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Abstract. Cryptographic applications, such as hashing, block ciphers
and stream ciphers, make use of functions which are simple by some
criteria (such as circuit implementations), yet hard to invert almost ev-
erywhere. A necessary condition for the latter property is to be “suffi-
ciently distant” from linear, and cryptographers have proposed several
measures for this distance. In this paper, we show that four common
measures, nonlinearity, algebraic degree, annihilator immunity, and mul-
tiplicative complexity, are incomparable in the sense that for each pair
of measures, µ1, µ2, there exist functions f1, f2 with µ1(f1) > µ1(f2)
but µ2(f1) < µ2(f2). We also present new connections between two of
these measures. Additionally, we give a lower bound on the multiplicative
complexity of collision-free functions.

1 Preliminaries

For a vector x ∈ Fn2 its Hamming weight is the number of non-zero entries in x.
For n ∈ N its Hamming weight, HN(n) is defined as the Hamming weight of the
binary representation of n. We let Bn = {f : Fn2 → F2} be the set of Boolean
predicates on n variables.

A Boolean function f : Fn2 → F2 can be uniquely represented by its algebraic
normal form also known as its Zhegalkin polynomial [31]:

f(x1, . . . , xn) =
⊕

S⊆{1,2,...,n}

αS
∏
i∈S

xi

where αs ∈ {0, 1} for all S and we define
∏
i∈∅ xi to be 1. If αS = 0 for |S| > 1,

we say that f is affine. An affine function f is linear if α∅ = 0 or equivalently
if f(0) = 0. The function f is symmetric if αS = αS′ whenever |S| = |S′|, that
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is f only depends on the Hamming weight of the input. The kth elementary
symmetric Boolean function, denoted Σn

k , is defined as the sum of all terms
where |S| = k.

For two functions f, g ∈ Bn the distance d between f and g is defined as the
number of inputs where the functions differ, that is

d(f, g) = |{x ∈ Fn2 |f(x) 6= g(x)}| .

For the rest of this paper, unless otherwise stated, n denotes the number
of input variables. We let log denote the logarithm base 2 and ln the natural
logarithm.

2 Introduction

Cryptographic applications, such as hashing, block ciphers and stream ciphers,
make use of functions which are simple by some criteria (such as circuit imple-
mentations) yet hard to invert almost everywhere. A necessary condition for the
latter to hold is that the tools of algebra – and in particular linear algebra –
be somehow not applicable to the problem of saying something about x given
f(x). Towards this goal, cryptographers have proposed several measures for the
distance to linearity for Boolean functions. In this paper we consider four such
measures. We compare and contrast them, both in general and in relation to spe-
cific Boolean functions. Additionally, we propose a procedure to find collisions
when the multiplicative complexity is low.

The nonlinearity of a function is the Hamming distance to the closest affine
function. The nonlinearity of a function on n bits is between 0 and 2n−1 −
d2n/2−1e [27, 7]. Affine functions have nonlinearity 0. Unfortunately, this intro-
duces an overloading of the word “nonlinearity” since it also refers to the more
general concept of distance to linear. The meaning will be clear from context.

Functions with nonlinearity 2n−1 − 2n/2−1 exist if and only if n is even.
These functions are called bent, and several constructions for bent functions
exist (see [27, 22, 15] or the survey by Carlet [7]). For odd n, the situation is a
bit more complicated; for any bent function f on n − 1 variables, the function
g(x1, . . . , xn) = f(x1, . . . , xn−1) will have nonlinearity 2n−1 − 2(n−1)/2. It is
known that for odd n ≥ 9, this is suboptimal [18]. Despite this, no infinite
family achieving higher nonlinearity is known. For a Boolean function f , there
is a tight connection between the nonlinearity of f and its Fourier coefficients.
More precisely the nonlinearity is determined by the largest Fourier coefficient,
and for bent functions all the Fourier coefficients have the same magnitude. A
general treatment on Fourier analysis, can be found in [25].

