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Abstract. We revisit the estimation of parameters for use in appli-
cations of the BGV homomorphic encryption system, which generally
require high dimensional lattices. In particular, we utilize the BKZ-2.0
simulator of Chen and Nguyen to identify the best lattice attack that can
be mounted using BKZ in a given dimension at a given security level.
Using this technique, we show that it should be possible to work with
lattices of smaller dimensions than previous methods have recommended,
while still maintaining reasonable levels of security. As example applica-
tions we look at the evaluation of AES via FHE operations presented at
Crypto 2012, and the parameters for the SHE variant of BGV used in
the SPDZ protocol from Crypto 2012.

1 Introduction

Estimating parameters for lattice based cryptographic systems is a major prob-
lem. Such systems are becoming increasingly of interest since, to the best of our
knowledge, they offer resistance to attacks that arise from the future develop-
ment of a quantum computer; and in addition can offer functionality not found
in traditional public key systems. This problem of parameter estimation becomes
more pronounced when one considers the lattice based schemes underlying Fully
Homomorphic Encryption (FHE) [7]. This is particularly tricky as the lattice di-
mension in such schemes needs to be very large, so large in fact that it is unclear
whether our existing methods for parameter estimation even apply. It is to this
task that the current paper is focused.

The traditional measure of security of a lattice is the estimated root Hermite
value δB (see later for a definition), for a lattice basis B output by a lattice basis
reduction algorithm. In the literature one sees statements such as a δB of 1.05
as being “not secure”, but a value of δB of 1.005 as being “secure”. These values
are given, and evidence is presented for the correctness of such statements, when
in the context of relatively low lattice dimension. It is then assumed that such
statements also hold when applied to large dimensional lattices, since the overall
lattice dimension is not assumed to affect the difficulty of lattice reduction too
much. However, such an extrapolation is clearly not valid; lattice basis reduction



will be harder in higher dimension and hence it is not realistic to expect the same
value of δB to be achieveable in high dimension as it is in low dimension.

In various works on FHE, for example [8], a method to produce parameter
estimates which extrapolates the run time of existing lattice basis reduction
implementations is used. This extrapolation is needed so as to obtain security
estimates for high dimensional lattices, which are out of the reach of existing
software. In particular this line of approach follows from the analysis of Lindner
and Peikert [10], where an extrapolation of the performance of the Block Korkine
Zolotarev (BKZ) [14] algorithm in NTL is performed. This itself poses some
problems as the implementation of BKZ within NTL is very old (dating from the
1990’s in some respects) and does not take into account the various optimizations
and improvements which have been obtained over the years.

It turns out that on one hand the analysis in Lindner and Peikert extrapolates
the run times of an implementation which does not use modern techniques, whilst
on the other hand we show that the parameter estimates are too conservative.
This could be explained by the fact that Lindner and Peikert look at a decoding
attack, as opposed to our examination of a distinguishing attack. The decoding
attack is slightly more powerful than the distinguishing attack. The decoding
attack could benefit from the application of extreme pruning techniques, and
the type of analysis conducted here, but it is unclear how one could analytically
analyse the application of extreme pruning to decoding.

The BKZ algorithm, as one would implement it today, has a number of pa-
rameters which one can set to obtain different run-times and output qualities.
Such parameters include the block size β, the number of rounds R of BKZ one
runs (where each round consists of d − β applications of finding short vectors
in β dimensional projected lattices), and so-called pruning parameters for the
search in the projected lattices. Fortunately, in [2], Chen and Nguyen present
a simulation algorithm for their improved variant of BKZ. This simulation al-
gorithm allows one to estimate the output quality of a lattice produced by the
BKZ algorithm when performing R rounds with block size β. They also provide
an estimate for the number of basic operations needed to perform each search,
for varying values of the block size β. The term basic operation is deliberately
fuzzy, but in this paper we shall take it to mean the number of nodes visited in
all of the searches in the projected lattices.

