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Abstract

We show that if NP , co−RP then the existence of efficient indistinguishability obfuscation (iO)
implies the existence of one-way functions. Thus, if we live in “Pessiland”, where NP problems are hard
on the average but one-way functions do not exist, or even in “Heuristica”, where NP problems are hard
in the worst case but easy on average, then iO is impossible. Our result makes it redundant to explicitly
assume the existence of one-way functions in most “cryptographically interesting” applications of iO.

1 Introduction

Program obfuscation, the task of making code unintelligible while preserving its functionality, was first
rigorously studied by Barak et al. [2]. In that work, they defined a notion of virtual black box (VBB)
obfuscation, and proved that it is impossible to realize in general. In addition, they proposed a weaker
notion of indistinguishability obfuscation (iO), whose applicability was not clear at the time, but nevertheless
avoided their impossibility results. VBB obfuscation requires that access to the obfuscated program gives
no more power than access to an impenetrable black box with the same input-output functionality. iO is
weaker in that it guarantees that for any two circuits C0,C1 of same size that compute the same function,
it is hard to distinguish an obfuscation of C0 from an obfuscation of C1. Barak et al. showed that iO is
always realizable, albeit inefficiently: the iO can simply canonicalize the input circuit C by outputting the
lexicographically first circuit that computes the same function.

The interest in iO has gained considerable momentum following the works of Garg et al. [9] who pro-
posed an efficient candidate construction of iO for all circuits (along with a candidate construction of func-
tional encryption), and of Sahai and Waters [12], who demonstrated the wide applicability of iO for the con-
struction of many powerful cryptographic primitives. The security of the Garg et al. construction is based
on a specific family of intractability assumptions (different for any obfuscated function) closely related to
multilinear maps [7, 6]. Being introduced only recently, these assumptions are still not well-understood,
though several recent works have provided support to the security (in the even stronger VBB sense) of
related constructions in idealized algebraic models [5, 4, 1].

iO is a weaker primitive than VBB obfuscation. In fact, it is not hard to see that we cannot even
hope to prove that iO implies one-way functions: Indeed, if P = NP then one-way functions do not exist
but iO does exist (since the lexicographically first circuit that computes the same function can be found
efficiently). Therefore, we do not expect to build many “cryptographically interesting” tools just from iO,
but usually need to combine it with other assumptions. (One exception is witness encryption [10], which
can be constructed from iO alone.) It is known that iO can be combined with one-way functions (OWFs)
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to construct many powerful primitives such as public-key encryption, identity-based encryption, attribute-
based encryption (via witness encryption), as well as NIZKs, CCA encryption, deniable encryption [12], and
two message multi-party computation [8]. However, it is still not clear whether assuming one-way functions
is actually necessary for any of the above applications.

In this short note, we observe that the existence of iO, combined with the assumption that NP , co−RP
(a worst-case hardness assumption) implies the existence of one-way functions (an average-case hardness
assumption). To the best of our knowledge, this observation has not been previously made in the literature.
Indeed, in all of the above “cryptographically interesting” applications of iO, the existence of one-way
functions is explicitly assumed.

Borrowing from Impagliazzo’s terminology [11], we can summarize the state of affairs as follows. If iO
is achievable, then Impagliazzo’s five worlds collapse to two: we are either in Algorithmica, where P = NP,
or in Cryptomania, where public-key encryption is possible. Minicrypt, where one-way functions exist but
public-key encryption is not possible, is ruled out due to the existing constructions of public-key crypto from
iO and one-way functions. Our new result rules out Pessiland, where BPP , NP, but one-way functions do
not exist, and Heuristica, where NP problems are hard in the worst case but easy on average.

The idea behind our result is very simple. Given an indistinguishability obfuscation scheme iO(C; r)
(that uses randomness r to obfuscate a circuit C), our candidate one-way function is defined as

f (x) = iO(Z; x),

where Z is a circuit of appropriate size and input length that always outputs zero. Assuming that iO satisfies
both functionality and indistinguishability, we show how to use an adversary A that can invert the function f
with non-negligible advantage (over the choice of a random input x) in order to (one-sided) probabilistically
decide the circuit (un)satisfiability of a given circuit C. This is done by simply observing whether A succeeds
in inverting or not. The key observations in our argument are the following:

• If C is unsatisfiable, then it always outputs zero. Thus, by indistinguishability of the iO scheme A
inverts f with non-negligible advantage even if we replace f (x) = iO(Z; x), with f (x) = iO(C; x).

• If C is satisfiable, then by functionality of the iO scheme, iO(C; x) cannot be a circuit that always
outputs zero. Thus, A can never invert f when we replace f (x) = iO(Z; x), with f (x) = iO(C; x).

We note that our result makes strong use of the “perfect functionality” required by the definition of iO
(see Def. 2.2). While this is indeed satisfied by the candidate constructions, it is an interesting question
whether an approximate version of iO also implies one-way functions.

2 Definitions

We start by giving the definitions of one-way functions and of indistinguishability obfuscation. A function
ε(k) is said to be negligible if for all polynomial p(k) and sufficiently large k ∈ N it holds that ε(k) < 1/p(k).