The algebraic degree (which we from now on will refer to as just the degree)
of a function is the degree of its Zhegalkin polynomial, that is the largest |S|
such that αS = 1. We note that Carlet [6] has compared nonlinearity and degree
to two other measures which we do not consider here, algebraic thickness and
nonnormality.
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The annihilator immunity (also known as algebraic immunity3) of a function
f is the minimum degree of a non-zero function g such that fg = 0 or (f+1)g = 0.
We denote this measure by AI(f). The function g is called an annihilator. It
is known that 0 ≤ AI(f) ≤

⌈
n
2

⌉
for all functions [9, 11]. Specific functions are

known which achieve the upper bound [12].
The multiplicative complexity of a function f , denoted c∧(f), is the smallest

number of AND gates necessary and sufficient to compute the function using a
circuit over the basis (XOR,AND,1) (i.e. using arithmetic over GF (2)). Clearly,
the multiplicative complexity of f is at least 0 with equality if and only if f is
affine. For even n, the multiplicative complexity is at most 2

n
2 +1− n

2 −2, and for
odd n at most 3

2
√
2
2n/2+1 − n+3

2 [4, 23] (see also [17]). Despite this, no specific
predicate has been proven to have multiplicative complexity larger than n− 1.4

Nonlinearity, degree and multiplicative complexity all capture an intuitive
notion of the degree of “nonlinearity” of Boolean functions. Annihilator immunity
is also related to nonlinearity, albeit less obviously.

In [7], it is shown that algebraic degree, annihilator immunity, and nonlin-
earity are affine invariants. That is, if L : {0, 1}n → {0, 1}n is an invertible linear
mapping, applying L to the input variables first does not change the value of
any of these measures. It is easy to see that multiplicative complexity is also an
affine invariant, since L and L−1 can be computed using only XOR gates.

Ideally, a measure of nonlinearity should be invariant with respect to ad-
dition of affine functions and embedding into a higher dimensional space (e.g.
considering f(x1, x2) = x1x2 as a function of three variables). The four measures
studied here have these properties with two exceptions.

– Adding an affine function l to f can cause the annihilator immunity to vary
by up to 1. That is AI(f)− 1 ≤ AI(f + l) ≤ AI(f) + 1 [8];

– Embedding a function f : {0, 1}n → {0, 1} in {0, 1}n+1 doubles its nonlin-
earity. Thus, if one wants to consider nonlinearity of functions embedded
in larger spaces, it might be more natural to redefine nonlinearity using a
normalized metric instead of the Hamming distance metric. In this paper,
we will not use embeddings.

There is a substantial body of knowledge which relates nonlinearity, anni-
hilator immunity, and algebraic degree to cryptographic properties. However,
the analogous question with respect to multiplicative complexity remains little
studied. Among the few published results is [10], in which Courtois et al. show
(heuristically) that functions with low multiplicative complexity are less resistant

3 In this paper we use the term “annihilator immunity” rather than “algebraic immu-
nity”, see the remark in [12].

4 We have experimentally verified that all predicates on four bits have multiplicative
complexity at most three. This is somewhat surprising, as circuit realization of ran-
dom functions (e.g. x1x2x3x4+x1x2x3+x2x3x4+x1x3x4+x1x3+x2x4+x1x4) would
appear to need more than three AND gates. We conjecture that some predicate on
five bits will turn out to have multiplicative complexity five.
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against algebraic attacks. Here we present evidence that low multiplicative com-
plexity in hash functions can make them prone to second preimage or collision
attacks.

Multiplicative complexity also turns out to be important in cryptographic
protocols. Several techniques for secure multi-party computation yield protocols
with communication complexity proportional to the multiplicative complexity
of the function being evaluated (see, for example, [16, 19, 24]). Several flavors
of one-prover non-interactive cryptographically secure proofs (of knowledge of
x given f(x)) have length proportional to the multiplicative complexity of the
underlying function f (see, for example, [1]).

In this paper we show that very low nonlinearity implies low multiplicative
complexity and vice-versa. We also show an upper bound on nonlinearity for
functions with very low multiplicative complexity.

For nonlinearity, annihilator immunity, and algebraic degree, there exist sym-
metric Boolean functions achieving the maximal value among all Boolean func-
tions. However, the only symmetric functions which achieve maximum nonlinear-
ity are the quadratic functions, which have low algebraic degree. In [5] Canteaut
and Videau have characterized the symmetric functions with almost optimal non-
linearity. In this paper we analyze the multiplicative complexity and annihilator
immunity of these functions.

3 Relations between Nonlinearity Measures

In general, random Boolean functions are highly nonlinear with respect to all
these measures:

– In [14], Didier shows that the annihilator immunity of almost every Boolean
function is (1− o(1))n/2.

