
Parallelizable Authenticated Encryption from Functions

Kazuhiko Minematsu1

NEC Corporation, Japan, k-minematsu@ah.jp.nec.com

Abstract. A new authenticated encryption (AE) mode for blockcipher is presented. The proposed
scheme has attractive features for fast and compact operation. It requires rate-1 blockcipher call,
and uses the encryption function of a blockcipher for both encryption and decryption. Moreover,
the scheme enables one-pass, parallel operation under two-block partition. The proposed scheme
thus attains similar characteristics as the seminal OCB mode, without using the inverse blockcipher.
The key idea of our proposal is a novel usage of two-round Feistel permutation, where the round
functions are derived from the theory of tweakable blockcipher.
We also describe an instantiation of our idea using a non-invertible primitive, such as a keyed hash
function.

Keywords: Authenticated Encryption, Blockcipher Mode, Pseudorandom Function, OCB.

1 Introduction

Authenticated Encryption. Authenticated encryption, AE for short, is a method to simul-
taneously provide message confidentiality and integrity (authentication) using a symmetric-key
cryptographic function. Although a secure AE function can be basically obtained by an ade-
quate composition of secure encryption and message authentication [6,19], this requires at least
two independent keys, and the composition methods in practice (say, AES + HMAC in TLS)
frequently deviate from what proved to be secure [24]. Considering this situation, there have
been numerous efforts devoted to efficient, one-key constructions. Among many approaches to
AE, blockcipher mode of operation is one of the most popular ones. We have CCM [1], GCM [2],
EAX [8], OCB [20, 26, 29] and the variants [14, 18], and CCFB [22], to name a few. We have
some standards, such as NIST SP 800-38C (CCM) and 38D (GCM), and ISO/IEC 19772.

This paper presents a new AE mode using a blockcipher, or more generally, a pseudorandom
function (PRF). Our proposal has a number of desirable features for fast and compact opera-
tions. Specifically, when the underlying n-bit blockcipher is EK (where K denotes the key), the
properties of our proposal can be summarized as follows.

– The key is one blockcipher key, K.

– Encryption and decryption can be done by the encryption function of EK .

– For s-bit input, the number of E calls is ⌈s/n⌉ + 2 or 3, i.e., rate-1 processing, for both
encryption and decryption.

– On-line, One-pass and parallel encryption and decryption, under two-block partition.

– Provable secure up to 2n/2 input blocks, based on the assumption that E is a PRF (or a
pseudorandom permutation, PRP).

These features are realized with a novel usage of two-round Feistel permutation, where
internal round functions are PRF with input masking. From this we call our proposal OTR, for
Offset Two-round. Table 1 provides a summary of properties of popular AE modes and ours. The
proposed scheme generates input maskings to E using GF(2n) constant multiplications, called
GF doubling [26], which is a quite popular tool for mode design. However, since our proposal
is rather generic and not restricted to GF doubling-based masking, we may have variants with
alternative masking method, such as Gray code [20, 29] or word-oriented LFSR [10, 20, 31]. We

also remark that Liting et al.’s iFeed mode [32] has similar properties to ours, without introducing
2-block partition. However, its decryption can not be parallelized. In return for these attractive
features, one potential drawback of OTR is that it inherently needs two-block partition (though
the message itself can be of any length in bits), which implies more state memories required
than that of OCB. The parallelizability of our scheme is up to the half of the message blocks,
while OCB has full parallelizability, up to the number of message blocks.

We also warn that the security is proved for the standard nonce-respecting adversary [27],
i.e. the encryption never processes duplicate nonces (or initial vectors), see Section 2.4. Some
recent proposals have a provable security under nonce-non-respecting adversary, or even security
without nonce (called on-line encryption) [3,13]. However we do not claim any security guarantee
for such adversaries.

Table 1. A comparison of AE modes. Calls denotes the number of calls for message M and header A for single-
block nonce, without constants.

Mode Calls On-line Parallel Primitive Remark

CCM [1] |A|n + 2|M |n no no E
GCM [2] |M |n [E] and |A|n + |M |n [GFmul] yes yes E,GFmul GFmul over GF(2128)
EAX [8] |A|n + 2|M |n yes no E

OCB [20,26,29] |A|n + |M |n yes yes E,E−1

CCFB [22] |A|n + c|M |n, for some 1 < c < 2 yes no E Sec. degrades as c→ 1

OTR |A|n + |M |n yes yes E 2-block partition

Benefits of inverse-freeness. The use of blockcipher inversion, as in OCB, has mainly two
drawbacks, as discussed by Iwata and Yasuda [17]. The first is on the efficiency. The integration
of encryption and decryption functions increases size, e.g. footprint of hardware, or memory
of software. Moreover, some ciphers have unequal speed for enc/dec. For AES, its decryption
is slower than encryption on some (typically constrained) platforms. This property is the ini-
tial design choice [11], in preference of encryption-only mode, e.g., CTR, OFB, and CFB. For
instance, an AES implementation on Atmel AVR by Osvik et al. [23] has about 45% slower
decryption than encryption. IDEA is another example, where decryption is exceptionally slower
than encryption on microcontrollers [25]. The uneven performance figures of blockcipher enc/dec
functions may cause problems in practice, when the mode uses both functions.

The second is on the security. Usually the security of a mode using both enc/dec functions of
a blockcipher, denoted by E and E−1, needs (E,E−1) to be a strong pseudorandom permutation,
SPRP, for its provable security. In contrast, when the mode uses only E, the security assumption
is relaxed to PRP or PRF.

In addition, the inverse-freeness allows instantiations using non-blockcipher primitives. We
provide an example that uses a variable-input-length PRF, which may be instantiated with
HMAC based on a hash function, or a dedicated scheme, such as SipHash [4]. In this case the
input masking may be simplified to input prepending (with a small computation overhead),
and the security of such an instantiation is roughly n bits when the underlying PRF has n-bit
output.

Hardware assistance. We remark that some software platforms have hardware-assisted block-
cipher, most notably AESNI in Intel and AMD CPUs. AESNI enables the same performance
for AES encryption and decryption. Therefore, when our proposal uses AESNI, the performance
would be roughly similar to that of OCB-AES with AESNI, though the increased number of
states may degrade the result. We have other SW platforms where hardware AES is available but
the decryption is slower (e.g., see [15]). Basically, the value of our proposal is not to provide the

2

fastest operation on modern CPUs, instead, to increase the availablity of OCB-like performance
for various platforms, using single algorithm.

2 Preliminaries

2.1 Basic Notations

Let N = {1, 2, . . . , }. Let {0, 1}∗ be the set of all finite-length binary strings, including the empty

string ε. The bit length of a binary string X is written as |X|, and let |X|a
def
= max{⌈|X|/a⌉, 1}

(if X = ε we have |X|a = 1 for any a ≥ 1). Here |ε| = 0. A concatenation of X,Y ∈ {0, 1}∗ is
written as X∥Y or simply XY . A sequence of a zeros (ones) is denoted by 0a (1a). For k ≥ 0, let

{0, 1}>k def
=

∪
i=k+1,...{0, 1}i and ({0, 1}n)>k def

=
∪

j=k+1,...({0, 1}n)j , and ({0, 1}n)+ def
= ({0, 1}n)>0.

We also define {0, 1}≥k, ({0, 1}n)≥k, {0, 1}<k, ({0, 1}n)<k, {0, 1}≤k, and ({0, 1}n)≤k analogously.
For X ∈ {0, 1}∗, let X[1]∥X[2]∥ . . . ∥X[x]

n← X denote the n-bit block partitioning of X, i.e.,
X[1]∥X[2]∥ . . . ∥X[x] = X where x = |X|n, and |X[i]| = n for i < x and |X[x]| ≤ n. If X = ε the
parsing makes x = 1, X[1] = ε. The sequence of first c bits of X ∈ {0, 1}∗ is denoted by msbc(X).
We have msb0(X) = ε for any X. For X,Y ∈ {0, 1}∗, let X⊕endY be the XOR of X into the end
of Y if |X| ≤ |Y |, i.e. X ⊕end Y = (0|Y |−|X|∥X)⊕ Y . Otherwise X ⊕end Y = X ⊕ (0|X|−|Y |∥Y).