Definition 2.1 (One-way function). A family, F = { fk}k∈N, of efficiently computable functions fk : {0, 1}k →
{0, 1}∗ is said to be one-way if for all PPT adversaries A, there exists a negligible function ε(k) such that for
every security parameter k ∈ N:

Pr
x,s

{
A(1k, fk(x), s) ∈ f −1

k ( fk(x))
}
< ε(k),

where x and s are uniformly chosen in their corresponding domains.

Indistinguishability obfuscation was introduced in [2] and given a candidate construction in [9], and
subsequently in [4, 1, 5].
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Definition 2.2 (Indistinguishability obfuscation [3]). A PPT algorithm iO(1k,C; r) is said to be an indistin-
guishability obfuscator (iO) for C, if it satisfies:

1. Functionality: For any C ∈ C,

Pr
r

{
∀x : iO(1k,C; r)(x) = C(x)

}
= 1 .

2. Indistinguishability: For any (not necessarily uniform) PPT distinguisher D, there exists a negligible
function ε(k) such that the following holds: For all security parameters k ∈ N, for all pairs of circuits
C0,C1 ∈ Ck, we have that if C0(x) = C1(x) for all inputs x, then∣∣∣∣∣Pr

r,s

{
D(iO(1k,C0; r); s) = 1

}
− Pr

r,s

{
D(iO(1k,C1; r); s) = 1

}∣∣∣∣∣ ≤ ε(k)

3 From Indistinguishability Obfuscation to One-Way Functions

Let iO(1k,C; r) be an Indistinguishability Obfuscator, where C is the input circuit and r the randomness used
in obfuscation. Let Zk;n be a canonical constant zero circuit with inputs of k bits padded to n gates. For every
k ∈ N define

fk(x) ·= iO(1k,Zk;n; x),

and let F =
{
fk : {0, 1}k → {0, 1}∗

}
k∈N

be the corresponding (efficiently computable) family of functions.

Theorem 3.1. If NP , co−RP then F is a family of one-way functions.

Proof. Suppose, in contradiction, that f is not one-way. Then there exists a PPT adversary A who can invert
fk (for all k) with probability p(k) such that p is some inverse polynomial in k. Let f = fk and define

δ(C,Zk,n) ·=
∣∣∣∣∣Pr
x,s

{
A(1k, iO(C; x), s) ∈ f −1(x)

}
− Pr

x,s

{
A(1n, f (x), s) ∈ f −1(x)

}∣∣∣∣∣
This is the difference in the probability that A successfully finds a preimage for y with respect to f when
it is given a random obfuscation of the circuit Z (i.e., a random element in the image of f ) and when A is
given a random obfuscation of the circuit C. Note that obfuscations of C might not even be in the image of
f . However, the following claim asserts that this happens with negligible probability for Cs that implement
the zero function:

Claim 3.2. For all n, every PPT A and every circuit C′ with n gates that implements the constant zero
function for inputs of k bits, δ(C′,Zk,n) ≤ ε(k), where ε is a negligible function.

Proof. This follows immediately from the security of the obfuscation scheme. Since C′ and Z have identical
functionality and size, it must hold that for every PPT B:∣∣∣∣∣Pr

x,s

{
B(1k, iO(C′; x), s) = 1

}
− Pr

x,s

{
B(1k, iO(C′; x), s) = 1

}∣∣∣∣∣ < ε(k) .

Taking B(1k, y, s) to be the algorithm that runs x′ ← A(1k, y, s) and outputs 1 iff f (x′) = y, we get a
distinguisher for obfuscations of C′ and Z with advantage δ. �

On the other hand, for any circuit that does not implement the constant zero function, there will never
be a preimage under f .
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Claim 3.3. For all n, every PPT A and every circuit C′ with n gates such that ∃x : C′(x) , 0, it holds that

Pr
x,r

{
A(1k, iO(C′; x), s) ∈ f −1(x)

}
= 0 .

Proof. This claim follows immediately from the functionality property of the obfuscation algorithm: Since
the output of the obfuscator is a circuit that has identical functionality to the input circuit, the output of
iO(C′; x) cannot be a circuit that implements the constant zero function. Thus, it cannot be in the image of
f . (Note that for this argument to hold, it is critical that the obfuscator perfectly preserve functionality). �

Given a Circuit-SAT instance C∗ on k variables with n gates, we will now use A to (one-sided) proba-
bilistically decide if C∗ is satisfiable with inverse polynomial advantage:

1: for i := 1 to t = 2k/p do
2: Choose x uniformly at random.
3: Compute y← iO(C∗; x).
4: Run x∗ ← A(1k, y, s) (s is chosen uniformly at random)
5: if f (x∗) = y then
6: return “Unsatisfiable”
7: end if
8: end for
9: return “Satisfiable”

If C∗ is unsatisfiable, then it implements the constant zero function. Hence, by Claim 3.2, it follows that
the condition in line 5 will be true with probability p, independently in each iteration (since we choose x and
s uniformly at random and independently in each iteration of the loop). The probability that it fails in all t
iterations is (1 − p)t which is negligible. Thus, in this case the algorithm will return “Unsatisfiable” with all
but negligible probability.

If C∗ is satisfiable, by Claim 3.3 the inverting adversary will never succeed, hence with probability 1 the
algorithm will output “Satisfiable”. �
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