– In [26], Rodier shows that the nonlinearity of almost every function is at
least 2n−1 − 2n/2−1

√
2n ln 2, which is close to maximum.

– In [6], Carlet observes that almost every function has degree at least n− 1.
– In [4], Boyar et al. show that almost every Boolean function has multiplica-

tive complexity at least 2n/2 −O(n).

If a function f has algebraic degree d, the multiplicative complexity is at
least d − 1 [29]. This is a very weak bound for most functions. However this
technique easily yields lower bounds of n− 1 for many functions on n variables,
and no larger lower bounds are known for concrete functions

Additionally, it has been shown that low nonlinearity implies low annihila-
tor immunity [11]. Still, there are functions optimal with respect to annihilator
immunity that have nonlinearity much worse than that of bent functions. An
example of this is the majority function, see [12]. Bent functions have degree at
most n

2 ([27, 7]). Since f ⊕ 1 is an annihilator for f , the annihilator immunity of
a function is at most its degree.
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4 Incomparability

In this section we show that our four measures are incomparable in the sense
that for each pair of measures, µ1, µ2, there exist functions f1, f2 with µ1(f1) >
µ1(f2), but µ2(f1) < µ2(f2). To show this we look at four functions:

Σn
2 : For even n, the function Σn

2 is bent [27]. For odd n it has nonlinearity
2n−1 − 2(n−1)/2, which is maximum among the symmetric functions on an odd
number of variables [21]. But being a quadratic function, both the algebraic
degree and the annihilator immunity are 2 which is almost as bad as for linear
functions. The multiplicative complexity is bn/2c, which is the smallest possible
multiplicative complexity for nonlinear symmetric functions [4].

MAJn, which is 1 if and only if at least n/2 of the n inputs are 1: In [3]
it is shown that when n = 2r + 1, the multiplicative complexity is at least
n − 2. In [12] it is shown that MAJn has annihilator immunity

⌈
n
2

⌉
; they also

show that it has nonlinearity 2n−1−
(n−1
bn

2 c
)
, which by Stirling’s approximation is

2n−1 − (1 + o(1))
√

2
π

2n−1
√
n−1 .

FMAJn, defined as:

FMAJn(x1, . . . , xn) =MAJdlogne(x1, . . . , xdlogne)⊕ xdlogne+1 ⊕ . . .⊕ xn.
The degree of FMAJn is equal to the degree of MAJdlogne which is at least

dlogne
2 , so the multiplicative complexity is at least dlogne2 − 1. Also its multi-

plicative complexity is equal to that of MAJdlogne, which is at most dlog(n)e −
HN(dlog ne) + dlog(dlog ne+ 1)e [3]. The annihilator immunity of FMAJn is at
least

⌈
logn
2

⌉
−1, sinceMAJdlogne has annihilator immunity

⌈
logn
2

⌉
, and FMAJn

is just MAJdlogne plus a linear function. This can change the annihilator immu-
nity by at most 1 [8].

Σn
n : The nonlinearity of Σn

n is 1 because it has Hamming distance 1 to
the zero function. It has annihilator immunity 1 (x1 ⊕ 1 is an annihilator), its
algebraic degree is n, and its multiplicative complexity is n− 1.
Incomparability examples: From the observations above it can be seen that Σn

2

has higher nonlinearity than MAJn but smaller degree, annihilator immunity,
and multiplicative complexity. FMAJn has higher degree and annihilator im-
munity than Σn

2 but lower multiplicative complexity. Σn
n has larger degree than

FMAJn but smaller annihilator immunity. These examples are shown in Table
1. Remark: These separations are fairly extreme except with respect to multi-
plicative complexity, where the values are small compared to those for random
functions. This is due to the fact that currently no specific function has been
proven to have multiplicative complexity larger than n−1. If larger bounds were
proven, one could have more extreme separations: Suppose f : {0, 1}n−1 → {0, 1}
has large multiplicative complexity, degree, nonlinearity and annihilator immu-
nity, and let g(x1, . . . , xn) = f(x1, . . . , xn−1) ·xn. Then clearly g has high degree,
nonlinearity and multiplicative complexity, but annihilator immunity 1, since
multiplying by xn+1 gives the zero function. This is also an example where the
annihilator immunity fails to capture the intuitive notion of nonlinearity.
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Table 1. Incomparability examples. For every pair (f1, f2) f1 scores higher in the
measure for the row and f2 scores higher in the measure for the column.

