
Protecting Obfuscation Against Algebraic Attacks

Boaz Barak ∗ Sanjam Garg † Yael Tauman Kalai ‡ Omer Paneth §

Amit Sahai¶

February 4, 2014

Abstract

Recently, Garg, Gentry, Halevi, Raykova, Sahai, and Waters (FOCS 2013) constructed
a general-purpose obfuscating compiler for NC1 circuits. We describe a simplified variant
of this compiler, and prove that it is a virtual black box obfuscator in a generic multilinear
map model. This improves on Brakerski and Rothblum (eprint 2013) who gave such a result
under a strengthening of the Exponential Time Hypothesis. We remove this assumption,
and thus resolve an open question of Garg et al. As shown by Garg et al., a compiler for
NC1 circuits can be bootstrapped to a compiler for all polynomial-sized circuits under the
learning with errors (LWE) hardness assumption.

Our result shows that there is a candidate obfuscator that cannot be broken by alge-
braic attacks, hence reducing the task of creating secure obfuscators in the plain model to
obtaining sufficiently strong security guarantees on candidate instantiations of multilinear
maps.

∗Microsoft Research.
†Research conducted while at the IBM Research, T.J.Watson funded by NSF Grant No.1017660.
‡Microsoft Research.
§Boston University. Work done while the author was an intern at Microsoft Research New England. Supported

by the Simons award for graduate students in theoretical computer science and an NSF Algorithmic foundations
grant 1218461.
¶Department of Computer Science, UCLA. Work done in part while visiting Microsoft Research, New England.

Research supported in part from a DARPA/ONR PROCEED award, NSF grants 1228984, 1136174, 1118096,
and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense
Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0389.
The views expressed are those of the author and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.

1

1 Introduction

The goal of general-purpose program obfuscation is to make an arbitrary computer program
“unintelligible” while preserving its functionality. At least as far back as the work of Diffie
and Hellman in 1976 [DH76]1, researchers have contemplated applications of general-purpose
obfuscation. The first mathematical definitions of obfuscation were given by Hada [Had00]
and Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+01].2 Barak et al.
also enumerated several additional applications of general-purpose obfuscation, ranging from
software intellectual property protection and removing random oracles, to eliminating software
watermarks. However, until 2013, even heuristic constructions for general-purpose obfuscation
were not known.

This changed with the work of Garg, Gentry, Halevi, Raykova, Sahai, and Waters in
2013 [GGH+13b], which gave the first candidate construction for a general-purpose obfusca-
tor. At the heart of their construction is an obfuscator for log-depth (NC1) circuits, building
upon a simplified subset of the Approximate Multilinear Maps framework of Garg, Gentry, and
Halevi [GGH13a] that they call Multilinear Jigsaw Puzzles. They proved that their construction
achieves a notion called indistinguishability obfuscation (see below for further explanation), un-
der a complex new intractability assumption. They then used fully homomorphic encryption to
bootstrap this construction to work for all circuits, proving their transformation secure under
the Learning with Error (LWE) assumption, a well-studied intractability assumption.

Our result— protecting against algebraic attacks. Given the importance of general-
purpose obfuscation, it is imperative that we gain as much confidence as possible in candidates
for general-purpose obfuscation. Potential attacks on the [GGH+13b] obfuscator can be clas-
sified into two types— attacks on the underlying Multilinear Jigsaw Puzzle construction, and
attacks on the obfuscation construction that treat the Multilinear Jigsaw Puzzle as an ideal
black box. [GGH13a] gave some cryptanalytic evidence for the security of their Approximate
Multilinear Maps candidate (this evidence immediately extends to Mathematical Jigsaw Puz-
zles, since it is a weaker primitive), and there is also an alternative candidate [CLT13] for such
maps. Our focus in this paper is to find out whether there exists a purely algebraic attack
against the candidate obfuscation schemes, or whether any attack against the scheme must rely
on some weakness of the underlying Multilinear Jigsaw Puzzle (i.e., some deviation of the im-
plementation from the ideal model). Indeed, [GGH+13b] pose the problem of proving that there
exist no generic multilinear attacks against their core NC1 scheme as a major open problem in
their work.3

This problem was first addressed in the recent work of Brakerski and Rothblum [BR13],
who constructed a variant of the [GGH+13b] candidate obfuscator, and proved that it is an
indistinguishability obfuscation against all generic multilinear attacks. They also proved that
their obfuscator achieves the strongest definition of security for general-purpose obfuscation —
Virtual Black Box (VBB) security — against all generic multilinear attacks, albeit under an
unproven assumption they introduce as the Bounded Speedup Hypothesis, which strengthens

1Diffie and Hellman suggested the use of general-purpose obfuscation to convert private-key cryptosystems to
public-key cryptosystems.

2 The work of [BGI+01] is best known for their constructions of “unobfuscatable” classes of functions {fs}
that roughly have the property that given any circuit evaluating fs, one can extract the secret s, yet given only
black-box access to fs, the secret s is hidden. We will discuss the implications of this for our setting below.

3[GGH+13b] did rule out a certain subset of algebraic attacks which fall under a model they called the
“generic colored matrix model”. However, this model assumes that an adversary can only attack the schemes by
performing a limited subset of matrix operations, and does not prove any security against an adversary that can
perform algebraic operations on the individual entries of the matrices.

1

the Exponential Time Hypothesis from computational complexity.4

In this work, we resolve the open problem of [GGH+13b] completely, by removing the need
for this additional assumption. More specifically, we describe a different (and arguably simpler)
variant of the construction of [GGH+13b], for which we can prove that it achieves Virtual Black
Box security against all generic multilinear attacks, with no further assumptions. Our result
gives evidence for the soundness of [GGH+13b]’s approach for building obfuscators based on
Multilinear Jigsaw Puzzles.

Notions of Security and attacks. In this work, we focus on arguing security against a
large class of natural algebraic attacks, captured in the generic multilinear model. Intuitively
speaking, the generic multilinear model imagines an exponential-size collection of “groups”
{GS}, where the subscript S denotes a subset S ⊆ {1, 2, . . . , k}. Each of these groups is a
separate copy of Zp, under addition, for some fixed large random prime p. The adversary is
initially given some collection of elements from various groups. However, the only way that the
adversary can process elements of these groups is through access to an oracleM that performs
the following three operations5:

• Addition: GS ×GS → GS , defined in the natural way over Zp, for all S ⊂ {1, 2, . . . , k}.

• Negation: GS → GS , defined in the natural way over Zp, for all S ⊂ {1, 2, . . . , k}.

• Multiplication: GS × GT → GS∪T , defined in the natural way over Zp, for all S, T ⊂
{1, 2, . . . , k}, where S∩T = ∅. Note that the constraint that S∩T = ∅ intuitively captures
why we call this a multilinear model.

These operations capture precisely the algebraic operations supported by the Multilinear Jigsaw
Puzzles of [GGH+13b].

With the algebraic attack model defined, the next step is to consider what security property
we would like to achieve with respect to this attack model. We first recall two security notions
for obfuscation – indistinguishability obfuscation (iO) security and Virtual Black-Box (VBB)
security – and state them both in comparable language, in the generic multilinear model. Below,
we write “generic adversary” or “generic distinguisher” to refer to an algorithm that has access
to the oracle M described above.

Indistinguishability obfuscation6 requires that for every polynomial-time generic adver-
sary, there exists an computationally unbounded simulator, such that for every circuit C, no
polynomial-time generic distinguisher can distinguish the output of the adversary given the
obfuscation of C as input, from the output of the simulator given oracle access to C, where
the simulator can make an unbounded number of queries to C. Virtual Black-Box obfuscation7

requires that for every polynomial-time generic adversary, there exists a polynomial-time simu-
lator, such that for every circuit C, no polynomial-time generic distinguisher can distinguish the

4Roughly speaking, the Bounded Speedup Hyptothesis says that there is some ε > 0 such that for every subset
X of {0, 1}n, any circuit C that solves SAT on all inputs in X must have size at least |X |ε. The Exponential Time
Hypothesis is recovered by considering X = {0, 1}n. The exponent of the polynomial slowdown of the [BR13]
simulator is a function of ε.

5In the technical exposition, we discuss how it is enforced that the adversary can only access the elements of
the group via the oracles. For this intuitive exposition, we ask the reader to simply imagine that an algebraic
adversary is defined to be limited in this way.

6The formulation of indistinguishability obfuscation sketched here was used, for example, in [GGH+13b].
7We note that we are referring to a stronger definition of VBB obfuscation than the one given in [BGI+01],

which limits the adversary to only outputting one bit. In our definition, the adversary can output arbitrary
length strings. This stronger formulation of VBB security implies all other known meaningful security definitions
for obfuscation, including natural definitions that are not known to be implied by the one-bit-output formulation
of VBB security.

2

output of the adversary given the obfuscation of C as input, from the output of the simulator
given oracle access to C, where the simulator can make a polynomial number of queries to C.

In our work, we focus on proving the Virtual Black-Box definition of security against generic
attacks. We do so for several reasons:

• Our first, and most basic, reason is that Virtual Black-Box security is the strongest secu-
rity notion of obfuscation we are aware of, and so proving VBB security against generic
multilinear attacks is, mathematically speaking, the strongest result we could hope to
prove. As we can see from the definitions above, the definition of security provided by
the VBB definition is significantly stronger than the indistinguishability obfuscation def-
inition. As such, it represents the natural end-goal for research on proving resilience to
such algebraic attacks.