Using the simulation algorithm in [2] one obtains the following “standard”
method of determining the hardness of a given set of lattice security parameters.
One first estimates the value of δB one would need to obtain so as to break the
system, one then uses the BKZ simulator to determine how many operations
this would require, and then one can deem the parameters to be secure or not.
However, this in itself implies that the parameters have already been chosen,
which have probably been done via appealing to the above rule of thumb in
relation to “secure” values of δB , and by extrapolation of existing software’s
runtimes.

We start this work with the idea of achieving a more rational method of
obtaining suitable parameters for lattice based systems in high dimension; with



a special focus on FHE systems. We will still be utilizing the simulation algo-
rithm of [2], but in a way to generate parameters as opposed to testing them. In
FHE systems the underlying hard problem is essentially the bounded distance
decoding problem associated to LWE based lattices. This in effect has three pa-
rameters the dimension n (i.e. the ring dimension when considering ring-LWE
based schemes such as the BGV system [1]), the modulus q and the distance be-
tween a lattice vector and the target vector. In LWE systems, this last quantity
is essentially given by the standard deviation r chosen in the Gaussian sampling
of the error vector. For fixed n we know that as the ratio r/q becomes larger the
problem becomes harder to solve.

In BGV it is common to fix the value of r, and hence the only parameters
one can play with are q and n. On one hand we would like q to be large so as to
allow deeper circuits to be evaluated by the FHE scheme, but a large q implies
low security by the above rule of thumb. To compensate for this one also selects
large values of n, as can be seen in [8] where rings of dimension over 60000 are
considered. Thus there is a tension in selecting q and n, between the evaluation
power and the security of the resulting scheme.

In this paper we adopt the following approach . We first select a security
parameter sec. This is a value, such as 80, 128 or 256, for which we feel that
visiting 2sec nodes in a BKZ algorithm is infeasible. Then, for a particular lattice
dimension d (which for reasons we will explain later satisfies d ≥ n) we determine
the best δB one could obtain via a BKZ algorithm limited to visiting 2sec nodes.
This step is performed by using the BKZ 2.0 simulator from [2] called with
various values of β and R on the estimated Gram-Schmidt lengths of an LLL-
reduced basis of a random, d dimensional lattice. The notion of a random lattice
will be explained in the next section. In this way the δB we obtain is not a fixed
value (such as 1.005) but is in essence a function of d and sec. We then utilize
this δB value in the distinguishing attack analysis of Micciancio and Regev [11],
so as to obtain an equation linking n and q, in a way which guarantees 2sec

security. This equation can then be combined with any equation linking q and n
needed to obtain evaluation of circuits of the correct depth, so as to then obtain
a given set of parameters for a given specific application and/or system.

It should be noted first and foremost that things change over time. The avail-
able computing power increases as time passes by and new algorithms or attacks
can be discovered. Furthermore, it is tricky to make claims about the security of
lattice schemes, because it is often unclear how the behaviour of attacks in low
dimensions extrapolates to higher dimensions. This work analyses one attack,
which is currently believed to be the best generic attack against lattice-based
schemes. It is currently unknown whether generic attacks are the best attack in
every setting. In structured lattices, such as ideal or symplectic lattices, there
may exist better attacks that are not yet known to the cryptographic community.
Finally, in order to have confidence in any cryptographic scheme, there should
be a reasonably large margin between parameters that are trivially broken and
recommended secure ones. Take this into account, especially when selecting pa-
rameters for lattice-based schemes.



2 Lattice Background

In this section we present the basics on lattices which we will require, and in
addition present our notation.

A (full rank) lattice of dimension d is the discrete subgroup of Rd generated
(over Z) by a set of vectors [b1, . . . ,bd] in Rd called the basis. It is common to
represent the basis as a matrix B in which row i of the matrix B is given by the
vector bi (all vectors will be row vectors). Note, this is mathematically not so
nice as we then always deal with row vectors, but from a programming point of
view it is nicer due to being able to deal with swapping rows (i.e. basis vectors)
via pointer arithmetic thus this convention is common in the literature on lattice
basis reduction. We write

L(B) = {z ·B : z ∈ Zd}.

