
Communication-Efficient MPC for

General Adversary Structures

Joshua Lampkins1 and Rafail Ostrovsky2

jlampkins@math.ucla.edu, rafail@cs.ucla.edu
1 Department of Mathematics, University of California, Los Angeles

2 Department of Computer Science, University of California, Los Angeles

October 5, 2013

Abstract. A multiparty computation (MPC) protocol allows a set of players to compute a function
of their inputs while keeping the inputs private and at the same time securing the correctness of the
output. Most MPC protocols assume that the adversary can corrupt up to a fixed fraction of the num-
ber of players. Hirt and Maurer initiated the study of MPC under more general corruption patterns,
in which the adversary is allowed to corrupt any set of players in some pre-defined collection of sets
[6]. In this paper we consider this important direction of research and present significantly improved
communication complexity of MPC protocols for general adversary structures. More specifically, ours
is the first unconditionally secure protocol that achieves linear communication in the size of Monotone
Span Program representing the adversary structure in the malicious setting against any Q2 adversary
structure, whereas all previous protocols were at least cubic.

Keywords: Multiparty Computation, Secret Sharing, General Adversaries, Q2 Adversary Structures

1

Paper [5] [7] [4] This Paper

Bandwidth O(Cd3.5) O(Cκ2nd3) O(Cnd3) O(Cn2d+ n3d+ κn4 log d)

Table 1: Comparison of MPC protocols secure against active, Q2 adversaries with a broadcast channel. The
“critical” parameter that we are minimizing (which dominates all other terms) is d which is the size of the smallest
MSP representing adversary structure, which can be exponential in the number of players, denoted as n. C is the
size of the circuit and κ is the security parameter. Bandwidth is measured in field elements, and counts both
point-to-point communications and broadcasts.

1 Introduction

In a multiparty computation (MPC) protocol, it is assumed that some of the players might collude together
to attempt to determine some other player’s input or to alter the output of the function. This is generally
modeled as a single adversary corrupting a subset of the players. In order for a protocol to work, one must
assume that the adversary is limited in the number of players he can corrupt. Most MPC protocols have
a simple threshold requirement on the adversary. For instance, if the total number of players is n and the
number of players corrupted by the adversary is t, then a protocol might require t < n/3 or t < n/2.

In this paper, we consider requirements on the malicious and adaptive adversary which are more general
than just threshold requirements. If P is the set of players, then the most general way of expressing the
limitations of the adversary is to select a subset A ⊂ 2P , called an adversary structure. The adversary is
then allowed to corrupt any set of players in A. This paper constructs a Multiparty Computation protocol
that is secure against general Q2 adversary structures.1

1.1 Previous Work

The first MPC protocol for general adversaries was given in Hirt and Maurer [6]. The protocol was recursive,
relying on the use of virtual processors/players and “nesting” the virtualization. The MPC protocol for
active Q2 adversaries with a broadcast channel had communication complexity superpolynomial in the
size of the description of the adversary structure; the protocol was slightly modified in Fitzi, Hirt and
Maurer [5] to yield polynomial communication complexity. More explicit protocols were given in Cramer,
Damg̊ard and Maurer [3], Smith and Stiglic [7], and Cramer, Damg̊ard, Dziembowski, Hirt and Rabin [4],
each paper constructing an MPC protocol based on the Monotone Span Program (MSP) secret sharing
scheme developed in Cramer, Damgard and Maurer [3]. An MPC protocol based on a different secret
sharing scheme is given in Beaver and Wool [1], which dealt with passive adversaries only.

1.2 Our Contributions

This paper provides an MPC protocol in the setting of an active Q2 adversary with a broadcast channel.
We strictly improve upon the amortized efficiency of all previous protocols, as shown in Table 1. (Since [3]
dealt with active Q3 adversaries only, and since [1] only dealt with passive adversaries, they are not listed
in the table.) In examining the table note that d is the dominating term2 and can be exponential in n
and is always at least n. So in addition to providing a strict improvement over all previous protocols, our
result is the first MPC protocol secure against active and adaptive Q2 adversaries that has communication
complexity linear in d.

1Q2 adversary structures are defined in section 2.
2where d is the size of the smallest monotone span program (MSP) representing the adversary structure as defined in

section 2

2

1.3 Techniques

One way of dealing with disputes is with a technique called Kudzu shares, as first defined by Beerliová-
Trub́ıniová and Hirt [2]. When one player accuses another of lying (or other such misbehavior), they are
said to be in dispute. When a dealer distributes a secret s, the shares sent to players in dispute with the
dealer are defined to be zero. That is, instead of using a standard Shamir secret sharing, the dealer picks
a random polynomial f such that f(0) = s and f(i) = 0 for each Pi in dispute with the dealer. Then
the shares f(i) are sent to each player Pi. The shares of the players in dispute with the dealer are called
Kudzu shares. Since the set of players in dispute with the dealer is public knowledge, every player will
know the shares sent to players in dispute with the dealer. This prevents the recipients from lying about
the shares they received later in the protocol. The secret sharing scheme from [3] can also be adapted
to implement Kudzu shares; ours is the first MPC protocol to implement Kudzu shares with MSP secret
sharing for general adversaries.

There are 3 types of sharings that are used during the computation phase of the protocol: Inputs from
players, random inputs, and multiplication triples for evaluating multiplication gates. These sharings are
jointly generated by the players. Each such sharing is a sum of sharings from each of the players (other
than those known to be corrupt). For our protocol, each player will remember for each share he holds
which part of the sum came from which player. In general, we simply require that each player remember
all messages sent and received. This is done in order to facilitate dispute control in the MPC protocol, and
in particular in the sub-protocol LC-Reconstruct.

2 Definitions and Assumptions

Our MPC protocol is designed for a synchronous network with secure point-to-point channels and an
authenticated broadcast channel.

We denote the player set by P. The players are to compute an arithmetic circuit over a finite field F of
size |F| = 2κ. We let cI , cM , cR, cO denote the number of input, multiplication, random, and output gates
(respectively) in the circuit. The total size of the circuit is C = cI +cM +cR+cO. The multiplicative depth
of the circuit is D. We denote the adversary structure by A ⊂ 2P . Adversary structures are monotone,
meaning that if A ∈ A, then any subset of A is in A. We denote by A the set of maximal sets in A (i.e.,
the set of all sets in A that are not proper subsets of any other sets in A). An adversary structure A is said
to be Q2 if A,B ∈ A ⇒ A ∪ B 6= P. Our MPC protocol is able to tolerate an active, adaptive adversary
whose corruption pattern is specified by a Q2 adversary structure.

We denote by Disp the set of pairs of players who are in dispute with one another. If at any time a
dispute arises between player Pi and player Pj , (i.e., one of them says that the other is lying), the pair
{Pi, Pj} is added to Disp. Since all disputes are handled over the broadcast channel, each player has the
same record of which pairs of players are in Disp. We define Dispi = {Pj | {Pj , Pi} ∈ Disp}. If at any time
the set Dispi is no longer in A, that means that at least one honest player has accused Pi, and therefore
all players know that Pi must be corrupt. We use the set Corr to denote the set of players known by all
players to be corrupt. When a player is added to Corr, he is also added to Dispi for each Pi. (That is,
players that are known to be corrupt are in conflict with all other players.) We define Good = P − Corr.
Whenever Corr is changed, Good is correspondingly changed.