This may seem surprising in light of the negative results of [BGI+01], who showed that
there exist (contrived) families of “unobfuscatable” functions for which the VBB definition
is impossible to achieve in the plain model. However, we stress that this result does not
apply to security against generic multilinear attacks. Thus it does not present a barrier
to the goal of proving VBB security against generic multilinear attacks.

• Given the existence of “unobfuscatable” function families, how can we interpret a result
showing VBB security against generic attacks, in terms of the real-world applicability
of obfuscation? One plausible interpretation is that it offers heuristic evidence that our
obfuscation mechanism will offer strong security for “natural” functions, that do not have
the self-referential properties of the [BGI+01] counter-examples. This is similar to the
heuristic evidence given by a proof in the Random Oracle Model. We stress, however,
that our result cannot offer any specific theoretical guidance on which function families
can be VBB-obfuscated in the plain model, and which cannot.

• Finally, our VBB result against generic attacks suggests that there is a significant gap
between what security is actually achieved by our candidate in the plain model, and the
best security definitions for obfuscation that we have in the plain model. This suggests
a research program for studying relaxations of VBB obfuscation that could plausibly be
achievable in the plain model. Indistinguishability Obfuscation is one such example, but
other notions have been suggested in the literature, and it’s quite possible we haven’t yet
found the “right” notion. For every such definition of obfuscation X, one can of course
make the assumption that our candidate is “X secure” in the plain model, but in fact
our VBB proof in the generic multilinear model shows that “X security” of our candidate
will follow from a concrete intractability assumption on the Multilinear Jigsaw Puzzle
implementation that is unrelated to our specific obfuscation candidate (see below for more
details).

Remark 1 (Capturing a Generic Model by Meta-Assumptions). While a generic model allows
us to precisely define and argue about large classes of algebraic attacks, it is unsatisfying because
any such oracle model, by definition, cannot be achieved in the plain model. Thus, we would
like to capture as much as we can of a generic model by means of what we would call a “Meta-
Assumption.” Intuitively, a Meta-Assumption specifies conditions under which the only attacks
that are possible in the plain model with a specific instantiation of the oracle, are those that are
possible in the oracle model itself – where the conditions that the Meta-Assumption imposes
allow the assumption to be plausible. For example, one can consider the Decisional Diffie
Hellman (DDH) assumption as a meta assumption on the instantiation of the group Zq as a
multiplicative subgroup of Z∗p=kq+1, stipulating that certain attacks that would be infeasible

3

in the ideal setting, are also infeasible when working with the actual encoding of the group
elements.

1.1 Our Techniques

The starting point for our construction is a simplified form of the construction of [GGH+13b].
That work used the fact that one can express an NC1 computation as a Branching Program,
which is a sequence of 2n permutations (or more generally, functions) {Bi,σ}i∈[n],σ∈{0,1}. The

program is evaluated on an input x ∈ {0, 1}` by applying for i = 1, . . . , n the permutation
Bi,xinp(i) where inp is some map from [n] to [`] that says which input bit the branching program

looks at the ith step. The output of the program is obtained based on the composition of all
these permutations; that is, we have some permutation Paccept (without loss of generality, the
identity) and say that the output is 1 if the composition is equal to Paccept and the output is 0
otherwise.8 We can identify these permutations with matrices, and so evaluating the program
amounts to matrix multiplication. Matrix multiplication is an algebraic (and in fact multilinear)
operation, that can be done in a group supporting multilinear maps. Thus a naive first attempt
at obfuscation of an NC1 computation would be to encode all the elements of the matrices
{Bi,σ}i∈[n],σ∈{0,1} in the multilinear maps setting (using disjoint subsets to encode elements
of matrices that would be multiplied together, e.g., by encoding the elements of Bi,σ in the
group G{i}). This would allow to run the computation on every x ∈ {0, 1}`. However, as an
obfuscation it would be completely insecure, since it will also allow an adversary to perform
tricks such as “mixing inputs” by starting the computation on a particular input x and then at
some step switching to a different input x′. Even if it fixes some particular input x ∈ {0, 1}`,
the adversary might learn not just the product of the n matrices B1,xinp(1) , . . . , Bn,xinp(n) but

also information about partial products. To protect against this latter attack, [GGH+13b] used
a trick of Kilian [Kil88] where instead of the matrices {Bi,σ}i∈[n],σ∈{0,1} they published the

matrices {B′i,σ = R−1i−1Bi,σRi}i∈[n],σ∈{0,1} where R0, Rn are the identity and R1, . . . , Rn−1 are

random permutation matrices.9 We follow the same approach. The crucial obstacle is that in
our setting, because we need to supply a single program that works on all inputs x ∈ {0, 1}`,
we need to reveal both the matrix Bi,0 and the matrix Bi,1, and will need to multiply them
both with the same random matrix. Unfortunately, Kilian’s trick does not guarantee security
in such a setting. It also does not protect against the “mixed input” attack described above.

We deviate from the works [GGH+13b, BR13] in the way we handle the above issues.
Specifically, the most important difference is that we employ specially designed set systems in our
use of the generic multilinear model. Roughly speaking, in the original work of [GGH+13b], the
encoding of the elements of matrix B′i,σ was in the group G{i}. In contrast, in our obfuscation,
while the actual elements from Zp that we use are very similar to those used in [GGH+13b],
these elements will live in groups GS where the sets S will come from specially designed set
systems. To illustrate this idea, consider the toy example where ` = 1 and n = 2. That is,
we have a single input bit x ∈ {0, 1} and 4 matrices B′1,0, B

′
1,1, B

′
2,0, B

′
2,1. We want to supply

encodings that will allow computing the products B′1,0B
′
2,0 and B′1,1B

′
2,1, but not any of the

“mixed products” such as B′1,0B
′
2,1 which corresponds to pretending the input bit is equal to 0

in the first step of the branching program, and equal to 1 in the second step. The idea is that
our groups will be of the form {GS} where S is a subset of the universe {1, 2, 3}. We will encode

8Barrington’s Theorem [Bar86] shows that these permutations can be taken to have a finite domain (in fact,
5) but for our construction, a domain of poly(`) size is fine.

9Instead of using R0, Rn+1 as the identity, [GGH+13b] and us added some additional encoding of elements
they called “bookends”. We ignore this detail in this section’s high level description. We also defer discussion of
an additional trick of multiplying each element in B′i,σ by a scalar αi,σ.

4

the elements of B1,0 in G{1,2}, the elements of B1,1 in G{1}, the elements of B2,0 in G{3}, and
the elements of B2,1 in G{2,3}. One can see that one can use our oracle to obtain an encoding
of the two matrices corresponding to the “proper” products in G{1,2,3}, but it is not possible to
compute the “mixed product” since it would involved multiplying elements in GS and GT for
non-disjoint S and T . This idea can be easily extended to the case of larger ` and n, and can
be used to rule out the mixed product attack.

However, the idea above still does not rule out “partial evaluation attacks”, where the
adversary might try to learn, for example, whether the first k steps of the branching program
evaluate to the same permutation regardless of the value of the first bit of x. To do that we
enhance our set system by creating interlocking sets that combine several copies of the straddling
set systems above. Roughly speaking, these interlocking sets ensure that the adversary cannot
create “interesting” combinations of the encoded elements, without in effect committing to
a particular input x ∈ {0, 1}`. This prevents the adversary from creating polynomials that
combine terms corresponding to a super-polynomial set of different inputs. In contrast, in the
recent work of [BR13], this was accomplished by means of a reduction to the Bounded Speedup
Hypothesis. In contrast, our generic proof does not use any assumptions except the properties
of our set systems.

The second deviation in our construction from that of [GGH+13b] is in our usage of the
random scalar values {αi,σ}i∈[n],σ∈{0,1} that are used to multiply every element in the encoding
of B′i,σ. In [GGH+13b] these random scalars αi,b were used for two purposes: First, they
were chosen with specific multiplicative constraints in order to prevent “input mixing” attacks
as described above (a similar multiplicative bundling method was used by [BR13] as well).
As noted above, we no longer need this use of the αi,b values as this is handled by our set
systems. The second purpose these values served was to provide a “per-input” randomization
in polynomial terms created by the adversary. We continue the use of this role of the αi,b
values, leveraging this “per-input” randomization using a method of explicitly invoking Kilian’s
randomization technique. This is similar to (but arguably simpler than) the beautiful use of
Kilian’s randomization technique in the recent work of [BR13].

Additional Related Work. Our work deals with analyzing candidate general-purpose ob-
fuscators in an idealized mathematical model (the generic multilinear model). There has
also been recent work suggesting general-purpose obfuscators in idealized mathematical mod-
els which currently do not have candidate instantiations in the standard model: the work
of [CV13] describes a general-purpose obfuscator for NC1 in a generic group setting with a
group G = G1 × G2 × G3 × G4, where G1 is a pseudo-free Abelian group, G2 and G3 are
pseudo-free non-Abelian groups, and G4 is a group supporting Barrington’s theorem, such as
S5. In this generic setting, obfuscator described by [CV13] achieves Virtual Black-Box security.
However, no candidate methods for heuristically implementing such a group G are known, and
therefore, the work of [CV13] does not describe a candidate general-purpose obfuscator at this
time, though this may change with future work10.

