
Securing the Data in Big Data Security Analytics

Kevin D. Bowers
RSA Laboratories

kevin.bowers@rsa.com

Catherine Hart∗
Bell Canada

catherine.hart@bell.ca

Ari Juels∗
ajuels2@gmail.com

Nikos Triandopoulos
RSA Laboratories

nikolaos.triandopoulos@rsa.com

ABSTRACT
Big data security analytics is an emerging approach to intrusion
detection at the scale of a large organization. It involves a combi-
nation of automated and manual analysis of security logs and alerts
from a wide and varying array of sources, often aggregated into a
massive (“big”) data repository. Many of these sources are host
facilities, such as intrusion-detection systems and syslog, that we
generically call Security Analytics Sources (SASs).

Security analytics are only as good as the data being analyzed.
Yet nearly all SASs today lack even basic protections on data col-
lection. An attacker can undetectably suppress or tamper with SAS
messages to conceal attack evidence. Moreover, by merely moni-
toring network traffic they can discover sensitive SAS instrumenta-
tion and message-generation behaviors.

We introduce PillarBox, a tool for securely relaying SAS mes-
sages in a security analytics system. PillarBox enforces integrity: It
secures SAS messages against tampering, even against an attacker
that controls the network and compromises a message-generating
host. It also (optionally) offers stealth: It can conceal alert genera-
tion, hiding select SAS alerting rules and actions from an adversary.

We present an implementation of PillarBox and show experi-
mentally that it can secure messages against attacker suppression or
tampering even in the most challenging environments where SASs
generate real-time security alerts. We also show, based on data
from a large enterprise and on-host performance measurements,
that PillarBox has minimal overhead and is practical for real-world
big data security analytics systems.

1. INTRODUCTION
Big data security analytics is a popular term for the growing

practice of organizations to gather and analyze massive amounts
of security data to detect systemic vulnerabilities and intrusions,
both in real-time and retrospectively. 44% of enterprise organiza-
tions today identify their security operations as including big data
security analytics [16]. To obtain data for such systems, organiza-
tions instrument a variety of hosts with a range of Security Analyt-
ics Sources (SASs) (pronounced “sass”). By SAS here, we mean
generically a system that generates messages or alerts and transmits
them to a trusted server for analysis and action.

On a host, for instance, a SAS can be a Host-based Intrusion De-
tection System (HIDS), an anti-virus engine, any software facility
that writes to syslog, or generally any eventing interface that re-
ports events to a remote service, e.g., a Security and Information
Event Monitoring (SIEM) system. Further afield, a SAS could be
a dedicated Network Intrusion Detection System (NIDS), or, in an
embedded device, a feature that reports physical tampering. A SAS

∗Work performed while at RSA Labs

could also be the reporting facility in a firewall or proxy.
SASs play a central role in broad IT defense strategies based on

security analytics, furnishing the data to detect systemic vulnerabil-
ities and intrusions. But a big data security analytics system is only
as good as the SAS data it relies on. Worryingly, current-generation
SASs lack two key protections against a local attacker.

First, an attacker can undetectably suppress or tamper with SAS
messages. Today’s approach to securing SAS messages is to trans-
mit them immediately to a trusted server. By disrupting such trans-
missions, an attacker can create false alarms or prevent real alarms
from being received. Even a SAS with a secure host-to-server
channel (such as SSL/TLS) is vulnerable: An attacker can un-
detectably blackhole/suppress transmissions until it fully compro-
mises the host, and then break off SAS communications. (We
demonstrate the feasibility of such an attack in this paper in Sec-
tion 5.1.) Logged or buffered SAS messages are vulnerable to dele-
tion or modification after host compromise.

Consider, for instance, a rootkit Trojan that exploits a host vul-
nerability to achieve a privilege escalation on an enterprise server.
A HIDS or anti-virus engine might immediately detect the suspi-
cious privilege escalation and log an alert, “Privilege Escalation.”
An attacker can block transmission of this message and, once in-
stalled, the rootkit can modify or remove critical logs stored locally
(as many rootkits do today, e.g., ZeroAccess, Infostealer.Shiz, An-
droid.Bmaster).1 Because any buffered alert can simply be deleted,
and any transmission easily blocked, an enterprise server receiving
the host’s logs will fail to observe the alert and detect the rootkit.

A second problem with today’s SASs is that an attacker can dis-
cover intelligence about their configuration and outputs. By ob-
serving host emissions on a network prior to compromise, an at-
tacker can determine if and when a SAS is transmitting alerts and
potentially infer alert-generation rules. After host compromise, an
attacker can observe host instrumentation, e.g., HIDS rule sets,
logs, buffered alerts, etc., to determine the likelihood that its activ-
ities have been observed and learn how to evade future detection.

For enterprises facing sophisticated adversaries, e.g., Advanced
Persistent Threats (APTs) such as the Aurora attack,2 Stuxnet and
Duqu, such shortcomings are critical. Threat-vector intelligence is
widely known to play a key role in defense of such attacks, and its
leakage to cause serious setbacks [14].

Thus an attacker’s ability to suppress alerts undetectably and ob-
tain leaked alert intelligence in today’s SAS systems is a fundamen-
tal vulnerability in the host-to-server chain of custody and flaw in
big data security analytics architectures.

1These are just recent examples. Many rootkits remove or obfuscate logs
by modifying the binary of the logging facility itself.
2http://www.mcafee.com/us/threat-center/
aurora-enterprise.aspx

http://www.mcafee.com/us/threat-center/aurora-enterprise.aspx
http://www.mcafee.com/us/threat-center/aurora-enterprise.aspx

Pillarbox. As a solution to these challenges, we introduce a tool
called PillarBox.3 PillarBox securely relays alerts from any SAS
to a trusted analytics server. It creates a secure host-to-server chain
of custody with two key properties:

1. Integrity: PillarBox protects a host’s SAS messages against
attacker tampering or suppression. It guarantees that the server
receives all messages generated prior to host compromise (or
detects a malicious system failure). PillarBox also aims to se-
cure real-time alert messages during host compromise faster
than the attacker can intercept them. After host compromise,
PillarBox protects already generated SAS messages, even if
an attacker can suppress new ones.

2. Stealth: As an optional feature, PillarBox conceals when
and whether a SAS has generated alerts, helping prevent leak-
age of intelligence about SAS instrumentation. It does so
against an attacker that sniffs network traffic before compro-
mise and learns all host state after compromise. Stealth can
also involve making SAS alert-generation rules vanish (be
erased) during compromise.

Counterintuitively, PillarBox buffers SAS messages on the (vul-
nerable) host. As we show, this strategy is better than pushing alerts
instantly to the server for safekeeping: It’s equally fast, more robust
to message suppression, and important for stealth.
Challenges. While PillarBox is useful for any type of SAS, the
most stringent case is that of self-protection. Self-protection means
that the SAS messages to be protected regard the very host produc-
ing the messages, potentially while the host is being compromised
(as with, e.g., a HIDS). Thus, integrity has two facets. First, a host’s
buffered alerts must receive ongoing integrity protection even after
host compromise. Second, alerts must be secured quickly—before
an attacker can suppress or tamper with them as it compromises the
host. We show experimentally that even in the most challenging
case of self-protection, PillarBox secures SAS alerts before a fast
attacker can suppress them—even if the attacker has full knowledge
of and explicitly targets PillarBox.

Stealth (optional in PillarBox) requires that the host’s internal
data structures be invariant to SAS message generation, so that they
reveal no information to an attacker after host compromise. Mes-
sage buffers must therefore be of fixed size, making the threat of
overwriting by an attacker an important technical challenge. Addi-
tionally, to protect against an adversary that controls the network,
stealth requires that PillarBox transmissions resist traffic analysis,
e.g., don’t reveal message logging times. A final challenge in achiev-
ing stealth is the fact that an attacker that compromises a host learns
the host’s current PillarBox encryption keys.
Contributions. In this paper we highlight and demonstrate the
transmission vulnerability in security analytics systems and pro-
pose a solution, which we call PillarBox. In designing PillarBox,
we also specify (and formally define) the properties of integrity and
stealth, which are general and fundamental to the architecture of a
security analytics systems.

We present an architecture for PillarBox and a prototype end-to-
end integration of the tool with syslog, a common SAS. We show
experimentally that PillarBox can secure SAS messages in the chal-
lenging self-protection case before an attacker can suppress them
by killing PillarBox processes. Since the majority of host compro-
mises involve privilege escalation, we also show that for a common
3A pillar box is a Royal Mail (U.K.) mailbox in the form of a red metal
pillar. It provides a secure and stealthy chain of custody, with integrity
(only postal workers can open it), message hiding (it’s opaque), and delivery
assurance (if you trust the Royal Mail).

attack (the “Full-Nelson” privilege escalation attack), an alerter can
be configured to detect the attack and the resulting SAS message
can be secured before the attacker can shut down PillarBox. Ad-
ditionally, we use alert-generation data from a large enterprise to
confirm that PillarBox can be parameterized practically, with low
performance overhead on hosts.

We emphasize that we don’t address the design of SASs in this
paper. How SAS messages are generated and the content of mes-
sages are outside the scope of this paper. PillarBox is a practical,
general tool to harden the host-to-server chain of custody for any
SAS, providing a secure foundation for security analytics systems.

Organization. Section 2 introduces PillarBox’s adversarial model
and design principles, while Section 3 describes its architecture and
integration with a SAS. Section 4 gives technical details on buffer
construction and supporting protocols. Section 5 demonstrates a
simple attack on existing SAS systems and presents a prototype im-
plementation and experimental evaluation of PillarBox. We review
related work in Section 6 and conclude in Section 7. Cryptographic
formalisms are relegated to the Appendix.

2. MODELING AND DESIGN PRINCIPLES
We now describe the adversarial model within which PillarBox

operates. We then explain how host-side buffering serves to secure
SAS alerts within this model and follow with details on the techni-
cal approaches in PillarBox to achieving integrity and stealth.

2.1 Adversarial model
We model our setting in terms of three entities, the SAS (which

we refer to interchangeably as the host), the attacker (also called
the intruder), and the server. We model the strongest possible ad-
versary, one attacking a host in the self-protecting setting. (Achiev-
ing security against this strong adversary ensures security against
weaker ones, e.g., an adversary that only attacks the network or
attacks a firewall whose SAS only reports on network events.)

Recall that in the self-protecting case, a SAS generates messages
about the host itself. While the compromise is taking place, the
SAS generates one or more alert messages relevant to the ongoing
attack and attempts to relay them to the server.