A lattice basis is not unique and each basis is related to another via the relation
B′ = Z ·B where Z ∈ GLd(Z), i.e. Z is an integer matrix with determinant ±1.
We often use the shorthand L for L(B) if the underlying basis (which of course
does not really matter) is clear.

On vectors in Cd we can define the following norms

‖x‖p =


(∑d

i=1 |xi|p
)1/p

p 6=∞

maxdi=1 |xi| p =∞.

Being a discrete structure there is a well defined quantity of a non-zero minimum
of the lattice, which we denote by

λ
(p)
1 (L) := min{‖x‖p : x ∈ L,x 6= 0}.

We can also define the successive minima λ
(p)
i (L), which are defined as the

smallest radius r such that the d-dimensional ball of radius r centred on the origin
contains i linearly independent lattice points. To ease notation, and because we
will be mainly working with the 2-norm, we write λi(L) = λ

(2)
i (L).

For any basis B we define the fundamental region as the set

P(B) =

 ∑
1≤i≤d

xi · bi : xi ∈ [0, 1)

 .

The d-dimensional volume, ∆(L) = Vol(P(B)), is called the fundamental vol-
ume, and can be computed via ∆(L) = |det(B)|. It is clear that this quantity
is an invariant of the lattice, and does not depend on the precise basis chosen.
The dual L∗ of a lattice L is the set of all vectors y ∈ Rd such that y · xT ∈ Z
for all x ∈ L. Given a basis matrix B of L we can compute the basis matrix B∗

of L∗ via B∗ = (B−1)T. Hence we have ∆(L∗) = 1/∆(L).
The classic result in lattice theory (a.k.a. geometry of numbers), is that of

Minkowski, which relates the minimal distance to the fundamental volume.



Theorem 1 (Minkowski’s Theorem). For any d dimensional lattice L we
have

λ1(L) ≤
√
d ·∆(L)1/d.

The notion of a random lattice stems from work by Goldstein and Mayer [9].
Consider lattices with a prime determinant p. For large p the vast majority of
these lattices are of the following type:

p
x1 1
...

. . .
xd−1 1

 .

Goldstein and Mayer show that lattices generated by taking p at random and
taking xi independently and uniformly at random in {0, . . . , p− 1} are in some
(natural) sense random. These lattices are often studied when considering the
behaviour of basis reduction algorithms [12, 5].

For such random lattices the first minimum is approximated by the Gaussian
Heuristic, which states that for a random lattice we have

λ1(L) ≈
√

d

2 · π · e
·∆(L)1/d.

Hermite showed that there is an absolute constant γd, depending only on d, such
that

λ1(L) ≤ √γd · (∆(L))1/d.

The value of γd (called “Hermite’s constant”) is, however, only known for 1 ≤
d ≤ 8 and d = 24.

A specific basis B is said to have Hermite factor δdB , or root Hermite factor
δB , if

‖b1‖2 = δdB ·∆(L)1/d.

The root Hermite factor of the lattice is said to be the constant δL such that

λ1(L) = δdL ·∆(L)1/d.

In lattice basis reduction algorithms we are trying to determine an output lattice
basis such that δB = δL, i.e. the first vector in the basis is the shortest vector.

By the Gaussian heuristic we have for a random lattice

δL ≈

(√
d

2 · π · e

)1/d

.



3 Estimating BKZ

In this section we overview the prior work on analysing the BKZ algorithm and
then present our results on estimating the output δB from BKZ, for a specific
dimension and with an explicit limit on the number of nodes evaluated. In later
sections we will use this analysis to estimate parameters for the LWE based
systems used in FHE schemes.