We note that question of whether there exists any oracle with respect to which virtual black-
box obfuscation for general circuits is possible is a trivial question: one can consider a universal
oracle that (1) provides secure encryptions eC for any circuit C to be obfuscated, and (2) given
an encrypted circuit eC and an input x outputs C(x). The only way we can see this “solution”
as being interesting is if one considers implementing this oracle with trusted hardware. The
work of Goyal et al. [GIS+10] shows that there exists an oracle that can be implemented with
trusted hardware of size that is only a fixed polynomial in the security parameter, with respect

10 Indeed, one way to obtain a heuristic generic group G is by building it using a general-purpose obfuscator,
but this would not be useful for the work of [CV13], since their goal is a general-purpose obfuscator.

5

to which virtual black-box obfuscation is possible. However, once again, the focus of our paper
is to consider oracles that abstract the natural algebraic functionality underlying actual plain-
model candidates for general-purpose obfuscation.

2 Preliminaries

In this section we define the notion of “virtual black-box” obfuscation in an idealized model,
we recall the definition of branching programs and describe a “dual-input” variant of branching
programs used in our construction.

2.1 “Virtual Black-Box” Obfuscation in an Idealized Model

Let M be some oracle. We define obfuscation in the M-idealized model. In this model, both
the obfuscator and the evaluator have access to the oracle M. However, the function family
that is being obfuscated does not have access to M

Definition 1 (“Virtual Black-Box” Obfuscation in an M-idealized model). For a (possibly
randomized) oracle M, and a circuit class {C`}`∈N, we say that a uniform PPT oracle machine
O is a “Virtual Black-Box” Obfuscator for {C`}`∈N in the M-idealized model, if the following
conditions are satisfied:

• Functionality: For every ` ∈ N, every C ∈ C`, every input x to C, and for every possible
coins for M:

Pr[(OM(C))(x) 6= C(x)] ≤ negl(|C|) ,

where the probability is over the coins of O.

• Polynomial Slowdown: there exist a polynomial p such that for every ` ∈ N and every

C ∈ C`, we have that |OM(C)| ≤ p(|C|).

• Virtual Black-Box: for every PPT adversary A there exist a PPT simulator S, and a
negligible function µ such that for all PPT distinguishers D, for every ` ∈ N and every
C ∈ C`: ∣∣∣Pr[D(AM(OM(C))) = 1]− Pr[D(SC(1|C|)) = 1]

∣∣∣ ≤ µ(|C|) ,

where the probabilities are over the coins of D,A,S,O and M

Remark 2. We note that the definition above is stronger than the definition of VBB obfuscation
given in [BGI+01], in that it allows adversaries to output an unbounded number of bits.

Definition 2 (“Virtual Black-Box” Obfuscation for NC1 in an M-idealized model). We say
that O is a “Virtual Black-Box” Obfuscator for NC1 in the M-idealized model, if for every
circuit class C = {C`}`∈N such that every circuit in C` is of size poly(`) and of depth O(log(`)),
O is a “Virtual Black-Box” Obfuscator for C in the M-idealized model.

2.2 Branching Programs

The focus of this paper is on obfuscating branching programs, which are known to be powerful
enough to simulate NC1 circuits.

A branching program consists of a sequence of steps, where each step is defined by a pair
of permutations. In each step the the program examines one input bit, and depending on its
value the program chooses one of the permutations. The program outputs 1 if and only if the
multiplications of the permutations chosen in all steps is the identity permutation.

6

Definition 3 (Oblivious Matrix Branching Program). A branching program of width w and
length n for `-bit inputs is given by a permutation matrix Preject ∈ {0, 1}w×w such that Preject 6=
Iw×w, and by a sequence:

BP =
(
inp(i), Bi,0, Bi,1

)n
i=1

,

where each Bi,b is a permutation matrix in {0, 1}w×w, and inp(i) ∈ [`] is the input bit position
examined in step i. The output of the branching program on input x ∈ {0, 1}` is as follows:

BP (x)
def
=

1 if

∏n
i=1Bi,xinp(i) = Iw×w

0 if
∏n
i=1Bi,xinp(i) = Preject

⊥ otherwise

The branching program is said to be oblivious if inp : [n] → [`] is a fixed function, independent
of the function being evaluated.

Theorem 1 ([Bar86]). For any depth-d fan-in-2 boolean circuit C, there exists an oblivious
branching program of width 5 and length at most 4d that computes the same function as the
circuit C.

Remark 3. In our obfuscation construction we do not require that the branching program is
of constant width. In particular we can use any reductions that result in a polynomial size
branching program.

In our construction we will obfuscate a variant of branching programs that we call dual-input
branching programs. Instead of reading one input bit in every step, a dual-input branching
program inspects a pair of input bits and chooses a permutation based on the values of both
bits.

Definition 4 (Dual-Input Branching Program). A Oblivious dual-input branching program of
width w and length n for `-bit inputs is given by a permutation matrix Preject ∈ {0, 1}w×w such
that Preject 6= Iw×w, and by a sequence

BP =
(
inp1(i), inp2(i), {Bi,b1,b2}b1,b2∈{0,1}

)n
i=1
,

where each Bi,b1,b2 is a permutation matrix in {0, 1}w×w, and inp1(i), inp2(i) ∈ [`] are the po-
sitions of the input bits inspected in step i. The output of the branching program on input
x ∈ {0, 1}` is as follows:

BP(x)
def
=

1 if

∏n
i=1Bi,xinp1(i),xinp2(i) = Iw×w

0 if
∏n
i=1Bi,xinp1(i),xinp2(i) = Preject

⊥ otherwise

As before, the dual-input branching program is said to be oblivious if both inp1 : [n] → [`] and
inp2 : [n]→ [`] are fixed functions, independent of the function being evaluated.

Note that any branching program can be simulated by a dual-input branching program with
the same width and length, since the dual-input branching program can always “ignore” one
input bit in each pair. Moreover, note that any dual-input branching program can be simulated
by a branching program with the same width and with length that is twice the length of the
dual-input branching program.

7

3 Straddling Set System

In this section, we define the notion of a straddling set system, and prove combinatorial prop-
erties regarding this set system. This set system will be an ingredient in our construction, and
the combinatorial properties that we establish will be used in our generic proof of security.

Definition 5. A straddling set system with n entries is a collection of sets Sn = {Si,b, : i ∈
[n], b ∈ {0, 1}} over a universe U , such that

∪i∈[n]Si,0 = ∪i∈[n]Si,1 = U

and for every distinct non-empty sets C,D ⊆ Sn we have that if:

1. (Disjoint Sets:) C contains only disjoint sets. D contains only disjoint sets.

2. (Collision:) ∪S∈CS = ∪S∈DS

Then, it must be that ∃ b ∈ {0, 1}:

C = {Sj,b}j∈[n] , D = {Sj,(1−b)}j∈[n] .

Therefore, in a straddling set system, the only exact covers of the universe U are {Sj,0}j∈[n] and
{Sj,1}j∈[n].

Construction 1. Let Sn = {Si,b, : i ∈ [n], b ∈ {0, 1}}, over the universe U = {1, 2, . . . , 2n− 1},
where:

S1,0 = {1}, S2,0 = {2, 3}, S3,0 = {4, 5}, . . . , Si,0 = {2i−2, 2i−1}, . . . , Sn,0 = {2n−2, 2n−1};
and,

S1,1 = {1, 2}, S2,1 = {3, 4}, . . . , Si,1 = {2i − 1, 2i}, . . . , Sn−1,1 = {2n − 3, 2n − 2}, Sn,1 =
{2n− 1}.

The proof that Construction 1 satisfies the definition of a straddling set system is straight-
forward and is given in Appendix A.

4 The Ideal Graded Encoding Model

In this section describe the ideal graded encoding model where all parties have access to an
oracle M, implementing an ideal graded encoding. The oracle M implements an idealized and
simplified version of the graded encoding schemes from [GGH13a]. Roughly,M will maintain a
list of elements and will allow a user to perform valid arithmetic operations over these elements.
We start by defining the an algebra over elements.

Definition 6. Given a ring R and a universe set U , an element is a pair (α, S) where α ∈ R
is the value of the element and S ⊆ U is the index of the element. Given an element e we
denote by α(e) the value of the element, and we denote by S(e) the index of the element. We
also define the following binary operations over elements:

• For two elements e1, e2 such that S(e1) = S(e2), we define e1 + e2 to be the element
(α(e1) + α(e2), S(e1)), and e1 − e2 to be the element (α(e1)− α(e2), S(e1)).

• For two elements e1, e2 such that S(e1) ∩ S(e2) = ∅, we define e1 · e2 to be the element
(α(e1) · α(e2), S(e1) ∪ S(e2)).

8

Next we describe the oracleM. M is a stateful oracle mapping elements to “generic” repre-
sentations called handles. Given handles to elements, M allows the user to perform operations
on the elements. M will implement the following interfaces:

Initialization. M will be initialized with a ring R, a universe set U , and a list L of initial
elements. For every element e ∈ L, M generates a handle. We do not specify how the handles
are generated, but only require that the value of the handles are independent of the elements
being encoded, and that the handles are distinct (even if L contains the same element twice).
M maintains a handle table where it saves the mapping from elements to handles. M outputs
the handles generated for all the element in L. AfterM has been initialize, all subsequent calls
to the initialization interfaces fail.

Algebraic operations. Given two input handles h1, h2 and an operation ◦ ∈ {+,−, ·}, M
first locates the relevant elements e1, e2 in the handle table. If any of the input handles does
not appear in the handle table (that is, if the handle was not previously generated by M) the
call to M fails. If the expression e1 ◦ e2 is undefined (i.e., S(e1) 6= S(e2) for ◦ ∈ {+,−}, or
S(e1) ∩ S(e2) 6= ∅ for ◦ ∈ {·}) the call fails. Otherwise, M generates a new handle for e1 ◦ e2,
saves this element and the new handle in the handle table, and returns the new handle.