Most of the protocols in this paper use dispute control and will terminate when one or more pairs of
players are added to Disp. In this case, the protocol terminates unsuccessfully. We handle unsuccessful
termination of protocols as in [2]. Namely, the circuit is divided into (roughly) n2 segments, and if one of
the sub-protocols terminates unsuccessfully during the computation for a segment, that segment is started
over from the beginning. A new dispute is found at each unsuccessful termination, and since there can
be at most n2 disputes, this does not affect the asymptotic complexity of the protocol. Throughout this

3

paper, we will assume without explicitly stating it that if a sub-protocol invoked by a parent protocol
terminates unsuccessfully, then the parent protocol terminates unsuccessfully.

Let M be a matrix over F with d rows and e columns, and let3 a = (1, 0, 0, · · · , 0)> ∈ Fe. The triple
(F,M,a) is called a monotone span program (MSP).

Define (x1, x2, . . . , x`)
> ∗ (y1, y2, . . . , y`)

> = (x1y1, x2y2, . . . , x`y`)
>, and suppose λ is a vector in Fd.

We call (F,M,a,λ) a monotone span program with multiplication if (F,M,a) is an MSP and if λ has the
property that

〈λ,Mb ∗Mb′〉 = 〈a,b〉 · 〈a,b′〉

for all b,b′. In this case, λ is called the recombination vector.
Each row of M will be labeled with an index i (1 ≤ i ≤ n), so that each row corresponds to some

player. For any nonempty subset A ⊂ {1, 2, . . . , n}, MA denotes the matrix consisting of all rows whose
index is in A.

For a given adversary structure A, we say that the MSP (F,M,a) computes A if

A /∈ A ⇐⇒ a ∈ ImM>A .

It was implicit in [6] that any Q2 adversary structure can be represented by circuit of threshold gates as
follows: Each input to the circuit corresponds to a single player. (A player may be associated to more than
one input.) The circuit is composed only of majority accepting threshold gates (i.e., k-out-of-n threshold
gates such that 2k ≤ n + 1). For a set A ∈ 2P , each input is set to 1 if the corresponding player is in A
and 0 if that player is not in A. The circuit outputs 0 if A ∈ A and outputs 1 if A /∈ A. It was shown
in [3] that if an adversary structure can be represented by a circuit as above, then there is an MSP with
multiplication which computes that adversary structure.

The size of the monotone span program representing the adversary structure (measured as the number
of rows in the matrix) is of prime importance in analyzing the communication complexity of the MPC
protocol, because secrets are shared as a vector in the image of M . There is an algorithm (implicit in [6])
that allows one to construct a monotone span program with multiplication from A for any Q2 adversary
structure A such that d is polynomially related to |A|. (The number of columns of the matrix, which we
denote by e, will always be less than d. This is important simply because e < d implies that the image of
M is not all of Fd, a fact which will be used later.)

A “basic” sharing of a value w created using the MSP (as generated by the protocol Share below) is
denoted by [w]. The share of player Pi is denoted by wi. We denote the portion of the share wi that came

from player Pj by w
(j)
i . Note that in general wi will be a vector, since it represents a portion of a vector

in the image of M , although it could be a single-element vector. The length of Pi’s share will depend on
how Pi is represented in the adversary structure.

This secret sharing scheme is linear in that each player can compute a sharing of an affine combination
of already-shared secrets by performing local computations. For instance, if secrets [s(1)], [s(2)], . . . , [s(`)]
have already been shared, then the players can compute a sharing of r = a(0) +

∑`
k=1 a

(k)s(k) for publicly

known constants a(0), . . . , a(`) by each Pi locally computing ri = a
(0)
i +

∑`
k=1 a

(k)s
(k)
i .

3 The Protocols

This section describes the MPC protocol and all sub-protocols. Proofs are deferred to Appendix A.1.

3The protocol actually works if a is any fixed vector, but it is convenient to choose a as we have.

4

3.1 Secret Sharing

Our MPC protocol uses a “basic” secret sharing protocol and constructs a verifiable secret sharing (VSS)
protocol by combining the basic protocol with information checking [2]. The basic secret sharing protocol—
which is described in this section—is essentially the secret sharing protocol of [3], except that it is imple-
mented with Kudzu shares [2]. We first review the secret sharing protocol of [3] and then prove that this
can be implemented with Kudzu shares.

Given an MSP with matrix M of size d× e as described in section 2, the secret sharing protocol of [3]
proceeds as follows: The dealer with secret s picks e − 1 random values r2, . . . , re, constructing a vector
s = (s, r2, r3, . . . , re). The dealer then computes b = Ms = [s] and sends some of the entries of the vector
b to each player. It is shown in [3] how to construct MSPs suitable for secret sharing for any given Q2
adversary structure.

To implement Kudzu shares with this secret sharing scheme, we note that the secret sharing scheme
described above is perfectly private (proved in [3]). In other words, the adversary’s view of the vector b
is independent of the secret being shared. So for a sharing b = [s], the dealer can construct a sharing of
zero [0] such that the adversary’s view of [0] is the same as his view of [s]. Then the sharing [s]− [0] is a
sharing of s with Kudzu shares, as the shares of all players controlled by the adversary will be zero.

Protocol: Share(D, s)

The dealer PD wants to share a secret s ∈ F. He selects random values r2, r3, . . . , re ∈ F, constructing a vector s =
(s, r2, r3, . . . , re) ∈ Fe. The random values r2, r3, . . . , re are chosen subject to the constraint that the shares of players in
dispute with PD must be all-zero vectors. The dealer then computes [s] = b = Ms, where M is the MSP corresponding to A.
The dealer sends bj to each Pj /∈ DispD (where bj is the vector of components of b corresponding to player Pj).

In this paper, we will represent the complexity of each protocol in a table. The columns denote com-
munication bandwidth, broadcast bandwidth, communication rounds, and broadcast rounds (abbreviated
CB, BCB, CR, and BCR, respectively). The two rows represent the complexity in the absence of a dispute
and the added complexity per dispute. It is assumed that the communication and broadcast bandwidths
are stated asymptotically (i.e., the big-O is not written, but is assumed). Bandwidth is measured in field
elements, so one would have to multiply by κ to compute the bandwidth in bits.

Share CB BCB CR BCR

WithoutDispute d 0 1 0

PerDispute 0 0 0 0

For a value v ∈ F, we call the canonical sharing of v the sharing for which r2, r3, . . . , re are all zero.

Lemma 1. The protocol Share is a secret sharing scheme secure against any active, adaptive adversary
with Q2 adversary structure A.