BKZ Overview. Throughout the paper we assume the input basis to the BKZ
algorithm has been LLL reduced. The BKZ algorithm, as modified in [2] and
called BKZ 2.0, then operates as follows and is parameterized by two parameters
R and β. The algorithm executes the following round function R times. In each
round we iterate the index i from one to d− β, and for each value of i we take
the β-dimensional projected lattice generated by the basis vectors bi, . . . ,bi+β−1

projected onto the orthogonal space spanned by the first i − 1 basis vectors. A
small vector is obtained in the projection of this lattice, and the resulting vector
is inserted into the main lattice basis at the ith position. The search for the small
vector in the projected lattice is performed by an enumeration method using a
heuristic called extreme pruning [6].

Historical Background. The line of work aimed at assessing the behaviour
of basis reduction algorithms in practice was started by Gama and Nguyen [5].
In this paper, they considered this behaviour from an experimental point of view
and tried to extrapolate it to higher dimensions (although not the astronomical
dimensions required in FHE schemes). Specifically, they analyse the behaviour
of basis reduction algorithms when applied to solving various lattice problems,
such as Hermite-SVP, Approximate SVP and Unique SVP. However, since BKZ
2.0 did not exist yet, they analysed the original BKZ which did not use extreme
pruning and it did not abort after a fixed number of rounds, but was instead
run until termination.

The most interesting result from these experiments was that basis reduction
algorithms output a basis B which appeared to solve Hermite-SVP, i.e. finding
a short basis vector, with Hermite Factor δdB . The interesting part is that on
average, the δB observed in practice was much smaller than theoretical worst-
case bounds obtained from analysing the reduction algorithms theoretically. It
should be noted that this worst-case behaviour was tied to the basis of the
particular lattice, rather than to the lattice itself. Applying the basis reduction
algorithms to a ‘randomized’ basis of the same lattice resulted in average-case
rather than worst-case behaviour. Gama and Nguyen conjectured that the value
of δB of the output basis depends mostly on the basis reduction algorithm that
was used and not on the input lattice (unless this lattice has special structure).
The value also depended on the dimension d but appeared to converge quickly
as d increases.

Gama and Nguyen drew several conclusions. Most importantly, they con-
cluded that with the basis reduction algorithms available at that time, δB = 1.01
was the best reachable root-Hermite factor. They also examined the run-time
of exact SVP solvers and concluded that up to dimension 60 the shortest vec-



tor problem could be solved within an hour, whereas dimension 100 seemed out
of reach. They also observed that BKZ with block sizes much higher than 25
was not realistic in higher dimensions due to run-time constraints. Once again,
these observations were before the discovery of extreme pruning and before the
adoption of aborting BKZ after a fixed number of rounds R.

It should also be noted that this work was not aimed at cryptography, but
only at basis reduction algorithms in a general setting. Hence, Gama and Nguyen
did not experiment specifically with lattices that arise from a cryptographic
setting, but instead with random lattices from the Goldstein Mayer distribution
[9] (as described in Section 2) and some specially structured lattices for the
unique shortest vector problem.

Gama, Nguyen and Regev in 2010 [6] proposed improved heuristics for solving
SVP using enumeration via a technique called extreme pruning. Potentially, this
technique could be used with the enumeration of the β dimensional projected
lattices within the BKZ algorithm. However, this heuristic technique requires a
pretty good estimate of the length of the shortest vector. But Gama and Nguyen
had already observed that the projected lattices that occur in BKZ with low
block size (say β < 50) do not follow the distribution of random lattices. More
specifically, these projected lattices did not adhere to the Gaussian Heuristic,
which would have given a good approximation to the length of the shortest
vector. Thus, extreme pruning cannot trivially be applied to BKZ with low
block size.