Zero testing. Given an input handle h, M first locates the relevant element e in the handle
table. If h does not appear in the handle table (that is, if h was not previously generated by
M) the call to M fails. If S(e) 6= U the call fails. Otherwise, M returns 1 if α(e) = 0, and
returns 0 if α(e) 6= 0.

5 Obfuscation in the Ideal Graded Encoding Model

In this section we describe our “virtual black-box” obfuscator O for NC1 in the ideal graded
encoding model.

Input. The obfuscator O takes as input a circuit and transforms it into an oblivious dual-input
branching program BP of width w and length n for `-bit inputs:

BP =
(
inp1(i), inp2(i), {Bi,b1,b2}b1,b2∈{0,1}

)n
i=1
.

Recall that each Bi,b1,b2 is a permutation matrix in {0, 1}w×w, and inp1(i), inp2(i) ∈ [`] are the
positions of the input bits inspected in step i. Without loss of generality, we make the following
assumptions on the structure of the brunching program BP:

• In every step BP inspects two different input bits; that is, for every step i ∈ [n], we have
inp1(i) 6= inp2(i).

• Every pair of different input bits are inspected in some step of BP; that is, for every
j1, j2 ∈ [`] such that j1 6= j2 there exists a step i ∈ [n] such that (inp1(i), inp2(i)) = (j1, j2).

• Every bit of the input is inspected by BP exactly `′ times. More precisely, for input bit
j ∈ [`], we denote by ind(j) the set of steps that inspect the j’th bit:

ind(j) = {i ∈ [n] : inp1(i) = j} ∪ {i ∈ [n] : inp2(i) = j} .

We assume that for every input bit j ∈ [`], |ind(j)| = `′. Note that in every step, the j’th
input bit can be inspected at most once.

Randomizing. Next, the Obfuscator O “randomizes” the branching program BP as follows.
First, O samples a prime p of length Θ(n). Then, O samples random and independent elements
as follows:

9

• Non-zero scalars {αi,b1,b2 ∈ Zp : i ∈ [n], b1, b2 ∈ {0, 1}}.

• Pair of vectors s, t ∈ Zwp .

• n+ 1 random full-rank matrices R0, R1, . . . , Rn ∈ Zw×wp .

Finally, O computes the pair of vectors:

s̃ = st ·R−10 , t̃ = Rn · t ,

and for every i ∈ [n] and b1, b2 ∈ {0, 1}, O computes the matrix:

B̃i,b1,b2 = Ri−1 ·Bi,b1,b2 ·R
−1
i .

Initialization. For every j ∈ [`], let Sj be a straddling set system with `′ entries over a set Uj ,
such that the sets U1, . . . , U` are disjoint. Let U =

⋃
j∈[`] Uj , and let Bs and Bt be sets such

that U,Bs, Bt are disjoint. We associate the set system Sj with the j’th input bit. We index the
elements of Sj by the steps of the branching program BP that inspect the j’th input. Namely,

Sj =
{
Sjk,b : k ∈ ind(j), b ∈ {0, 1}

}
.

For every step i ∈ [n] and bits b1, b2 ∈ {0, 1} we denote by S(i, b1, b2) the union of pairs of sets
that are indexed by i:

S(i, b1, b2) = S
inp1(i)
i,b1

∪ S inp2(i)
i,b2

.

Note that by the way we defined the set ind(j) for input bit j ∈ [`], and by the way the elements

of Sj are indexed, indeed, S
inp1(i)
i,b1

∈ Sinp1(i) and S
inp2(i)
i,b2

∈ Sinp2(i).
O initializes the oracle M with the ring Zp, the universe set U ∪ Bs ∪ Bt and with the

following initial elements:

(s · t, Bs ∪Bt),{
(s̃[j], Bs), (t̃[j], Bt)

}
j∈[w]

{(αi,b1,b2 , S(i, b1, b2))}i∈[n],b1,b2∈{0,1}{
(αi,b1,b2 · B̃i,b1,b2 [j, k], S(i, b1, b2))

}
i∈[n],b1,b2∈{0,1},j,k∈[w]

O receives back a list of handles. We denote the handle to the element (α, S) by [α]S . For
a matrix M , [M]S denotes a matrix of handles such that [M]S [j, k] is the handle to the element
(M [j, k], S). Using this notation, O receives back the following handles:

[s̃]Bs ,
[
t̃
]
Bt
, [s · t]Bs∪Bt ,

{
[αi,b1,b2]S(i,b1,b2) ,

[
αi,b1,b2 · B̃i,b1,b2

]
S(i,b1,b2)

}
i∈[n],b1,b2∈{0,1}

.

Output. The obfuscator O outputs a circuit O(BP) that has all the handles received from

the Initialization stage hardcoded into it. Given access to the oracle M, O(BP) can add and
multiply handles.

Notation. Given two handles [α]S and [β]S , we let [α]S + [β]S denote the handle obtained
from M upon sending an addition query with [α]S and [β]S . Similarly, given two handles
[α1]S1 and [α2]S2 such that S1 ∩ S2 = ∅, we denote by [α1]S1 · [α2]S2 the handle obtained
from M upon sending a multiplication query with [α1]S1 and [α2]S2 . Given two matrices of

10

handles [M1]S1
, [M2]S2

, we define their matrix multiplication in the natural way, and denote it
by [M1]S1

· [M2]S2
.

For input x ∈ {0, 1}` to O(BP), and for every i ∈ [n] let (bi1, b
i
2) = (xinp1(i), xinp2(i)). On

input x, O(BP) obtains the following handles:

h = [s̃]Bs ·
n∏
i=1

[
αi,bi1,bi2

· B̃i,bi1,bi2
]
S(i,bi1,b

i
2)
·
[
t̃
]
Bt
, h′ = [s · t]Bs∪Bt ·

n∏
i=1

[
αi,bi1,bi2

]
S(i,bi1,b

i
2)

O(BP) uses the oracle M to subtract the handle h′ from h and performs a zero test on the
result. If the zero test outputs 1 then O(BP) outputs 1, and otherwise O(BP) outputs 0.

Correctness. By construction we have that as long as none of the calls to the oracle M fail,
subtracting the handle h′ from h results in a handle to 0 if and only if:

0 = s̃ ·
n∏
i=1

αi,bi1,bi2
· B̃i,bi1,bi2 · t̃− s · t ·

n∏
i=1

αi,bi1,bi2

=

(
s̃ ·

n∏
i=1

B̃i,bi1,bi2
· t̃− s · t

)
·
n∏
i=1

αi,bi1,bi2

=

(
st ·R−10 ·

n∏
i=1

(
Ri−1 ·Bi,b1,b2 ·R

−1
i

)
·R−1n · t− s · t

)
·
n∏
i=1

αi,bi1,bi2

= st ·

(
n∏
i=1

Bi,b1,b2 − Iw×w

)
· t ·

n∏
i=1

αi,bi1,bi2

From the definition of the branching program we have:

BP(x) = 1⇔
n∏
i=1

Bi,bi1,bi2
= Iw×w

Thus, if BP(x) = 1 then O(BP) outputs 1 with probability 1. If BP(x) = 0 then O(BP)
outputs 1 with probability at most 1/p = negl(n) over the choice of s and t.

It is left to show that none of the calls to the oracle M fail. Note that when multiplying
two matrices of handles [M1]S1

· [M2]S2
, none of the addition or multiplication calls fail as long

as S1 ∩ S2 = ∅. Therefore, to show that none of the addition or multiplication calls to M fail,
it is enough to show that following sets are disjoint:

Bs, Bt, S(1, b11, b
1
2), . . . , S(n, bn1 , b

n
2) .

Their disjointness follows from the fact that U1, . . . , U`, Bs, Bt are disjoint, together with defini-
tion of S(i, bi1, b

i
2) and with the fact that for every set system Sj , for every distinct i, i′ ∈ ind(j),

and for every b ∈ {0, 1}, we have that Sji,b ∩ S
j
i′,b = ∅.

To show that the zero testing call to the oracle M does not fail we need to show that the
index set of the elements corresponding to h and h′ is the entire universe. Namely, we need to
show that (

n⋃
i=1

S(i, bi1, b
i
2)

)
∪Bs ∪Bt = U ∪Bs ∪Bt ,

which follows from the following equalities:

n⋃
i=1

S(i, bi1, b
i
2) =

n⋃
i=1

S
inp1(i)

i,bi1
∪ S inp2(i)

i,bi2
=
⋃̀
j=1

⋃
k∈ind(j)

Sjk,xi =
⋃̀
j=1

Uj = U .

11

6 Proof of VBB in the The Ideal Graded Encoding Model

In this section we prove that the obfuscator O described in Section 5 is a good VBB obfuscator
for NC1 in the ideal graded encoding model.

Let C = {C`}`∈N be a circuit class such that every circuit in C` is of size poly(`) and of depth
O(log `). We assume WLOG that all circuits in C` are of the same depth (otherwise the circuit
can be padded). It follows from Theorem 1 that there exist polynomial functions n and w such
that on input circuit C ∈ C`, the branching program BP computed by O is of size n(|C|), width
w(|C|), and computes on `(|C|)-bit inputs.