For a finite set X , if X is uniformly chosen from X we write X
$← X . We assume X ⊕ Y is

ε if X or Y is ε. For a binary string X with 0 ≤ |X| < n, X10∗ denotes the padding written as
X∥1∥0n−|X|−1, and when |X| = n, X10∗ denotes X.

Let F : K×X → Y be a keyed function with key K ∈ K. We may simply write FK : X → Y
if key space is obvious, or even write it as F if being keyed with K is obvious. A tweakable keyed
function with tweak space T is written as F̃ : K × T × X → Y or F̃K : T × X → Y. Instead of

writing F̃K(T,X), we may write as F̃
⟨T ⟩
K (X). Keyed permutation and its tweakable version are

defined similarly. For keyed permutation EK , its inversion is denoted by E−1
K .

2.2 Pseudorandom Function

Let Func(n,m) be the set of all functions {0, 1}n → {0, 1}m. We may abbreviate Func(n, n)
to Func(n). In addition, let Perm(n) be the set of all permutations over {0, 1}n. A uniform
random function (URF) having n-bit input and m-bit output is the set Func(n,m) with uniform
distribution over Func(n,m). It is denoted by R, and the corresponding sampling is written as

R
$← Func(n,m). An n-bit uniform random permutation (URP) is the set Perm(n) with uniform

distribution over Perm(n). It is denoted by P, and the corresponding sampling is written as

P
$← Perm(n).
We also define tweakable URF and URP. Let T be a set of tweak and FuncT (n,m) be

a set of functions T × {0, 1}n → {0, 1}m. A tweakable URF with tweak T ∈ T , and n-bit

input, m-bit output is written as R̃
$← FuncT (n,m). Note that if T = {0, 1}t, FuncT (n,m)

has the same cardinality as Func(n+ t,m), hence R̃ is simply realized with URF of (n+ s)-bit
input. In addition, let PermT (n) be a set of functions T × {0, 1}n → {0, 1}n such that, for any
f ∈ PermT (n) and t ∈ T , f(t, ∗) is a permutation. A tweakable n-bit URP with tweak T ∈ T is

defined as P̃
$← PermT (n).

2.3 Galois Field

Following [8], an n-bit string X may be viewed as an element of GF(2n) by taking X as a
coefficient vector of the polynomial in GF(2n). We write 2X to denote the multiplication of 2
and X over GF(2n), where 2 denotes the generator of the field GF(2n). This operation is called
doubling. We also write 3L and 4L to denote 2L ⊕ L and 2(2L). The doubling is efficiently
implemented by one-bit shift with conditional XOR of a constant, see e.g. [16].

3

2.4 Security Notions

For c oracles, O1, O2, . . . , Oc, we write AO1,O2,...,Oc to represent the adversary A accessing these
c oracles in an arbitrarily order. If O and O′ are oracles having the same input and output
domains, we say they are compatible.

Let FK and G′
K be two compatible keyed functions having n-bit input and m-bit output,

with K ∈ K and K ′ ∈ K′ (key spaces are not necessarily the same). Let A be an adversary
trying distinguish them using chosen-plaintext queries. Then the advantage of A is defined as

Adv
cpa
FK ,GK′ (A)

def
= Pr[K

$← K : AFK ⇒ 1]− Pr[K ′ $← K′ : AGK′ ⇒ 1].

The above definition can be naturally extended to the case where FK or G′
K is a URF

R
$← Func(n,m), and we have

Adv
prf
FK

(A) def
= Adv

cpa
FK ,R(A).

Similarly, for tweakable keyed function F̃K : T × {0, 1}n → {0, 1}m and R̃
$← FuncT (n,m),

we have

Adv
prf

F̃K
(A) def

= Adv
cpa

F̃K ,R̃
(A).

We stress that A in the above is allowed to choose tweaks, arbitrarily and adaptively.
For keyed n-bit permutations, EK and GK′ , we have

Adv
prp
EK

(A) def
= Adv

cpa
EK ,P(A),

AdvccaEK ,GK′ (A)
def
= Pr[K

$← K : AEK ,E−1
K ⇒ 1]− Pr[K ′ $← K′ : AGK′ ,G

−1
K′ ⇒ 1], and

Adv
sprp
EK

(A) def
= AdvccaEK ,P(A),

where P is an n-bit URP.
Security Notions for AEs. Following [8, 27], we introduce two security notions, privacy and
authenticity, to model the security of OTR. Let AE[τ] be an AE compatible with OTR having
τ -bit tag. The encryption and decryption algorithms are AE-Eτ and AE-Dτ . A CPA-adversary
A against AE[τ] accesses AE-Eτ . Let (N1, A1,M1), . . . , (Nq, Aq,Mq) be all the encryption queries

made by A. We define A’s parameter list to be (q, σA, σM), where σA
def
=

∑q
i=1 |Hi|n and σM

def
=∑q

i=1 |Mi|n. We also define random-bit oracle, $, which takes (N,A,M) ∈ N × {0, 1}∗ × {0, 1}∗

and returns (C, T)
$← {0, 1}|M | × {0, 1}τ . The privacy notion for CPA-adversary A is defined as

Adv
priv

AE[τ](A)
def
= Pr[K

$← K : AAE-Eτ ⇒ 1]− Pr[A$ ⇒ 1]. (1)

We assume A in the privacy notion is nonce-respecting, i.e., all Nis are distinct. Similarly, a
CCA-adversary A against AE[τ] accesses AE-Eτ and AE-Dτ . Let (N1, A1,M1), . . . , (Nq, Aq,Mq)
and (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
qv , A

′
qv , C

′
qv , T

′
qv) be all the encryption and decryption queries

made by A. We define A’s parameter list to be (q, qv, σA, σM , σA′ , σC′), where σN ′
def
=

∑qv
i=1 |N ′

i|n
and σA′

def
=

∑qv
i=1 |A′

i|n and σC′
def
=

∑qv
i=1 |C ′

i|n. Here, σA and σM are defined as above. The
authenticity notion for the CCA-adversary A is defined as

AdvauthAE[τ](A)
def
= Pr[K

$← K : AAE-Eτ ,AE-Dτ forges], (2)

where A forges if AE-Dτ returns a bit string (other than ⊥) for a query (N ′
i, A

′
i, C

′
i, T

′
i) for

some 1 ≤ i ≤ qv such that (N ′
i, A

′
i, C

′
i, T

′
i) ̸= (Nj , Aj , Cj , Tj) for all 1 ≤ j ≤ q. We assume A

4

in the authenticity notion is always nonce-respecting with respect to encryption queries; using
the same N for encryption and decryption queries is allowed, and the same N can be repeated
within decryption queries, i.e. Ni is different from Nj for any j ̸= i but N ′

i may be equal to Nj

or N ′
i′ for some j and i′ ̸= i.

Let F = (F e
K , F d

K) and G = (Ge
K′ , Gd

K′) be the pairs of functions that are compatible with
(AE-Eτ ,AE-Dτ). We define

Advcca-nrF,G (A) def
= Pr[K

$← K : AF e
K ,F d

K ⇒ 1]− Pr[K ′ $← K′ : AGe
K′ ,G

d
K′ ⇒ 1], (3)

where the underlying A is assumed to be nonce-respecting for encryption queries.

3 Specification (Blockcipher-based, GF doubling masks)

We present an AEAD scheme based on an EK : {0, 1}n → {0, 1}n, which is denoted by
OTR[E, τ], where τ ∈ {1, . . . , n} denotes the length of tag. The encryption function of OTR[E, τ]
is denoted by OTR-EE,τ . The input to OTR-EE,τ consists of a nonce N ∈ N = {0, 1}≤n−1 \ {ε},
a header (or associated data) A ∈ A = {0, 1}∗, and a plaintext M ∈ M = {0, 1}∗. The output
consists of C ∈ {0, 1}∗ and T ∈ {0, 1}τ , where |C| = |M |. The decryption function is denoted
by OTR-DE,τ . It takes (N,C,A, T) ∈ N × A ×M× {0, 1}τ , and outputs a plaintext M with
|M | = |C| if input is determined as valid, or error symbol ⊥ if determined as invalid.