NL MC deg AI
NL - (Σn

2 ,MAJn) (Σn
2 ,MAJn) (Σn

2 ,MAJn)
MC - - (Σn

2 , FMAJn) (Σn
2 , FMAJn)

deg - - - (Σn
n , FMAJn)

5 Relationship between Nonlinearity and Multiplicative
Complexity

In this section we will show that, despite being incomparable measures, the
multiplicative complexity and nonlinearity are somehow related. We first show
that if a function has low nonlinearity, this gives a bound on the multiplicative
complexity. Conversely we show that if the multiplicative complexity is n−a

2 , the
nonlinearity is at most 2n−1− 2n/2−a/2−1, and this nonlinearity can be achieved
by a function with this number of AND gates.

We will use the following theorem due to Lupanov [20] (see Lemma 1.2 in
[17]). Given a Boolean matrix A, a decomposition is a set of Boolean matrices
B1, . . . , Bk each having rank 1, satisfying A = B1+B2+ . . .+Bk where addition
is over the reals. For each Bi its weight is defined as the number of non-zero
rows plus the number of non-zero columns. The weight of a decomposition is the
sum of the weights of the Bi’s.

Theorem 1 (Lupanov). Every Boolean p × q matrix admits a decomposition
of weight

(1 + o(1))
pq

log p
.

Theorem 2. A function f ∈ Bn with nonlinearity s > 1 has multiplicative
complexity at most min{s(n− 1), (2 + o(1)) sn

log s}.

Proof. Let L be an affine function with minimum distance to f . Let

ε(x) = f(x)⊕ L(x).

Note that ε takes the value 1 s times. Let ε−1(1) be the preimage of 1 under ε.
Suppose ε−1(1) = {z(1), . . . , z(s)} where each z(i) is an n-bit vector. LetMi(x) =∏n
j=1(xj ⊕ z

(i)
j ⊕ 1) be the minterm associated to z(i), that is the polynomial

that is 1 only on z(i). By definition

ε(x) =

s⊕
i=1

Mi(x) =

s⊕
i=1

n∏
j=1

(xj ⊕ z(i)j ⊕ 1)

Adding the minterms together can be done using only XOR gates and gives
exactly the function ε. We will give two constructions for the minterms. Using
the one with fewest AND gates proves the result.
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The first construction simply computes each of the s minterms directly using
n−1 AND gates for each. For the second construction, define the s×2n matrix A
where columns 1, 2, . . . , n correspond to x1, x2, . . . , xn and columns n+1, . . . , 2n
correspond to (1⊕ x1), . . . , (1⊕ xn), and row i corresponds to minterm Mi. Let
Aij = 1 if and only if the literal corresponding to column j is a factor in the
minterm Mi. Now consider the rectangular decomposition guaranteed to exist
by Theorem 1. For each Bi, all non-zero columns are equal. AND together the
literals corresponding to these variables. Call the result Qi. Now each row can
be seen as a logical AND of Qi’s. AND these together for every row to obtain
the s results. The number of AND gates used is at most the weight of the
decomposition, that is at most (1 + o(1)) 2sn

log s AND gates. ut
Lemma 1. Let f have multiplicative complexity M ≤ n

2 . Then there exists an
invertible linear mapping L : {0, 1}n → {0, 1}n, a Boolean predicate g ∈ BD for
D ≤ 2M , and a set T ⊆ {1, 2, . . . , n} such that for t = L(x), f can be written
as

f(x1, . . . , xn) = g(t1, . . . , tD)⊕
⊕
j∈T

tj

Proof. Let M = c∧(f) and consider an XOR-AND circuit C with M AND gates
computing f , and let A1, . . . , AM be a topological ordering of the AND gates.
Let the inputs to A1 be I1, I2 and inputs to A2 be I3, I4, etc. so AM has inputs
I2M−1, I2M . Now the value of f , the output of C, can be written as a sum of
some of the AND gate outputs and some of the inputs to the circuit:

f =
⊕
i∈Zout

Ai ⊕
⊕

i∈Xout

xi,

for appropriate choices of Zout and Xout. Similarly for Ij :

Ij =
⊕
i∈Zj

Ai ⊕
⊕
i∈Xj

xi.