In Section 5 we showed that O satisfies the functionality requirement where the probability
of O computing the wrong output is negligible in n. Since n is a polynomial function of |C| we
get that the functionality error is negligible in |C|, as required. It is straightforward to verify
that O also satisfies the polynomial slowdown property. In the rest of this section we prove that
O satisfies the virtual black-box property.

The simulator. To prove that O satisfies the virtual black-box property, we construct a
simulator Sim that is given 1|C|, the description of an adversary A, and oracle access to the
circuit C. Sim starts by emulating the obfuscation algorithm O. Recall that O converts the
circuit C into a branching program BP. However, since Sim is not given C it cannot compute
the matrices Bi,b1,b2 in the description of BP (note that Sim can compute the input mapping
functions inp1, inp2 since the branching program is oblivious). Without knowing the B matrices,
Sim cannot simulate the list of initial elements to the oracleM. Instead Sim initializesM with
formal variables.

Concretely, we extend the definition of an element to allow for values that are formal vari-
ables, as opposed to ring elements. When performing an operation ◦ on elements e1, e2 that
contain formal variables, the value of the resulting element e1 ◦ e2 is just the formal arithmetic
expression α(e1) ◦ α(e2) (assuming the indexes of the elements are such that the operation is
defined). We represent formal expressions as arithmetic circuits, thereby guaranteeing that the
representation size remains polynomial. We say that an element is basic if its value is an ex-
pression that contains no gates (i.e., its just a formal variable). We say that an element e′ is a
sub-element of an element e if e was generated from e′ through a sequence of operations.

To emulate O, Sim must also emulate the oracle M that O accesses. Sim can efficiently
emulate all the interfaces of M except for the zero testing. The problem with simulating zero
tests is that Sim cannot test if the value of a formal expression is 0. Note however that the
emulation of O does not make any zero-test queries to M (zero-test queries are made only by
the evaluator).

When Sim completes the emulation of O it obtains a simulated obfuscation Õ(C). Sim
proceeds to emulate the execution of the adversary A on input Õ(C). When A makes an
oracle call that is not a zero test, Sim emulates M’s answer (note that emulation of the oracle
M is stateful and will therefore use the same handle table to emulate both O and A). Since
the distribution of handles generated during the simulation and during the real execution are
identical, and since the simulated obfuscation Õ(C) consists only of handles (as opposed to
elements), we have that the simulation of the obfuscation Õ(C) and the simulation of M’s
answers to all the queries, except for zero-test queries, is perfect.

Simulating zero testing queries. In the rest of the proof we describe how the simulator
correctly simulates zero-test queries made by A. Simulating the zero-test queries is non-trivial
since the handle being tested may correspond to a formal expression whose value is unknown
to Sim. (The “real” value of the formal variables depend on the circuit C). Instead we show
how Sim can efficiently simulate the zero-test queries given oracle access to the circuit C.

The high-level strategy for simulating zero-test queries is as follows. Given a handle to

12

some element, Sim tests if the value of the element is zero in two parts. In the first part,
Sim decomposes the element into a sum of polynomial number of “simpler” elements that we
call single-input elements. Each single-input element has a value that depends on a subset of
the formal variables that correspond to a specific input to the branching program. Namely,
for every single-input element there exists x ∈ {0, 1}` such that the value of the element only
depends on the formal variables in the matrices B̃i,bi1,bi2

, where bi1 = xinp1(i) and bi2 = xinp2(i).
The main difficulty in the first step is to prove that the number of single-input elements in the
decomposition is polynomial.

In the second part, Sim simulates the value of every single-input element separately. The
main idea in this step is to show that the value of a single-input element for input x can be
simulated only given C(x). To this end, we use Kilian’s proof on randomized encoding of
branching programs. Unfortunately, we cannot simulate all the single-input elements at once
(given oracle access to C), since their values may not be independent; in particular, they all
depend on the obfuscator’s randomness. Instead, we show that it is enough to zero test every
single-input element individually. More concretely, we show that from every single input element
that the adversary can construct, it is possible to factor out a product of the αi,bi1,bi2

variables.
We also show that every single-input element depends on a different set of the αi,bi1,bi2

variables.
Since the values of the α variables are chosen at random by the obfuscation, it is unlikely that
the adversary makes a query where the value of two single-input elements “cancel each other”
and result in a zero. Therefore, with high probability an element is zero iff it decomposes into
single-input element’s that are all zero individually.

Decomposition to single-input elements. Next we show that every element can be decom-
posed into polynomial number of single-input elements. We start by introducing some notation.

For every element e we assign an input-profile prof(e) ∈ {0, 1, ∗}` ∪ {⊥}. Intuitively, if we
think of e as an intermediate element in the evaluation of the branching program on some input
x, the input-profile prof(e) represents the partial information that can be inferred about x based
on the formal variables that appear in the value of e. Formally, for every element e and for
every j ∈ [`], we say that the j’th bit of e’s input-profile is consistent with the value b ∈ {0, 1}
if e has a basic sub-element e′ such that S(e′) = S(i, b1, b2) and either j = inp1(i) and b1 = b,
or j = inp2(i) and b2 = b.

For every j ∈ [`] and for b ∈ {0, 1} we set prof(e)j = b if the j’th bit of e’s input-profile is
consistent with b but not with 1 − b. If the j’th bit of e’s input-profile is not consistent with
either 0 or 1 then prof(e)j = ∗. If there exist j ∈ [`] such that the j’th bit of e’s input-profile is
consistent with both 0 and 1, then prof(e) = ⊥. In this case we say that e is not a single-input
element and that it’s profile is invalid. If prof(e) 6= ⊥ then we say that e is a single-input
element. We say that an input-profile is complete if it is in {0, 1}`.

Next we describe an algorithm D used by Sim to decompose elements into single-input
elements. Given an input element e, D outputs a set of single-input elements with distinct
input-profiles such that e =

∑
s∈D(e) s, where the equality between the elements means that

their values compute the same function (it does not mean that the arithmetic circuits that
represent these values are identical). Note that the above requirement implies that for every
s ∈ D(e), S(s) = S(e).

The decomposition algorithm D is defined recursively, as follows:

• If the input element e is basic, D outputs the singleton set {e}.

• If the input element e is of the form e1 + e2, D executes recursively and obtains the set
L = D(e1) ∪ D(e2). If there exist elements s1, s2 ∈ L with the same input-profile, D
replaces the two elements with a single element s1 + s2. D repeats this process until all
the input-profiles in L are distinct and outputs L.

13

• If the input element e is of the form e1 · e2, D executes recursively and obtains the sets
L1 = D(e1), L2 = D(e2). For every s1 ∈ L1 and s2 ∈ L2, D adds the expression s1 · s2 to
the output set L. D then eliminates repeating input-profiles from L as described above,
and outputs L.

The fact that in the above decomposition algorithm indeed e =
∑

s∈D(e) s, and that the
input profiles are distinct follows from a straightforward induction. The usefulness of the above
decomposition algorithm is captured by the following two claims:

Claim 1. If U ⊆ S(e) then all the elements in D(e) are single-input elements. Namely, for
every s ∈ D(e) we have that prof(s) 6= ⊥.

Claim 2. D runs in polynomial time, and in particular, the number of elements in the output
decomposition is polynomial.

Intuition. The key to proving the claims is to argue about the structure of the input element
e. The index sets for the basic elements given in the construction are carefully chosen so that
the element e can only be constructed in a very specific way. Roughly, we show that the only
way to construct an element, is to first combine basic elements using multiplication to create
elements with complete input-profiles, and then to combine these single-input elements together
using addition gates 11. More concretely, our first observation is that the only way to create
an element that contains a “new” input profile (that is, an element e such that D(e) contains a
profile that does not appear in the decomposition of sub-elements of e) is using a multiplication
gate. The reason is that for an element e of the form e1 + e2, the set of input profiles in D(e)
is simply the union of the sets of input profiles in D(e1) and D(e2).

To prove Claim 1, we show that if e1 and e2 have valid profiles but the profile of e = e1 ·e2 is
invalid then e can never be a sub-element of an element with index set U , and thus, computations
involving e can never be zero tested. The idea is to show that S(e) together with the index set
of all other elements given to the adversary cannot form an exact cover of U . This follows from
the properties of the straddling set system used (see Definition 5).

To prove Claim 2, we show that if e is an element of the form e1 · e2 and D(e) contains a
new input-profile then e must itself be a single-input element (that is, D(e) will be the singleton
set {e}). This means that the number of elements in the decomposition of e is bounded by the
number of sub-elements of e, and therefore is polynomial. To prove the above we first observe
that if D(e) is not a singleton, then either D(e1) or D(e2) are also not singletons. Then we
show that if D(e1) contains more than one input-profile then all input-profiles in D(e1) must
be complete (here again we use the structure of the straddling set system used) and therefore
the multiplication e1 · e2 cannot contain any new profiles.

Proof of Claim 1. Assume towards contradiction that the claim is false. Let ebad be the “first”
sub-element of e such that D(ebad) contains an element with an invalid input-profile. Namely,
suppose that D(ebad) contains an element with an invalid input-profile, but the decomposition
of all sub-elements of ebad contain only elements with valid input-profiles.

Note that ebad cannot be basic since then it’s input-profile is valid andD(ebad) is the singleton
set

{
ebad

}
. Moreover, note that ebad cannot be of the form e1 + e2, since in this case, the

input-profile of every element in D(ebad) appears also in D(e1) or in D(e2), contradicting the
assumption on ebad. Therefore, it must be the case that ebad is of the form e1 · e2.