These two functions are further decomposed into three functions, the encryption and decryp-
tion cores, EFE , DFE , and the authentication core, AFE .

Fig. 1 and Fig. 2 depict the scheme. As shown by Fig. 2, OTR consists of two-round Feistel
permutations using a blockcipher taking a distinct input mask in each round. To authenticate
the plaintext a check sum is computed for the right part of two-round Feistel (namely the even
plaintext blocks), and the tag is derived from the encrypting the check sum with an input mask.

4 Security Bounds

We provide the security bounds of OTR. For simplicity we assume the underlying blockcipher
is an n-bit URP, P. The computational counterparts are fairly straightforward, thus omitted.

Theorem 1. Fix τ ∈ {1, . . . , n}. For any CPA-adversary A with parameter (q, σA, σM),

Adv
priv

OTR[P,τ](A) ≤
6σ2

priv

2n

holds for σpriv = q + σA + σM .

Theorem 2. Fix τ ∈ {1, . . . , n}. For any CCA-adversary A with parameter (q, qv, σA, σM , σA′ , σC′),

AdvauthOTR[P,τ](A) ≤
6σ2

auth

2n
+

qv
2τ

holds for σauth = q + qv + σA + σM + σA′ + σC′.

5 Proofs of Theorems 1 and 2

5.1 Generic AEAD Construction based on Tweakable URF

To understand the proofs of the above theorems, we first provide a generic construction behind
OTR and show the security bounds for it.

5

Algorithm OTR-EE,τ (N,A,M)

1. (C, TE)← EFE(N,M)
2. if A ̸= ε then TA← AFE(A)
3. else TA← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T)

Algorithm OTR-DE,τ (N,C,A, T)

1. (M,TE)← DFE(N,C)
2. if A ̸= ε then TA← AFE(A)
3. else TA← 0n

4. T̂ ← msbτ (TE ⊕ TA)

5. if T̂ = T return M
6. else return ⊥

Algorithm EFE(N,M)

1. Σ ← 0n

2. L← E(N10∗), L′ ← 4L
3. M [1]∥M [2]∥ . . . ∥M [m]

n←M
4. for i = 1 to ⌊m/2⌋ − 1 do
5. C[2i− 1]← E(L′ ⊕M [2i− 1])⊕M [2i]
6. C[2i]← E(L′ ⊕ L⊕ C[2i− 1])⊕M [2i− 1]
7. Σ ← Σ ⊕M [2i]
8. L′ ← 2L′

9. if m is even
10. Z ← E(L′ ⊕M [m− 1])
11. C[m]← msb|M [m]|(Z)⊕M [m]
12. C[m− 1]← E(L′ ⊕ L⊕ C[m]10∗)⊕M [m− 1]
13. Σ ← Σ ⊕ Z ⊕ C[m]10∗

14. Llast ← L′ ⊕ L
15. if m is odd
16. C[m]← msb|M [m]|(E(L′))⊕M [m]
17. Σ ← Σ ⊕M [m]10∗

18. Llast ← L′

19. if |M [m]| ̸= n then TE ← E(3Llast ⊕Σ)
20. else TE ← E(3Llast ⊕ L⊕Σ)
21. C ← C[1]∥C[2]∥ . . . ∥C[m]
22. return (C, TE)

Algorithm DFE(N,C)

1. Σ ← 0n

2. L← E(N10∗), L′ ← 4L
3. C[1]∥C[2]∥ . . . ∥C[m]

n← C
4. for i = 1 to ⌊m/2⌋ − 1 do
5. M [2i− 1]← E(L′ ⊕ L⊕ C[2i− 1])⊕ C[2i]
6. M [2i]← E(L′ ⊕M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i]
8. L′ ← 2L′

9. if m is even
10. M [m− 1]← E(L′ ⊕ L⊕ C[m]10∗)⊕ C[m− 1]
11. Z ← E(L′ ⊕M [m− 1])
12. M [m]← msb|C[m]|(Z)⊕ C[m]
13. Σ ← Σ ⊕ Z ⊕ C[m]10∗

14. Llast ← L′ ⊕ L
15. if m is odd
16. M [m]← msb|C[m]|(E(L′))⊕ C[m]
17. Σ ← Σ ⊕M [m]10∗

18. Llast ← L′

19. if |C[m]| ̸= n then TE ← E(3Llast ⊕Σ)
20. else TE ← E(3Llast ⊕ L⊕Σ)
21. M ←M [1]∥M [2]∥ . . . ∥M [m]
22. return (M,TE)

Algorithm AFE(A)

1. Ξ ← 0n

2. Q← E(0n), Q′ ← 4Q
3. A[1]∥A[2]∥ . . . ∥A[a]

n← A
4. for i = 1 to a− 1 do
5. Ξ ← Ξ ⊕ E(Q′ ⊕A[i])
6. Q′ ← 2Q′

7. Ξ ← Ξ ⊕A[a]10∗

8. if |A[a]| ≠ n then TA← E(Q′ ⊕Q⊕ Ξ)
9. else TA← E(Q′ ⊕ 2Q⊕ Ξ)

10. return TA

Fig. 1. The encryption and decryption algorithms of OTR with n-bit blockcipher E. Tag size is 0 < τ ≤ n.

6

M[1] M[2]

C[1] C[2]

L’

L’

L

E
K

M[m-1] M[m]

C[m-1] C[m]

E
K

M[3] M[4]

C[3] C[4]

2L’

2L’

L

E
K

E
K

E
K

c

2ℓ-1L’

L
E

K

2ℓ-1L’

p

When m is even

M[m]

C[m]

E
K

c2ℓ-1L’

When m is odd

E
K

SUM

SUM = M[2] ⊕ M[4] ⊕ … ⊕ M[m-2] ⊕ Z ⊕ C[m] 10* if m even

= M[2] ⊕ M[4] ⊕ … ⊕ M[m-1] ⊕ M[m]10* if m odd

Z

3L
last

TE

E
K

N10*

L

L’

x4

E
K

Q’
E

K

0n

Q

Q’

x4

A[1]

E
K

2Q’

A[2]

E
K

2a-2Q’

A[a-1] A[a]10*

E
K

TA

TA

chop

T

…

…

or

3L
last

⊕ L

L
last

= 2ℓ-1L’ ⊕ L L
last

= 2ℓ-1L’

Q
or

2Q

2a-1Q’

Fig. 2. OTR mode, with Galois field doubling.

We define an AEAD scheme denoted by OTR′[R̃,R∞, τ]. It is compatible to OTR[E, τ] and
uses a tweakable n-bit URF, R̃ : T × {0, 1}n → {0, 1}n, and an independent VIL-URF, R∞ :
{0, 1}∗ → {0, 1}n, Here, tweak T ∈ T is represented as a vector, T = (x, i, γ) ∈ N × N ×
{f, s, a1, a2, b1, b2}. We will augment the domain of γ later. Here OTR′[R̃,R∞, τ] consists of
encryption function, OTR′-E

R̃,R∞,τ
, and decryption function, OTR′-D

R̃,R∞,τ
. The definition of

OTR′ is in Fig. 3. Counterparts to EF and DF are denoted by EF and DF, also shown in Fig. 3.
The bounds of OTR′ are as follows. The proof of Theorem 3 is in Appendix A.

Theorem 3. Fix τ ∈ {1, . . . , n}. For any CPA-adversary A,

Adv
priv

OTR′[R̃,R∞,τ]
(A) = 0.

Moreover, for any CCA-adversary A using q encryption queries and qv verification queries,

AdvauthOTR′[R̃,R∞,τ]
(A) ≤ 2qv

2n
+

qv
2τ

.