The adversary controls the network in the standard Dolev-Yao
sense [5]. It can intercept, modify, and delay messages at will.
When its intrusion is complete, the attacker achieves what we call
a complete compromise of the host: It learns the host’s complete
state, including all memory contents—cryptographic keys, buffer
messages, etc.—and fully controls the host’s future behavior, in-
cluding its SAS activity. The server itself is a trusted entity: It is
not vulnerable to attack.

To violate integrity, the attacker’s goal is to compromise the host:
(1) Without any unmodified alerts reaching the server and (2) With-
out the server learning of any modification or suppression of alerts
by the attacker.

The SAS can only start generating meaningful alerts, of course,
once the intrusion is in progress. After the attacker has achieved
complete compromise, it can shut down the SAS or tamper with
its outputs. So a SAS produces valid and trustworthy alerts only
after intrusion initiation but prior to complete compromise. We
call the intervening time interval the critical window of an attack, as
illustrated in Figure 1. This is the interval of time when intrusions
are detectable and alerts can be secured (e.g. buffered in PillarBox)
before the attacker intercepts them.

Conceptually, and in our experiments, we assume that the at-
tacker has full knowledge of the workings of the SAS, includ-
ing any mechanisms protecting alerts en route to the server, e.g.,

2

compromise in progress

Pre-‐Compromise	
Period	

Post-‐Compromise	
Period	

SAS generates
alerts

complete
compromise

(disabled SAS)

host compromised

time

compromise
initiated

Cri.cal	 Window	 …	 …	

Figure 1: Event timeline of host compromise

PillarBox. It fully exploits this knowledge to suppress or modify
alerts. The attacker doesn’t, however, know host state, e.g., cryp-
tographic keys, prior to complete compromise nor does it know the
detection rules (behavioral signatures) used by the SAS, i.e., the
precise conditions leading to alert generation.

To violate stealth, the attacker tries to learn information about
SAS rules and actions, e.g., if the SAS has issued alerts during
an attack. The attacker makes adaptive use of the network and of
post-compromise host state, such as buffer state. SAS detection
rules can also be used to infer behavior, but are outside the scope of
PillarBox. Vanishing rules (rules that are deleted if they ever trig-
ger an alert) can be used to protect against adversarial rule discov-
ery in the SAS. By analogy with cryptographic indistinguishability
definitions, a concise definition of stealth is possible: An attacker
violates stealth if, for any SAS detection rule, it can distinguish
between PillarBox instantiations with and without the rule.

2.2 Secure alert relaying via buffering
A key design choice in PillarBox, as mentioned, is the use of

host-side alert buffering. We now explain why buffering is impor-
tant to secure the SAS chain of custody in PillarBox and how we
address the technical challenges it introduces.

For brevity, we refer to the PillarBox buffer as the PBB. The ob-
jective of PillarBox is to secure alerts in the PBB during the critical
window, as shown in Figure 2. Once in the PBB, alert messages
are protected in two senses: They are both integrity-protected and
“invisible” to the attacker, i.e., they support systemic stealth. (In-
formally, the PBB serves as a “lockbox.”) Also, as we explain,
either alerts reliably reach the server, or the server learns of a de-
livery failure.

Host

SAS	 PBB	
“Alert!”	

Pre-‐compromise	 period	 Cri1cal	 window	 Post-‐compromise	 period	

Host

SAS	 PBB	

“Alert!”	 Host

SAS	 PBB	
“Alert!”	

(A)	 (B)	 (C)	 malware	
malware	

malware	

Figure 2: PillarBox across compromise phases: (A) The intruder
hasn’t yet attacked the host. (B) The SAS detects in-progress com-
promise and places an alert in the PillarBox buffer (PBB). (C) The
intruder has complete control of the host, but the PBB securely
stores and transmits the alert.

Why buffering is necessary. The approach of most SAS systems
today, e.g., syslog and IDSs, is to push alerts to a remote server
in real time, and thus secure them at the server during the critical
window. There are many important cases, though, both adversarial
and benign, in which SAS messages can’t be pushed reliably, for
two main reasons:

• Imperfect connectivity: Many host SAS systems lack con-
tinuous connectivity to the server. For instance, laptops that
shuttle between an office and home have limited connection

with corporate security servers but are open to infection in
the home. Lightweight embedded devices often can’t ensure
or even verify delivery of transmitted messages. E.g., wire-
less sensor networks4 often experience transmission failures.

• Network attacks: An attacker can actively suppress on-the-
fly SAS transmissions by causing malicious network fail-
ures. It can selectively disrupt network traffic, via, e.g., ARP
stack smashing,5,6 or flood target hosts to achieve denial-of-
service (DoS) during a compromise, causing message delay
or suppression. The result is complete occlusion of server
visibility into the critical window—potentially appearing to
be a benign network failure. (We describe our own imple-
mentation of such an alert-suppression attack below.)

Even if reliable, immediate SAS message-pushing were gener-
ally feasible, it would still have an undesirable effect:

• SAS intelligence leakage: If a host pushes alerts instanta-
neously, then its outbound traffic reveals SAS activity to an
attacker monitoring its output. An attacker can then probe a
host to learn SAS detection rules and/or determine after the
fact whether its intrusion into a host was detected. Note that
encryption doesn’t solve this problem: Traffic analysis alone
can reveal SAS rule-triggering. (As noted above, PillarBox
overcomes this problem via regular alert-buffer transmission.)

For these reasons, message buffering—as opposed to on-the-fly
event-triggered transmission—is of key importance in a SAS chain
of custody and the cornerstone of PillarBox. Buffering SAS mes-
sages, though, poses security challenges. If an attacker completely
compromises a host, there’s no way of course to prevent it from
disabling a SAS or tampering with its future outputs. But there’s
a separate problem after host compromise: Inadequately protected
buffered SAS messages are vulnerable to modification/suppression
and intelligence leakage, as discussed before. We next elaborate on
these problems and our solution to them in PillarBox.

2.3 Integrity
One main challenge in creating a secure chain of custody in

PillarBox is the need to secure alert messages after compromise,
while they’re still buffered and exposed to an attacker. Log-scrubbing
malware can attempt to modify buffered alerts (e.g., replace the
strong alert “Privilege Escalation” with the more benign “Port Scan
Observed”) or just purge alerts. Post-compromise integrity protec-
tion for buffered SAS messages is thus crucial in PillarBox.

At first glance, this might seem unachievable. A digital signature
or message-authentication code (MAC) alone, as proposed, e.g.,
for syslog [11], doesn’t protect against tampering: After host com-
promise an attacker learns the signing key and can forge messages.
Message encryption similarly doesn’t protect messages against dele-
tion, nor does tagging them with sequence numbers, as an attacker
with control of a host can forge its own sequence numbers.

Fortunately, post-compromise alert integrity is achievable us-
ing the well-known cryptographic technique of forward-secure in-
tegrity protection. The main idea is to generate new keys on the
host after every alert generation and delete keys immediately af-
ter use. Forward-secure integrity protection is commonly used for
4These systems don’t have full-blown SASs but can have lightweight ver-
sions, e.g., the hardware tripwire proposed for authentication tokens [8].
5http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2007-1531
6http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2010-2979

3

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-1531
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-1531
 http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-2979
 http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-2979

forward-secure logging (e.g., [13, 18, 24, 25]), an application closely
related to SAS protection. Forward-secure logging systems, how-
ever, are designed mainly for forensic purposes rather than detec-
tion, e.g., to protect against administrator tampering after the fact.
Because of this, some forward-secure logging systems “close” logs
only periodically. What’s new in the use of forward security here is
primarily its application for self-protecting alerting.

PillarBox uses forward-secure pseudorandom number genera-
tion (FS-PRNG) to create MAC keys. An FS-PRNG has the prop-
erty that past keys can’t be inferred from a current key. The FS-
PRNG run in a PillarBox host is also run on the server to establish
shared keys. The host, however, deletes a MAC key as soon as
it’s used. Thus an attacker can’t modify buffered messages, but the
server can detect tampering or erasure, using indexing of keys.

Recall that the other aspect of integrity in PillarBox is securing
alerts in the PBB as fast as possible during a compromise, i.e., in the
critical window. Effectively, PillarBox engages in a race to secure
alerts before the attacker intercepts them. Ensuring that PillarBox
can win this race is not a matter of cryptography, but of the sys-
tem design of PillarBox, including the design choice of host-side
buffering. An important contribution of our work is our experimen-
tal validation that winning this race, and thus the whole PillarBox
approach to securing alerts, is feasible. Our experiments in Sec-
tion 5 show this to hold even against a fast, local, PillarBox-aware
attacker that tries to kill PillarBox processes as quickly as possible.

2.4 Stealth
Stealth, as we define it, requires concealment of the entire alert-

ing behavior of a SAS, including detection rules, alert message con-
tents, alert generation times, and alert message existence in com-
promised hosts. Stealth is a key defense against sophisticated at-
tackers. (One example: Host contact with “hot” IP addresses can
help flag an APT, but an attacker that learns these addresses can
just avoid them [14].)

Straightforward encryption alone doesn’t achieve stealth. For
example, if buffer alerts are encrypted on a host, an attacker can
infer alert generation simply by counting buffer ciphertexts upon
host compromise. Similarly, encrypted host-to-server traffic leaks
information: An attacker can determine via traffic analysis when a
host has triggered an alert. An attacker can even perform black-box
probing attacks against a host to test attacks and infer which are or
aren’t detectable. Stealth in PillarBox thus requires a combination
of several ideas.

PillarBox employs a buffer size T , and buffer transmission-time
interval µ, that are fixed, i.e., invariant. Each message is also of
fixed size7. When PillarBox transmits, it re-encrypts and sends
the entire fixed-size buffer, not just fresh alerts. PillarBox’s fixed-
length transmissions prevent an attacker from determining when
new alerts have accumulated in the host buffer, while its fixed com-
munication patterns defeat traffic analysis.

As the host buffer is of fixed size T , PillarBox writes messages
to it in a round-robin fashion. Thus messages persist in the buffer
until overwritten. (They may be transmitted multiple times. Such
persistent transmission consumes bandwidth, but has a potentially
useful side effect: Temporarily suppressed messages may eventu-
ally arrive at the server.) The fixed-size buffer in PillarBox cre-
ates a need for careful parameterization: We must ensure that T
is large enough to hold all alert messages generated under benign
conditions within a time interval µ; in this case, the buffer is also
large enough so that if round-robin overwriting occurs, it signals
to the server a “buffer-stuffing” attempt by an attacker. (Below we

7We discuss the option to have variable-sized messages in Section 4.

develop a framework for parameterization of T and µ and then ex-
plore practical settings by analyzing real-world alert transmission
patterns in a large enterprise.)

