A, G̃) = e(G, Ã). It is a matter of trade-off between communication
and computation.

2 Unlike structure-preserving signatures [2], we do not require that the messages are group elements.
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Instantiation Setting Signature Size Complexity Assumptions

Waters
Type-1 G30n+19 CDH + DLIN
Type-2 G16n+10

1 + G24n+13
2 Co-CDH + DDHG1 + DLING2

Type-3 G16n+11
1 + G16n+9

2 Co-CDH∗ + SXDH

FBB
Type-1 G42n+39 + Z4

p q-SDH + DLIN
Type-2 G20n+14

1 + G30n+21
2 + Z4

p q-SDH + DDHG1 + DLING2

Type-3 G20n+14
1 + G20n+14

2 + Z3
p q-SDH + SXDH

Table 3. Example instantiations of the generic ring signatures construction

– RSVerify(m,Σ,R): To verify that the ring signature Σ is a valid signature on the message m w.r.t.
the ringR, verify the two proofs Ωmem and Ωsig.

Theorem 3. The generic construction is a secure ring signature scheme for message space {0, 1}∗.

The full proof is in Appendix B.
Next, we provide some example instantiations of the construction and compare their efficiency in

the different bilinear group settings in Table 3.

6.1 Instantiation-1 (Using the Full Boneh-Boyen (FBB) Signature [11])

Here we instantiate the signature scheme Sig with the full Boneh-Boyen signature scheme [11]. The
following instantiation is in Type-1 setting:

– RSSetup(1λ): Run P ← BGrpSetup(1λ, 1), (crs, xk) ← GSSetup(P). Choose a suitable collision-
resistant hash functionH : {0, 1}∗ −→ Zp. Set paramRS := (P, crs,H).

– RSKeyGen(paramRS): Select a, b ← Zp and set A := Ga and B := Gb. Set sk := (a, b) and
pk := (A,B).

– RSSign((a, b),m,R): Select r ← Zp and compute h := H(m,R). Generate the full Boneh-Boyen
signature σ := G

1
a+r·b+h . Let Aγ := A and Bγ := B. Generate the following proofs:

Ωmem ← GSProve
(
crs, (Aγ , Bγ),

{
Aγ ∈ RA ∧ Bγ ∈ RB

})
3,

Ωsig ← GSProve
(
crs, (σ,Aγ , Bγ , B′),

{
Bγ

r = B′ ∧ e(σ,Aγ)e(σ,B′)e(σ,GH(m,R)) = e(G,G)
})
·

The final ring signature is Σ := (Ωmem, Ωsig, r).
The proof of the following Theorem follows easily from that of Theorem 3.

Theorem 4. The construction is secure if the DLIN and q-SDH assumptions hold in group G and the
hash functionH is collision-resistant.

6.2 Instantiation-2 (Using Waters Signature Scheme [52])

Using Waters signature scheme [52] instantiated over prime-order groups, we get a more efficient con-
struction (yielding sub-linear size signatures) than the Waters signature based construction [50] (yielding
linear size signatures in composite-order groups).

Unlike the instantiation in Section 6.1, the public key only contains one group element and hence it
requires a simpler membership proof. We give the instantiation below in Type-1 setting:

3 In producing the proof, we will use the same vectors y and z for both proofs since those elements are in symmetric positions
in their respective matrices.

15



– RSSetup(1λ):P ← BGrpSetup(1λ, 1) and parseP as (G,GT , p,G, e). Run (crs, xk)← GSSetup(P)
and choose a suitable collision-resistant hash function H : {0, 1}∗ −→ {0, 1}k. Select a ← Zp,
Ui ← G for all i ∈ [0, k] then set A := Ga, the public parameter is then set to paramRS :=
(P, crs,H, A, U0, U1, . . . , Uk).