5.2 Tweakable PRFs and Variable-input-length PRFs

In Fig. 4 we define a tweakable URP, G̃[P]⟨N,i,γ⟩(X), where (N, i, γ) denotes a tweak and X
denotes an input. It uses an n-bit URP P. We remark that Fig. 4 slightly abuse the notation
N to allow 0n, hence the domain of N is N ′ def

= {{0, 1}≤n−1 ∪ {0n}} \ {ε}. Here i ∈ N, and γ

takes one of 9 values, W def
= {f, s, a1, a2, b1, b2, h, g1, g2}. Note that not all tweaks in N ′×N×W

appear in Fig. 4, say (0n, i, f). We let them as undefined. It is easy to verify that, if EF
R̃
(DF

R̃
)

uses G̃[P]⟨N,i,γ⟩(∗) instead of R̃
⟨N,i,γ⟩

(∗), we obtain EFP (DFP). For instance, Llast equals to
2ℓ−1L′ ⊕ L when message has m blocks and m is even, for ℓ = ⌊m/2⌋, thus the last mask is
either 3Llast (if the last block is shorter than n bits) or 3Llast ⊕ L (if the last block has n bits),
corresponding to the cases a1 and a2 in Fig. 4. When m is odd, Llast equals to 2ℓ−1L′, and the
last mask is either 3Llast (case b1) or 3Llast ⊕ L (case b2).

Then we have the following lemma.

7

Lemma 1. For any adversary A accessing G̃[P] with q queries, we have

Adv
cpa

G̃[P],R̃
(A) ≤ 5q2

2n
,

where R̃ is compatible with G̃[P].

Proof. The crucial observation is that the input mask is differentially uniform. Specifically, we
observe that, when N ̸= 0n the set of possible values of ∆ shown in Fig. 4 is

S1(L)
def
= {2i−1L′, 2i−1L′ ⊕ L, 3(2i−1L′ ⊕ L), 3(2i−1L⊕ L), 2i−13L′, 2i−13L′ ⊕ L},
= {2i+1L, 2i+1L⊕ L, 2i+2L⊕ 2i+1L⊕ 2L⊕ L, 2i+2L⊕ 2i+1L⊕ 2L,

2i+2L⊕ 2i+1L, 2i+2L⊕ 2i+1L⊕ L}, (4)

for i ≥ 1 and L′ = 4L, and when N = 0n, the set of possible values of ∆ is

S2(Q)
def
= {2i−1Q′, 2i−1Q′ ⊕Q, 2i−1Q′ ⊕ 2Q}
= {2i+1Q, 2i+1Q⊕Q, 2i+1Q⊕ 2Q}, (5)

for i ≥ 1 and Q′ = 4Q. Let L1, L2, Q
$← {0, 1}n be the independent and uniform variables. Then

it is easy to see that

max
δ∈{0,1}n,X,X′∈S1(L1)∪S1(L2)∪S2(Q),X ̸≡X′

Pr[X ⊕X ′ = δ] ≤ 1

2n
(6)

holds (here X ̸≡ X ′ means that X and X ′ are different in their expressions). By writing ∆ of
Fig. 4 defined for tweak (N, i, γ) as ∆(N, i, γ), Equation (6) shows that if P is replaced with a
URF, R, in Fig. 4, we have

max
δ∈{0,1}n

Pr[∆(N, i, γ)⊕∆(N ′, i′, γ′) = δ] ≤ 1

2n
. (7)

for any tweak pairs, (N, i, γ) ̸= (N ′, i′, γ′), that are defined in Fig. 4. From Equation (7), we have
Adv

cpa

G̃[P],P̃
(A) ≤ 4.5q2/2n, where P̃ is a tweakable URP compatible with G̃[P], in a similar manner

to the security proof of Rogaway’s XE construction [26]. A slight generalized form of PRP/PRF
switching lemma (e.g., Lemma 1 of [7]) tells that Adv

cpa

P̃,R̃
(A) ≤ 0.5q2/2n for q CPA queries, hence

the proof is completed as Adv
cpa

G̃[P],R̃
(A) ≤ Adv

cpa

G̃[P],P̃
(A) + Adv

cpa

P̃,R̃
(A) ≤ 4.5q2/2n + 0.5q2/2n. ⊓⊔

Fig. 5 shows a variable-input-length function : {0, 1}∗ → {0, 1}n denoted by AF[R̃]. The
internal R̃ is a tweakable URF compatible with G̃[P]. It is again easy to observe that if AF[R̃]
uses G̃[P] instead of R̃, we obtain AFP. We provide the security bound for AF[R̃], which is as
follows.

Lemma 2. For any adversary A accessing AF[R̃] with σ input blocks, we have

Adv
prf

AF[R̃]
(A) ≤ σ2

2n+1
.

The proof of Lemma 2 is almost the same as a part of PMAC proof (the last equation of
Appendix E of [28]), thus omitted.

8

5.3 Deriving PRIV and AUTH

Let OTR[R̃, τ] be an AEAD consisting of EF
R̃
, DF

R̃
, shown in Fig. 3, and AF

R̃
shown in Fig. 5.

Then, there exist adversaries, B against AF[R̃] with σA input blocks, and C against G̃[P] with
σA + σM + q queries, satisfying

Adv
priv

OTR[P,τ](A) = Adv
cpa-nr

OTR[P,τ],$(A) (8)

= Adv
cpa-nr

OTR[P,τ],OTR[R̃,τ]
(A) + Adv

cpa-nr

OTR[R̃,τ],OTR′[R̃,R∞,τ]
(A) + Adv

cpa-nr

OTR′[R̃,R∞,τ],$
(A)
(9)

= Adv
cpa-nr

OTR[P,τ],OTR[R̃,τ]
(A) + Adv

cpa

AF[R̃],R∞(B) + Adv
cpa-nr

OTR′[R̃,R∞,τ],$
(A) (10)

≤ Adv
cpa

G̃[P],R̃
(C) +

σ2
A

2n+1
+ 0 (from Lemma 2 and Theorem 3) (11)

≤ 5(σA + σM + q)2

2n
+

σ2
A

2n+1
(from Lemma 1) (12)

≤
6σ2

priv

2n
. (13)

Similarly, for any CCA-adversary A against OTR[P, τ], there exist B against AF[R̃] with
σA + σA′ input blocks, and C against G̃[P] with σA + σM + σA′ + σC′ + q+ qv queries, satisfying

AdvauthOTR[P,τ](A) ≤ Advcca-nr
OTR[P,τ],OTR′[R̃,R∞,τ]

(A) + AdvauthOTR′[R̃,R∞,τ]
(A) (14)

= Advcca-nr
OTR[P,τ],OTR[R̃,τ](A) + Advcca-nrOTR[R̃,τ],OTR′[R̃,R∞,τ]

(A) + AdvauthOTR′[R̃,R∞,τ]
(A)
(15)

= Advcca-nr
OTR[P,τ],OTR[R̃,τ](A) + Adv

cpa

AF[R̃],R∞(B) + AdvauthOTR′[R̃,R∞,τ]
(A) (16)

≤ Adv
cpa

G̃[P],R̃
(C) + (σA + σA′)2

2n+1
+

2qv
2n

+
qv
2τ

(from Lemma 2 and Theorem 3)

(17)

≤ 5(σA + σM + σA′ + σC′ + q + qv)
2

2n
+

(σA + σA′)2

2n+1
+

2qv
2n

+
qv
2τ

(18)

≤ 5σ2
auth

2n
+

0.5(σA + σA′)2 + 2σA′

2n
+

qv
2τ
≤ 6σ2

auth

2n
+

qv
2τ

. (19)

This concludes the proof.

6 Other Instantiations

As the core idea of our proposal is general, it allows various instantiations, by seeing OTR or
OTR′ as a prototype. What we need is just to instantiate R̃ accepting n-bit input and tweak
(N, i, γ), and producing n-bit output. This paper presented an instantiation with a blockcipher
mode using GF doubling-based masking, however, other variants with different masking methods
are certainly possible. For example, we can use Gray code [20, 29] or a word-oriented LFSR
[10,20,31].

Moreover, as we do not need the inversion operation of the underlying EK , we can use
cryptographic primitives other than blockciphers. A typical example is a hash function-based
PRF, e.g. HMAC. We can also use components of a hash function, such as a compression function
of SHA-2, or a keyless permutation of SHA-3 (Keccak) with Even-Mansour conversion [12] into
a keyed permutation. In the latter case the resulting scheme does not need an inversion of the
permutation, and there is no output loss like “capacity” bits of SpongeWrap [9].