But then Chen and Nguyen [2] made the observation that the projected
lattices that appear in BKZ for higher blocksizes (say β > 50) behave like
random lattices as far as the Gaussian Heuristic is concerned. This enables the
introduction of extreme pruning and several other heuristic improvements to
BKZ, resulting in the BKZ 2.0 algorithm outlined above. The BKZ 2.0 algorithm
is able to reduce lattices with much higher block sizes in practice than the original
BKZ. This observation about the projected lattices and Gaussian Heuristic also
allowed Chen and Nguyen to create a simulator for BKZ 2.0, which simulates
the behaviour of the algorithm on the lengths of the Gram-Schmidt vectors of
the basis. This makes it much easier to heuristically explain (for large enough
block size) the behaviour of BKZ in practice and the associated output δB , even
for block sizes that we might not be able to run in practice.

Chen and Nguyen use the simulator to estimate the approximate security of
the NTRU encryption scheme and the Gentry-Halevi FHE challenges. Specifi-
cally for the challenges by Gentry and Halevi they reason as follows. From the
parameters of the scheme they can derive that they require a root-Hermite fac-
tor of δB . They use the simulation to estimate that this requires R rounds of
BKZ with block size β (starting from an LLL-reduced basis). Using an upper
bound for the cost of a block size β enumeration derived from experiments, they
convert the R rounds into the number of enumeration nodes (given that each
round consists of d − β enumerations where d is the dimension of the lattice).
This number of nodes gives them a rough estimate for the bit-security of the
specific parameters of the scheme.



Our Approach. In the heuristic approach by Chen and Nguyen (and others), an
estimated secrity level is essentially derived from a system with given parameters.
However, we would like to choose our parameters according to a given security
level. Thus, we reverse the analysis by Chen and Nguyen and try to answer the
question: Given a security level of sec such that the adversary can only perform
2sec operations, how should we choose our parameters such that our system is
secure against this adversary?

Say we choose the dimension d of a Goldstein Mayer lattice and a security
level sec. Now, an adversary can attempt to run BKZ with block size β, for
varying β. For each β, we can approximate the cost of a single enumeration
using the tables from Chen and Nguyen [2]. Then, we can compute how many
enumerations we could maximally perform with this block size without exceeding
2sec nodes. This bound on the number of enumerations gives us a bound on the
number of rounds R, say R(β, d, sec), for the dimension d as well. Now we can
simulate the behaviour of R(β, d, sec) rounds of BKZ with block size β on a
random LLL-reduced basis of a d-dimensional Goldstein Mayer lattice, using
the simulation algorithm from [2]. This allows us to predict the root-Hermite
factor δB of the output basis from BKZ. Thus, on input of d, sec and β, we
obtain a value of δB . If we perform this procedure for all block sizes β, we find
an estimated value of δB (one for each β). Taking the minimum of all such δB
we obtain an estimate for the best value of δB which can be obtained by an
adversary which is limited to enumerating at most 2sec nodes.

Doing this for a number of increasing dimensions we find the data in Table
1 for the estimate of the best δB an adversary can obtain in a given dimension
d. Unsurprisingly we see that as the dimension increases the best value of δB
that one can obtain also increases, although the increase is not too pronounced.
This is easily explained as follows. If we allow BKZ with block size β to run
indefinitely, so for unbounded R, the simulation suggests that δB of the output
basis converges to some value that seems to only depend on β (consistent with the
observations from [5]). However, as the dimension increases, performing a round
of BKZ becomes more costly. Furthermore, the simulation also indicates that in
higher dimensions it converges more slowly to this value δ, i.e., it takes a larger
number of rounds R to reach it. What happens is that in higher dimensions,
BKZ with block size β reaches a worse δB in R(β, d, sec) rounds than BKZ with
block size β′ < β in R(β′, d, sec) rounds. The results in Table 1 assume that the
estimated number of nodes visited during an enumeration reported in [2] cannot
be improved by further algorithmic improvements.