By the definition of ebad, there must exist s1 ∈ D(e1) and s2 ∈ D(e2) such that prof(s1) 6= ⊥
and prof(s2) 6= ⊥ but prof(s1 · s2) = ⊥. Therefore, WLOG there exists j ∈ [`] such that

11It is also possible to add together elements with incomplete input profiles as long as they have the same
profile. Such additions do not change the profile, and for the sake of this argument can be ignored

14

prof(s1)j = 0 and prof(s2)j = 1. In next prove the following two claims, which we use to derive
a contradiction to the definition of the set system Sj , by showing an exact cover of Uj that is
not one of the two covers specified in Definition 5.

Claim 3. If prof(e)j = b then there exists a basic sub-element e′ of e such that S(e′)∩Uj = Sji,b
for some i ∈ ind(j).

Proof. If prof(e)j = b then (by definition) one of basic sub-elements of e is an element e′ such
that S(e′) = S(i, b1, b2), and either j = inp1(i) and b1 = b, or j = inp2(i) and b2 = b. Recall
that:

S(e′) = S(i, b1, b2) = S
inp1(i)
i,b1

∪ S inp2(i)
i,b2

.

If j = inp1(i) and b1 = b then S(e′) ∩ Uj = S
inp1(i)
i,b1

= Sji,b. Similarly, if j = inp2(i) and b2 = b

then S(e′) ∩ Uj = S
inp2(i)
i,b2

= Sji,b.

Claim 4. If e′ is a sub-element of e and C′ ⊆ Sj is an exact cover of S(e′)∩Uj then there exists
an exact cover C ⊆ Sj of S(e) ∩ Uj such that C′ ⊆ C.

Proof. We prove the claim by induction. If e is of the form e1 + e2 and C1 ⊆ Sj is an exact
cover of S(e1)∩Uj then C1 is also an exact cover of S(e)∩Uj since S(e) = S(e1). Similarly, if e
is an element of the form e1 · e2 and C1, C2 ⊆ Sj are exact covers of S(e1) ∩ Uj and S(e2) ∩ Uj ,
respectively, then since S(e1) ∩ S(e2) = ∅ and since S(e1) = S(e1) ∪ S(e2) then C1 ∪ C2 is and
exact cover of S(e) ∩ Uj .

Since prof(s1)j = 0 and prof(s2)j = 1, it follows from Claims 3 and 4 that there exists an

exact cover of S(s1) ∩ Uj that contains the set Sji,0 for some i ∈ ind(j), and there exists an

exact cover of S(s2) ∩ Uj that contains the set Sji′,1 for some i′ ∈ ind(j). Since S(s1) = S(e1)

and S(s2) = S(e2), and since ebad is of the form e1 · e2, there exists an exact cover of S(e) ∩ Uj
that contains both Sji,0 and Sji′,1. Since ebad is a sub-expression of e, it follows from Claim 4

that there exists an exact cover of S(e) ∩ Uj that contains both Sji,0 and Sji′,1. However, since
Uj ⊆ U ⊆ S(e) we have that S(e) ∩ Uj = Uj , which implies that that there exists an exact

cover of Uj that contains both Sji,0 and Sji′,1. This is a contradiction to the definition of the set

system Sj (see Definition 5).

Proof of Claim 2. It is straightforward to verify that the running time of D on e is polynomial
in the size of the set D(e). We will show that |D(e)| is polynomial by showing that for every
s ∈ D(e) there exists a single-input sub-element e′ of e such that prof(s) = prof(e′). Since
the input-profiles in D(e) are distinct, it follows that |D(e)| is bounded by the number of
sub-elements of e and is therefore polynomial.

Fix some s ∈ D(e). Let e0 be the “first” sub-element of e such that D(e0) contains an
element with the input-profile prof(s). Namely, suppose that D(e0) contains an element with
the input-profile prof(s), but the decomposition of every sub-element of e0 does not contain an
element with the input-profile prof(s).

If e0 is basic then it is also a single-input element and we are done, since it implies that
prof(e0) = prof(s). Note that e0 cannot be of the form e1 + e2, since the input-profile of
every element in D(e0) appears also in D(e1) or in D(e2), contradicting the assumption on e0.
Therefore, assuming e0 is not basic, it must be the case that e0 is of the form e1 · e2. In what
follows, we prove that in this case, e0 is a single-input sub-element of e (i.e., that |D(e0)| = 1).
This would immediately imply that prof(s) = prof(e0), as desired.

15

To this end, assume towards contradiction that |D(e0)| > 1. By the definition of D, and by
the assumption that e0 = e1 · e2, it must be the case that either |D(e1)| > 1 or |D(e2)| > 1.
Assume WLOG that |D(e1)| > 1. Let s0 ∈ D(e0) such that prof(s) = prof(s0), and let s1 ∈
D(e1) and s2 ∈ D(e2) be elements such that s0 = s1 · s2. The fact that |D(e1)| > 1 implies
that there exists s′1 ∈ D(e1) such that s′1 6= s1. Note that S(s′1) = S(s1) = S(e1). The fact
that the input-profiles in D(e) are distinct implies that there must exist some j ∈ [`] such that
prof(s1)j 6= prof(s′1)j . Assume WLOG that prof(s1)j = 1 and that prof(s′1)j ∈ {0, ∗}.

If prof(s′1)j = ∗ then for every sub-element e′ of s′1 we have S(e′)∩Uj = ∅, and therefore also
S(s′1)∩Uj = ∅. On the other hand, since prof(s1)j = 1, it follows from Claim 3 that there exists
a sub-element e′ of s1 such that S(e′)∩Uj 6= ∅ and therefore also S(s1)∩Uj 6= ∅, contradicting
the fact that S(s′1) = S(s1).

If prof(s′1)j = 0, then the fact that prof(s1)j = 1, together with Claims 3 and 4, implies that

there exists an exact cover of S(s1)∩Uj that contains the set Sji,1 for some i ∈ ind(j), and there

exists an exact cover of S(s′1)∩Uj that contains the set Sji′,0 for some i′ ∈ ind(j). The fact that
S(s′1) = S(s1) implies that S(s′1) ∩ Uj = S(s1) ∩ Uj , which together with Definition 5 (for the
set system Sj), implies that S(s1) ∩ Uj = Uj .

We conclude the proof with the following claim, showing that the fact that Uj ⊆ S(s1) implies
that prof(s1) is complete.12 If s1’s profile is complete, multiplying it with another element cannot
change its profile (without making it invalid) and therefore prof(s0) = prof(s1 · s2) = prof(s1),
contradicting our assumption on e0.

We prove the following stronger claim (that will be used also in the second part of the proof):

Claim 5. Let s be a single-input element. If Uj ⊆ S(s) then:

1. prof(s) is complete.

2. For every i ∈ ind(j), there exists a basic sub-element ei of s such that S(ei) = S(i, bi1, b
i
2)

for bi1 = prof(s)inp1(i) and bi2 = prof(s)inp2(i).

3. If e is a basic sub-element of s and S(e) = S(i, b1, b2) then (b1, b2) = (bi1, b
i
2), where (bi1, b

i
2)

are defined as above.

Proof. The fact that s is a single-input element, implies that prof(s) 6= ⊥. Moreover, prof(s)j 6=
∗, since otherwise, every sub-element e′ of s satisfies S(e′)∩Uj = ∅, and therefore also S(s)∩Uj =
∅, contradicting the assumption that Uj ⊆ S(s).

By the definition of prof(s), together with our assumption that prof(s) 6= ⊥, if there exists
a sub-element e′ of s such that S(e′) ∩ Uj = Sji′,b for some i′ ∈ ind(j), then b = prof(s)j . Thus,
the fact that Uj ⊆ S(s) implies that for every i ∈ ind(j) there exists a basic sub-element ei of

s that satisfies S(ei) ∩ Uj = Sji,b for b = prof(s)j . In particular, since ei is basic it must be the
case that S(ei) = S(i, b1, b2) for (b1, b2) ∈ {0, 1}. This, together with the fact that prof(s) 6= ⊥,
implies that it must be the case that (b1, b2) = (prof(s)inp1(i), prof(s)inp2(i)). This proves Item 2
of Claim 5. Similarly, the fact that prof(s) 6= ⊥, implies that for every basic sub-element e of s,
if S(e) = S(i, b1, b2) then (b1, b2) = (prof(s)inp1(i), prof(s)inp2(i)), which proves Item 3 of Claim 5.

It remains to prove that prof(s) is complete. To this end, fix any j′ ∈ [`]. By our assumption
on the structure of the branching program, there exists i ∈ [n] such that {inp1(i), inp2(i)} =
{j, j′}. Assume WLOG that (inp1(i), inp2(i)) = (j, j′). The fact inp1(i) = j implies in particular
that i ∈ ind(j), and there exist sub-element ei of s such that S(ei) = S(i, b1, b2). Since inp2(i) =
j′, we also have prof(s)j′ 6= ∗. This is true for every j′ ∈ [`], and therefore prof(s) is complete.

12Jumping ahead, it is in the proof of this claim where we rely on the assumption that the underlying branching
program is a dual-input branching program.

16

In the rest of the proof, we use the decomposition algorithm D to simulation zero-test
queries. To this end, we use the simulation technique of Kilian for randomized branching
programs, described in the following theorem:

Theorem 2 ([Kil88]). There exists an efficient simulation algorithm SimBP such that for every
x ∈ {0, 1}`,{

R0, Rn,
{
B̃i,bi1,bi2

: i ∈ [n], bi1 = xinp1(i), b
i
2 = xinp2(i)

}}
≈ SimBP(1n,BP(x)) .