3.2 Information Checking

Information checking (IC) is a scheme by which a sender can give a message to a receiver along with some
auxiliary information (verification tags); the sender also gives some auxiliary information (authentication
tags) to a verifier. This is done such that at a later time, if there is a disagreement about what the sender
gave the receiver, the verifier can act as an “objective third party” to settle the dispute. We ensure that
the verifier does not find out any information about the message (until a dispute arises).

5

The protocols Distribute-Tags and Check-Message are are variants of those used in [2], so their explicit
description is deferred to Appendix A.2. The main difference is that we use an extension field G of F to
allow the sender to produce tags for messages of length at most d. Since d can be as much as exponential
in n, this is a much larger message size than that allowed in [2].

Lemma 2. The following four facts hold.

1. If Distribute-Tags succeeds and PV , PR are honest, then with overwhelming probability PV accepts the
linear combination of the messages in Check-Message.

2. If Distribute-Tags fails, then a new pair of players is added to Disp, and at least one of the two players
is corrupt.

3. If PS and PV are honest, then with overwhelming probability, PV rejects any fake message m′ 6= m in
Check-Message.

4. If PS and PR are honest, then PV obtains no information about m in Distribute-Tags (even if it fails).

The proof of this lemma and the complexities of the information checking protocols are given in Ap-
pendix A.2.

3.3 Verifiable Secret Sharing

A verifiable secret sharing (VSS) scheme consists of two protocols, VSS and VSS-Reconstruct. We use the
following definition of secret sharing:

Definition 1. Consider a protocol VSS for distributing shares of a secret s and a protocol VSS-Reconstruct
for reconstructing s from the shares. We call this pair of protocols a VSS scheme if the following properties
are satisfied (with overwhelming probability):

1. Termination: Either all honest players complete VSS, or a new dispute is found. All honest players
will complete VSS-Reconstruct.

2. Privacy: If the dealer is honest, then before the beginning of VSS-Reconstruct, the adversary has no
information on the shared secret s.

3. Correctness: Once all honest players complete VSS there is a fixed value r such that:

3.1 If the dealer was honest throughout VSS, then r = s.

3.2 Whether or not the dealer is honest, at the end of VSS-Reconstruct the honest players will recon-
struct r.

The following protocol allows a dealer PD ∈ Good to verifiably share ` values. To verify correctness,
each player acts as verifier and requests a random linear combination of these sharings (masked by a
random sharing) to be opened. If the sharing is inconsistent (meaning that it is not in the span of M),
then dispute resolution occurs. In addition, when PD shares secrets, he utilizes information checking to
produce authentication and verification tags in case a disagreement occurs later as to what was sent.

Protocol: VSS(PD, `, s
(1), . . . , s(`))

We assume that PD ∈ Good wants to share s(1), . . . , s(`). If PD ∈ Corr, then all the sharings will be defined to be all-zero
sharings.

1. Distribution

1.1 PD selects n extra random values u(1), . . . , u(n), and then invokes Share to share {u(i)}ni=1 and {s(i)}`i=1.

6

1.2 For each pair PR, PV /∈ DispD such that {PR, PV } /∈ Disp, invoke Distribute-Tags(PD, PR, PV , sR), where

sR = (s
(1)
R , . . . , s

(`)
R , u

(1)
R , . . . , u

(n)
R)

(remember that each s
(k)
R and u

(k)
R is a vector).

2. Verification

The following steps are performed in parallel for each PV /∈ DispD, who acts as verifier.

2.1 PV choses a random vector (r1, . . . , r`) ∈ F` and broadcasts it.

2.2 Each player Pi /∈ DispD sends his share of
∑`
k=1 rk[s(k)] + [u(V)] to PV .

2.3 If PV finds that the shares he received in the previous step (together with the Kudzu shares) form a consistent
sharing, (i.e., it is a vector in the span of MP−Corr), then PV broadcasts (accept, PD), and the protocol terminates.
Otherwise, PV broadcasts (reject, PD).

3. Fault Localization

For the lowest PV that broadcast “(reject, PD)” in the previous step, then the following steps are performed.

3.1 PD broadcasts each share of
∑`
k=1 rk[s(k)] + [u(V)]. If this sharing is inconsistent, then PD is added to Corr and the

protocol terminates.

3.2 If the protocol did not terminate in the last step, then there is a share of some player Pi /∈ DispD that broadcast a
different share than PD. So PV broadcasts (accuse, Pi, PD, vi, vD), where vi is the value of the share sent by Pi and
vD the value sent by PD.

3.3 If Pi disagrees with the value vi broadcast by PV , then Pi broadcasts (dispute, Pi, PV), the set {Pi, PV } is added
to Disp, and the protocol terminates.

3.4 If PD disagrees with the value vD broadcast by PV , then PD broadcasts (dispute, PD, PV), the set {PD, PV } is
added to Disp, and the protocol terminates.

3.5 If neither Pi nor PD complained in the previous two steps, then {Pi, PD} is added to Disp, and the protocol
terminates.

VSS CB BCB CR BCR

WithoutDispute `d+ nd+ n2κ log d n`+ n2 4 3

PerDispute 0 d 0 4

Note that this protocol can be easily modified to (verifiably) construct multiple sharings of 1 ∈ F, (i.e.,
the multiplicative identity). We simply require that all s(k) = 1 for all k = 1, . . . , ` and u(k) = 1 for all
k = 1, . . . , n, and in step 2.3, PV checks not only that the sharing is consistent, but that it is a sharing of∑`

k=1 rk + 1; step 3.1 is similarly altered. Furthermore, in the fault localization section, the players check
not only that sharings are consistent, but that they are sharings of the correct values. We refer to this
modified protocol by VSS-One.

Lemma 3. The protocol VSS is statistically correct and perfectly private. More explicitly:

1. If VSS terminates successfully:

1.1 With overwhelming probability, the values s(1), . . . , s(`) are correctly shared.

1.2 With overwhelming probability, for each ordered triple of players (Pi, Pj , Pk) that are not in dispute
with one another,4 Pk has correct authentication tags for the shares sent from Pi to Pj.

2. If the protocol terminates with a dispute, then the dispute is new.

3. Regardless of how the protocol terminates, the adversary gains no information on the s(1), . . . , s(`) shared
by honest players.

The protocol VSS-Reconstruct, is used to reconstruct a sharing generated by a single player. The
reconstruction protocol used in the main MPC protocol (called LC-Reconstruct) will be used to reconstruct

4That is, no pair of players in the triple are in dispute with each other.

7

linear combinations of sharings that were shared by multiple dealers. Since VSS-Reconstruct is largely
the same as the reconstruction protocol in [2], using the authentication and verification tags generated in
VSS-Share, it is deferred to Appendix A.3.

Lemma 4. The pair VSS and VSS-Reconstruct described above constitute a VSS scheme.

3.4 Reconstructing Linear Combinations of Sharings

The following protocol is used to reconstruct linear combinations of sharings of secrets that have been
shared using VSS. It assumes that each sharing [w] is a sum of sharings [w(1)] + · · · + [w(n)], where [w(i)]
is a linear combination of sharings shared by player Pi. Note that the protocol has some chance of failure.
However, whenever the protocol fails, a new player is added to Corr, so it can fail only O(n) times in the
entire MPC protocol.