9

In these settings, a simple tweaking method by prepending can be an option. As an ex-
ample we take SipHash [4], which is a variable-input-length (VIL) PRF with 64-bit output.

A SipHash-based scheme would be obtained by replacing R̃
⟨N,i,γ⟩

(∗) of OTR′ (Fig. 3) with
SipHashK(N∥i∥γ∥∗), and replacing R∞(∗) with SipHashK(0n∥0∥h∥∗), accompanied with an
appropriate input encoding. Fig. 6 depicts the scheme, where γ is encoded as γ = a1 → 0,
γ = a2 → 1, and so on. As SipHash has an iterative structure, we can efficiently compute
SipHashK(N∥i∥γ∥X) using an intermediate value obtained by the computation of SipHashK(N∥i′∥γ′∥X ′),
hence we do not need a specific masking function. We remark that this scheme has roughly 64-bit
security. The proof is trivial from Theorem 3, combined with the assumption that SipHash is a
VIL-PRF.

7 Concluding Remarks

We have presented an authenticated encryption scheme using a PRF. This scheme enables rate-
1, on-line, and parallel processing for both encryption and decryption. The core idea of our
proposal is to use two-round Feistel with input masking, combined with a message check sum.
As a concrete instantiation we provide a blockcipher mode, called OTR, based on a blockcipher
encryption function (but not the inverse), which may be seen as an “inverse-free” version of
OCB. While the abstract structure has a similarity to OCB mode, our result is not a trivial
consequence of previous results. For example if we use 4-round Feistel using an n-bit blockcipher
(with input masking) as a 2n-bit blockcipher and plug it into OCB, the resulting mode is inverse-
free and provably secure, since 4-round Feistel is an SPRP, as shown by Luby and Rackoff [21].
However, the rate is degraded to 2, hence no significant gain from the generic composition.
As we mentioned in Introduction, our proposal has a higher complexity than OCB outside
the blockcipher, hence it is not a good substitute when the blockcipher enc/dec functions are
natively supported and equally fast, even though the relaxed security assumption. In contrast,
our proposal would be useful for various environments where the use of blockcipher inversion
has a non-negligible cost.

Acknowledgments. The author would like to thank Tetsu Iwata for fruitful discussions, and
thank Sumio Morioka and Tomoyasu Suzaki for useful comments.

References

1. Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confiden-
tiality . NIST Special Publication 800-38C (2004), national Institute of Standards and Technology.

2. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC. NIST
Special Publication 800-38D (2007), national Institute of Standards and Technology.

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E.W., Yasuda, K.: Parallelizable (au-
thenticated) online ciphers. DIAC 2013: Directions in Authenticated Ciphers (2013), available from http:

//2013.diac.cr.yp.to/

4. Aumasson, J.P., Bernstein, D.J.: SipHash: A Fast Short-Input PRF. In: Galbraith, S.D., Nandi, M. (eds.)
INDOCRYPT. Lecture Notes in Computer Science, vol. 7668, pp. 489–508. Springer (2012)

5. Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in Message Authentication and
Authenticated Encryption. Cryptology ePrint Archive, Report 2004/309 (2004), http://eprint.iacr.org/

6. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and Analysis of the
Generic Composition Paradigm. In: Okamoto, T. (ed.) ASIACRYPT. Lecture Notes in Computer Science,
vol. 1976, pp. 531–545. Springer (2000)

7. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing
Proofs. In: Vaudenay, S. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 4004, pp. 409–426.
Springer (2006)

8. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy and Meier [30], pp. 389–407

10

http://2013.diac.cr.yp.to/
http://2013.diac.cr.yp.to/
http://eprint.iacr.org/

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the Sponge: Single-Pass Authenticated En-
cryption and Other Applications. In: Miri, A., Vaudenay, S. (eds.) Selected Areas in Cryptography. Lecture
Notes in Computer Science, vol. 7118, pp. 320–337. Springer (2011)

10. Chakraborty, D., Sarkar, P.: A general construction of tweakable block ciphers and different modes of opera-
tions. IEEE Transactions on Information Theory 54(5), 1991–2006 (2008)

11. Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1999)
12. Even, S., Mansour, Y.: A Construction of a Cipher From a Single Pseudorandom Permutation. In: Imai, H.,

Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT. Lecture Notes in Computer Science, vol. 739, pp. 210–224.
Springer (1991)

13. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-Line Authenticated En-
cryption Schemes. In: Canteaut, A. (ed.) FSE. Lecture Notes in Computer Science, vol. 7549, pp. 196–215.
Springer (2012)

14. Gligor, V.D., Donescu, P.: Fast Encryption and Authentication: XCBC Encryption and XECB Authentication
Modes. In: Matsui, M. (ed.) FSE. Lecture Notes in Computer Science, vol. 2355, pp. 92–108. Springer (2001)

15. Gouvêa, C.P.L., López, J.: High Speed Implementation of Authenticated Encryption for the MSP430X Mi-
crocontroller. In: Hevia, A., Neven, G. (eds.) LATINCRYPT. Lecture Notes in Computer Science, vol. 7533,
pp. 288–304. Springer (2012)

16. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.) FSE. Lecture Notes in Com-
puter Science, vol. 2887, pp. 129–153. Springer (2003)

17. Iwata, T., Yasuda, K.: BTM: A Single-Key, Inverse-Cipher-Free Mode for Deterministic Authenticated En-
cryption. In: Jr., M.J.J., Rijmen, V., Safavi-Naini, R. (eds.) Selected Areas in Cryptography. Lecture Notes
in Computer Science, vol. 5867, pp. 313–330. Springer (2009)

18. Jutla, C.S.: Encryption Modes with Almost Free Message Integrity. In: Pfitzmann, B. (ed.) EUROCRYPT.
Lecture Notes in Computer Science, vol. 2045, pp. 529–544. Springer (2001)

19. Krawczyk, H.: The Order of Encryption and Authentication for Protecting Communications (or: How Secure
Is SSL?). In: Kilian, J. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 2139, pp. 310–331. Springer
(2001)

20. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption Modes. In: Joux, A. (ed.)
FSE. Lecture Notes in Computer Science, vol. 6733, pp. 306–327. Springer (2011)

21. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseudorandom Functions. SIAM
J. Comput. 17(2), 373–386 (1988)

22. Lucks, S.: Two-Pass Authenticated Encryption Faster Than Generic Composition. In: Gilbert, H., Handschuh,
H. (eds.) FSE. Lecture Notes in Computer Science, vol. 3557, pp. 284–298. Springer (2005)

23. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast Software AES Encryption. In: Hong, S., Iwata, T.
(eds.) FSE. Lecture Notes in Computer Science, vol. 6147, pp. 75–93. Springer (2010)

24. Paterson, K.: Authenticated Encryption in TLS. DIAC 2013: Directions in Authenticated Ciphers (2013),
available from http://2013.diac.cr.yp.to/

25. Rinne, S.: Performance Analysis of Contemporary Light-Weight Cryptographic Algorithms on a Smart Card
Microcontroller. SPEED – Software Performance Enhancement for Encryption and Decryption (2007), avail-
able from http://www.hyperelliptic.org/SPEED/start07.html

26. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC.
In: Lee, P.J. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 3329, pp. 16–31. Springer (2004)

27. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy and Meier [30], pp. 348–359
28. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC.