Simulating zero tests. For every element e, let pe denote the the polynomial describing the
value of e as a function of its formal variables, that is, the polynomial computed by the circuit
α(e). For a zero-test query containing an element e with S(e) = U ∪ Bs ∪ Bt, Sim answers as
follows.

1. Sim obtains the decomposition of e into single-input elements D(e) and repeats the fol-
lowing for every s ∈ D(e).

(a) Sim queries its C oracle on x , prof(s), and obtains C(x).

(b) Sim executes the randomized branching program simulator SimBP on input C(x) and
obtains the matrices:

R0, Rn,
{
B̃i,bi1,bi2

: i ∈ [n], bi1 = xinp1(i), b
i
2 = xinp2(i)

}
.

(c) Sim samples uniformly random values for:

s, t,
{
αi,bi1,bi2

: i ∈ [n], bi1 = xinp1(i), b
i
2 = xinp2(i)

}
,

and obtains an assignment Vsims to all the formal variables that smay depend on. Note
that s may not depend on the B̃ matrices that where not generated by SimBP(C(x)).
We think of Vsims as an assignment to the variables of the polynomial ps.

(d) Sim answers that e is non-zero if ps(Vsims) 6= 0.

2. If ps(Vsims) = 0 for every s ∈ D(e), Sim answers that e is zero.

Intuition. The idea behind the above simulation is that every single-input element is
simulated and zero tested individually. To prove that the simulation is correct, we must show
that it is unlikely that e evaluates to zero as a result of cancelations between two (or more)
non-zero single-input elements. The first step in the proof (proven in Claim 6) is to show that
every single-input element in D(e) can be represented as a product of the αi,bi1,bi2

variables and
an expression that does not depend on the α’s. We also show that every single-input element
depends on a different set of the αi,bi1,bi2

variables. Since the values of the α variables are chosen
at random by the obfuscation, it follows that with high probability the value of e is zero iff the
value of all the single-input elements in D(e) are also zero.

In the second step of the proof we show how to decide whether the value of a single-input
element is zero. First we show that by making one oracle call to C, Sim can perfectly simulate
the value of a single-input element (Claim 7). Then we show that the value of every single-input
element can be expressed as a low degree polynomial in the obfuscation random variables, and
therefore it is either zero with probability 1, or only with negligible probability (Claim 8). It

17

follows that by simulating the value of a single-input element and testing if it is zero we get the
correct answer with overwhelming probability.

Correctness of the simulation. Next we prove that the simulation of zero-test queries is
statistically close to the distribution in the real world. Formally, let V realC be the random variable
representing the values of the initial elements that O(C) gives the the oracle M during the
initiation phase (we think of V realC as an assignment to the variables of the polynomial pe). We
require that for every element e such that S(e) = U ∪Bs ∪Bt, the probability that Sim answers
that e is zero is negligibly close to the probability that pe(V realC) = 0. Since the adversary only
asks a polynomial number of zero test queries, the correctness of the entire simulation follows.

We start by proving a claim on the structure of pe:

Claim 6. For every element e such that U ⊆ S(e) we have that:

pe =
∑

s∈D(e)

ps =
∑

s∈D(e)

qprof(s) · α̃prof(s) .

Where for every single-input element s ∈ D(e):

1. α̃prof(s) denotes the product
∏
i∈[n] αi,bi1,bi2

where (bi1, b
i
2) = (prof(s)inp1(i), prof(s)inp2(i)).

2. qprof(s) is a polynomial in the variables s̃, t̃ and in the entries of the matrices B̃i,bi1,bi2
where

the individual degree in every variable is 1.

Proof. By the properties of the decomposition algorithm D we have that:

pe =
∑

s∈D(e)

ps .

Next we argue about the structure of ps for s ∈ D(e). Recall that we think of the value of
s, denoted by α(s), as an arithmetic circuit. Thus, we can represent α(s) as a (potentially
exponential) sum of monomials. We denote the elements corresponding to these monomials by
sk. Namely, we represent s as

∑
k sk, such that the following holds:

1. The basic sub-elements of each sk are a subset of the basic sub-elements of s.

2. Each α(sk) contains only multiplication gates.

3. For every sk we have that S(sk) = S(s) and therefore Uj ⊂ S(sk) for every j ∈ [`].

By Claim 5, prof(sk) is complete, and since every basic sub-element of sk is also a basic sub-
elements of s we have that prof(sk) = prof(s). It also follows from Claim 5 that for every i ∈ [`],
there exists a basic sub-element ei of sk such that S(ei) = S(i, bi1, b

i
2). Additionally, since sk

contains only multiplication gates, it follows that sk has exactly one basic sub-element with
index set S(i, bi1, b

i
2), for every set i ∈ [`]. The only basic elements given to the adversary as a

part of the obfuscation with index set S(i, bi1, b
i
2) are αi,bi1,bi2

and the elements of αi,bi1,bi2
· B̃i,bi1,bi2 .

Since the above holds for every sk, we can write the polynomial ps as qprof(s) · α̃prof(s) where
qprof(s) and α̃prof(s) are as defined by in the claim’s statement.

We will also use the following claim about the distribution of the simulated assignment Vsims .

Claim 7. For every single-input element s such that U ⊆ S(s) we have that the assignment
Vsims generated by Sim and the assignment to the same subset of variables in V realC are identically
distributed.

18

Proof. By Theorem 2, the distributions of the following variables generated by Sim and by O(C)
are identical:

R0, Rn,
{
B̃i,bi1,bi2

: i ∈ [n], bi1 = prof(s)inp1(i), b
i
2 = prof(s)inp2(i)

}
.

Additionally, the following variables are sampled uniformly at random both by Sim and by
O(C):

s, t,
{
αi,bi1,bi2

: i ∈ [n], bi1 = prof(s)inp1(i), b
i
2 = prof(s)inp2(i)

}
,

The claim follows from the fact that the assignment Vsims generated by Sim and the assignment
to the same subset of variables in V realC are both computed from the above values in the same
manner.

Next we prove the correctness of the zero-test simulation. Let the input to the zero-test
be an element e such that S(e) = U ∪ Bs ∪ Bt. We say that pe(V realC) ≡ 0 if pe is zero on the
support of V realC . In the proof, we distinguish between the case where pe(V realC) ≡ 0 and case
where pe(V realC) 6≡ 0.

If pe(V realC) ≡ 0, then since the marginal distribution of the αi,b1,b2 values in V realC is uniform,
it follows from the structure of pe (given by Claim 6) and from the Schwartz-Zippel lemma,
that for every s ∈ D(e) it holds that qprof(s)(V realC) ≡ 0, and therefore that ps(V realC) ≡ 0. By

Claim 7 we have that also ps(Vsims) ≡ 0 for every s ∈ D(e) and therefore Sim answers that e is
zero with probability 1.

In the case where pe(V realC) 6≡ 0 we will make use of the following claim:

Claim 8. For every element e such that pe is a polynomial of degree poly(n), if pe(V realC) 6≡ 0
then:

Pr
V real
C

[pe(V realC) = 0] = negl(n) .

Proof. If V realC where uniformly distributed in Zp, or if they could be expressed as polynomials
of degree at most w over values that are uniform in Zp, then the claim would have followed
directly from the Schwartz-Zippel lemma. However, the assignment V realC depends both on the
Ri matrices and on their inverses, and we cannot express the entries of R−1i as low-degree
polynomials in the entries of Ri. Instead, we consider the assignment Ṽ realC where the matrices
R−1i are replaced with the adjugate matrices adj(Ri) = R−1i ·det(Ri). Since the Ri matrices are
chosen to be invertible, and since by Claim 6, the individual degree of pe in the entries of R−1i
is 1, we have that:

Pr
V real
C

[
pe(V realC) = 0

]
= Pr
V real
C

pe(V realC) ·
∏
i∈[n]

det(Ri) = 0

 = Pr
Ṽ real
C

[
p′e(Ṽ realC) = 0

]
.

Where p′e is another polynomial that depends on pe. Since det(Ri) can be expressed as a
polynomial of degree w in the entries of Ri, it follows that the degree of p′e is at most n ·w times
the degree of pe and therefore the degree of p′e is bounded by poly(n). Now, since the entries of
adj(Ri) can be expressed as polynomials of degree w in the entries of Ri, we have that all values
in the assignment Ṽ realC are either uniform in Zp or can be expressed as polynomials of degree
at most w over values that are uniform in Zp. By the Schwartz-Zippel lemma:

Pr
V real
C

[pe(V realC) = 0] = Pr
Ṽ real
C

[p′e(Ṽ realC) = 0] = negl(n) .

19

Going back to the case wehre pe(V realC) 6≡ 0, it follows from the structure of pe (given by Claim
6) that there exists s ∈ D(e) such that ps(V realC) 6≡ 0. By Claim 8, we have that ps(V realC) 6= 0 with
overwhelming probability and by Claim 7, ps(Vsims) 6= 0 with the same probability. Therefore,
Sim answers that e is non-zero with overwhelming probability, as desired.

References

[Bar86] D A Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. In STOC, 1986.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
IACR Cryptology ePrint Archive, 2001:69, 2001.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In ITCS, 2012.

[BR13] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. Cryptology ePrint Archive, Report 2013/563,
2013. http://eprint.iacr.org/.

[CLT13] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilin-
ear maps over the integers. In CRYPTO, 2013.