The technique for using the authentication tags in LC-Reconstruct is non-standard, and deserves a bit
of explanation. If the initial broadcasting of shares of [w] is inconsistent, then the players open each [w(j)].
If [w(j)] is the first such sharing that is inconsistent, then the players will want to use the authentication
tags to determine who is lying. However, [w(j)] is a linear combination of sharings that were generated
with VSS. Each of these initial sharings has authentication tags, but there is no means for combining the
tags to get tags for [w(j)].

So the players need to localize which of the sharings in the linear combination [w(j)] = a1[s
(1)] +

· · · + am[s(m)] is inconsistent. One way to do this would be to have Pj state which player he accuses
of lying and have that player broadcast shares of each [s(k)] (or if Pj is corrupt, all players broadcast
their shares of each [s(k)]). Once this is done, the players could use the tags for whichever share Pj
claims is corrupt to determine who was lying. Although this approach would work, it would result in
an enormous communication complexity. Therefore, instead of opening all of the [s(k)] all at once, the
players use a “divide-and-conquer” technique: Break the sum into two halves, determine which sum has
the inconsistency, break that sum in half, and so on until the players reach an individual sharing, at which
point they can use the authentication tags.

Protocol: LC-Reconstruct([w])

Throughout this protocol, if a player ever refuses to send or broadcast something that the protocol requires, that player is
added to Corr, and the protocol terminates.

1. Each Pi /∈ Corr broadcasts his share wi of [w].

2. If the sharing broadcast in the previous step is consistent, then the players reconstruct w as described in the introduction
to VSS-Reconstruct, and the protocol terminates.

3. If the sharing was inconsistent, each Pi /∈ Corr broadcasts his share w
(j)
i for each Pj ∈ P.

4. If any player Pi broadcasted values such that his summands do not match his sum (i.e., if wi 6=
∑n
j=1 w

(j)
i), then all such

players are added to Corr, and the protocol terminates.

5. For the lowest j such that the shares of w(j) broadcast in step 3 are inconsistent, one of two steps is performed: If Pj /∈ Corr
proceed to step 6. Otherwise, proceed to step 7.

6. Pj /∈ Corr
6.1 Pj broadcasts (accuse, i) for the player Pi he believes to have sent an incorrect share.

6.2 Since [w(j)] is a linear combination of sharings dealt by Pj , the players (internally) think of [w(j)] as a1[s(1)] + · · ·+
am[s(m)], where each [s(k)] was generated with VSS and each ak is non-zero. We arrange the s(k)’s according to the
order in which they were dealt.

6.3 From the sharings a1[s(1)], . . . , am[s(m)], define two sharings
a1[s(1)]+ · · ·+abm/2c[s(bm/2c)] and abm/2c+1[s(bm/2c+1)]+ · · ·+am[s(m)]. The player Pi accused in step 6.1 broadcasts
his share of each of these two sharings.

8

6.4 If Pi broadcast shares of summands in the previous step that do not match up with the previously sent share of their
sum, then Pi is added to Corr, and the protocol terminates.

6.5 Player Pj broadcasts which of the sharings broadcast in step 6.3 he disagrees with. If this is a single sharing ak[s(k)],
then the players proceed to step 6.6. Otherwise, if the sharing is some sum ak1 [s(k1)] + · · · + ak2 [s(k2)], then the
players return to step 6.3, but with a1[s(1)], . . . , am[s(m)] replaced by ak1 [s(k1)] + · · ·+ ak2 [s(k2)].

6.6 At this point, Pi has broadcast his share of ak[s(k)], and Pj has broadcast that he disagrees with this share. For each
PV /∈ Dispj ∪ Dispi, the players invoke Check-Message(Pi, PV , si), where si is the vector defined in step 1.2 of the
invocation of VSS in which [s(k)] was shared.

6.7 If Pi sent shares to PV in the invocation of Check-Message that do not match with the share of ak[s(k)], then PV
broadcasts (accuse, i), and {Pi, PV } is added to Disp.

6.8 For each PV /∈ Dispi that rejected the message sent by Pi in the invocation of Check-Message, {Pi, PV } is added to
Disp. For each PV that accepted the message, {Pj , PV } is added to Disp.

6.9 At this point, all players are in dispute with either Pi or Pj . By the Q2 property of the adversary structure A, this
means that one of Dispi or Dispj is no longer in A. If Dispi /∈ A then Pi is added to Corr, and if Dispj /∈ A, then
Pj is added to Corr. Then the protocol terminates.

7. Pj ∈ Corr
7.1 Since [w(j)] is a linear combination of sharings dealt by Pj , the players (internally) think of [w(j)] as a1[s(1)] + · · ·+

am[s(m)], where each [s(k)] was generated with VSS and each ak is non-zero. We arrange the s(k)’s according to the
order in which they were dealt.

7.2 From the sharings a1[s(1)], . . . , am[s(m)], define two sharings a1[s(1)]+· · ·+abm/2c[s(bm/2c)] and abm/2c+1[s(bm/2c+1)]+

· · ·+ am[s(m)]. Each player not in Corr broadcasts his share of each of these two sharings.

7.3 Any player who broadcast shares of summands in the previous step that do not match up with the previously sent
share of their sum is added to Corr, and the protocol terminates.

7.4 If the players reach this step, then one of the sharings broadcast in step 7.2 is inconsistent. If this is a single sharing
ak[s(k)], then the players proceed to step 7.5. Otherwise, if the sharing is some sum ak1 [s(k1)] + · · ·+ ak2 [s(k2)], then
the players return to step 7.2, but with a1[s(1)], . . . , am[s(m)] replaced by ak1 [s(k1)] + · · ·+ ak2 [s(k2)].

7.5 The players invoke VSS-Reconstruct for the sharing [s(k)] decided upon in the last execution of step 7.4 (however,
they skip step 1 of VSS-Reconstruct, since shares of ak[s(k)] have already been broadcast).

7.6 The invocation of VSS-Reconstruct in the previous step will have added a new player to Corr, so the protocol
terminates.

LC-Reconstruct CB BCB CR BCR

WithoutDispute 0 d 0 1

PerDispute n2`+ n2κ log d n2 + nd+ d log C 2 6 + log C

Lemma 5. If [w] is a linear combination of sharings generated with VSS, then with overwhelming proba-
bility, an invocation of LC-Reconstruct([w]) will either reconstruct the correct value w or add a new player
to Corr. Furthermore, LC-Reconstruct does not leak any information about any sharing other than [w] to
the adversary.

3.5 Generating Random Challenges

The following protocol allows the players to generate a publicly known challenge vector s(1), . . . , s(`), or
the protocol fails (if one of its sub–protocols fails) and outputs a new dispute pair.

Protocol: Generate-Challenges(`)

1. Every player Pi /∈ Corr selects a random summand vector s(1,i), . . . , s(`,i).

2. Call VSS(Pi, `, s
(1,i), . . . , s(`,i)) to let every Pi /∈ Corr verifiably share his summand vector.

9

3. Call LC-Reconstruct ` times in parallel to reconstruct the sum sharings
∑
Pi /∈Corr s

(1,i), . . . ,
∑
Pi /∈Corr s

(`,i).