Full version (2013), available from http://www.cs.ucdavis.edu/~rogaway/papers/

29. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for efficient authenticated en-
cryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403 (2003)

30. Roy, B.K., Meier, W. (eds.): Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi, India,
February 5-7, 2004, Revised Papers, Lecture Notes in Computer Science, vol. 3017. Springer (2004)

31. Zeng, G., Han, W., He, K.: High Efficiency Feedback Shift Register: σ-LFSR. Cryptology ePrint Archive,
Report 2007/114 (2007), http://eprint.iacr.org/

32. Zhang, L., Han, S., Wu, W., Wang, P.: iFeed: the Input-Feed AE Modes. Rump Session of FSE 2013 (2013),
slides from http://fse.2013.rump.cr.yp.to/

A Proof of Theorem 3

PRIV bound. We observe that the any output block of encryption oracle OTR′-E
R̃,R∞,τ

, except

N , contains an output block of R̃
⟨N,i,γ⟩

, where the tweak (N, i, γ) is uniquely used throughout

CPA attack by A. For example any odd ciphertext block contains an output of R̃
⟨N,i,f⟩

for odd i

11

http://2013.diac.cr.yp.to/
http://www.hyperelliptic.org/SPEED/start07.html
http://www.cs.ucdavis.edu/~rogaway/papers/
http://eprint.iacr.org/
http://fse.2013.rump.cr.yp.to/

and any even ciphertext block contains an output of R̃
⟨N,i,s⟩

for even i, and a tag T contains TE,

which is an output of R̃
⟨N,i,γ⟩

for some γ ∈ {a1, a2, b1, b2} and thus random. Tag T is an XOR
of TE and TA and the latter is R∞(A) if A ̸= ε and 0n if A = ε, therefore, T is also independent
and random. This implies that the output blocks except the nonce is completely random and
independent of the adversary’s choice (except the length), thus indistinguishable from those of
$ oracle. PRIV bound is naturally derived from this observation.

AUTH bound. We first consider the case qv = 1. We abbreviate OTR′[R̃,R∞, τ] as OTR′. Let
A be CCA-adversary against OTR′ with q encryption queries and a verification query. Without
loss of generality we can assume A first performs all encryption queries before the decryption
query, which is the best strategy for maximizing the probability of successful forgery.

Following Section 2.4, we denote the i-th encryption query and the answer as (Ni, Ai,Mi)
and (Ci, Ti). Here |Mi| = |Ci| and Ni ̸= Nj for any 1 ≤ i < j ≤ q from the assumption. Let

Mi[1]∥Mi[2]∥ . . . ∥Mi[mi]
n←Mi and M c

i [1]∥M c
i [2]∥ . . . ∥M c

i [ℓi]
2n←Mi, where Mi[j] is called a j-th

block and M c
i [j] is called a j-th chunk. Note that mi = |Mi|n and ℓi = |Mi|2n (which equals to

⌊mi/2⌋). For ciphertext we similarly define Ci[j] and Cc
i [j]. The verification query (or forgery

attempt) is denoted by (N ′, A′, C ′, T ′). We require (N ′, A′, C ′) ̸= (Ni, Ai, Ci) for all i = 1, . . . , q,
since forgery attempt with (N ′, A′, C ′) = (Ni, Ai, Ci) and T ′ ̸= Ti for some i is always rejected.

Let T ∗ be the true tag value for the forgery attempt. Similarly we define TE∗, TA∗ and
Σ∗ for the corresponding values produced in the decryption of the forgery attempt, which uses
(N ′, A′, C ′). The forgery attempt is accepted as valid iff T ∗ = T ′, where

T ∗ = msbτ (TE
∗ ⊕ TA∗), and TE∗ = lsbn(DFR̃

(N ′, C ′)), and TA∗ = R∞(A′), (20)

where lsbn(X) denotes the last n bits ofX. Letm′ = |C ′|n and ℓ′ = |C ′|2n. We write C ′[1]∥ . . . ∥C ′[m′]
n←

C ′ and C ′c[1]∥ . . . ∥C ′c[ℓ′]
2n← C ′. Note that TE∗ is equal to R̃

⟨N ′,ℓ′,γ′⟩
(Σ∗), where Σ∗ is generated

as an internal variable of DF
R̃
(N ′, C ′) for some γ′ ∈ {a1, a2, b1, b2} uniquely determined by the

length of C ′. Application of function R̃
⟨N ′,ℓ′,γ′⟩

is called a finalization and the tweak (N ′, ℓ′, γ′)
is called a finalization tweak.

Let Z = {(Ni, Ai,Mi, Ci, Ti)}i=1,...,q be the transcript obtained by encryption queries. Seeing
Z as a random variable, the forgery probability is written as

AdvauthOTR′(A) = Pr
A,OTR′

[T ′ = T ∗] =
∑
z

Pr
A,OTR′

[T ′ = T ∗|Z = z] · Pr
A,OTR′

[Z = z], (21)

where the probability space is defined by the interactive game involving A and OTR′ (also
applies to all probabilities hereafter). In deriving the authenticity bound, we fix adversary A
and define FPz as Pr[T ′ = T ∗|Z = z], and bound a maximum of FPz for all possible z with A.
This provides the upper bound of AdvauthOTR′(A). Here we can assume A produces a verification

query (N ′, A′, C ′, T ′) deterministically from z so that it maximizes FPz. Note that, the transcript
reveals all the input-output pairs for R̃ invoked at encryption queries, except the final one to
produce TEi for all i ≤ q. Hence (N ′, A′, C ′, T ′) can be dependent on these pairs. We perform a
case analysis for (N ′, A′, C ′).

Case 1: N ′ ̸= Ni for all 1 ≤ i ≤ q.
The finalization tweak is new, hence the TE∗ is independent and uniformly random. Thus
FPz ≤ 1/2τ .

Case 2: (N ′, C ′) = (Nα, Cα) for some 1 ≤ α ≤ q, and A′ ̸= Aα.
We have T ∗ = msbτ (TEα ⊕ TA∗). First we observe that, throughout the attack the adversary
obtains no knowledge about TAα for all non-empty Aα except trivial collisions, since TAα is
xored with TEα, which is independent and uniform. Note that for any i ≤ q with Ai = ε we

12

always have TAi = 0n, and for Aα ̸= ε we have TAα = R∞(Aα), which is random. If we have
Aα = Aβ ̸= ε the adversary only knows that Aα is random, thus completely unpredictable, and
that Aβ is equal to Aα. This means that the adversary can not predict TAα for any non-empty
Aα beyond random guess. Based on this observation we do a case analysis.

Case 2-1: A′ ̸=∀ Ai, A
′ ̸= ε.

We observe that TA∗ is random, implying FPz ≤ 1/2τ .
Case 2-2: A′ ̸=∀ Ai, A

′ = ε.
We observe that TA∗ = 0n and T ∗ = msbτ (TEα) = msbτ (TAα ⊕ Tα) for non-empty Aα. Then
TAα is completely unpredictable to the adversary, and so is T ∗. Thus we have FPz ≤ 1/2τ .

Case 2-3: A′ = Aβ ̸= ε for some β ̸= α.
We observe that TA∗ = TAβ and T ∗ = TAβ ⊕ TEα. As TAβ is completely unpredictable, we
have FPz ≤ 1/2τ .

Case 2-4: A′ = Aβ = ε for some β ̸= α.
We observe that TA∗ = TAβ = 0n and T ∗ = TEα = Tα ⊕ TAα. As Aα ̸= ε holds TAα is
completely unpredictable, and we have FPz ≤ 1/2τ .

Therefore, for all cases we have FPz ≤ 1/2τ .
Case 3: N ′ = Nα, |C ′| = |Cα| and C ′ ̸= Cα for some 1 ≤ α ≤ q.

Let (Cα[1]∥ . . . ∥Cα[mα])
n← Cα and (Cc

α[1]∥ . . . ∥Cc
α[ℓα])

2n← Cα, and (C ′[1]∥ . . . ∥C ′[m′])
n← C ′,

and (C ′c[1]∥ . . . ∥C ′c[ℓ′])
2n← C ′. Here we have m′ = mα and ℓ′ = ℓα. Note that we do not pose

any condition on A′: it can be any value.
Case 3-1: |C ′c[ℓ′]| = 2n

The finalization tweaks for α-th query and the forgery attempt are the same, i.e. (Nα, ℓα, a2).
Then we have C ′c[i] ̸= Cc

α[i] for some 1 ≤ i ≤ ℓ′. If i < ℓα, we obtain

M∗[2i− 1] = R̃
⟨N ′,i,s⟩

(C ′[2i− 1])⊕ C ′[2i] and (22)

M∗[2i] = R̃
⟨N ′,i,f⟩

(M∗[2i− 1])⊕ C ′[2i− 1] (23)

in the decryption process of the forgery attempt. Let e1 denote the event M
∗[2i−1] = Mα[2i−1].