[CV13] Ran Canetti and Vinod Vaikuntanathan. Obfuscating branching programs using
black-box pseudo-free groups. Cryptology ePrint Archive, 2013.

[DH76] Whitfield Diffie and Martin E. Hellman. Multiuser cryptographic techniques. In
AFIPS National Computer Conference, pages 109–112, 1976.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. crypto.stanford.edu/craig.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. Cryptology ePrint Archive, Report 2013/451, 2013. http://eprint.

iacr.org/.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. In TCC, pages
308–326, 2010.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In ASIACRYPT, pages 443–
457, 2000.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon, editor,
STOC, pages 20–31. ACM, 1988.

20

http://eprint.iacr.org/
crypto.stanford.edu/craig
http://eprint.iacr.org/
http://eprint.iacr.org/

A Straddling Set System Construction

In this section we prove that the Construction 1 satisfies the definition of a straddling set system.
Below, for ease of reading, we denote Si,0 by Ai, and we denote Si,1 by Bi, only for the purposes
of this proof.

First, we observe that for all i, we have that Ai ∩ Bi = {2i − 1}. Thus by the disjointness
condition, it cannot be that C contains both Ai and Bi for any i; the same holds for D. Thus,
we can associate C with a string c ∈ {ε, A,B}n where Ai ∈ C iff ci = A and Bi ∈ C iff ci = B;
similarly we can associate to D a string d ∈ {ε, A,B}n where Ai ∈ D iff di = A and Bi ∈ D iff
di = B.

On the other hand, we observe that only the sets Ai and Bi contain (2i− 1). Therefore, by
the collision condition, either Ai or Bi are in C iff either Ai or Bi are in D. Thus, we have that
for any i, we have that ci = ε iff di = ε.

Let I = [a, b] ⊂ [1, n] be a maximal interval such that for all i ∈ I, we have ci = di. By the
distinctness condition, it cannot be that I = [1, n]. If I is empty, then the lemma’s conclusion
holds. We rule out all other possibilities by consider two remaining cases regarding I:

1. Case: b < n. In this case, we have cb = db but cb+1 6= db+1. This breaks down into two
subcases:

(a) Subcase: cb = db = ε or cb = db = A. In this case, either cb+1 = A and db+1 = B
or vice versa. However, we observe that 2b ∈ Ab+1 but 2b /∈ Bb+1. The only other
set that contains 2b is Bb, however neither C nor D contain that set. This violates
the collision property, and thus this subcase is not possible.

(b) Subcase: cb = db = B. In this case, either cb+1 = A and db+1 = B or vice versa.
However, we observe that 2b ∈ Ab+1 and 2b ∈ Bb. This violates the disjointness
property, and thus this subcase is not possible.

2. Case: a > 1. In this case, we have ca = da but ca−1 6= da−1. This breaks down into two
subcases:

(a) Subcase: ca = da = ε or ca−1 = da−1 = B. In this case, either ca−1 = A and
da−1 = B or vice versa. However, we observe that (2a−2) ∈ Ba−1 but (2a−2) /∈ Aa−1.
The only other set that contains (2a − 2) is Aa, however neither C nor D contain
that set. This violates the collision property, and thus this subcase is not possible.

(b) Subcase: ca = da = A. In this case, either ca−1 = A and da−1 = B or vice versa.
However, we observe that (2a − 2) ∈ Aa and (2a − 2) ∈ Ba−1. This violates the
disjointness property, and thus this subcase is not possible.

B Amplifying to Poly-sized Circuit VBB Obfuscation

In this section we show how to realize VBB obfuscation for arbitrary poly-sized circuits using
a VBB obfuscator for circuits in NC1 and an FHE scheme. The construction presented here
follows directly from the construction presented by [GGH+13b].

B.1 Preliminaries

Here we will recall two primitives: FHE and low-depth proofs, as in [GGH+13b].

Fully Homomorphic Encryption [Gen09]. Our definitions here follow [BGV12]. A fully-
homomorphic encryption scheme FHE is a tuple of PPT algorithms (FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval).

21

The message space RM of FHE is some ring and our computational model will be arithmetic
circuits over this ring (with addition and multiplication gates). FHE.KeyGen takes the security
parameter (and possibly other parameters of the scheme output by a Setup procedure) and
outputs a secret key sk and a public key pk. FHE.Enc takes the public key pk a message µ and
outputs a ciphertext c that encrypts µ. FHE.Dec takes the secret key sk and a ciphertext c and
outputs a message µ. FHE.Eval takes the public key pk, an arithmetic circuit f over M , and
ciphertexts c1, . . . , c`, where ` is the number of inputs to f , and outputs a ciphertext cf .

Definition 7. We say that a homomorphic encryption perfectly correctly evaluates a circuit
family F if for all f ∈ F and for all µ1, . . . , µ` ∈ RM it holds that if sk, pk were properly
generated by FHE.KeyGen with security parameter λ, and if ci = FHE.Encpk(µi) for all i, and
cf = FHE.Evalpk(f, c1, . . . , c`), then

Pr[FHE.Decsk(cf) 6= f(µ1, . . . , µ`)] = 0 ,

where the probability is taken over all the randomness in the experiment.

Furthermore, we assume the decryption algorithm FHE.Dec (as is true with most known
FHE schemes) can be realized by a family of circuits in NC1.
We use standard semantic security (security under chosen plaintext attack) as our security
notion.

Definition 8. A homomorphic scheme is secure if any polynomial time adversary that first gets
a properly generated pk, then specifies µ0, µ1 ∈ RM and finally gets FHE.Encpk(µb) for a random
b, cannot guess the value of b with probability > 1/2 + negl(λ).

Low Depth Proofs. Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R
we call x the statement and w the witness. Let L be the language consisting of statements in
R. A non-interactive proof with perfect completeness and perfect soundness for a relation R
consists of an (efficient) prover P and a verifier V such that:

Perfect completeness. A proof system is perfectly complete if an honest prover with a
valid witness can always convince an honest verifier. For all (x,w) ∈ R we have

Pr
[
π ← P (x,w) : V (x, π) = 1

]
= 1.

Perfect soundness. A proof system is perfectly sound if it is infeasible to convince an honest
verifier when the statement is false. For all x /∈ L and all (even unbounded) adversaries A we
have

Pr
[
π ← A(x) : V (x, π) = 1

]
= 0.

Furthermore we say that a non-interactive proof is low-depth, if the verifier V can be imple-
mented in NC1. We refer the reader to [GGH+13b, Appendix B.4] for a simple construction of
a low-depth non-interactive proof.

B.2 Our Construction

The construction presented here is a simplification of the [GGH+13b] scheme and has been
taken almost verbatim from there.

Consider a family of circuit classes {Cλ} for λ ∈ N where both the input size, n = n(λ), is
a polynomial function of λ and the maximum circuit size, p(λ) is also a polynomial function of
λ. Let {Uλ} be a poly-sized universal circuit family for these circuit classes, where Uλ(C,m) =

22

C(m) for all C ∈ {Cλ} and m ∈ {0, 1}n. Furthermore, all circuits C ∈ {Cλ} can be encoded as
an ` = `(λ) bit string as input to U .

We show how to build an a VBB obfuscator for such a circuit class given a VBB obfuscator,
for circuits in NC1.

Our construction is described by an obfuscate algorithm and an evaluation algorithm.

- Obfuscate(1λ, C ∈ Cλ):

1. Generate (PKFHE ,SKFHE) ← FHE.KeyGen(1λ). If we are using a leveled FHE
scheme, the number of levels should be set to be the depth of Uλ.

2. Encrypt g = FHE.Enc(PKFHE , C). Here we assume that C is encoded in a canonical
form as an ` bit string for use by the universal circuit Uλ(·, ·)

3. Generate an NC1 obfuscation P for the program P1(SKFHE ,g). (See Figure 1.)

4. The obfuscation components are output as: σ = (P, PKFHE , g).

- Evaluate(σ = (P, PKFHE , g),m): The Evaluate algorithm takes in the obfuscation output
σ and program input m and computes the following.

1. Compute e = FHE.Eval(PKFHE , Uλ(·,m), g). 13

2. Compute a low depth proof φ that e was computed correctly.

3. Run P (m, e, φ) and output the result.

P1

Given input (m, e, φ), P1(SKFHE ,g) proceeds as follows:

1. Check if φ is a valid low-depth proof for the NP-statement:

e = FHE.Eval(PKFHE , Uλ(·,m), g). (1)

2. If the check fails output 0; otherwise, output FHE.Dec(e, SKFHE).

Figure 1:

Theorem 3. Assume that VBB obfuscation for NC1 exists and a perfectly correct FHE scheme
(with decryption circuit in NC1) exists then we have that the obfuscation scheme presented above
is a VBB obfuscator for arbitrary poly-sized circuits.

We refer the reader to [BR13] for a proof of the above theorem.

13The circuit Uλ(·,m) is the universal circuit with m hardwired in as an input. This in hardwired circuit takes
in an ` bit circuit description C as its input and evaluates to U(C,m).

23

	Introduction
	Our Techniques

	Preliminaries
	``Virtual Black-Box" Obfuscation in an Idealized Model
	Branching Programs

	Straddling Set System
	The Ideal Graded Encoding Model
	Obfuscation in the Ideal Graded Encoding Model
	Proof of VBB in the The Ideal Graded Encoding Model
	Straddling Set System Construction
	Amplifying to Poly-sized Circuit VBB Obfuscation
	Preliminaries
	Our Construction