PillarBox generates encryption keys in a forward-secure way
(using an FS-PRNG) to protect against decryption attacks after an
attacker compromises a host’s keys. To protect against an attacker
that controls the network and eventually the host as well, encryption
is applied in two layers: (1) To buffered messages, to ensure con-
fidentiality after host compromise, and (2) to host-to-server buffer
transmissions to ensure against discovery of alert data from buffer
ciphertext changes. Note that buffer encryption alone is insuffi-
cient: E.g., if identical buffer ciphertexts leave a host twice, the
attacker learns that no new alert has been generated in between.8

Stealth in PillarBox carries a cost: Periodic rather than imme-
diate transmissions can delay server detection of intrusions. To
achieve complete stealth, this cost is unavoidable. But we note
that stealth is an optional feature in PillarBox. It can be removed or
weakened for limited attackers.

Vanishing detection rules. A key complement to stealth in PillarBox
is concealment of detection rules in hosts: Encryption alone en-
sures such confidentiality in the buffer, but not in the SAS alerting
engine itself. In our experiments, however, we show the viability
of instrumenting the SAS with vanishing rules, as described below.

3. ARCHITECTURE
We next describe our general architecture for PillarBox and its

main software components used to secure the host-to-server chain
of custody in a SAS system (cf. Figure 3).

As explained, PillarBox secures alerts in the PBB to protect against
tampering, suppression or leakage, even in post-compromise envi-
ronments. Using simple cryptographic protections and buffer trans-
mission protocols, the PBB essentially implements a low-level re-
liable channel that ensures tamper-evident and stealthy delivery of
transmitted messages, even under adversarial conditions.

With this functionality, PillarBox helps a SAS transmit security
alerts to a remote, trusted service. This service can perform anal-
ysis and remediation that is impractical on hosts themselves. As it
operates on a device other than the host, it is (generally) insulated
from the intrusion. Additionally, the service can correlate events
across multiple reporting hosts, enabling it to filter out false pos-
itives. It can also house sensitive threat intelligence that can’t be
safely exposed on hosts and can trigger action by human system
administrators or Security Operations Center (SOC) personnel.

3.1 Interface with SAS
Being agnostic to message content, PillarBox works with any

SAS. It can serve as the main channel for SAS alerts or can deliver
SAS alerts selectively and work in parallel with an existing trans-
port layer. Exactly how SAS messages are produced at the host or
consumed at the receiving server depends on SAS instrumentation
and alert-consuming processes. (As such, it’s outside the scope of
our work.)

Similarly, our architecture abstracts away the communication
path between the host and server, which can be complicated in
practice. In modern enterprises, networks carry many SAS-based
security controls that alert upon malfeasance. Typically, alerts are
sent via unprotected TCP/IP transmission mechanisms, such as the
syslog protocol (which actually uses UDP by default), the Sim-
ple Network Messaging Protocol (SNMP), or the Internet Control

8Semantically secure public-key encryption would enable use of just one
layer, but with impractically high computational costs.

4

Host	

Network	

Server	

ALERTER	 BUFFERER	

TRANSMITTER	

GAP-‐
CHECKER	

RECEIVER	

DECRYPTER	

SAS	 inputs	

Figure 3: PillarBox architecture and flow of information. Shaded areas show the PillarBox components (which exclude the alerter) and
striped ones (the bufferer and decrypter) those that make up PillarBox’s crypto-assisted core reliable channel.

and Messaging Protocol (ICMP). These alerts are typically gen-
erated by endpoint software on host systems (such as anti-virus,
anti-malware, or HIDS) or by networked security control devices.
These devices are commonly managed by a SIEM systems, with
monitoring by SOC staff on a continuous basis. For the purposes
of our architecture, though, we simply consider a generic SAS-
instrumented host communicating with a server.
Alerter. We refer generically to the SAS component that gener-
ates alert messages as an alerter module.9 This module monitors
the host environment to identify events that match one of a set of
specified alert rules. When an event triggers a rule, the alerter out-
puts a distinct alert message. An alert template may either be static
(predefined at some setup time for the host) or dynamic (updated
regularly or on-demand through communication with the server).
Rules may take any form. They may test individual state variables
(specified as what is generally called a signature) or they may cor-
relate more than one event via a complicated predicate or classifier.
As mentioned before, the SAS may tag select rules as “vanishing.”
When such a rule is triggered, it is erased from the current rule set
to further enhance the stealth properties provided by PillarBox.

In our basic architecture, the alerter’s interface with PillarBox is
unidirectional. The alerter outputs alert messages, and PillarBox
consumes them. Although many architectures are possible, given
PillarBox’s emphasis on critical alerts, in our canonical operational
setting, the SAS may send only high severity messages (e.g., those
that seem to indicate impending compromise) to PillarBox, and
others through its ordinary low-priority transport layer.

3.2 PillarBox components
The general message flow in PillarBox is fairly simple. Most of

the complexity is hidden by the PBB “lockbox.” PillarBox consists
of five modules, shown in Figure 3.
Bufferer. This module controls the core message buffer, the PBB.
It receives messages from the alerter and inserts them into the PBB.
It also receives buffer-wrapping requests from the transmitter (see
below) and responds by returning the current buffer contents in a
securely encapsulated form (see Section 4). This module is also re-
sponsible for maintaining the secret state of the PBB and updating
cryptographic keys. The bufferer accepts two calls: A Write call
from the alerter to insert a message to the PBB and a Wrap call
from the transmitter requesting encapsulated export of the buffer
contents. The bufferer doesn’t discard messages from the buffer
when they’re transmitted. A message is encapsulated and transmit-
ted until overwritten. (While a byproduct of stealth, this feature of
persistence can also be leveraged to accommodate lossy networks,
as explained below.)
Transmitter. This module schedules and executes buffer transmis-
sions from the host to the server. Transmissions may be scheduled
9Of course, a SAS (e.g., IDS, anti-virus software) includes other compo-
nents, e.g., a transport layer, update functionality, and so forth.

every µ seconds, for parameter µ, like a “heartbeat.” The mod-
ule sends Wrap requests to the bufferer and transmits encapsulated
buffers to the server over the network using any suitable protocol.
Receiver. This module receives encapsulated-buffer transmissions
on the server from the host-based transmitter over the network.
When it receives a transmission pushed from the host, it relays it
with a Read instruction to the decrypter.
Decrypter. In response to a Read request from the receiver, the
decrypter decrypts and processes an encapsulated buffer. It verifies
the buffer’s integrity and either outputs its constituent messages, or
else outputs a ⊥ symbol indicating a buffer corruption. It labels
messages with their (verified) buffer sequence numbers.
Gap-checker. The gap-checker’s main task is to look for lost mes-
sages in the SAS message stream, which cause it to output an alert
that we call a gap alert. These may be caused by one of two things:
(1) A flood of alerts on the host (typically signalling an intrusion) or
(2) Overwriting of alerts in the buffer by malicious buffer-stuffing
on the compromised host. (We detail these attacks in Section 4.) As
buffer messages are labeled with verified sequence numbers, gap
checking requires verification that no sequence numbers go missing
in the message stream. Because messages continue to be transmit-
ted until overwritten, note that in normal operation sequence num-
bers will generally overlap between buffers. The gap-checker can
optionally filter out redundant messages. To detect an attacker that
suppresses buffer transmission completely, the gap-checker also is-
sues an alert if buffers have stopped arriving for an extended period
of time, as we discuss below.

3.3 Parameterizing PillarBox
The gap-checker always detects when a true gap occurs, i.e.,

there are no false-negatives in its gap-alert output. To ensure a low
false-positive rate, i.e., to prevent spurious detection of maliciously
created gaps, it’s important to calibrate PillarBox appropriately.

The size T of the PBB dictates a tradeoff between the speed at
which alerts can be written to the buffer and the rate at which they
must be sent to the server. Let τ denote an estimate of the maxi-
mum number of alerts written by the host per second under normal
(non-adversarial) conditions. Then provided that the encapsulation
interval µ (the time between “snapshots” of buffers sent by the host)
is at most T/τ seconds, a normal host won’t trigger a false gap
alert.

We characterize τ , the maximum SAS message-generation rate
of normal hosts, in Section 5. Using a moderate buffer size T we
are able to achieve extremely low false-positive gap-alert rate in
most cases.

In networks vulnerable to message loss, the persistence feature
of PillarBox can be useful: The larger T , the more repeated trans-
missions of every message.
Handling message disruptions. If an attacker suppresses buffer
transmission completely, the gap-checker will cease to receive buffers.

5

The gap-checker issues a transmission-failure alert if more than β
seconds have elapsed without the receipt of a buffer, for parame-
ter setting β > T/τ . This is the task of the gap-checker, rather
than the receiver or decrypter, as only the gap-checker can iden-
tify situations in which buffers arrive, but are replays, and thus a
transmission-failure alert is appropriate.

PillarBox can’t itself distinguish benign from adversarial trans-
mission failures (although network liveness checks can help). While
there are many possible policies for transmission-failure alerts, in
reliable networks, PillarBox is best coupled with an access policy
in which a host that triggers a transmission-failure alert after β sec-
onds is disconnected from network services other than PillarBox.
Its connection is restored only when PillarBox again receives a
buffer from the host and can detect alerts. In a benign network
outage, this policy won’t adversely affect hosts: They will lack
network service anyway. An adversary that suppresses PillarBox
buffer transmission, though, will cut itself off from the network un-
til PillarBox can analyze any relevant alerts. Thus such interfacing
of PillarBox with network-access policies caps the maximum pos-
sible interval of lost visibility for PillarBox.

4. PillarBox BUFFER AND PROTOCOLS
We now present the main component of PillarBox, the PBB,

and its protocols (run by the bufferer and the decrypter modules).
The PBB and its protocols realize a reliable messaging channel for
PillarBox. We discuss the functionality that the PBB exports to the
alerter and gap-checker to secure the SAS chain of custody.