– RSKeyGen(paramRS): Choose b← Zp and compute B := Gb. Set sk := Ab and pk := B.
– RSSign(sk,m,R): To sign a message m ∈ {0, 1}∗ using the secret key sk = Ab, compute h :=
H(m,R). Parse h as (h1, . . . , hk) ∈ {0, 1}k and then computeH := U0

∏k
i=1 U

hi
i . Choose r ← Zp

and compute the signature σ1 := Gr and σ2 := sk ·Hr. Let σ := (σ1, σ2) and Bγ := B. Generate
the following proofs:

Ωmem ← GSProve (crs, (B), {B ∈ RB}) ,

Ωsig ← GSProve

(
crs, (σ2, B),

{
e(B,A−1)e(σ2, G) = e(σ1, U0

k∏
i=1

Uhii )

})
·

The final ring signature is Σ := (Ωmem, Ωsig, σ1).
The proof of the following Theorem follows easily from that of Theorem 3.

Theorem 5. The construction is secure if the DLIN assumption (which implies the CDH assumption)
holds in group G and the hash functionH is collision-resistant.

6.3 Instantiating the Construction in [19] over Prime-Order Groups

Combining our set membership proof with the weakly secure Boneh-Boyen signature scheme [11]
and one-time signatures instantiated over prime-order groups, we get efficient instantiations of the
composite-order construction given in [19]. The anonymity of the construction follows from the hard-
ness of the assumption on which we base GS proofs, whereas the unforgeability of the constructions
follows from the q-SDH assumption and the soundness of GS proofs.
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A Proof of Theorem 2

Proof. Correctness follows from the perfect completeness of GS proofs and the correctness of the un-
derlying signature scheme and hence it is trivial to verify.

Lemma 1. The construction is anonymous (against full key exposure) providing that GS proofs are
hiding (i.e. witness-indistinguishable/zero-knowledge) and that the SXDH assumption holds.

Proof. We prove that
AdvAnon

BRS,B(λ) ≤ AdvHiding
GS,A1

(λ) + AdvSXDH
A2

(λ).

By the perfect NIWI/NIZK of GS proofs in the simulation setting, we have that AdvHiding
GS,A1

(λ) = 0
and hence an adversary has a zero advantage in breaking the NIWI/NIZK properties of the proofs.

What is left is to show that the adversary cannot distinguish which of the two types of the CRS, it was
given. By the security of the SXDH assumption in this instantiation (as shown in [36]), the adversary
has a negligible advantage in telling apart a simulation CRS from a soundness one and therefore this
only negligibly changes B success probability. The reduction to the security of SXDH assumption was
proven in [36].

Note that the values U ′ and Ũ ′ the user sees are independent of the signer’s key and thus reveal no
information about the signer. Thus, we have that AdvAnon

BRS,B(λ) ≤ v(λ) and therefore the construction is
anonymous.

Lemma 2. The construction is unforgeable if the GS proof system is sound, the hash function H is
collision-resistant, and the signature scheme used in the blind signing protocol is existentially unforge-
able.

Proof. We show that

AdvUnforg
BRS,B(λ) ≤ AdvSound

GS,A1
(λ) + AdvColl

H,A2
(λ) + n(λ) · AdvUnforg

SIG,A3
(λ) ·

We distinguish between 3 different types of adversaries:
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– Type I: This type forges signatures by producing proofs for false statements.
– Type II: This type forges signatures by finding two different ringsR 6= R′ butH(R) = H(R′).
– Type III: This type forges signatures by breaking the unforgeability of the underlying signature

scheme and thus forging signatures for new messages that the signer did not sign.

We start by instantiating GS proofs in the soundness setting so that the resulting proofs are perfectly
sound and therefore this eliminates the case that the adversary (i.e. Type I) forges signatures by faking
proofs for false statements. Thus, we have that AdvSound

GS,A1
(λ) = 0.

By the collision-resistant property of the hash function, the adversary (i.e. Type II) has a negligible
advantage in finding two different rings R 6= R′ such that H(R) = H(R′). If this is the case, we can
construct an adversary A2 that breaks the collision-resistant property of the hash function. Thus, we
have that AdvColl

H,A2
(λ) ≤ v(λ).