Define g as g =
⊕

i∈Zout
Ai. Since Xj is a subset of {0, 1}n, it can be thought

of as a vector yj in the vector space {0, 1}n where the ith coordinate is 1 if and
only if i ∈ Xj .

Clearly the dimension D of Y = span(y1, . . . y2M ) is at most 2M . Let
{yj1 , . . . yjD} be a basis of Y . There exists some invertible linear mapping L :
{0, 1}n → {0, 1}n with L(x1, . . . , xn) = (t1, . . . , tn) having tj = yij for 1 ≤ j ≤
D. That is, g depends on just t1, . . . tD, and each xj is a sum of tl’s, hence f can
be written as a function of t1, . . . , tn as

f = g(t1, . . . , tD)⊕
⊕
j∈T

tj

ut
Corollary 1. If a function f ∈ Bn has multiplicative complexity M ≤ n

2 , it
has nonlinearity at most 2n−1− 2n−M−1. Furthermore for M ≤ n

2 , there exist a
simple function with this nonlinearity.
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Proof. Since nonlinearity is an affine invariant, we can use Lemma 1 and look
at the nonlinearity of

f = g(t1, . . . , t2M )⊕
⊕
j∈Tout

tj

Now the best affine approximation of g agrees on at least 22M−1+2M−1 inputs.
Replacing g with its best affine approximation, we obtain a function that agrees
with f on at least 2n−2M (22M−1 + 2M−1) = 2n−2M22M−1 + 2n−2M2M−1 =
2n−1+2n−M−1 proving the upper bound on the nonlinearity. For the furthermore
part notice that the nonlinearity of the function

f(x1, . . . , xn) =

M∑
i=1

x2i−1x2i

meets the bound. ut

Remark: This shows that Σn
2 is optimal with respect to nonlinearity among

functions having multiplicative complexity bn/2c.

6 Low Multiplicative Complexity and One-Wayness

If a function f has multiplicative complexity µ, then it can be inverted (i.e. a
preimage can be found) in at most 2µ evaluations of f . To do this, consider a
circuit C for f with µ AND gates. Suppose y has a non-empty preimage under
f . Guessing the Boolean value of one input for each AND gate results in a linear
system of equations, L. Solve L to obtain a candidate input x and test whether
f(x) = y. This finds a preimage of y after at most 2µ iterations. Thus, one-way
functions, if they exist, have superlogarithmic multiplicative complexity.

The one-wayness requirements of hash functions include the much stronger
requirement of collision resistance: it must be infeasible to find two inputs that
map to the same output. We next observe that collision resistance of a function
f with n inputs and m < n outputs requires f to have multiplicative complexity
at least n−m.

Let C be a circuit for f . Without loss of generality, we can assume the circuit
contains no negations and that we seek two distinct inputs which map to 0. 5

Since there are no negations in the circuit, one such input is 0. We next show
how to obtain a second preimage of 0.

Pick a topologically minimal AND gate and set one of its inputs to 0. This
generates one homogeneous linear equation on the inputs to f and allows us to
remove the AND gate from the circuit (see Figure 1). Repeating this until no
AND gates are left yields a homogeneous system S with at most µ equations,
5 Negations can be “pushed” to the outputs of the circuit without changing the number
of AND gates. Once at the outputs, for purposes of finding a collision, negations can
be simply removed.
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Xa

⊕e

⊕P

b

∧ c

⊕ d

⊕Q

a

e

⊕P

c

d

⊕Q

Fig. 1. The circuit to the right is the circuit obtained when X in the left circuits is
restricted to the value 0. Notice that only the gates P,Q remain nonredundant.

plus a circuit C ′ which computes a homogeneous linear system withm equations.
The system of equations has 2n−m−µ distinct solutions. Thus, if m+µ < n, then
standard linear algebra yields non-zero solutions. These are second preimages of
0.

We re-state this as a theorem below. The idea of using hyperplane restrictions
to eliminate AND gates has been used before, however with different purposes,
see e.g. [3, 13].

Theorem 3. Collision resistance of a function f from n to m bits requires that
f have multiplicative complexity at least n−m.