4.1 Ideal “lockbox” security model
In its ideal form, the PBB serves as a “lockbox” for message

transport: It’s a buffer consisting of T fixed-size slots that supports
the following two operations:

1. write: The sender S (the client in PillarBox) inserts indi-
vidual messages into the buffer via write in a round-robin
fashion. Given current position I ∈ {0, . . . , T −1} (initially
set at random), a new message is written in slot I (replacing
the oldest message), and I is incremented by 1 (mod T).

2. read: The receiverR (the server in PillarBox) invokes read,
which outputs the (monotonically increasing) sequence num-
bers j and sj of the buffer and respectively the current mes-
sage, along with the T messages in the buffer starting at po-
sition sj mod T , with wraparound.

In this ideal model, buffered messages can only be read via the
read interface and can only be modified (authentically) via the
write interface. When read by R, a message mi corresponding
to slot i is guaranteed to be either: (1) The most recent message
written to slot i (the empty message ∅ if no message was ever writ-
ten), or (2) A special corruption symbol ⊥ that indelibly replaces
all the buffer’s contents if the buffer was tampered with or modified
otherwise than by write.

The goal of an attacker on compromising a host is to learn SAS
actions and suppress alerts buffered during the critical window. The
ideal read interface of the “lockbox” buffer protects against vio-
lations of stealth (the attacker cannot observe when R reads the
buffer). Given the write interface, the attacker can only violate
buffer integrity in the post-compromise period in one of four ways:

1. Buffer modification/destruction: The attacker can tamper with
the contents of the buffer to suppress critical-window alerts.
As noted above, this causes buffered messages to be replaced
with a special symbol ⊥.

Normal	 buffer	 	
succession	

Missing	 messages	 	
(gap	 alert)	

Overlapping	 messages	 Lost	 messages	

Sj	 Sj	

Sj’	 =	 Sj	 +	 7	 Sj	 +	 12	 =	 Sj’	 	

C1	

(A)	 (B)	

C2	

C1	

C2	

Figure 4: Gap rule example on successively received buffers C1,
C2, with indices j, j′ and T = 10: (A) Normal message overlap
between buffers; (B) A detectable gap: Messages with sequence
numbers sj + 1 and sj + 2 have been lost.

2. Buffer overwriting: The attacker can exploit buffer wraparound
to refill the PBB, by writing T relatively benign messages
into it to overwrite and thereby destroy messages generated
during the critical window.

3. Buffer dropping: The attacker can simply drop buffers or de-
lay their transmission.10

4. Transmission stoppage: The attacker can break the PBB com-
pletely, causing no buffer transmission for an extended pe-
riod of time, or indefinitely.

During the critical window, the attacker can alternatively try to
attack so quickly that the critical window is nearly zero. In this
case, there isn’t sufficient time for PillarBox to take in a SAS alert
message and put it in the PBB. Our experiments in Section 5 show
in some settings of interest that this attack is infeasible.

Adversarial buffer modification or destruction, as explained above,
is an easily detectable attack. It causes the server to receive a sym-
bol ⊥, indicating a cryptographic integrity-check failure. The gap-
checker in PillarBox detects both buffer overwriting attacks and
buffer dropping attacks by the same means: It looks for lost mes-
sages, as indicated by a gap in message sequence numbers.11 Fig-
ure 4 depicts a normal buffer transmission and one, ostensibly dur-
ing an attack, in which messages have been lost to an alert flood or
to buffer overwriting. A transmission stoppage is detectable simply
when the server has received no buffers for an extended period of
time, producing a transmission-failure alert, as noted above.

4.2 “Lockbox” security definitions
Our actual construction consists of the PBB and three operations:

(i) The sender S runs Write to insert a message into the PBB and
(ii) Wrap to encapsulate the PBB for transmission, and (iii) The
receiver R runs Read to extract all messages from a received, en-
capsulated PBB. We denote by C the contents of the PBB after
a series of Write operations by S, and by Ĉ a cryptographic en-
capsulation transmitted to R. We require two security properties,
immutability, and stealth and two non-cryptographic ones, persis-
tence and correctness. We now give brief informal descriptions;
formal definitions are in Appendix A.

Correctness dictates that under normal operation any sequence
of messages of size at most T added to C by S can be correctly
read byR in an order-preserving way; in particular, the T most re-
cent messages of C and their exact order can be determined byR.
Persistence means that by encapsulating the buffer C repeatedly,
it’s possible to produce a given message in C more than once.

10The attacker can also potentially cause buffers to drop by means of a net-
work attack during the critical window, but the effect is much the same as a
post-compromise attack.

11That is, a gap alert is issued when the current sequence numbers sj and
sj′ of two successively received buffers are such that sj′ − sj ≥ T .

6

For our two cryptographic properties, we consider a powerful
adaptive adversaryA that operates in two phases: (1) Prior to com-
promise, A fully controls the network, and may arbitrarily modify,
delete, inject, and re-order transmissions between S andR;Amay
also determine when S encapsulates and sends the PBB, and may
also choose its time of compromise; (2) On compromising S, A
corrupts S, learns its secret state, and fully controls it from then on.

Immutability means, informally, that pre-compromise messages
in C are either received unaltered byR in the order they were writ-
ten, or are dropped or marked as invalid; i.e., even after compromis-
ing S,A can’t undetectably alter or re-order messages inC. Stealth
means, informally, that A can’t learn any information about mes-
sages buffered prior to compromise. It’s stronger than confidential-
ity. Not only can’t A learn the contents of messages, it also can’t
learn the number of buffered messages—or if any were buffered at
all. This holds even after A has compromised S.

4.3 Detailed construction
Our construction employs a forward-secure pseudorandom num-

ber generator FS-PRNG (see, e.g., [9]) that exports two operations
GenKey and Next to compute the next pseudorandom numbers,
as well as an authenticated encryption scheme (see, e.g., [2]) that
exports operations AEKeyGen, AuthEnc and AuthDec to encrypt
messages m of size k to ciphertexts of size g(k) ≥ k. We, here,
assume basic familiarity with these primitives; formal definitions
are in Appendix B.

Data structure. The sender S maintains the following:

1. a secret key σ (also kept by the receiverR);

2. a buffer C, C = (C[0], C[1], . . . , C[T − 1]), initially filled
with random data, seen as an array of size T+1, whereC[i],
0 ≤ i ≤ T , denotes the ith position in C; we assume that
each slot C[i] is of fixed size s;

3. a current index I , initially pointing to a random position in
C, and itself stored at C[T].

We assume that m ∈ {0, 1}` and also set s = g(`).12

Key generation and evolution. Given a security parameter κ, al-
gorithm KGen first initiates an authenticated encryption scheme
as well as two FS-PRNGs, one low-layer to generate sequence
r0, r1, . . . (for message encryption) and one high-layer to gener-
ate sequence r′0, r′1, . . . (for buffer encryption). It then initializes
the secret states of S and R, which take the (simplified) form
(ri, r

′
j , i, j), denoting the most recent forward-secure pseudoran-

dom numbers for the low and high layers, along with their se-
quence numbers. Also, given the current secret state (ri, r

′
j , i, j),

an integer t and a control string b ∈ {low,high}, algorithm
KEvolve creates the corresponding low- or high-layer t-th next
forward-secure pseudorandom number.

Write, transmit and read operations. Our main protocols operate
as follows. First, given secret writing key (ri, r

′
j , i, j), message m

and buffer C, Write securely encodes m, adds it in C and updates
the secret key (see Algorithm 1.) Then, given secret writing key
(ri, r

′
j , i, j) and a buffer C, Wrap securely encapsulates C to Ĉ

and updates the secret key (see Algorithm 2.) Finally, given secret
reading key (ri, r

′
j , i, j) and an encapsulated buffer Ĉ = (c′, j′),

Read decrypts the buffer and all of its contents returning a set of T
messages and updates the secret key (see Algorithm 3.)

For simplicity, we here consider a fixed-size PBB that holds
fixed-size messages (parameters T and ` respectively). We finish

12In our EAX encryption implementation: ` = 1004 and g(`) = 1024.

Algorithm 1 Operation Write

Input: secret key (ri, r
′
j , i, j), message m ∈ {0, 1}`, buffer C

Output: new secret key (ri+1, r
′
j , i+ 1, j), updated buffer C

1. C[C[T]] = (AuthEncri (m), i)

2. C[T] = C[T] + 1 mod T

3. (ri+1, r
′
j , i+ 1, j)← KEvolve(ri, r′j , i, j, 1,low)

4. delete ri

5. return [(ri+1, r
′
j , i+ 1, j), C]

Algorithm 2 Operation Wrap

Input: secret key (ri, r
′
j , i, j), buffer C

Output: new secret key (ri, r
′
j+1, i, j + 1), encaps. buffer Ĉ

1. Ĉ = (AuthEncr′j
(C), j)

2. (ri, r
′
j+1, i, j + 1)← KEvolve(ri, r′j , i, j, 1,high)

3. delete r′j

4. return [(ri, r
′
j+1, i, j + 1), Ĉ]

Algorithm 3 Operation Read

Input: secret key (ri, r
′
j , i, j), encapsulated buffer Ĉ

Output: new secret key (rl, r
′
j′ , l, j

′), (m0, . . . ,mT−1)

1. if j′ ≤ j then return [(ri, r
′
j , i, j),⊥]

2. (ri, r
′
j′ , i, j

′)← KEvolve(ri, r′j , i, j, j
′ − j,high)

3. (C[0], . . . , C[T]) = C ← AuthDecr′
j′
(c′); I = C[T]

4. if C = ⊥ then return [(ri, r
′
j , i, j),⊥]

5. for 0 ≤ k < T do

(a) (c, l) = C[k + I mod T]

(b) if k = 0 ∧ l ≤ i then return [(ri, r
′
j , i, j),⊥]

(c) if k 6= 0∧l 6= LAST+1 then return [(ri, r
′
j , i, j),⊥]

(d) (rl, r
′
j′ , l, j

′)← KEvolve(ri, r′j′ , i, j
′, l − i,low)

(e) mk ← AuthDecrl (c); LAST = l

6. return [(rl−T+1, r
′
j′ , l − T + 1, j′), (m0, . . . ,mT−1)]

the section by explaining how PillarBox can be extended to han-
dle variable-length messages and to dynamically enlarge the PBB
buffer, as needed, in order to prevent loss of alert messages (due to
overwriting) during prolonged PBB-transmission failures.

Handling variable-length messages. Without loss of generality,
we have considered messages of fixed size `. PillarBox can eas-
ily relay messages of variable length using the following simple
extension: A variable-length message m (of size `′) is padded (in
a self-delimiting way) to size k such that s|g(k) and the resulting
ciphertext occupies g(k)/s consecutive buffer slots—it is straight-
forward to extend Algorithms 1 and 3 accordingly.

