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Abstract
With popularity of cloud storage, efficiently proving the integrity of data stored at an untrusted server has become

significant. Authenticated Skip Lists and Rank-based Authenticated Skip Lists (RBASL) have been used in cloud storage
to provide support for provable data update operations. In a dynamic file scenario, an RBASL falls short when updates are
not proportional to a fixed block size; such an update to the file, however small, may translate to O(n) many block updates
to the RBASL, for a file with n blocks.

To overcome this problem, we introduce FlexList: Flexible Length-Based Authenticated Skip List. FlexList translates
even variable-size updates to O(u) insertions, removals, or modifications, where u is the size of the update divided by the
block size. We present various optimizations on the four types of skip lists (regular, authenticated, rank-based authenticated,
and FlexList). We compute one single proof to answer multiple (non-)membership queries and obtain efficiency gains of
35%, 35% and 40% in terms of proof time, energy, and size, respectively. We also deployed our implementation of FlexDPDP
(DPDP with FlexList instead of RBASL) on PlanetLab, demonstrating that FlexDPDP performs comparable to the most
efficient static storage scheme (PDP), while providing dynamic data support.
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I. Introduction
Data outsourcing has become quite popular in recent years both in industry (e.g., Amazon S3, Dropbox, Google Drive)
and academia [2], [4], [11], [14], [15], [21], [30], [31]. A client outsources her data to the third party data storage
provider (server), which is supposed to keep data intact and make it available to her. The problem is that the server
may be malicious, and even if the server is trustworthy, hardware/software failures may cause data corruption. The client
should be able to efficiently and securely check the integrity of her data without downloading the entire data from the
server [2].

One such model proposed by Ateniese et al. is Provable Data Possession (PDP) [2] for provable data integrity. In this
model, the client can challenge the server on random blocks and verify the data integrity through a proof sent by the
server. PDP and related static schemes [2], [3], [14], [21], [30] show poor performance for blockwise update operations
(insertion, removal, modification). While the static scenario can be applicable to some systems (e.g., archival storage at
the libraries), for many applications it is important to take into consideration the dynamic scenario, where the client keeps
interacting with the outsourced data in a read/write manner, while maintaining the data possession guarantees. Ateniese
et al. [4] proposed Scalable PDP, which overcomes this problem with some limitations (only a pre-determined number of
operations are possible within a limited set of operations). Erway et al. [15] proposed a solution called Dynamic Provable
Data Possession (DPDP), which extends the PDP model and provides a dynamic storage scheme. Implementation of the
DPDP scheme requires an underlying authenticated data structure based on a skip list [29].

Authenticated skip lists were presented by Goodrich and Tamassia [19], where skip lists and commutative hashing
are employed in a data structure for authenticated dictionaries. A skip list is a key-value store whose leaves are sorted
by keys. Each node stores a hash value calculated with the use of its own fields and the hash values of its neighboring
nodes. The hash value of the root is the authentication information (meta data) that the client stores in order to verify
responses from the server. To insert a new block into an authenticated skip list, one must decide on a key value for
insertion since the skip list is sorted according to the key values. This is very useful if one, for example, inserts files into
directories, since each file will have a unique name within the directory, and searching by this key is enough. However,
when one considers blocks of a file to be inserted into a skip list, the blocks do not have unique names; they have indices.
Unfortunately, in a dynamic scenario, an insertion/deletion would necessitate incrementing/decrementing the keys of all
the blocks till the end of the file, resulting in degraded performance. DPDP [15] employs Rank-based Authenticated Skip
List (RBASL) to overcome this limitation. Instead of providing key values in the process of insertion, the index value
where the new block should be inserted is given. These indices are imaginary and no node stores any information about
the indices. Thus, an insertion/deletion does not propagate to other blocks.

Theoretically, an RBASL provides dynamic updates with O(log n) complexity, assuming the updates are multiples of
the fixed block size. Unfortunately, a variable size update leads to the propagation of changes to other blocks, making
RBASL inefficient in practice. Therefore, one variable size update may affect O(n) other blocks. We discuss the problem
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in detail in Section III. We propose FlexList to overcome the problem in DPDP. With our FlexList, we use the same idea
but instead of the indices of blocks, indices of bytes of data are used, enabling searching, inserting, removing, modifying,
or challenging a specific block containing the byte at a specific index of data. Since in practice a data alteration occurs
starting from an index of the file, not necessarily an index of a block of the file, our DPDP with FlexList (FlexDPDP)
performs much faster than the original DPDP with RBASL. Even though Erway et al. [15] presents the idea where the
client makes updates on a range of bytes instead of blocks, we show that a naive implementation of the idea leads to a
security gap in the storage system, as we discuss in Section VI-A. Our optimizations result in a dynamic cloud storage
system whose efficiency is comparable to the best known static systems, and its security directly follows from the DPDP
security proof and the security of authenticated skip lists.