It is worth noting that the bound from Theorem 3 does not take into account
the position of the AND gates in the circuit. It is possible that fewer linear
equations can be used to remove all AND gates. We have tried this on the
reduced-round challenges issued by the Keccak designers (Keccak is the winner of
the SHA-3 competition, see http://keccak.noekeon.org/crunchy_contest.
html). These challenges are described in the notation Keccak[r, c, nr] where r is
the rate, c the capacity, and nr the number of rounds. For the collision challenges,
the number of outputs is set to 160. Each round of Keccak uses r+c AND gates.
However, in the last round of Keccak the number of AND gates that affect the
output bits is equal to the number of outputs.

We consider circuits for Keccak with only one block (r bits) of in-
put. The circuit for Keccak[r=1440, c=160, nr=1] contains 160 AND gates,
yet 96 linear equations will remove them all. Keccak[r=1440, c=160, nr=2]
contains 1760 AND gates, yet 1056 linear equations removes them all.
Thus, finding collisions is easy, because 1440 is greater than 160 + 1056
(in the one-round case, because 1440 > 160 + 96). These two collision
challenges were first solved by Morawiecki (using SAT solvers, see http:
//keccak.noekeon.org/crunchy_mails/coll-r2-w1600-20110729.txt) and,
more recently, by Duc et al. (see http://keccak.noekeon.org/crunchy_
mails/coll-r1r2-w1600-20110802.txt). Our reduction technique easily solves
both of these challenges, and yields a large number of multicollisions.

Dinur et al. are able to obtain collisions for Keccak[r=1440, c=160, nr=4] i.e.
for four rounds of Keccak (see http://keccak.noekeon.org/crunchy_mails/
coll-r3r4-w1600-20111124.txt). The technique of Theorem 3 cannot linearize
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the Keccak circuit for more than two rounds. How to leverage our methods to
solve three or more rounds is work in progress.

7 Some Symmetric Boolean Functions with High
Nonlinearity

When designing Boolean functions for cryptographic applications, we seek func-
tions with high nonlinearity, simple structure, high annihilator immunity, and
high algebraic degree. Bent functions have high nonlinearity. Symmetric func-
tions have simple structure. However, the multiplicative complexity of a sym-
metric function on n variables is never larger than n+ 3

√
n [4]. The symmetric

functions with highest nonlinearity are quadratic ([28] and [21]). But these func-
tions have low algebraic degree, low annihilator immunity, and multiplicative
complexity only

⌊
n
2

⌋
.

For n ≥ 3, let Fn =
⊕n

k=3Σ
n
k and Gn = Σn

2 ⊕Σn
n . It is known that there are

exactly 8 symmetric functions with nonlinearity exactly 1 less than the largest
achievable value. These are Fn ⊕ λ and Gn ⊕ λ, where λ ∈ {0, 1, Σn

1 , Σ
n
1 + 1}

[5]. These functions have many of the criteria sought after for cryptographic
functions: they are symmetric, have optimal degree, and almost optimal nonlin-
earity. We have exactly calculated or tightly bound the multiplicative complexity
of these functions. Precise values are important for applications in secure multi-
party computations.

Since the λ can always be computed and added using only XOR operations,
we only consider Fn and Gn. In [3] it is shown that the Hamming weight of n
bits x1, . . . , xn can be computed using an XOR-AND circuit having n−HN(n)
AND gates, where HN(n) is the Hamming weight of the binary representation
of n. Furthermore, it is noted that the value of the ith least significant bit in the
Hamming weight is equal to the function Σn

2i(x1, . . . , xn) and that for an integer
k represented as a sum of distinct powers of 2, if k = 2i0 + 2i1 + . . .+ 2ij , then
Σn
k = Σn

2i0
· . . . ·Σn

2ij
.

Lemma 2. The multiplicative complexity of Gn is n− 1.

Proof. Let n = uk, uk−1, ..., u1, u0 be the binary representation of n. To compute
Gn(x), one first computes the Hamming weight of x, giving {Σn

2k(x) | 0 ≤ k ≤
dlog2(n+ 1)e − 1}.

This uses n−HN(n) AND gates, and gives us Σn
2 directly. Σn

n is the product
of {Σn

2i | ui = 1}, which requires exactly HN(n) − 1 AND gates to compute.
Thus, exactly n− 1 AND gates are used. The value of Gn is computed with one
additional XOR to add Σn

2 and Σn
n . The multiplicative complexity cannot be

lower than this since the degree of Gn is n. ut

Proposition 1. The multiplicative complexity of Fn is at least n− 1, since the
degree is n.