Dynamically sizing the PBB. A fixed-size PBB, i.e., parameter T ,
is necessary to achieve stealth in PillarBox, as noted above. To en-
sure moderate communication and server-side processing costs, it
is helpful to make T as small as possible for the system choice of
transmission interval choice µ. During prolonged buffer transmis-
sion failures, however, even benign ones, a small buffer size T can
result in the loss, i.e., overwriting, of alert messages. This prob-

7

lem can’t be solved by enlarging the PBB on demand as new alerts
are generated, because T would then correlate with alerting history,
and stealth would be lost. However, for the (common) case where
the host-side PillarBox module can detect a loss of its network con-
nection with the PillarBox server, it is possible to keep T small, yet
preserve alert messages during periods of disconnection.

The idea is to have PillarBox perform dynamic enlargement of
the PBB: T grows as a function of the time elapsed since the last
successful connection.13 For example, after every hour of lost net-
work connection, PillarBox may add S extra slots to the PBB on
the host: A special message m∗ (encoding that is the buffer adap-
tation policy in activated) is written in the PBB, to securely bind
old and new slots and protect against truncation attacks, and new
buffer slots are inserted at the position of the current index I , to
ensure new slots are used before old ones are overwritten. When
the PillarBox connection is reestablished, the PBB size may again
be reduced to size T . (The most recently written T slots, behind
pointer I , are retained.) With this approach, T is a function of con-
nection history, not alerting history, and stealth is preserved. At
the same time, an adversary can’t simulate benign host disconnec-
tion and then overwrite alerts: The PillarBox server can record dis-
connection periods and adjust its expectation of PBB transmission
sizes from the host accordingly.

5. EXPERIMENTAL EVALUATION
We developed a prototype of PillarBox in C++. To implement

the authenticated encryption necessary in our system we utilize an
open-source version of EAX-mode encryption. We also developed
a custom FS-PRNG for generating the necessary encryption keys
(for both the message encryption before addition to the buffer, as
well as the re-encryption of the buffer before transmission).

We next experimentally validate the effectiveness of PillarBox
in securing alerts during the critical window. We show that mes-
sages can be locked away within the PBB faster than they can be
put on the network (showing their speed benefit over current sys-
tems), and we demonstrate that PillarBox is fast enough to win the
race condition against an attacker trying to disrupt the securing of
alert messages. Surprisingly, even when an attacker already has
the privilege necessary to kill PillarBox, the execution of the kill
command itself can be secured in the PillarBox buffer before the
application dies.

5.1 Demonstrating direct-send vulnerability
We motivate the need for securing the chain of custody in SASs

and justify our design choice of host-side buffering, rather than im-
mediately putting alerts on the wire, by showing the feasibility of an
attacker intercepting on-the-wire host alert transmissions silently
(without sender/receiver detection) in a rather simple setting.

Using the Ettercap tool [1] we inserted an attack machine (at-
tacker) as a man-in-the-middle between our client and server com-
municating over a switch. The attacker performed ARP spoof-
ing against the switch, to which most non-military-grade hubs and
switches are vulnerable. Because it attacked the switch, neither
endpoint observed the attack. Once inserted between the two ma-
chines, our attacker was able to drop or rewrite undesired packets
on the fly. Even if the client and server had been communicating
over a secured channel (a rarity in current practice), alert messages
could still easily have been dropped, preventing any indication of
the attack from reaching the server.

13Note that detecting network connection failures doesn’t require PillarBox
server message acknowledgements. E.g., an enterprise device can simply
observe whether it is connected to the enterprise’s network.

0

5

10

15

20

25

30

35

40

75 100 125 150 175 200 225 250 275 300 325 350 375 400 425

P
e

rc
e

n
ta

ge
 o

f
re

su
lt

s

Time (μs)

Distribution of Timings for Securing Log Messages

PillarBox (Avg: 163.06 μs)

Direct Network Send (Avg: 251.78 μs)

Figure 5: Distribution of timings for PillarBox cryptographically
securing log messages locally vs. direct network transmission.

If executed within a subnet, the attack described here would in
many settings be undetectable even by a forensic tool performing
network packet capture, as these tools are typically deployed to
monitor only traffic across subnets or in externally facing commu-
nications.

5.2 PillarBox vs. direct alert pushing
In our evaluation of PillarBox, we first show that messages can

be secured locally in the PBB faster than they can be sent over the
network. (the typical mode of today’s SASs). We have already
discussed some of the limitations of the on-the-wire approach, but
additionally show here that PillarBox can secure alerts faster than
such systems. To avoid the overhead of socket connections we use
UDP and measure only the time necessary to send a packet, in com-
parison to the time needed to encrypt the same information and
store it locally in the PBB. The networking stack is un-optimized,
but so is the encryption used to secure alerts in PillarBox. Distri-
butions over 100 tests are presented in Figure 5.

As our experiments show, PillarBox achieves a clear advantage
in the speed with which it secures alerts. These alerts must still be
transmitted to the server, but PillarBox protects the integrity of the
alert contents faster than most current on-the-wire pushing systems.

5.3 Race-condition experiments
We now show that it is feasible for a SAS combined with PillarBox

to detect an attack in progress and secure an alert before an attacker
can disrupt PillarBox operation. Our tests were performed on an
Intel Core 2 Duo T9300 processor running at 2.5GHz with 4 GB
of memory and Ubuntu 12.04 as the operating system. In our im-
plementation, PillarBox depends on both an alerter (in our case,
syslog), and a named pipe used to communicate from the alerter to
the bufferer. Both of these components, as well as PillarBox itself,
can be attacked, creating a race condition with the attacker. If any
of the components can be shut down fast enough during an attack,
alerts may not be secured in the PBB. Surprisingly, we show that
even an attacker with the necessary (root) privilege rarely wins this
race (≈ 1% of the time).

A majority of attacks against hosts leverage some form of privi-
lege escalation to gain root privilege. As SAS design is beyond the
scope of our work, we don’t discuss detection mechanisms for such
privilege escalations. We first explore direct process killing by an
attacker under the pessimistic assumption that it already has root
privileges, i.e., doesn’t need to mount a privilege escalation attack.

8

We then demonstrate as an example that for one common privilege
escalation attack (the “Full Nelson” attack), detection is possible
and PillarBox can secure an alert before the attacker can feasibly
disrupt alert recording. We assume that most privilege escalations
could be detected given the proper instrumentation and that disrupt-
ing any of the necessary components in our system (e.g. corrupting
the PillarBox address space in memory) without root privilege is in-
feasible given current architectures (e.g., Address Space Random-
ization [20] and other techniques that enforce process separation).

To demonstrate PillarBox winning the race condition, we now
explore how quickly each of the necessary components can be shut
down relative to the speed with which such events themselves can
be logged. To bias the experiments in favor of an attacker, we as-
sume the attacker has gained access to a privileged account that al-
ready has the necessary permissions to kill any of the components.
We record time required for the attacker to issue a single command
to kill the process and show that the command itself gets secured
by PillarBox before the targeted component is terminated.

PillarBox is a simple application that is easily terminated by an
attacker, although it can be run as root to provide some protec-
tion. Alerts must be generated, routed by syslog to the named
pipe, and then picked up by PillarBox, encrypted and added to the
buffer to be secured. An attacker’s best bet at disrupting the se-
curing of alerts is to try and shutdown PillarBox itself. If run as
root, PillarBox can be shut down or killed by invoking root privi-
lege and issuing a kill command.14 Calling kill with the −9 signal
immediately terminates any program, unless it’s in the process of
making a system call; it then terminates when the system call re-
turns. Using sudo runs the command as root, but also generates
an authentication alert message which syslog picks up. The full
one-line command sudo kill − 9 < PillarBox_pid > immediately
terminates PillarBox, but usually not before a log event is created,
routed by syslog through the named pipe, and secured by PillarBox.

As Table 1 shows, in the majority of runs the alert message is
locked away in≈ 4ms.15 Alert messages are, on average, secured in
PillarBox before it is killed with almost 3ms to spare.16 However, in
about 1% of our experiments, PillarBox was killed before receiving
the alert message and encrypting it. All of the commands in Table 1
were run 100 times with averages and standard deviations shown.

To further test the ability of the attacker to beat PillarBox, we
also ran tests under varying amounts of disk, memory, and CPU
load. Disk load appeared to have little to no effect on either the
success of PillarBox, nor the timing measurements. As expected,
load on the system memory slowed everything down, (lengthening
both the time to secure, but also the time until the kill completes),
but did not appear to impact the success of PillarBox winning the
race condition. For unexplained reasons, CPU load did seem to im-
pact PillarBox on our test machine. Oddly, PillarBox did well (0%
failure) at near 100% load, but relatively poorly (< 4% failure) at
20% load. These tests were run 1000 times to further reduce noise.
Additionally, we re-ran our tests on a Intel Xeon E5506 Quad Core
processor running at 2.13GHz running Red Hat Enterprise Linux
WS v5.3 x86_64. On that machine we again noticed ≈ 1% of tests
failing, but did not find a correlation between load and failure rate.
In the end we expect CPU scheduling to be at fault. Where possi-

14kill or pkill could be used to terminate the process: pkill takes in the pro-
cess name, while kill takes a process id; otherwise they operate the same.

15Unlike our previous experiments, these timings include alert generation,
routing by syslog through the named pipe, and securing by PillarBox. As
Fig. 5 shows, PillarBox accounts for a minuscule fraction of the total time.

16Due to presumed OS scheduling interruptions, in about 1/3 of the runs
the kill command returns before the message is successfully secured in
PillarBox. These results show the timings observed in those cases.

Table 2: Timeline of events for execution of
sudo cp /etc/rsyslog.d/vanish.conf /home/vanish.copy.

Event Average Time (ms) Std. Dev.
Start 0.00ms N/A
Message Secured 4.00ms 0.44ms
Rule Deleted 4.04ms 0.44ms
Copy Fails 7.21ms 0.81ms

ble, running PillarBox with higher priority may further lower the
probability of an attacker winning the race condition.

We also considered attacks against the other components (sys-
log and the named pipe). We use a named pipe (created using
the mkfifo command) to pass alerts from syslog to PillarBox. A
named pipe is essentially a permanent pipe created in the filesys-
tem which can be read from and written to by any process. To
destroy a named pipe created by root an attacker would need to run
sudo rm named_pipe. Again, the invocation of sudo (or otherwise
transitioning to root privilege) generates a log event. As Table 1
shows, the log messages created by closing the pipe pass through
the pipe before it is closed. There were no failures in these tests.