Generate-Challenges CB BCB CR BCR

WithoutDispute n`d+ n2d+ n3κ log d n2`+ n3 + d` 4 4

PerDispute n2`+ n2κ log d n2 + nd+ d log C 2 6 + log C

Lemma 6. If Generate-Challenges terminates successfully, then the reconstructed vector is random. If
Generate-Challenges terminates unsuccessfully, then a new dispute is found.

3.6 Generating Multiplication Triples

The following protocol allows the players to verifiably generate random sharings of triples (a, b, c) such
that ab = c. The idea is that a random a(k) is generated, and then each Pi is “responsible for” creating a
random triple a(k)b(i,k) = c(i,k). To verify correctness, the Pi also creates a triple a(k)b̃(i,k) = c̃(i,k), and this
is used to mask an opening of a(k)b(i,k)− c(i,k). Once all these triples are checked, the final triple is defined
to be (a(k),

∑n
i=1 b

(i,k),
∑n

i=1 c
(i,k)).

Protocol: Multiplication-Triple(`)

1. Generating Triples

1.1 Each Pi /∈ Corr invokes VSS(Pi, 2`n + 3`) to generate uniformly random sharings and VSS-One(Pi, 2`n) to gen-
erate sharings of 1 ∈ F; these invocations are done in parallel. Denote the random sharings of player Pi by
([a(i,1)], . . . , [a(i,`)]), ([b(i,1)], . . . , [b(i,`)]), ([̃b(i,1)], . . . , [̃b(i,`)]), and {([r(i,j,1)], . . . , [r(i,j,`)]), ([r̃(i,j,1)], . . . , [r̃(i,j,`)])}nj=1

and the sharings of ones by {([1(i,j,1)], . . . , [1(i,j,`)]), ([1̃(i,j,1)], . . . , [1̃(i,j,`)])}nj=1. The sharings of players in Corr are
defined to be all-zero sharings.

1.2 For each k = 1, . . . , ` and each i such that Pi /∈ Corr, the players define and locally compute

[a(k)] =
∑n
m=1[a(m,k)]

[r(i,k)] =
∑n
m=1[r(i,m,k)]

[1(i,k)] =
∑n
m=1[1(m,i,k)] + w[1(i,i,k)],

where w ∈ F is the unique element that makes [1(i,k)] a sharing of 1. The sharings [r̃(i,k)] and [1̃(i,k)] are similarly
defined.

1.3 Each Pj /∈ Corr sends his share of [a(k)][b(i,k)] + [r(i,k)][1(i,k)] and [a(k)][̃b(i,k)] + [r̃(i,k)][1̃(i,k)] to Pi /∈ Corr for each
k = 1, . . . , `. (The shares of players in Corr will be Kudzu shares, so Pi knows those shares as well.)

1.4 Each Pi /∈ Corr applies the recombination vector λ to the shares of D(i,k) = a(k)b(i,k) +r(i,k) and D̃(i,k) = a(k)b̃(i,k) +
r̃(i,k) received in the previous step to compute D(i,k) and D̃(i,k) for each k = 1, . . . , `.

1.5 Each Pi broadcasts D(i,k) and D̃(i,k) for each k = 1, . . . , `.

1.6 Each player locally computes [c(i,k)] = D(i,k) − [r(i,k)] and [c̃(i,k)] = D̃(i,k) − [r̃(i,k)] (using the canonical sharings of

D(i,k) and D̃(i,k)).

2. Error Detection

2.1 The players invoke Generate-Challenges(`) to generate a random vector (s(1), . . . , s(`)).

2.2 Each player not in Dispi broadcasts his share of [̂b(i,k)] = [̃b(i,k)]+s(i)[b(i,k)] for each i = 1, . . . , n and each k = 1, . . . , `.

2.3 If the sharing of some [̂b(i,k)] broadcast in the previous step is inconsistent, Pi broadcasts (accuse, Pj) for some
Pj /∈ Dispi who broadcasted an incorrect share, then {Pi, Pj} is added to Disp and the protocol terminates.

2.4 The players invoke multiple instances of LC-Reconstruct in parallel to reconstruct z(i,k) = [a(k)]̂b(i,k) − [c̃(i,k)] −
s(k)[c(i,k)] for each i = 1, . . . , n and each k = 1, . . . , `.

10

2.5 If all the z(i,k) reconstructed in the previous step are zero, then we define

[b(k)] =
∑n
m=1[b(m,k)]

[c(k)] =
∑n
m=1[c(m,k)],

and the protocol terminates successfully with the multiplication triples taken to be (a(k), b(k), c(k)) for k = 1, . . . , `.

3. Fault Localization

If any z(i,k) reconstructed in step 2.4 is not zero, the following is done for the lexicographically lowest pair (i, k) such that
z(i,k) 6= 0.

3.1 Each Pj broadcasts his share of [a(m,k)], [r̃(m,i,k)], and [r(m,i,k)] for each Pm /∈ Pj .
3.2 If Pi sees that the shares of some Pj /∈ Dispi sent in the previous step are inconsistent with the share sent in step 1.3

or 2.4, then Pi broadcasts (accuse, Pj); then {Pj , Pi} is added to Disp and the protocol terminates.

3.3 Each Pm examines the shares broadcast in the previous step of all sharings that Pm generated. If Pm notices that
some Pj /∈ Dispm broadcast an incorrect share in the previous step, then Pm broadcasts (accuse, Pj); then {Pm, Pj}
is added to Disp and the protocol terminates.

3.4 If no Pm broadcast an accusation in the previous step, then Pi is added to Corr and the protocol terminates.

Multiplication-Triple CB BCB CR BCR

WithoutDispute n2`d+ n3κ log d n3`+ n`d 9 11

PerDispute n2`+ n2κ log d n2 + nd+ d log C 2 6 + log C

Lemma 7. If Multiplication-Triple terminates unsuccessfully, then a new dispute is localized. If Multiplication-
Triple succeeds, then it maintains statistical correctness and perfect privacy. That is, with overwhelming
probability, at the end of the protocol the players hold sharings of ` multiplication triples (a, b, c) with c = ab;
in addition, the adversary has no information on a, b, or c (other than that c = ab).

3.7 Preparation Phase

The following protocol generates the multiplication triples for the multiplication gates and random sharings
for random gates. The task is broken into n2 segments. The number of multiplication triples and random
sharings generated in each segment are denoted by LM and LR (respectively), and we require LM ≤
dcM/n2e and LR ≤ d(cR)/n2e.

Protocol: Preparation-Phase

Initialize Corr and Disp to the empty set. For each segment handling LM multiplication gates and LR random gates, the
following steps are performed. If any of the subprotocols fails, then the segment is repeated.

1. Invoke Multiplication-Triple(LM). Assign one multiplication triple to each multiplication gate in this segment.

2. Each Pi /∈ Corr invokes VSS(Pi, LR, r
(1,i), . . . , r(LR,i)), sharing uniformly random values. (The sharings of corrupt players

are defined to be all-zero sharings.)