Finally, we show that by the existential unforgeability of the underlying signature scheme, the adver-
sary has a negligible advantage in forging blind ring signatures by forging signatures for messages/rings
he did not ask the sign oracle to sign for him. We show that if B can forge a blind ring signature with
a non-negligible probability, we can construct an adversary A3 that breaks the unforgeability of the
underlying signature scheme used in the blind signing protocol with a non-negligible probability.

Adversary A3 generates paramBRS where it instantiates GS proofs in the soundness setting. It also
generates n pairs of keys, where n = n(λ) is an upper bound on the number of honest signers B uses in
its game. A3 randomly chooses i∗ ∈ [1, n] and generates all the keys for i ∈ [1, n] \ {i∗} normally with
the exception that it sets pki∗ to be the public key it gets from its own unforgeability game and henceA3

does not know the corresponding secret key ski∗ . Let S := {pk1, . . . , pkn}. A3 passes paramBRS and S
to B.

When B asks for a corrupt query on any i 6= i∗, A3 simply reveals the corresponding secret key ski.
If B asks a corrupt query on i = i∗, A3 aborts. This happens with probability 1/n.

For sign queries made by B for any signer Signeri where i 6= i∗, A3 generates the signature itself
by using the corresponding secret key and constructing the rest of the signature and then returning
(Ω′mem, Ω

′
sig, U

′, Ũ ′) as the answer. On the other hand, when B asks for signatures by Signeri∗ , A3

first extracts the message pair (M,M̃) from the proofs the adversary sends in the first round and then
forwards the message and H(R) to its own sign oracle. After it receives the answer from its oracle, it
generates the rest of the blind ring signature itself and returns (Ω′mem, Ω

′
sig, U

′, Ũ ′) as the answer; note
this does not require knowledge of ski∗ because all the proofs of knowledge involve pki∗ and not ski∗ .

Eventually, B terminates and outputs k + 1 pairs of message/signature {((Mj , M̃j), Σj)}k+1
j=1 by

ring R∗ ⊆ S. At this stage, A3 first verifies that all members in R∗ are indeed all honest, that it never
participated in more than k interactions with B w.r.t. ring R∗ and that all messages in the forgery are
distinct. If all conditions are satisfied, A3 uses the GS system extraction key to extract the public keys
and the signatures σj . With probability 1/n the extracted public key will be for the signer we have
guessed. If this is not the case, A3 aborts.
A3 now identifies the extra message pair (M∗, M̃∗) that it did not query its sign oracle on and

returns it with H(R∗) and σ∗ as its answer in its unforgeability game. Clearly, if B wins its game
with non-negligble probability,A3 breaks the unforgeability of the underlying signature scheme. By the
unforgeability of the underlying signature scheme (see [30]) we have that AdvUnforg

SIG,A3
(λ) ≤ v(λ).

Summing up, we have that AdvUnforg
BRS,B(λ) ≤ v(λ) and thus our construction is unforgeable.

Lemma 3. The construction is blind if the GS proof system is hiding and rerandomizable, the Pedersen
commitment (used in the first round of the signing protocol) is hiding and the SXDH assumption holds.

Proof. We show that

AdvBlind
BRS,B(λ) ≤ AdvHiding

GS,A1
(λ) + AdvHiding

Pedersen,A2
(λ) + AdvSXDH

A3
(λ).
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By the perfect NIWI/NIZK of GS proofs in the simulation setting, we have that AdvHiding
GS,A1

(λ) = 0. Also,
the commitment used in the first round of the signing protocol is perfectly hiding, and therefore we also
have AdvHiding

Pedersen,A2
(λ) = 0. Furthermore, we have by the security of GS proofs (i.e. the security of

the SXDH assumption [36]) that an adversary has a negligible advantage in telling apart a simulation
CRS from a soundness one and therefore this only negligibly changes B’s success probability. Also,
by the rerandomizability of GS proofs [7], we have that the rerandomized proofs Ωmem and Ωsig are
independent of the original proofs Ω′mem and Ω′sig the signer generated and thus they cannot be linked.
Thus, the construction is blind.