Lemma 3. The multiplicative complexity of Fn is n− 1 for 3 ≤ n ≤ 6.
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Proof. For n = 3, Fn = E3
3 , which has multiplicative complexity 2. For n = 4,

Fn = T 4
3 , which has multiplicative complexity 3. Proofs of the multiplicative

complexities of these functions are in [3].
For n = 5, compute the Hamming weight of x, giving

{Σ5
1(x), Σ

5
2(x), Σ

5
4(x)}.

This uses 5− 2 = 3 AND gates.

F5 = Σ5
3 ⊕Σ5

4 ⊕Σ5
5

= (Σ5
4 ⊕Σ5

2) ∧ (Σ5
4 ⊕Σ5

1)

This can be computed using only one additional AND gate.
For n = 6, compute the Hamming weight of x, giving

{Σ6
1(x), Σ

6
2(x), Σ

6
4(x)}.

This uses 6− 2 = 4 AND gates.

F6 = Σ6
3 ⊕Σ6

4 ⊕Σ6
5 ⊕Σ6

6

= (Σ6
4 ⊕Σ6

2) ∧ (Σ6
4 ⊕Σ6

1)

This can be computed using only one additional AND gate. ut

Lemma 4. The multiplicative complexity of Fn is at most n −HN(n) + k − 1,
for k = dlog(n+ 1)e.

Proof. First compute the Hamming weight of the input, that is the functions
Σn

2i for i = 0, 1, . . . , k − 1. The function

(1⊕Σn
1 ) · (1⊕Σn

2 ) · (1⊕Σn
4 ) · . . . · (1⊕Σn

2k−1)

can be computed with k − 1 AND gates. This function is equal to

1⊕
n⊕
i=1

Σn
i = (1⊕ x1)(1⊕ x2) · . . . · (1⊕ xn),

Since they are both 1 if and only if all input bits are 0. That is Fn can now be
obtained without further multiplications since

(1⊕Σn
1 ) · (1⊕Σn

2 ) . . . (1⊕Σn
2k−1)⊕ 1⊕Σn

1 ⊕Σn
2 = Fn

ut

It turns out that these eight functions have very low annihilator immunity.
We consider the variants of Fn functions first and then the variants of Gn.
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Lemma 5. The function f = a⊕ bΣn
1 ⊕

⊕n
i=3Σ

n
i has annihilator immunity at

most 2.

Proof. Let f̃ = bΣn
1 ⊕

⊕n
i=3Σ

n
i , and let h = 1⊕ (1⊕ b)Σn

1 ⊕Σn
2 be the algebraic

complement of f̃ , [30]. Notice that

f̃ ⊕ h =

n⊕
i=1

Σn
i ⊕ 1 = (1⊕ x1)(1⊕ x2) . . . (1⊕ xn)

which is 1 if and only if x = 0. That is for x 6= 0, f̃ = h, so 1 ⊕ h clearly
annihilates f̃ on all non-zero inputs. Since f̃(0) = 0, h is an annihilator of f̃
with degree 2, so depending on a, h is an annihilator of f . ut

Lemma 6. The function f = a⊕ bΣn
1 ⊕Σn

2 ⊕Σn
n has annihilator immunity at

most 2.

Proof. Let 1 denote the all 1 input vector. For some fixed choice of a, and b,
depending on n, either (a ⊕ bΣn

1 ⊕ Σn
2 )(1) = 1 or (a ⊕ bΣn

1 ⊕ Σn
2 )(1) = 0. In

the first case, the function h = 1 ⊕ a ⊕ bΣn
1 ⊕ Σn

2 is an annihilator of f , and
otherwise h = a⊕ bΣn

1 ⊕Σn
2 is an annihilator of f ⊕ 1. And again, clearly there

is no annihilator of degree less than 2. ut

8 Conclusion

Four nonlinearity concepts are considered and compared, and new relations be-
tween them are presented. The four concepts are shown to be distinct; none is
subsumed by any of the others.

We are currently extending the ideas present here for cryptanalyzing func-
tions with low multiplicative complexity. It will be interesting to see if using the
topology of the circuit for the cryptographic function will lead to useful heuris-
tics for cryptanalytic attacks, especially for variants of hash function with few
rounds.
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