The alerter (syslog) is the first to handle the log message, and can
be shutdown or killed by running sudo kill − 9 < syslog_pid >.17

Table 1 shows that the log message is created and sent by syslog be-
fore it is killed. However, presumably due to process scheduling,
in several runs the kill command returns before the alert message
is secured in the PBB. Because the message always arrives in the
PBB, (there were no failures in these tests either), we assume these
represent runs where the alert is passed to the named pipe before
syslog terminates and then read from the pipe when the PillarBox
process is later scheduled by the OS. This issue is diminished in
the killing of the named pipe and PillarBox itself, explaining their
perceived lower average timings (and standard deviations).

When PillarBox provides stealth, it is best combined with van-
ishing SAS rules to prevent critical information leakage. Recall
that if an attacker cannot prevent PillarBox from securing events
in the critical window, the attacker benefits from at least learn-
ing how the system is instrumented and what alerts were likely to
have been generated. In our test setup, the vanishing alerts (con-
tained in /etc/rsyslog.d/vanish.conf) generate an alert whenever
a root user logs in (e.g., by using sudo) to modify any of the com-
ponents necessary for PillarBox. To test the race condition, we
instrumented PillarBox to delete the vanishing alerts configuration
file after securing the alert message. The attacker attempts to create
a copy of the sensitive alerter configuration file using the command
sudo cp /etc/rsyslog.d/vanish.conf /home/vanish.copy. As it is
shown by the relative timing of events over 100 test runs in Ta-
ble 2, after securing the alert message, PillarBox always success-
fully deletes the configuration file at least 2.72 ms. before the copy
takes place.

Having shown that PillarBox can win the race conditions re-
lated to securing alerts and causing them to vanish, even in the
pessimistic case where the attacker starts with the necessary per-
missions, we now consider the issue of privilege escalation. The
concern here is that as the attacker exploits vulnerabilities, it may
not be possible to detect it running as root and killing processes.

As an example of a common privilege escalation, we consider the
“Full Nelson” local privilege escalation, which exploits CVE-2010-
4258, CVE-2010-3849, and CVE-2010-3850 to gain root access.
We find that the “Full Nelson” attack generates kernel messages

17The alerter could be more integrated into the kernel itself, making it even
harder to intercept and/or kill. In our case, syslog channels log messages
generated by the kernel and doesn’t actually generate them itself.

9

Table 1: Average time from the start of a command until log is secured in PillarBox and total time for command completion.

Message Secured Std. Dev. Component Disrupted Std. Dev. Command
Syslog (typical) 4.09ms 0.30ms 8.86ms 2.43ms sudo kill − 9 < syslog_pid >

Syslog (bad scheduling)11 32.33ms 5.38ms 9.32ms 2.81ms sudo kill − 9 < syslog_pid >
Named pipe 6.36ms 3.02ms 8.99ms 3.30ms sudo rm named_pipe

PillarBox 4.01ms 0.19ms 6.95ms 0.37ms sudo kill − 9 < PillarBox_pid >

that syslog can pick up and pass through the named pipe and into
the PBB before the exploit completes and the attacker terminates
essential SAS or PillarBox components or reads the configuration
file. In fact, the attack includes a necessary sleep command that fur-
ther benefits timely securing of alerts in PillarBox. Even in the most
pessimistic case, in which the exploit code uses the kill system call
before ever launching a shell, and the sleep command is removed
(causing the exploit to fail), the log messages are still locked away
in PBB before the exploit program tries to disrupt PillarBox. Since
the system must be restored after the privilege escalation, we were
not able to run 100 instances, but we repeatedly demonstrated that
the kernel log messages can be secured in PBB before being killed.

While the “Full Nelson” attack is representative of other local
privilege escalation attacks, this by no means guarantees that faster
or quieter privilege escalations don’t exist. What it does demon-
strate is that the event signaling the end of the critical window (the
elevation of privilege giving the attacker full control) can itself of-
ten be detected and secured in PillarBox before such privilege en-
ables disruption of the PillarBox tool. Any other events that occur
prior to privilege escalation in the critical window that can be de-
tected and logged are also likely to be secured by PillarBox.

5.4 Observed alerting frequencies
We performed an analysis of a large enterprise (>50,000 users)

dataset gathered from an SIEM across a period of 7 hours. This
dataset contains all collectable logs from this network, including
servers, laptops, network devices, security appliances, and many
more. The goal was to derive information about the typical alert
frequency across a representative work day.

It is critical to note that only certain messages pertaining to,
e.g., indicators of compromise, will be selected for inclusion in
the PillarBox protected queue. As such, the data found here rep-
resents an overloaded maximum: It is unlikely that most networks
will generate such volumes of alerts, and most alerts will certainly
not be applicable to PillarBox.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 10 100 1000 10000 100000

A
le

rt
s

Host

Alerts generated over 7 hours by host

Alerts Generated

Figure 6: Alerts generated over a 7-hour window by host

Figure 6 shows the distribution of alerts coming from hosts within
the enterprise reflected in our dataset. The x-axis is in log scale,
showing that the majority of machines send very few alert mes-
sages, while a small subset send the majority. Over a seven-hour
window, the busiest machine generated 8603 alerts, but the average

across all machines (59,034 in total) was only 18.3 alerts in 7 hours.
Clearly, therefore, if we design the system to handle a throughput
of one alert per second (3600 alerts an hour) our system will be able
to handle even the busiest of alerters. The maximum observed rate
in our dataset was 1707 alerts / hour.

5.5 Throughput experiments
We now show that PillarBox can process events at a practical

rate. Given a constant stream of events, the host-based application
was able to process nearly 100,000 messages per second, higher
than any rate recorded in our dataset. The speed with which PillarBox
can encode messages naturally depends on a number of factors,
e.g., message size, the cost of computing FS-PRNGs, PBB’s size,
and the frequency with which the buffer is re-encrypted and sent.

Obviously the larger the messages, the longer they take to en-
crypt. In our study, we used the standard log messages generated
on our Linux system, typically a few hundred characters long. We
also used a flat hash chain for our FS-PRNG, which only requires
one computation per number, minimizing key-generation overhead.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

Th
ro

u
gh

p
u

t
(M

sg
/m

s)

Sending Frequency (ms)

Throughput as a Function of Buffer Size
and Sending Frequency

1024 2048

4096 8192

16384 32768

Messages Buffer will Hold

Figure 7: Host throughput vs. sized buffers, send rates

Figure 7 explores tradeoffs between buffer size and send fre-
quency in terms of their impact on maximum throughput. Some
combinations of buffer size and send rate led to buffer overflows,
and were removed. Performance seems to increase as buffer size in-
creases and send frequency decreases, as expected. A large buffer
that is rarely re-encrypted for sending can process events more
quickly that a small, frequently sent buffer. As Figure 7 shows,
throughput seems to top out just shy of 100 messages / ms, further
evidence of the minimal overhead of PillarBox.

6. RELATED WORK
PillarBox uses host-side buffering to secure alerts for transmis-

sion to a remote server. An alternative is a trusted receiver within
a protected environment on the host itself. A hypervisor (virtual
machine monitor (VMM)), for instance, has higher privilege than
a guest OS, isolating it from OS-level exploits. Thus, as an alter-
native to PillarBox, messages could be sent from a SAS to a same-
host hypervisor. Hypervisor-based messaging can be blended with
even stronger security functionality in which the hypervisor pro-
tects a SAS (or other monitoring software) itself against corruption

10

as in, e.g., [21], and/or is itself protected by trusted hardware, as
in Terra [6]. Where available, a hypervisor-based approach is an
excellent alternative or complement to PillarBox.

Hypervisor-based approaches, however, have several notable lim-
itations. Many hosts and devices today aren’t virtualized and some,
e.g., embedded devices, probably won’t be for a long time. Op-
erating constraints often limit security administrator access to hy-
pervisors. For instance, IT administrators may be able to require
that personal devices in the workplace (e.g., laptops, tablets, and
smartphones) contain an enterprise-specific VM or application, but
they are unlikely to obtain full privileges on such devices. Fi-
nally, hypervisors themselves are vulnerable to compromise: Some
works have noted that the code sizes, privilege levels, and OS-
independence of modern VMMs belie common assertions of su-
perior security over traditional OSes [23, 10].

PillarBox builds in part on funkspiel schemes, introduced by
Håstad et al. [8]. A funkspiel scheme creates a special host-to-
server channel. This channel’s existence may be known to an ad-
versary, but an adversary can’t tell if or when the channel has been
used, a property similar to stealth in PillarBox. (By implication,
an adversary can’t recover message information from the channel
either.) As in PillarBox, a funkspiel scheme resists adversaries that
see all traffic on the channel and ultimately corrupt the sender.

Funkspiel schemes, though, are designed for a specific use case:
Authentication tokens. The transmitter either uses its initialized
authentication key or swaps in a new, random one to indicate an
alert condition. A funkspiel scheme thus transmits only a single,
one-bit message (“swap” or “no swap”), and isn’t practical for the
arbitrarily long messages on high-bandwidth channels in PillarBox.

Another closely related technique is forward-secure logging (also
called tamper-evident logging), which protects the integrity of log
messages on a host after compromise by an adversary (see, e.g., [4,
3, 13, 22, 18, 24, 25, 12, 19, 15]). While these systems use forward-
secure integrity protection like PillarBox, they aren’t designed for
self-protecting settings like PillarBox. They aim instead for foren-
sic protection, e.g., to protect against retroactive log modification
by an administrator. Some schemes, e.g., [3, 18, 12, 19], are de-
signed to “close” a log, i.e., create forward security for new events,
only periodically, not continuously. Additionally, existing forward-
secure logging systems don’t aim, like PillarBox, to achieve stealth.

Finally, in a different context than ours, the Adeona system [17]
uses forward-secure host-side buffering in order to achieve privacy-
preserving location tracking of lost or stolen devices. Adeona uses
cryptographic techniques much like those in PillarBox to cache and
periodically upload location information to a peer-to-peer network.
Adeona doesn’t offer integrity protection like that in PillarBox,
however, nor does it address the complications of high throughput,
buffer wraparound, and transmission failures in our setting.