3. We define LR random sharings by [r(k)] =
∑n
i=1[r(k,i)] for each k = 1, . . . , LR. Assign one random sharing to each random

gate in this segment.

Preparation-Phase CB BCB CR BCR

WithoutDispute n2(cM + cR)d+ n5κ log d n3(cM + cR) + n(cM + cR)d 13n2 14n2

PerDispute (cM + cR) + n2κ log d n2 + nd+ d log C 2 6 + log C

11

3.8 Input Phase

The goal of the input phase is to allow each player to share their inputs. We denote the number of inputs
in a given segment by L. We require L ≤ dcI/n2e, and we also require that each segment contain inputs
from only one player.

Protocol: Input-Phase

For each segment, the following steps are executed to let the dealer PD /∈ Corr verifiably share L inputs s(1), . . . , s(L). If some
invocation of VSS fails, then the segment fails and is repeated.

1. Each Pi /∈ Corr invokes VSS(Pi, L, r
(1,i), . . . , r(L,i)), sharing uniformly random values. (The sharings of corrupt players

are defined to be all-zero sharings.)

2. We define L random sharings by [r(k)] =
∑n
i=1[r(k,i)] for each k = 1, . . . , L. Assign one random sharing to each input gate

in this segment.

3. Each Pi /∈ DispD sends his share of each [r(k)] to PD.

4. If PD finds that one of the sharings was inconsistent, he broadcasts the index of this sharing, and the following steps are
performed. If they are all consistent, then the players proceed to step 5.

4.1 If PD indicated that the random sharing [r] was inconsistent, then each Pi /∈ DispD broadcasts their share of [r].

4.2 If PD sees that some Pi broadcast a different share than was sent privately, then PD broadcasts (accuse, i), {PD, Pi}
is added to Disp, and the segment fails and is repeated.

4.3 The players invoke LC-Reconstruct to reconstruct [r] (but skipping the first step, because shares of [r] have already
been broadcast).

4.4 Since the sharing [r] was inconsistent, the invocation of LC-Reconstruct in the previous step will have located a new
corrupt player, so the segment fails and is repeated.

5. Using the method for reconstructing secrets described in the introduction to VSS-Reconstruct, PD computes the random
value r associated with each of his L input gates in this segment.

6. For each input gate with input s and random sharing [r], PD broadcasts s− r.
7. For each s− r broadcast in the previous step, each player locally computes s− r+ [r] (using the canonical sharing of s− r)

as the sharing for that input gate. Since each player is storing each share as a sum of shares (one from each player), we
update [r] by adding the canonical sharing of s− r to [r(D)] and leaving [r(i)] the same for i 6= D. In the dealer failed to
broadcast a value for an input gate, or if the dealer was already in Corr, then the sharing for that gate is taken to be [r].

Input-Phase CB BCB CR BCR

WithoutDispute ncId+ n4d+ n5κ log d n2cI + n5 5n2 4n2

PerDispute cI + n2κ log d n2 + nd+ d log C 2 9 + log C

3.9 Computation Phase

After the circuit preparation has been done, the computation phase is just a matter of opening linear
combinations of sharings and possibly resolving disputes.

Each affine gate is computed by performing local computations. Each multiplication gate is computed
by opening affine combinations of known sharings. Each output gate is computed by publicly opening it.5

This means that the computation phase will consist of local operations and cM + cO public openings.
The circuit will be divided into segments and evaluated one segment at a time. The segments will be

constructed such that each segment has no more than d(cM + cO)/n2e gates, and a single segment only

5We assume that each player receives all the outputs, although the protocol could easily be modified to allow for private
outputs.

12

contains gates from one multiplicative layer of the circuit. This means that if D is the multiplicative depth
of the circuit, then there are at most n2+D segments. Each affine gate will be included in the first possible
segment in which it can be evaluated.

If a fault occurs in some segment (which is to say that one of the opened sharings is inconsistent), then
one or more new disputes are localized, and the segment is repeated.

It is important to remember that all sharings generated by VSS and Multiplication-Triple are sums of
sharings such that one summand comes from each player. Since all sharings opened are affine combinations
of these, this means that every sharing we will be opening in the computation phase is a sum of sharings
with one summand coming from each player. Thus the protocol LC-Reconstruct can be performed.

Protocol: Computation-Phase

For each segment with L reconstructions, the following steps are executed. If one of the reconstructions is inconsistent, then
a new dispute is found, and the segment is repeated.

1. For each affine gate in the segment, the players evaluate the gate by local computations.

2. The players invoke LC-Reconstruct multiple times in parallel for each output gate in the segment.

3. For each multiplication gate in the segment with inputs [x] and [y] and associated multiplication triple ([a], [b], [c]), the
following steps are performed in parallel.

3.1 In parallel with step 2, the players invoke LC-Reconstruct([x− a]) and LC-Reconstruct([y − b]).
3.2 The players assign the sharing (x− a)(y − b)− (x− a)[b]− (y − b)[a] + [c] as the output of the gate.

Computation-Phase CB BCB CR BCR

WithoutDispute 0 Cd 0 D
PerDispute Cn+ n3 + n2κ log d n2 + nd+ d log C 2 6 + log C

3.10 Putting it All Together

We perform the MPC protocol by invoking Preparation-Phase, Input-Phase, and Computation-Phase in
succession. Note that there is a term n added to the number of communication rounds to account for the
fact that when a player is corrupted, all players will broadcast their shares sent by that player.

Theorem 1. A set of n players communicating over a secure synchronous network can evaluate an agreed
function of their inputs securely against an active, adaptive adversary with an arbitrary Q2 adversary
structure A with point-to-point communication bandwidth O(n2Cd+n4d+n5κ log d) and broadcast bandwidth
O(n3C+nCd+n5 +n3d+n2d log C), taking 20n2 communication rounds and 27n2 +D+n2 log C broadcast
rounds. Here, d is the number of rows in the smallest MSP (with multiplication) representing A, and κ is
the size of an element of F.

References

[1] Donald Beaver and Avishai Wool. Quorum-based secure multi-party computation. In EUROCRYPT,
pages 375–390, 1998.

[2] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Efficient multi-party computation with dispute control.
In Shai Halevi and Tal Rabin, editors, TCC, volume 3876 of Lecture Notes in Computer Science, pages
305–328. Springer, 2006.

13

[3] Ronald Cramer, Ivan Dam̊agard, and Ueli Maurer. Span programs and general multi-party computa-
tion. Preliminary version appeared as BRICS tech. report, BRICS-RS-97-28, 1998.

[4] Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient multiparty
computations secure against an adaptive adversary. In EUROCRYPT, pages 311–326, 1999.

[5] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. General adversaries in unconditional multi-party
computation. In ASIACRYPT, pages 232–246, 1999.

[6] Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolerable in general multiparty
computations. Proc. PODC, 1997.

[7] Adam Smith and Anton Stiglic. Multiparty computation unconditionally secure against Q2 adversary
structures. CoRR, cs.CR/9902010, 1999.