If C ′[2i − 1] ̸= Cα[2i − 1], e1 occurs with probability 1/2n, and if C ′[2i − 1] = Cα[2i − 1] and
C ′[2i] ̸= Cα[2i], the probability is zero. The event e1, i.e. M

∗[2i− 1] ̸= Mα[2i− 1], implies that

the input to R̃
⟨N ′,i,f⟩

is new, thus M∗[2i] is uniformly random and independent of any other
variables in the transcript. This makes Σ∗ independent and random under the event e1. Let e2
be the event that Σ∗ = Σα (which equals to Mα[2]⊕Mα[4]⊕ . . .⊕Mα[mα]). Then we have

FPz ≤ Pr(msbτ (R̃
⟨Nα,ℓα,a2⟩

(Σ∗)) = T ′|Z = z, e1 ∧ e2) + Pr(e2|e1,Z = z) + Pr(e1|Z = z) (24)

≤ max
v∈{0,1}τ

Pr(msbτ (R̃
⟨Nα,ℓα,a2⟩

(Σ∗)) = v|Z = z, Σ∗ ̸= Σα) +
1

2n
+

1

2n
(25)

≤ 1

2τ
+

2

2n
. (26)

If i = ℓα, i.e. the difference is in the last chunks, the same analysis holds when we exchange
C ′[2i− 1] and C ′[2i]. Thus FPz is bounded by 1

2τ + 2
2n in this case.

Case 3-2: n < |C ′c[ℓ′]| < 2n.
The finalization tweak is (Nα, ℓα, a1), for both α-th encryption query and the forgery attempt.
We have ∃C ′c[i] ̸= Cc

α[i] for some 1 ≤ i ≤ ℓ′. If i < ℓ′ (= ℓα) the case is the same as Case
3-1. Otherwise we have C ′c[j] = Cc

α[j] for all j = 1, . . . , ℓ′ − 1 and C ′c[ℓ′] ̸= Cc
α[ℓ

′]. If we have
C ′[m′] ̸= Cα[m

′], the eventM∗[m′−1] = Mα[m
′−1], which we denote by event e1, has probability

1/2n, since M∗[m′ − 1] = R̃
⟨Nα,ℓα,s⟩

(C ′[m′]10∗) ⊕ C ′[m′ − 1] and C ′[m′]10∗ is a new input to

R̃
⟨Nα,ℓα,s⟩

. When e1 occurs, M∗[m′ − 1] is a new input to produce Z∗ = R̃
⟨Nα,ℓα,f⟩

(M∗[m′ − 1]),

13

which makes Z∗ completely random. As Σ∗ contains Z∗ ⊕ C ′[m′]10∗, Σ∗ is also random. If we
have C ′[m′] = Cα[m

′] and C ′[m′ − 1] ̸= Cα[m
′ − 1], we always have M∗[m′ − 1] ̸= Mα[m

′ − 1],
thus Σ∗ is always random. Therefore, by defining event e2 as Σ∗ = Σα, FPz is bounded as

FPz = Pr(msbτ (R̃
⟨Nα,ℓα,a1⟩

(Σ∗)) = msbτ (TA
∗)⊕ T ′|e1 ∨ e2,Z = z) + Pr(e2 ∨ e1|Z = z)

≤ Pr(msbτ (R̃
⟨Nα,ℓα,a1⟩

(Σ∗)) = msbτ (TA
∗)⊕ T ′|e1 ∧ e2,Z = z)

+ Pr(e2|e1,Z = z) + Pr(e1|Z = z)

≤ max
v∈{0,1}τ

Pr(msbτ (R̃
⟨Nα,ℓα,a1⟩

(Σ∗)) = v|Σ∗ ̸= Σα,M
∗[m′ − 1] ̸= Mα[m

′ − 1],Z = z) +
2

2n

≤ 1

2τ
+

2

2n
. (27)

Case 3-3: |C ′c[ℓ′]| = n.
The finalization tweak is (Nα, ℓα, b2), for both α-th encryption query and the forgery attempt.

We have ∃C ′c[i] ̸= Cc
α[i] for some 1 ≤ i ≤ ℓ′. If i < ℓ′ (= ℓα) the case is the same as

Case 3-1. Otherwise we have C ′c[j] = Cc
α[j] for all j = 1, . . . , ℓ′ − 1 and C ′c[ℓ′] ̸= Cc

α[ℓ
′],

which implies C ′[m′] ̸= Cα[m
′]. Since M∗[m′] = C ′[m′] ⊕ Z∗ with Z∗ = R̃

⟨Nα,ℓα,f⟩
(0n), and

Mα[m
′] = Cα[m

′] ⊕ Zα with Zα = Z∗, M∗[m′] is always different from Mα[m
′]. As variables

contained in Σα and Σ∗ other than Mα[mα] and M∗[m′] are the same, we always have Σα ̸= Σ∗.

Thus TE∗ = R̃
⟨Nα,ℓα,b2⟩

(Σ∗) is random and independent of TEα, implying FPz ≤ 1/2τ . Thus
FPz is bounded by 1/2τ + 2/2n.

Case 3-4: |C ′c[ℓ′]| < n.
The finalization tweak is (Nα, ℓα, b1), for both α-th encryption query and the forgery attempt.
The analysis is similar to Case 3-3, and we have FPz ≤ 1/2τ + 2/2n.

Case 4: N ′ = Nα, |C ′| ̸= |Cα| for some 1 ≤ α ≤ q.
Case 4-1: |Cc

α[ℓα]| = 2n.
The finalization tweak for the forgery attempt is (Nα, ℓ

′, γ) for γ ∈ {a1, a1, b1, b2}, and that for
the α-th encryption query is (Nα, ℓα, a1). Note that ℓ′ may or may not equal to ℓα. As we have
(ℓα, a1) ̸= (ℓ′, γ) and Nα is unique, the finalization tweak (Nα, ℓ

′, γ) is new, i.e., not invoked in

encryption queries. Hence TE∗ = R̃
⟨Nα,ℓ′,γ⟩

(Σ∗) is independent and random irrespective of Σ∗.
This implies FPz ≤ 1/2τ .

Case 4-2: n < |Cc
α[ℓα]| < 2n.

The finalization tweak for the forgery attempt is (Nα, ℓ
′, γ) for γ ∈ {a1, a2, b1, b2}, and that for

the α-th encryption query is (Nα, ℓα, a1). If (ℓα, a1) ̸= (ℓ′, γ), we have FPz ≤ 1/2τ as with Case
4-1. If (ℓα, a1) = (ℓ′, γ), then we must have mα = m′ and |Cα[mα]| ̸= |C ′[m′]|. This means that

Cα[mα]10
∗ ̸= C ′[m′]10∗, i.e., the inputs to R̃

⟨Nα,ℓα,s⟩
are different. Defining two bad events, e1

and e2, in the same manner to the previous cases, we have FPz ≤ 1/2τ + 2/2n.

Case 4-3: |Cc
α[ℓα]| = n.

The finalization tweak for the forgery attempt is (Nα, ℓ
′, γ) for γ ∈ {a1, a2, b1, b2}, and that for

the α-th encryption query is (Nα, ℓα, b2). We have (ℓα, b2) ̸= (ℓ′, γ), and thus FPz ≤ 1/2τ holds
as Case 4-1.

Case 4-4: |Cc
α[ℓα]| < n.

The finalization tweak for the forgery attempt is (Nα, ℓ
′, γ) for γ ∈ {a1, a2, b1, b2}, and that for

the α-th encryption query is (Nα, ℓα, b1). If (ℓα, b1) ̸= (ℓ′, γ), we have FPz ≤ 1/2τ as Case 4-1,
and if (ℓα, b1) ̸= (ℓ′, γ) and there exists C ′c[i] ̸= Cc

α[i] for some i < ℓ′, the analysis is the same
as Case 3-1 to have FPz ≤ 1/2τ + 2/2n.