For d > 217, the BKZ simulator is rather slow, but for the applications in
Section 5 dimensions up to 217 are sufficient. Therefore, only dimensions up to
d17 were considered here. The value of δB achievable when evaluating at most
2256 nodes is achieved by performing BKZ with block size 250. Since Chen and
Nguyen only give the cost of enumerations up to block size 250, it is possible that
an attacker could use BKZ with a higher block size and achieve a better δB , while
evaluating no more than 2256 nodes. Because it was not possible to reproduce
the costs for varying block sizes and because it is unclear how to realistically



d
sec 1024 2048 4096 8192 16384 32768 65536 131072

80 1.0081 1.0081 1.0084 1.0084 1.0088 1.0088 1.0092 1.0092
128 1.0067 1.0067 1.0067 1.0069 1.0069 1.0069 1.0069 1.0072
256 1.0055 1.0055 1.0055 1.0055 1.0055 1.0055 1.0055 1.0055

Table 1. Smallest achievable δB by BKZ in dimension d and evaluating at most 2sec

nodes.

extrapolate the costs to higher block sizes, the value of δB here corresponds to
block size 250.

4 Estimating LWE Parameters

Our goal is to provide estimates for LWE parameters for specific cryptographic
systems in large dimensions, given the estimates in the previous section. Before
proceeding we recap a little on notation and prior analysis so as to fix nota-
tion. The LWE problem, and hence to the best of our knowledge the ring-LWE
problem, is based upon arithmetic in q-ary lattices.

q-ary Lattices. A q-ary lattice L of dimension n is one such that qZn ⊂ L ⊂ Zn
for some integer q. Note that all integer lattices are q-ary lattices for a value of
q which is an integer multiple of ∆(Λ). Our interest will be in special lattices
which are q-ary for a value of q much less than the determinant. Much of our
discussion follows that in [11].

Suppose we are given a matrix A ∈ Zn×dq , with d ≥ n, we then define the
following two d-dimensional q-ary lattices.

Λq(A) =
{
y ∈ Zd : y = z ·A (mod q) for some z ∈ Zn

}
,

Λ⊥q (A) =
{
y ∈ Zd : y ·AT = 0 (mod q)

}
.

Suppose we have y ∈ Λq(A) and y′ ∈ Λ⊥q (A) then we have y = z · A and
y′ ·AT = 0 (mod q). This implies that

y · y′T = (z ·A) · y′T = z · (y′ ·AT)T ∈ q · Z.

Hence, the two lattices are, up to normalisation, duals of each other. We have
Λq(A) = q · Λ⊥q (A)∗ and Λ⊥q (A) = q · Λq(A)∗.

To fix ideas consider the following example; Let n = 2, m = d = 3, q = 1009
and set

A =
(

1 2 3
3 5 6

)
.



To define a basis B of Λq(A) we can take the row-HNF of the 5 × 3 matrix(
A

q · I3

)
to obtain

B =

1009 0 0
1 1 0

336 0 1

 .

The basis of Λ⊥q (A) is given by

B∗ = q · ((BT)−1) =

1 − 1 − 336
0 1009 0
0 0 1009

 .

The properties of the above example hold in general; namely if q is prime and
(in general) if d is a bit larger than n then we have ∆(Λq(A)) = qd−n and
∆(Λ⊥q (A)) = qn.

We now turn to discussing how short the vectors are that one can find in
q-ary lattices. Let us focus on the lattice Λ⊥q (A), which will be more important
for our analysis. We know that this contains vectors of length q (since it is a
q-ary lattice), we assume that lattice reduction will output a basis B with root
Hermite factor δB for some value of δB . This means that computationally the
shortest vector we can produce in the lattice Λ⊥q (A) will be of size

min(q, δdB · qn/d)

since ∆(Λ⊥q (A)) = qn.
LWE Problem. The LWE problem is parametrized by four parameters n, d, q
and r = s/

√
2π. To define the problem we introduce the Gaussian distribu-

tion in one variable with parameter s (and mean zero) as the distribution with
probability distribution function proportional to

f(x) =
1
s

exp
(
−π · x

2

s2

)
.

Thus we have r = s/
√

2 · π, is the standard deviation. The (spherical) multi-
variate normal distribution on Rn, with Gaussian parameter s (resp. standard
deviation r) is given by

f(x) =
1
s

exp
(
−π · ‖x‖

2
2

s2

)
=

1
r ·
√

2 · π
exp

(
−‖x‖

2
2

2 · r2

)
.