7. CONCLUSION
Today’s big data security analytics systems rely on untrustworthy

data: They collect and analyze messages from Security Analytics
Sources (SASs) with inadequate integrity protection and are vul-
nerable to adversarial corruption. By compromising a host and its
SAS, a strong attacker can suppress key SAS messages and alerts.
An attacker can also gather intelligence about sensitive SAS instru-
mentation and actions (potentially even just via traffic analysis).

We have introduced PillarBox, a new tool that provides key,
missing protections for security analytics systems by securing the
messages generated by SASs. Using the approach of host-side
buffering, PillarBox provides the two properties of integrity and
stealth. PillarBox achieves integrity protection on alert messages
even in the worst case: Hostile, self-protecting environments where

a host records alerts about an attack in progress while an attacker
tries to suppress them. Stealth, an optional property in PillarBox,
ensures that at rest or in transit, a SAS message is invisible to even
a strong adversary with network and eventually host control.

Our experiments with PillarBox validate its practicality and pro-
tective value. We show, e.g., that PillarBox can “win the race”
against an adversary mounting a local privilege escalation attack
and disabling PillarBox as fast as possible: PillarBox secures alert
messages about the attack before the attacker can intervene. Our
study of alerting rates in a large (50,000+ host) environment and of
local host performance confirms the low overhead and real-world
deployability of PillarBox. We posit that PillarBox can offer prac-
tical, strong protection for many big data security analytics systems
in a world of ever bigger data and more sophisticated adversaries.

8. REFERENCES
[1] Ettercap. http://ettercap.sourceforge.net/.
[2] M. Bellare and C. Namprempre. Authenticated encryption:

Relations among notions and analysis of the generic
composition paradigm. J. Cryptol., 21:469–491, 2008.

[3] M. Bellare and B. Yee. Forward-security in private-key
cryptography. CT-RSA, pp. 1–18, 2003.

[4] S. A. Crosby and D. S. Wallach. Efficient data structures for
tamper-evident logging. USENIX Sec., pp. 317–334, 2009.

[5] D. Dolev and A. C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
29(2):198–207, 1983.

[6] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D.
Boneh. Terra: a virtual machine-based platform for trusted
computing. SOSP, pp. 193–206, 2003.

[7] S. Goldwasser, S. Micali, and R. L. Rivest. A digital
signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput., 17(2):281–308, 1988.

[8] J. Håstad, J. Jonsson, A. Juels, and M. Yung. Funkspiel
schemes: an alternative to conventional tamper resistance.
CCS, pp. 125–133, 2000.

[9] G. Itkis. Handbook of Information Security, chapter Forward
Security: Adaptive Cryptography—Time Evolution. John
Wiley and Sons, 2006.

[10] P. A. Karger. Securing virtual machine monitors: what is
needed? ASIACCS, pp. 1:1–1:2, 2009.

[11] J. Kelsey, J. Callas, and A. Clemm. RFC 5848: Signed
syslog messages. 2010.

[12] J. Kelsey and B. Schneier. Minimizing bandwidth for remote
access to cryptographically protected audit logs. RAID, 1999.

[13] D. Ma and G. Tsudik. A new approach to secure logging.
Trans. Storage, 5(1):2:1–2:21, March 2009.

[14] Mandiant. M-trends: The advanced persistent threat.
www.mandiant.com, 2010.

[15] G. A. Marson and B. Poettering. Practical secure logging:
Seekable sequential key generators. ESORICS, pp. 111–128,
2013.

[16] J. Oltsik. Defining big data security analytics. Networkworld,
1 April 2013.

[17] T. Ristenpart, G. Maganis, A. Krishnamurthy, and T. Kohno.
Privacy-preserving location tracking of lost or stolen devices:
Cryptographic techniques and replacing trusted third parties
with DHTs. USENIX Sec., pp. 275–290, 2008.

[18] B. Schneier and J. Kelsey. Cryptographic support for secure
logs on untrusted machines. USENIX Sec., pp. 4–4, 1998.

[19] B. Schneier and J. Kelsey. Tamperproof audit logs as a

11

 http://ettercap.sourceforge.net/
www.mandiant.com

forensics tool for intrusion detection systems. Comp.
Networks and ISDN Systems, 1999.

[20] H. Shacham, M. Page, B. Pfaff, E. J. Goh, N. Modadugu, and
D. Boneh. On the Effectiveness of Address-Space
Randomization. CCS, pp. 298–307, 2004.

[21] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-VM
monitoring using hardware virtualization. CCS, pp. 477–487,
2009.

[22] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters.
Building an encrypted and searchable audit log. NDSS, 2004.

[23] Y. Chen Y. Chen, V. Paxson, and R. Katz. What’s new about
cloud computing security? Technical Report
UCB/EECS-2010-5, UC Berkeley, 2010.

[24] A. A. Yavuz and P. Ning. BAF: An efficient publicly
verifiable secure audit logging scheme for distributed
systems. ACSAC, pp. 219–228, 2009.

[25] A. A. Yavuz, P. Ning, and M. Reiter. Efficient, compromise
resilient and append-only cryptographic schemes for secure
audit logging. FC, 2012.

APPENDIX
A. FORMAL DEFINITIONS

We provide formal security definitions for a lockbox scheme,
a novel general-purpose crypto primitive for reliable, confidential
and tamper-evident message transmissions.

Consider a sender S that communicates with a receiverR through
a channelC that transmits messages from universeU = L∪{∅,⊥}
for a bounded-size language L (|L| = 2`) and two special null (∅)
and failure (⊥) messages. Channel C is a fixed-capacity mem-
ory buffer which consists of T slots, each storing a message in U ,
and a special slot storing the current index I specifying the slot at
which a new message written in the channel is to be stored. That is,
C = (C[0], C[1], . . . , C[T]) where C[T] = I ∈ {0, . . . , T − 1}.

Definition 1 (Lockbox scheme.) A lockbox schemeLS comprises
five PPT algorithms {KGen,KEvolve,Write,Wrap,Read} so that:

• Algorithm KGen: Key generation algorithm KGen takes as
input security parameter κ and returns a pair (σw,0, σr,0) of
initial evolving secret keys, where σw,0 (resp. σr,0) is is a
secret writing (resp. reading) key, and a public key pk (to
be used by all algorithms). We write ((σw,0, σr,0), pk) ←
KGen(1κ).

• Algorithm KEvolve: Key evolution algorithm KEvolve takes
as input a secret writing σw,j or reading σr,j key, an inte-
ger t and auxiliary information b, and updates the writing,
or reading, key to σw,j+t, or σr,j+t respectively. We write
respectively σw,j+t ← KEvolve(σw,j , t, b) and σr,j+t ←
KEvolve(σr,j , t, b).

• Algorithm Write: Algorithm Write takes as input a secret
writing key σw,j , a message m ∈ {0, 1}` and a buffer C, en-
codes m in buffer C at a slot determined by σw,j and C, up-
dates the writing key to new key σw,j+1 ← KEvolve(σw,j , 1, b)
by invoking KEvolve and returns an updated buffer C′. We
say that Write adds m in C and we write (σw,j+1, C

′) ←
Write(σw,j ,m,C).

• Algorithm Wrap: Algorithm Wrap takes as input a secret
writing key σw,j and a bufferC, encodes C, updates the writ-
ing key to new key σw,j+1 ← KEvolve(σw,j , 1, b) by invok-
ing KEvolve and returns an encapsulated buffer Ĉ. We say
that Wrap encapsulates C to Ĉ and we write (σw,j+1, Ĉ)←
Wrap(σw,j , C).

• Algorithm Read: Algorithm Read takes as input a secret
reading key σr,j and an encapsulated buffer Ĉ, decodes all
buffer slots, updates the reading key to new key σr,j+t ←
KEvolve(σr,j , t, b) by invoking KEvolve for some t ≥ 0, and
returns a sequence M = (m1, . . . ,mT) of T messages in
U = L ∪ {∅,⊥}. We say that Read produces messages M
and write (σr,j+t,M)← Read(σr,j , Ĉ).

Under normal operation, we expect a lockbox scheme to transmit
messages reliably and in a order-preserving manner.

Definition 2 (Correctness.) We say that lockbox scheme LS =
{KGen,KEvolve,Write,Wrap,Read} is correct if it holds that:

1. There exists a buffer C∅ so that its corresponding encapsula-
tion Ĉ∅ produces the empty-message sequenceE = (∅, . . . , ∅).
That is, for any jw, there existsC∅ such that (σw,jw+1, Ĉ∅)←
Wrap(σw,jw , C∅) and also there exist jr and t ≥ 0 such that
(σr,jr+t, E)← Read(σr,jr , Ĉ∅).

2. Let C∅ be as above. Then if any k > 0 non-empty mes-
sages are added in C∅, a corresponding encapsulation will
produce exactly min {T, k} most recent such non-empty mes-
sages. That is, for any jw, k, s, any sequence of messages
(m1, . . . ,mk) ∈ Lk, and any bit string (b1, . . . , bk+s) ∈
{0, 1}k+s such that

∑k+s
i=1 bi = s, if

(a) C1 = C∅,
(b) for 1 ≤ l ≤ k + s, if bl = 0 then (σw,jw+l, Cl+1) ←

Write(σw,jw+l−1,ml, Cl) or otherwise (σw,jw+l, Ĉl)←
Wrap(σw,jw+l−1, Cl) and Cl+1 = Cl, and

(c) (σw,jw+k+s+1, Ĉ)←Wrap(σw,jw+k+s, Ck+s+1),

then, with all but negligible probability:

(a) there exist unique index jr and t ≥ 0 so that (σr,jr+t,M)←
Read(σr,jr , Ĉ), and

(b) if k < T then M = (∅, . . . , ∅,m1, . . . ,mk), or other-
wise M = (mk−T+1, . . . ,mk−1,mk).

We capture the two security properties of a lockbox scheme us-
ing two games played by a powerful adversaryA which has access
to a special oracle that makes use of the lockbox algorithms:

Oracle WriteOσ . On input a possibly empty sequence of messages
(m1, . . . ,mk) ∈ Uk and Keeping state (σw,j , C), WriteOσ up-
dates its state to (σw,j+k+1, Ck) and returns encapsulated buffer Ĉ,
where (σw,j+k+1, Ĉ) ← Wrap(σw,j+k, Ck), (σw,j+l, Cl+1) ←
Write(σw,j+l−1,ml, Cl), 1 ≤ l ≤ k, and C0 = C1 = C.