A.1 Proofs

Proof of Lemma 1. See [3] for the proof that the scheme is secure without the use of Kudzu shares (i.e.,
the case in which r2, . . . , re are chosen completely randomly).

To see that using Kudzu shares does not compromise security, note that if two players are in dispute,
then at least one of them is corrupt, so the adversary will know the zero-share anyway. Thus making the
share public knowledge doesn’t give the adversary any more information than he already had.

Proof of Lemma 3.

1. Assuming VSS terminates successfully:

1.1 We are guaranteed that there is at least one honest PV /∈ DispD (because otherwise PD would be
in Corr, and would not be sharing any values). So we are guaranteed that there is at least one
random vector (r1, . . . , r`) such that

∑`
k=1 rk[s

(k)] + [u(V)] will be opened toward an honest player.

Let R denote the subspace of F` defined as the set of vectors (r1, . . . , r`) such that
∑`

k=1 rk[s
(k)]

is a consistent sharing.6 Let r = (r1, . . . , r`) be some vector such that
∑`

k=1 rk[s
(k)] + [u(V)] is

a consistent sharing. Then the set of all vectors (r1, . . . , r`) such that
∑`

k=1 rk[s
(k)] + [u(V)] is a

consistent sharing is r +R.

Now if some [s(k)] is inconsistent, R will be a proper subspace of F`. In this case, the probability
that the sharing

∑`
k=1 rk[s

(k)] + [u(V)] is inconsistent is |r + R|/|F`| ≤ κ`−1/κ` = 1/κ, which is
negligible.

1.2 The correctness of the authentication tags follows from the correctness of Distribute-Tags.

2. The fact that any localized dispute is new follows from inspection of the protocol.

3. The only information the adversary receives are the corrupt players’ shares of each s(k) and all the shares
of

∑`
k=1 rk[s

(k)] + [u(V)]. Since the underlying secret sharing protocol is perfectly private (Lemma 1),
the shares of s(k) give the adversary no information on s(k), and since the sharing [u(V)] is random, the
shares of

∑`
k=1 rk[s

(k)] + [u(V)] are independent of the s(k).

Proof of Lemma 4.

1. Termination

The fact that VSS satisfies the termination property of definition 1 follows from Lemma 3.

6It may be the case that R = {0}.

14

In VSS-Reconstruct, the players either execute step 6 or step 7. In the last sub-step of step 6, if the
shares of non-corrupt players are consistent, then the protocol terminates successfully, and otherwise
the players move on to step 7. So to prove that the honest players always complete VSS-Reconstruct,
it suffices to prove the claim in the last sub-step of step 7 (which is sub-step 7.3); namely, we want to
show that at step 7.3, any player who broadcast an incorrect share in the first step of VSS-Reconstruct
will be in Corr. So suppose some Pi sent an incorrect share in step 1. If Pi sends the same share to
some Pm /∈ Dispi in step 7.1, then by Lemmas 2 and 3, Pm will label him corrupt. If Pi sends a different
share in step 7.1, then Pm accuse Pi in step 7.2. This means that any Pi who broadcast an incorrect
share in step 1 will now be in dispute will all honest players. Since the set of honest players is not in
A, this means that Pi will be labeled corrupt. So only good shares are used in step 7.3, meaning that
the protocol terminates successfully.

2. Privacy

Privacy of a secret w before any execution of VSS-Reconstruct follows from Lemma 3. In addition,
we need to show that invoking VSS-Reconstruct for some secret does not reveal any information about
other secrets. This is because shares of other secrets are sent during invocations of Check-Message.
However, note that whenever Check-Message is invoked, the person sending the shares is always in
dispute with the dealer, (which will certainly be the case if the dealer is in Corr). Since the dealer
and the share-holder are in dispute, one of them is corrupt, so the adversary already knows all shares
sent from the dealer to the share-holder, and revealing these shares to other players does not give the
adversary any additional information.

3. Correctness

It follows from Lemma 3 that at the end of VSS, each of the sharings is consistent, which means that
the vector of shares is in the span of the MSP matrix M . Any vector in the span of M corresponds
to a sharing of a unique value, and thus there is a unique value r such that the vector of shares is a
sharing of r. Furthermore, if the dealer is honest, then it is clear that r is the value that was supposed
to be shared.

Now we must verify that the honest players reconstruct r at the end of VSS-Reconstruct. It is clear
from inspection of VSS-Reconstruct that no matter how the protocol ends, the players always end up
reconstructing from a consistent set of shares. Also note that this reconstruction uses the shares of all
honest players (including Kudzu shares), because honest players broadcast correct shares in step 1, and
even if the dealer accuses them of lying in step 3, they will be vindicated in step 6.4. Since the shares
of honest players are sufficient to reconstruct a sharing, all honest players will reconstruct r.

Proof of Lemma 5. It is clear that if LC-Reconstruct succeeds, it will reconstruct the correct value, because
in that case the shares broadcast in the first step were consistent. The fact that unsuccessful termination
leads to finding a new corrupt player follows by examining steps 6.9 and 7.6.

To show that no information about any sharing other than [w] is leaked to the adversary, note that in
step 6, the only shares that are opened are shares held by a player that the dealer accuses of lying, and so
the adversary already knew those shares; in step 7, the shares revealed are those dealt by a corrupt dealer,
so again, the adversary learns nothing new.

Proof of Lemma 6. Since at least one player is honest, at least one summand vector s(1,i), . . . , s(`,i) will be
completely random. Thus the sum vector will be random.

The only way in which Generate-Challenges might terminate unsuccessfully is if VSS or LC-Reconstruct
terminates unsuccessfully, in which case a new dispute will be found.

15

Proof of Lemma 7. That a new dispute is localized when Multiplication-Triple terminates unsuccessfully is
clear from inspection of the protocol.

Privacy of a(k) follows from the fact that it is a sum of sharings, one sharing coming from each player.
The only time that a sharing involving a(k) is opened is in steps 1.3 and 2.4, and in both cases it is masked
(with [r(i,k)][1(i,k)] and [c̃(i,k)], respectively).

Privacy of b(k) follows from the fact that it is a sum of sharings, one sharing coming from each player.
Sharings involving each of the summands b(i,k) are only opened in steps 1.3 and 2.2; in step 1.3, the sharing
is opened to the player who generated it, and in step 2.2, the sharing is masked by b̃(i,k).

Privacy of c(k) follows from the fact that it is a sum of sharings, one sharing coming from each player,
and that the only time that a sharing involving a c(i,k) is opened is in step 2.4, where it is masked with
c̃(i,k).

With overwhelming probability, the invocations of VSS used to construct the sharings in the first step
generate valid sharings, and since a(k), b(k), and c(k) are affine combinations of these sharings, they are
valid sharings. In order to show that c(k) = a(k)b(k), it suffices to show that c(i,k) = a(k)b(i,k) for each
i. In particular, we want to show that if z(i,k) reconstructed in step 2.4 is zero, then with overwhelming
probability, c(i,k) = a(k)b(i,k). Note that z(i,k) = 0 if and only if s(k)(c(i,k)−a(k)b(i,k)) = −(c̃(i,k)− ã(k)b̃(i,k)).
If c(i,k) − a(k)b(i,k) 6= 0, then since s(k) is random, z(i,k) could only be zero with negligible probability.