Sampling from this distribution is performed by simply sampling each component
of the vector x independently from N(0, r).

The discrete Gaussian distribution, with support on the lattice L with Gaus-
sian parameter s (equivalently standard deviation r = s/

√
2 · π, denoted DL,s,

is the probability distribution on L which selects x ∈ L with probability propor-
tional to exp(−π · ‖x‖22/s2).



Definition 1 (LWE Decision Problem). Given (A,v) where A ∈ Zn×dq and
v ∈ Zdq determine which of the following distributions v is from:

1. v is chosen uniformly at random from Zdq .
2. v = s ·A+ e where e, s← DZn,s.

The link between LWE and q-ary lattices is then immediately obvious. Given A
and v the decision problem is to determine whether v is a random point or an
element which is close to a point in the lattice Λq(A).

The natural “attack” against the decision LWE problem is to first find a
short vector w in the dual lattice Λq(A)∗ and then check whether w ·vT is close
to an integer. If it is, one concludes that the input vector is an LWE sample,
whereas if it is not one concludes that the input vector is random. Thus to ensure
security, following the argument in [11, Section 5.4.1], we require

r ≥ 1.5
‖w‖2

.

Now from earlier, we deduce that when applying lattice reduction to the lattice
Λq(A)∗ = 1

qΛ
⊥
q (A) we will obtain a vector w with

‖w‖2 ≈
1
q

min(q, δdB · qn/d).

The point is that we have some freedom in choosing d here, since it is related
to the number of LWE samples we take. In the traditional analysis [11] one
assumes δB is already given and one then applies calculus to minimize the above
estimate for ‖w‖2 by picking d as a function of q, n and δB . But as we presented
in Section 3 the value of δB is essentially a function of d and sec.
Our Analysis. We make the heuristic assumption that the behaviour of apply-
ing the BKZ lattice basis reduction technique to the d dimensional lattice Λq(A)∗

performs roughly the same as the application to the Goldstein Mayer lattices in
Section 3. For the above distinguishing attack to fail to work we require

qn/d−1 ≥ 1.5
r · δdB

= cr,d,sec.

For fixed values of r we can derive, using the method in Section 3, values of
cr,d,sec for any value of sec and d that we require. We therefore require, to ensure
security, that for all d ≥ n we have

n log2 q − d log2 q ≥ d · log2 cr,d,sec.

Note, as a sanity check, that for fixed n this means we have an upper bound on
log2 q of

log2 q ≤ min
d>n

−d · log2 cr,d,sec
d− n

. (1)

We end this section by discussing what this means for a simple LWE based
system at the eighty bit security level; in particular we determine what the



maximum value of q could be when we fix n = 4000 and r = 3.2. We first derive
a more detailed version of Table 1 and use linear interpolation to determine
estimated δB values for dimensions not in our table; this needs to be done once
and for all, in all of our analysis. Retuning to considering our specific values of
n and r: We enumerate all d > n up to 217, and use the linear interpolation
of Table 1 to determine a value of δB for reducing a lattice of dimension d at
this security level. This enables us to obtain an upper bound on log2 q, over all
values of d, from Equation 1. Indeed we obtain an upper bound of log2 q of 195
and the “best” value of d for the distinguishing attack comes out as d = 8045
with δB ≈ 1.0084. We compare this with the traditional analysis which assumes
δB given and then computed d as d =

√
n · log(q)/ log(δB), which would give

us a value of d ≈ 8045 as well, as expected. However, we reiterate that this
traditional method of obtaining d comes from somehow estimating the value
of δB one would obtain in performing BKZ on lattices of (an as yet unknown)
dimension d.