B Proof of Theorem 3

Proof. Correctness. This follows from the perfect completeness of the GS proof system and the cor-
rectness of the Sig scheme.

Lemma 4. If the GS proof system is hiding (i.e. witness-indistinguishable/zero-knowledge), then the
construction is anonymous under full key exposure.

Proof. We instantiate the proof system in the simulation setting which results in proofs that are perfectly
hiding. By the security of the GS proof system (see [36]), the adversary has a negligible advantage in
distinguishing between the simulation setting and the soundness setting.

Since in our proofs within the final signature, we hide all the components of the signature σ that
depend on the key and the public key itself w.r.t. which the signature σ verifies, all the public values in
the signature are independent of the signer’s public key. Thus, if the adversary learns about the witness
used in the proofs, we can reduce anonymity to breaking the hiding properties of GS proofs and hence
break the witness-indistinguishability/zero-knowledge of the system. See [36] for more details.

Lemma 5. If the GS proof system is sound, the hash function H is collision-resistant, and the signa-
ture scheme Sig is existentially unforgeable against adaptive chosen-message attack, the construction is
unforgeable in the presence of insider corruption.

Proof. Instantiating the proof system in the soundness setting yields proofs that are perfectly sound and
hence the adversary against unforgeability has zero advantage in succeeding by faking proofs for false
statements. We thus exclude this case and we are left with two types of forgers as follows, where we
assume that the forger aganist the ring signature makes q sign queries:

– Type-I: The forgery is on message m∗ and ring R∗ where H(m∗,R∗) = H(mi,Ri) for some
previous query (mi,Ri) and (m∗,R∗) 6= (mi,Ri) for some i ∈ [1, q].

– Type-II: We have thatH(m∗,R∗) /∈ {H(mi,Ri)}qi=1.

We reduce Type-I forgeries to breaking the collision-resistant property of the hash function. Thus, by the
security of the hash function, we have that Type-I forgery can only happen with a negligible probability.

We now focus on Type-II forgeries and reduce it to the existential unforgeability of the signature
scheme Sig. Let B be an adversary against the unforgeability of the ring signature, using B, we can
construct an adversaryA3 that successfully breaks the unforgeability of the underlying signature scheme
Sig.
A3 starts by generating the public parameters paramRS where it instantiates the GS CRS in the

soundness setting. Adversary A3 also generates n pairs of keys, where n = n(λ) is an upper bound on
the number of honest signers B uses in its game. A3 randomly chooses i∗ ∈ [1, n] and generates all the
keys for i ∈ [1, n] \ {i∗} normally with the exception that it sets pki∗ to be the public key it gets from
its own unforgeability game and hence A3 does not know the corresponding secret key ski∗ . A3 passes
paramRS and S := {pk1, . . . , pkn} to B.
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When B asks for a corrupt query on any i 6= i∗, A3 simply reveals the corresponding secret key ski.
If B asks a corrupt query on i = i∗, A3 aborts. This happens with probability 1/n.

For sign queries made by B for any signer Signeri where i 6= i∗, A3 generates the ring signature
itself by using the corresponding secret key and constructing the rest of the ring signature. On the other
hand, if the query is for Signeri∗ , A3 queries its sign oracle on H(m,R) and then generates the rest of
the ring signature itself.

Eventually, B terminates by outputting a message m∗, a ring signature Σ∗ and a ring R∗. A3 first
verifies that all members inR∗ are indeed all honest, that it never answered a sign query on message m∗

w.r.t. the ring R∗. If all conditions are satisfied, A3 uses the GS extraction key to extract the public key
pk∗ and the signature σ∗ from the proof. With probability 1/n, the extracted public key will be for the
signer A3 has guessed. If this is not the case, A3 aborts. Otherwise, A3 returns H(m∗,R∗) and σ∗ as a
successful forgery in its game.

Thus, we have

AdvUnforg
RS,B (λ) ≤ AdvSound

GS,A1
(λ) + AdvColl

H,A2
(λ) + n(λ) · AdvUnforg

Sig,A3
(λ),

which concludes the proof.
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