A.2 The Information Checking Protocols

We now give the information checking protocols explicitly.

Protocol: Distribute-Tags(PS , PR, PV , (m
(1), . . . ,m(`)))

We call the sender PS , the receiver PR, and the verifier PV . We assume that a vector of messages m = (m(1), . . . ,m(`)) ∈ F`
(with ` ≤ d) has already be sent from the PS to PR. We also assume there is an extension field G of F such that G has minimal
size subject to |G| ≥ d|F|. (The field G is fixed throughout the entire MPC protocol.)

1. Generating Tags:

1.1 PS picks 2κ random elements y1, . . . , yκ, u1, . . . , uκ ∈ G.

1.2 For each i = 1, . . . , κ, PS determines vi such that the points (0, yi), (1,m
(1)), . . . , (`,m(`)), (ui, vi) lie on a degree `

polynomial (over G).

1.3 PS sends the authentication tags y1, . . . , yκ to PR and the verification tags zi = (ui, vi) to PV for each i.

2. Fault Detection:

2.1 PV partitions the set {1, . . . , κ} into sets I and I of almost equal size (
∣∣|I| − |I|∣∣ ≤ 1) and sends {zi}i∈I to PR.

2.2 PR checks for each zi sent by PV that the points (0, yi), (1,m
(1)), . . . , (`,m(`)), (ui, vi) lie on a polynomial of degree

`. If any one of these checks fails, PR broadcasts (reject). Otherwise, PR broadcasts (accept).

3. Fault Localization:
If PR broadcasted (reject) above, then the following steps are executed.

3.1 PR picks one zi that failed the check in step 2.2 and broadcasts (i, s, zi).

3.2 PV and PS broadcast zi.

3.3 If the value broadcasted by PS and PV differ, then {PS , PV } is added to Disp. If the value broadcasted by PR and
PV differ, then {PR, PV } is added to Disp. Otherwise, {PR, PS} is added to Disp.

Distribute-Tags CB BCB CR BCR

WithoutDispute κ log d 1 2 1

PerDispute 0 log d 0 2

16

In the execution of the protocol, a dispute may arise between the sender and receiver as to what the
value of the vector of messages was. The vector is revealed to the verifier using Check-Message, and then
the verifier either confirms or denies what the receiver claims to have received.

Protocol: Check-Message(PR, PV , (m
(1), . . . ,m(`)))

1. The receiver sends the vector of messages m = (m(1), . . . ,m(`)) along with authentication tags {yi}i∈I to PV .

2. The verifier checks that the points (0, yi), (1,m
(1)), . . . , (`,m(`)), (ui, vi) all lie on a polynomial of degree ` for each i = I.

If any one of these |I| checks passes, then the verifier broadcasts (accept). Otherwise, the verifier broadcasts (reject).

Check-Message CB BCB CR BCR

WithoutDispute `+ κ log d 1 1 1

PerDispute 0 0 0 0

Proof of Lemma 2. The proof is the same as in [2] with the exception of claim 3, whose proof is as follows:
The probability that PR could guess a point (0, yi) that worked for some m′ 6= m is no more than
κ/(|G| − `− 1) ≤ κ/(d2κ − `− 1) ≤ κ/(d(2κ − 1)− 1), which is negligible.

A.3 The VSS Reconstruct Protocol

Suppose we want to reconstruct a secret using the shares of some set A of players satisfying A /∈ A. By
the definition of an MSP, this meas that a ∈ ImM>A . So there is some vector ωA satisfying M>AωA = a. If
[w]A represents the shares of [w] held by players in A and s = (w, r2, . . . , re)

> represents the vector used
in Share to generate the sharing [w], then we can reconstruct the secret as

〈ωA, [w]A〉 = 〈ωA,MAs〉 = 〈M>AωA, s〉 = 〈a, s〉 = w.

This is the reconstruction procedure used in the following protocol.

Protocol: VSS-Reconstruct([w])

We assume that the sharing [w] has been shared by a dealer PD using VSS.

1. Each player not in Corr that holds a non-Kudzu share of [w] broadcasts their share.

2. If the shares broadcast in the previous step and the Kudzu shares form a consistent sharing (that is, they are in the
span of MP−Corr), then the secret w is reconstructed as described in the introduction to this protocol, and the protocol
terminates.

3. If the shares broadcast in step 1 form an inconsistent sharing, then PD broadcasts the index i of each player he accuses
of sending an incorrect share.

4. If PD did not broadcast an index in the previous step, then PD is added to Corr (if he is not already in Corr). Also, if
we remove the shares PD accused of being corrupted, and the remaining shares are still inconsistent, then PD is added to
Corr. Lastly, if the set of players in dispute with PD is no longer in A, then PD is added to Corr.

5. If PD /∈ Corr, then proceed to step 6. Otherwise, proceed to step 7.

6. Dealer not in Corr
6.1 For each player Pi accused by PD in step 3, the players invoke Check-Message(Pi, Pm, si) for each player Pm /∈

Dispi ∪ Dispj , where si is the vector defined in step 1.2 of the invocation of VSS in which [w] was shared.

6.2 For any Pi who sent a share to Pm that was different than the share broadcast in step 1, Pm broadcasts (accuse, i),
and {Pm, Pi} is added to Disp.

17

6.3 For each Pm /∈ Dispi that rejected the message sent by Pi in the invocation of Check-Message, {Pi, Pm} is added to
Disp. For each Pm that accepted the message, {PD, Pm} is added to Disp.

6.4 At this point, any Pi who was accused by PD and who broadcast an incorrect share in step 1 will have been accused
by all honest Pm /∈ Dispi, meaning that Pi will be added to Corr. Similarly, if Pi was accused by PD but broadcast
a correct share in step 1, then PD will have been accused by all honest Pm /∈ DispD, meaning that PD will be added
to Corr.

6.5 If the shares of players not in Corr (together with the Kudzu shares) form a consistent sharing, then those shares
are used to reconstruct w. If those shares are inconsistent, then the dealer is added to Corr, and the players proceed
to step 7.

7. Dealer in Corr
7.1 For all Pi that do not hold Kudzu-shares and for all Pm /∈ Dispi, the players invoke Check-Message(Pi, Pm, si), where

si is the vector defined in step 1.2 of the invocation of VSS in which [w] was shared.

7.2 For any Pi who sent a share to Pm that was different than the share broadcast in step 1, Pm broadcasts (accuse, i),
and {Pm, Pi} is added to Disp.

7.3 At this point, any Pi who broadcast an incorrect share in step 1 will have been accused by all Pm /∈ Dispi, meaning
that Pi will be added to Corr. The shares of players not in Corr are now used to reconstruct w.

VSS-Reconstruct CB BCB CR BCR

WithoutDispute 0 d 0 1

PerDispute n2`+ n2κ log d n2 2 5

18