5 Application of our method to two examples

As a first application we re-evaluate the parameters in (the full version of) [8].
The authors of [8] determine parameters for their SHE scheme so as to homomor-
phically evaluate large circuits, including the AES circuit. They select a security
level equivalent to 80 bits of security, and so for comparison will we, and derive
sizes for the resulting parameters to evaluate circuits of multiplicative depth L,
for various values of L.

In [8, Appendix C], they use the security analysis by Lindner and Peikert [10]
to derive a lower bound on the approximate ring dimension n = φ(m) depending
on the largest modulus Q, standard deviation r and the security level sec, which
guarantees the security of the scheme. In particular the lower bound is

n ≥ log(Q/r)(sec + 110)
7.2

. (2)

To guarantee the functionality of the L-leveled homomorphic scheme, they then
derive an estimate on the size of Q needed to evaluate a circuit of depth L, this
is given by

Q ≈ 222.5·L−3.6 · r · nL.

The individual moduli in the SHE scheme are given by

p0 ≈ 223.9 · n, pi ≈ 211.3
√
n for i = 1, . . . , L− 2, pL−1 ≈

√
n+ 11,

and
P ≈ 2 · 308L · ζL−2 · r · nL/2.

Combining the two equations for Q, setting sec = 80, ζ = 8 and r = 3.2 they
derive values of n and Q for various values of L.

In our analysis, we replace the security-related lower bound (2) on n by the
equivalent upper bound from Equation (1) on Q, given n. Now, we increase



n, in steps of 100 from a given starting value, until the upper bound on Q is
above the estimate for Q needed to ensure correct evaluation of a circuit of
multiplicative depth L. We present our results, and the comparison with those
in [8] in Table 2. As one can see the methodology for choosing parameters in
this paper results in roughly the same values for the moduli, but also produces
significantly smaller lattice dimensions. This will translate into practice into
faster overall performance figures for the SHE scheme.

L Estimates from [8] Our Estimates
n `2(p0) `2(pi) `2(pL−1) `2(P ) n `2(p0) `2(pi) `2(pL−1) `2(P )

10 9326 37.1 17.9 7.5 177.3 7100 36.7 17.7 6.6 163.3
20 19434 38.1 18.4 8.1 368.8 14300 37.7 18.2 7.0 369.0
30 29749 38.7 18.7 8.4 564.2 21600 38.3 18.5 7.3 550.6
40 40199 39.2 18.9 8.6 762.2 28500 38.7 18.7 7.5 743.3
50 50748 39.5 19.1 8.7 962.1 35500 39.0 18.6 7.6 937.9
60 61376 39.8 19.2 8.9 1163.5 42900 39.3 18.9 7.7 1134.3
70 72071 40.0 19.3 9.0 1366.1 50400 39.5 19.1 7.9 1332.1
80 82823 40.2 19.4 9.1 1569.8 57900 39.7 19.2 7.9 1530.9
90 93623 40.4 19.5 9.2 1774.5 65500 39.9 19.3 8.0 1730.6

Table 2. Table comparing the estimates from [8] with our estimates. Here `2(x) =
log2(x).

As another example we look at the example parameters used in the SPDZ
MPC protocol, see [3, 4]. In [3] parameters are given for instantiating the SPDZ
MPC protocol over fields of prime characteristic of size 32, 64 and 128 bits.
The resulting parameter sets have lattice dimensions 8192, 16384 and 32768
respectively. In the prime characteristic case greater efficiency is obtained in the
protocol if one has lattices of dimension a power of two. If one performs the same
analysis as in [3] for the case of characteristic two one finds that the resulting
dimension will have size roughly 8192.

By using our analysis we find that we can securely use dimensions of size
roughly 4096 (for characteristic two), 8192 (for prime characteristic of size roughly
232) 16384 (for prime characteristic of size roughly 264) 16384 (for prime charac-
teristic of size roughly 2128). Thus we obtain a more efficient scheme for the case
of characteristic two and for very large prime characteristic only. The reason for
the lack of a general improvement is that for odd prime characteristic we want
to restrict to dimensions a power of two for scheme specific efficiency reasons.
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