We consider an adversaryA that at a time of its choice fully com-
promises S to capture its secret state and get control over the buffer
C. Prior to the compromise, A may actively control the transmis-
sions between S and R, by adaptively selecting the messages that
S adds in C and when to encapsulate C to Ĉ, and by arbitrarily
modifying, deleting, injecting or reordering the set of encapsulated
buffers produced by S before their delivery toR.

Immutability captures an integrity property for the sequence of
messages that are produced by R: Any received non-empty mes-
sage is either an invalid message thatA has modified or deleted, or
it’s a valid message in L that (1) has been written in the channel
after the time the most recently received message was written in the
channel and (2) has arrived while preserving its order. This holds
even when A launches an adaptive chosen message attack prior to
or after the compromise (similar to the standard notion of security
for digital signatures [7]) and learns the secret state of S at the time
of compromise.

12

Definition 3 (Immutability.) We say that lockbox scheme LS =
{KGen,KEvolve,Write,Wrap,Read} is immutable if no PPT ad-
versaryA can win non-negligibly often in the security parameter κ
in the following game:

• Initialization: KGen runs on κ ((σw,0, σr,0), pk)← KGen(1κ)
and oracle WriteOσ is initialized with (σw,0, C∅) where C∅
is the empty buffer with corresponding encapsulated buffer Ĉ∅.

• Phase I: A is given the empty encapsulated buffer Ĉ∅ and
access to oracle WriteOσ . That is, A makes arbitrary use
of WriteOσ on inputs µ1, . . . , µl1 , µi = (mi

1, . . . ,m
i
zi),

i ∈ {1, . . . l1}, all of its choice, where
∑l1
i=1 zi = k1. At

all times, A may query Read on any encapsulated buffer Ĉ
on its choice to get the sequence of produced messages MĈ

corresponding to Ĉ. At any time of its choice, A proceeds to
the next phase.

• Phase II: A is given the state (σw,j , C) of oracle WriteOσ ,
where (σw,j , Ĉ) ← Wrap(σw,j−1, C) is the last invocation
of Wrap by WriteOσ in phase I. Then A may run Write and
Wrap on inputs (ml1+1

1 , C′1), . . . , (ml1+1
k2

, C′k2) and C̄1, . . . , C̄l2
of its choice, where k1 + k2 = k, l1 + l2 = l and k, l ∈
poly(κ). At all times, A may query Read on any encapsu-
lated buffer Ĉ on its choice to get the sequence of produced
messages MĈ corresponding to Ĉ. At any time of its choice,
A proceeds to the attack phase.

• Attack: Finally, A outputs an encapsulated buffer Ĉ∗.

LetM be the sequence of all messages produced byR by invok-
ing Read on every buffer Ĉ encapsulated in phases I and II through
Wrap in the same order as these buffers were encapsulated. Then,
let M∗ = (m1, . . . ,mT) denote the messages that are produced
by running Read on Ĉ∗. If m = mj1

i1
and m′ = mj2

i2
are messages

written in the channel in phase I or II above, we say that m pre-
cedes m′ if j1 < j2 or j1 = j2 and i1 < i2, i.e., if m was written
in the channel before m′.

We say that A wins if any of the following three occurs:18

1. There exists a message m∗ /∈ {∅,⊥} such that m∗ ∈ M ∪
M∗ but at the same time m∗ /∈ µi, for all 1 ≤ i ≤ l1, and
m∗ /∈ {ml1+1

1 , . . . ,ml1+1
k2
}.

2. There exist messages m∗,m∗∗ ∈ M∗ = (m1, . . . ,mT),
such that m∗ = mi /∈ {∅,⊥} and m∗∗ = mj /∈ {∅,⊥}
with i > j but at the same time m∗ precedes m∗∗.

3. There exist messagesm∗,m∗∗ ∈M∗ withm∗,m∗∗ /∈ {∅,⊥},
where m∗ precedes m∗∗ by more than T − 1 messages.

Stealth captures a privacy property for the set of messages that
are encoded and encapsulated by S: Any encapsulated buffer sat-
isfies ciphertext indistinguishability with respect to their contents,
i.e., A cannot distinguish if a given encapsulated buffer contains
one of two messages A selected, or whether it contains a given
message selected by A. This holds even when A learns the se-
cret state of S at the time of compromise and launches a type of
adaptive chosen ciphertext attack prior to or after the compromise
(i.e., similar to IND-CCA2), where access to the decryption oracle
is restricted to prevent trivial learning of A’s challenge.

Definition 4 (Stealth.) We say that lockbox schemeLS = {KGen,
KEvolve,Write,Wrap,Read} is stealthy if no PPT adversary A

18Protecting against these cases ensures that any received non-empty mes-
sage is either an invalid message⊥ (tampered byA) or a valid one in L that
has been written in C after the most recently received message was written
in C and has arrived while preserving its global order.

can win non-negligibly often in the security parameter κ in the fol-
lowing game against a challenger C:

• Initialization: KGen runs on κ ((σw,0, σr,0), pk)← KGen(1κ)
and oracle WriteOσ is initialized with (σw,0, C∅), where C∅
is the empty buffer with corresponding encapsulated buffer Ĉ∅.

• Phase I: A is given the empty encapsulated buffer Ĉ∅ and
access to oracle WriteOσ . That is, A makes arbitrary use of
WriteOσ on inputs µ1, . . . , µl1 , µi = (mi

1, . . . ,m
i
zi), all of

its choice, where
∑l1
i=1 zi = k1. At all times, A may query

Read on any encapsulated buffer Ĉ on its choice to get the
sequence of produced messages MĈ corresponding to Ĉ. At
any time of its choice, A proceeds to the next phase.

• Selection: A forms messages m0, m1 and m∗.

• Challenge: C flips a random bit b $←− {0, 1} and is given
(m0,m1), m∗ and access to oracle WriteOσ , used by A in
phase I. Then:

– Case I: C invokes WriteOσ on input mb to compute en-
capsulated buffer Ĉ∗, or

– Case II: C invokes WriteOσ on input c to compute en-
capsulated buffer C̃∗, where c = m∗ if b = 0 and c = ∅
(empty set) if b = 1.

• Phase II: A is given the encapsulated buffer Ĉ∗ or C̃∗ com-
puted in the challenge phase and the state (σw,j , C) of WriteOσ ,
where (σw,j , Ĉ) ← Wrap(σw,j−1, C) is the last invocation
of Wrap by WriteOσ in the challenge phase. ThenAmay run
Write and Wrap on inputs (ml1+1

1 , C′1), . . . , (ml1+1
k2

, C′k2)

and respectively C̄1, . . . , C̄l2 of its choice, where k1 + k2 =
k, l1 + l2 = l and k, l ∈ poly(κ). At any time of its choice,
A proceeds to the attack phase.

• Attack: Finally, A outputs a bit b̂.

We say that A wins if b̂ = b in either case I or II above.

Finally, reading the channel frequently enough, it should be pos-
sible to produce a given message more than one times.

Definition 5 (Persistence.) We say that a lockbox scheme is per-
sistent if T sequential writings of messages m1, . . . ,mT in C,
each followed by a Wrap operation, result in encapsulated buffers
Ĉ1, . . . , ĈT that produce m1 exactly T times.

B. CRYPTOGRAPHIC PRIMITIVES
Authenticated encryption. This primitive provides combined con-
fidentiality and integrity protection over transmitted messages.19

A symmetric-key authenticated encryption scheme consists of
algorithms AEKeyGen, AuthEnc and AuthDec:

• AEKeyGen takes as input a security parameter and returns a
secret key σAE , σAE ← AEKeyGen(1κ).

• AuthEnc takes as input secret key σAE and message m and
returns a ciphertext c, c← AuthEncσAE (m).

• AuthDec takes as input secret key σAE and ciphertext c and
either returns m or ⊥, {m,⊥} ← AuthDecσAE (c).

The security property satisfied by these algorithms combines mes-
sage privacy and integrity [2]: If the ciphertext has not been tam-
pered with decryption returns the originally encrypted message,
whose confidentiality is protected by the ciphertext. As shown

19Six different authenticated encryption modes, namely OCB 2.0, Key
Wrap, CCM, EAX, GCM and Encrypt-then-MAC, have been standardized
in ISO/IEC 19772:2009 (Authenticated encryption).

13

in [2], an encrypt-then-MAC scheme provides NM-CPA secrecy
and INT-PTXT, provided that the MAC scheme is strongly unforge-
able. Public-key variants are possible.

We use a forward-secure variant of this primitive, where the se-
cret key σAE evolves over time through a forward-secure pseudo-
random number generator (FS-PRNG).
Forward-secure pseudorandom generator. This primitive sup-
ports a form of leakage-resilient cryptography by providing a se-
quence of strong cryptographic keys that achieve forward security:
When a secret key evolves over time, being refreshed by the next
key in the sequence, leaking the current key to an attacker doesn’t
affect the security of older keys.

The survey in [9] characterizes an FS-PRNG scheme in terms
of a binary tree where the root is a random seed s and children
are derived from their parent by application of a suitable one-way
function. We use a generic description of such schemes that consist
of algorithms GenKey and Next:

• GenKey takes as input a security parameter and returns an
initial state s0, s0 ← GenKey(1κ).

• Next takes as input the current state si, i ≥ 0, and an integer
t > 0, updates the state to si+t and returns a pseudorandom
number ri+t−1, (ri+t−1, si+t) ← Next(si, t). For simplic-
ity, we use ri+t ← Next(ri, t) and ri+1 ← Next(ri) to gen-
erate the pseudorandom number that is t > 1 and t = 1 steps
ahead respectively.

With respect to the security of an FS-PRNG scheme, it holds that
given {si+t}, t > 0, it is hard to compute any older pseudorandom
number rj , j ≤ i. For the common case where t = 1 above, we can
consider sequence r = (r0, r1, r2, . . .) corresponding to a one-way
hash chain.

14

	Introduction
	Modeling and design principles
	Adversarial model
	Secure alert relaying via buffering
	Integrity
	Stealth

	Architecture
	Interface with SAS
	PillarBox components
	Parameterizing PillarBox

	PillarBox buffer and protocols
	Ideal ``lockbox'' security model
	``Lockbox'' security definitions
	Detailed construction

	Experimental Evaluation
	Demonstrating direct-send vulnerability
	PillarBox vs. direct alert pushing
	Race-condition experiments
	Observed alerting frequencies
	Throughput experiments

	Related Work
	Conclusion
	References
	Formal definitions
	Cryptographic primitives