14

If (ℓα, b1) = (ℓ′, γ) and C ′c[i] = Cc
α[i] for all i < ℓ′, we must havemα = m′ and |C ′[m′]|, |Cα[m

′]| <
n and |Cα[mα]| ̸= |C ′[m′]|. Then we have M∗[m′]10∗ ̸= Mα[mα]10

∗. This implies that the differ-
ence Σ∗⊕Σα is M∗[m′]10∗⊕Mα[mα]10

∗ ̸= 0 with probability 1. Therefore, we have FPz ≤ 1/2τ .
Summarizing all cases. In all cases, we have FPz ≤ 1/2τ + 2/2n. From Equation (21) this
proves

AdvauthOTR′(A) ≤
∑
z

FPz · Pr[Z = z] ≤ 1

2τ
+

2

2n
(28)

for A using one verification query. Combining Equation (28) with the result of Bellare, Goldreich
and Mityagin [5], we have AdvauthOTR′(A) ≤ qv/2

τ + 2qv/2
n for any A using qv ≥ 1 verification

queries. This completes the derivation of AUTH bound.

15

Algorithm OTR′-ER̃,R∞,τ (N,A,M)

1. (C, TE)← EFR̃(N,M)
2. if A ̸= ε then TA← R∞(A)
3. else TA← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T)

Algorithm OTR′-DR̃,R∞,τ (N,C,A, T)

1. (M,TE)← DFR̃(N,C)
2. if A ̸= ε then TA← R∞(A)
3. else TA← 0n

4. T̂ ← msbτ (TE ⊕ TA)

5. if T̂ = T return M
6. else return ⊥

Algorithm OTR-ER̃,τ (N,A,M)

1. (C, TE)← EFR̃(N,M)
2. if A ̸= ε then TA← AFR̃(A)
3. else TA← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T)

Algorithm OTR-DR̃,τ (N,C,A, T)

1. (M,TE)← DFR̃(N,C)
2. if A ̸= ε then TA← AFR̃(A)
3. else TA← 0n

4. T̂ ← msbτ (TE ⊕ TA)

5. if T̂ = T return M
6. else return ⊥

Algorithm EFR̃(N,M)

1. Σ ← 0n

2. M [1]∥M [2]∥ . . . ∥M [m]
n←M

3. ℓ← ⌊m/2⌋
4. for i = 1 to ℓ− 1 do

5. C[2i− 1]← R̃
⟨N,i,f⟩

(M [2i− 1])⊕M [2i]

6. C[2i]← R̃
⟨N,i,s⟩

(C[2i− 1])⊕M [2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. Z ← R̃

⟨N,ℓ,f⟩
(M [m− 1])

10. C[m]← msb|M [m]|(Z)⊕M [m]

11. C[m− 1]← R̃
⟨N,ℓ,s⟩

(C[m]10∗)⊕M [m− 1]
12. Σ ← Σ ⊕ Z ⊕ C[m]10∗

13. if |M [m]| ̸= n then TE ← R̃
⟨N,ℓ,a1⟩

(Σ)

14. else TE ← R̃
⟨N,ℓ,a2⟩

(Σ)
15. if m is odd
16. C[m]← msb|M [m]|(R̃

⟨N,ℓ,f⟩
(0n))⊕M [m]

17. Σ ← Σ ⊕M [m]10∗

18. if |M [m]| ̸= n then TE ← R̃
⟨N,ℓ,b1⟩

(Σ)

19. else TE ← R̃
⟨N,ℓ,b2⟩

(Σ)
20. C ← C[1]∥C[2]∥ . . . ∥C[m]
21. return (C, TE)

Algorithm DFR̃(N,C)

1. Σ ← 0n

2. C[1]∥C[2]∥ . . . ∥C[m]
n← C

3. ℓ← ⌊m/2⌋
4. for i = 1 to ℓ− 1 do

5. M [2i− 1]← R̃
⟨N,i,s⟩

(C[2i− 1])⊕ C[2i]

6. M [2i]← R̃
⟨N,i,f⟩

(M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i]
8. if m is even
9. M [m− 1]← R̃

⟨N,ℓ,s⟩
(C[m]10∗)⊕ C[m− 1]

10. Z ← R̃
⟨N,ℓ,f⟩

(M [m− 1])
11. M [m]← msb|C[m]|(Z)⊕ C[m]
12. Σ ← Σ ⊕ Z ⊕ C[m]10∗

13. if |M [m]| ̸= n then TE ← R̃
⟨N,ℓ,a1⟩

(Σ)

14. else TE ← R̃
⟨N,ℓ,a2⟩

(Σ)
15. if m is odd
16. M [m]← msb|C[m]|(R̃

⟨N,ℓ,f⟩
(0n))⊕ C[m]

17. Σ ← Σ ⊕M [m]10∗

18. if |C[m]| ̸= n then TE ← R̃
⟨N,ℓ,b1⟩

(Σ)

19. else TE ← R̃
⟨N,ℓ,b2⟩

(Σ)
20. M ←M [1]∥M [2]∥ . . . ∥M [m]
21. return (M,TE)

Fig. 3. The encryption and decryption algorithms of OTR′[R̃,R∞, τ] with a tweakable n-bit URF R̃ and a VIL-
URF, R∞, denoted by OTR′-ER̃,R∞,τ and OTR′-DR̃,R∞,τ . Using AFR̃ of Fig. 5 instead of R∞ yields the encryption

and decryption algorithms of OTR[R̃, τ], denoted by OTR-ER̃,τ and OTR-DR̃,τ .

16

Algorithm G̃[P]⟨N,i,γ⟩(X)

1. Preprocessing: Q← P(0n), Q′ ← 4Q
2. if N ̸= 0n then L← P(N10∗), L′ ← 4L
3. Switch γ
4. Case f : ∆← 2i−1L′

5. Case s : ∆← 2i−1L′ ⊕ L
6. Case a1 : ∆← 3(2i−1L′ ⊕ L)
7. Case a2 : ∆← 3(2i−1L′ ⊕ L)⊕ L
8. Case b1 : ∆← 2i−13L′

9. Case b2 : ∆← 2i−13L′ ⊕ L
10. Else Switch γ
11. Case h : ∆← 2i−1Q′

12. Case g1 : ∆← 2i−1Q′ ⊕Q
13. Case g2 : ∆← 2i−1Q′ ⊕ 2Q
14. Y ← P(∆⊕X)
15. return Y

Fig. 4. Tweakable URP.

Algorithm AFR̃(A)

1. Ξ ← 0n

2. A[1]∥A[2]∥ . . . ∥A[a]
n← A

3. for i = 1 to a− 1 do

4. Ξ ← Ξ ⊕ R̃
⟨0n,i,h⟩

(A[i])
5. Q′ ← 2Q′

6. Ξ ← Ξ ⊕A[a]10∗

7. if |A[a]| ̸= n then TA← R̃
⟨0n,a,g1⟩

(Ξ)

8. else TA← R̃
⟨0n,a,g2⟩

(Ξ)
9. return TA

Fig. 5. Authentication function using R̃.

M[1] M[2]

C[1] C[2]

M[m-1] M[m]

C[m-1] C[m]

M[3] M[4]

C[3] C[4]

When m is even

0n

M[m]

C[m]

c

When m is odd

SUM

TE

TA

chop

T

…

F
K

N,1,0

F
K

N,1,1

F
K

N,2,0

F
K

N,2,1

c

Z
F
K

N,ℓ,0

F
K

N,ℓ,1

p

F
K

N, ℓ,0

F
K

N, ℓ, (2 or 3)

SUM

TE
TA

chop

T

F
K

N, ℓ, (4 or 5)

0n,0,0

TA

A[1]

F
K…

A[2]

A[a]

SUM = M[2] ⊕ M[4] ⊕ … ⊕ M[m-2] ⊕ Z ⊕ C[m] 10* if m even

= M[2] ⊕ M[4] ⊕ … ⊕ M[m-1] ⊕ M[m]10* if m odd

Fig. 6. An instantiation of OTR′ using VIL-PRF.

17