Our contributions are as follows:
• Our implementation uses the optimal number of links and nodes; we created optimized algorithms for basic operations

(i.e., insertion, deletion). These optimizations are applicable to all skip list types (skip list, authenticated skip list,
rank-based authenticated skip list, and FlexList).

• Our FlexList translates a variable-sized update to O(u) insertions, removals, or modifications, where u is the size
of the update divided by the block size, while an RBASL requires O(n) block updates.

• We provide multi-prove and multi-verify capabilities in cases where the client challenges the server for multiple
blocks using authenticated skip lists, rank-based authenticated skip lists and FlexLists. Our algorithms provide an
optimal proof, without any repeated items. The experimental results show efficiency gains of 35%, 35%, 40% in
terms of proof time, energy, and size, respectively.

• We provide a novel algorithm to build a FlexList from scratch in O(n) time instead of O(n log n) (time for
n insertions). Our algorithm assumes the original data is already sorted, which is the case when a FlexList is
constructed on top of a file in secure cloud storage.

• We deployed our client-server implementation on PlanetLab. Our results demonstrate that FlexDPDP performs
comparable to the most efficient static storage scheme (PDP), while providing dynamic data support.

II. Related Work

Hash Map
(whole file)

Hash Map
(block by
block)

PDP[2] Merkle
Tree[33]

Balanced Tree (2-
3 Tree)[35]

RBASL[15] FlexList

Storage (client) O(1) O(n) O(1) O(1) O(1) O(1) O(1)
Proof Complexity
(time and size)

O(n) O(1) O(1) O(logn) O(logn) O(logn) O(logn)

Dynamic (insert, re-
move, modify)

- - - - + (balancing is-
sues)

+ (fixed block
size)

+

TABLE I
COMPLEXITY AND CAPABILITY TABLE OF VARIOUS DATA STRUCTURES FOR PROVABLE CLOUD STORAGE. N: NUMBER OF BLOCKS

Skip Lists and Other Data Structures: Table I provides an overview of different data structures proposed for the
secure cloud storage setting. Among the structures that enable dynamic operations, the advantage of skip list is that it
keeps itself balanced probabilistically, without the need for complex operations [29]. It offers search, modify, insert, and
remove operations with logarithmic complexity with high probability [28]. Skip lists have been extensively studied [1],
[5], [12], [15], [20], [22], [27]. They are used as authenticated data structures in two-party protocols [25], in outsourced
network storage [20], with authenticated relational tables for database management systems [5], in timestamping systems
[6], [7], in outsourced data storages [15], [18], and for authenticating queries for distributed data of web services [27].

In a skip list, not every edge or node is used during a search or update operation; therefore those unnecessary edges
and nodes can be omitted. Similar optimizations for authenticated skip lists were tested in [32]. Furthermore, as observed
in DPDP [15] for an RBASL, some corner nodes can be eliminated to decrease the overall number of nodes. Our FlexList
contains all these optimizations, and many more, analyzed both formally and experimentally.

A binary tree-like data structure called rope is similar to our FlexList [8]. It was originally developed as alternative
to the strings, bytes can be used instead of the strings as in our scheme. Since a rope is tree-like structure, it requires
rebalancing operations. Moreover, a rope needs further structure optimizations to eliminate unnecessary nodes.

Cloud Storage Related Work: PDP was one of the first proposals for provable cloud storage [2]. PDP does not
employ a data structure for the authentication of blocks, and is applicable to only static storage. A later variant called
Scalable PDP [4] allows a limited number of updates. Wang et al. [33] proposed the usage of Merkle tree [24] which
works perfectly for the static scenario, but has balancing problems in a dynamic setting. For the dynamic case we would
need an authenticated balanced tree such as the data structure proposed by Zheng and Xu [35], called range-based 2-3
tree. Yet, there is no algorithm that has been presented for rebalancing either a Merkle tree or a range-based 2-3 tree
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while efficient updating and maintaining authentication information. Nevertheless, such algorithms have been studied in
detail for the authenticated skip list [25]. Table I summarizes this comparison.

For dynamic provable data possession (DPDP) in a cloud storage setting, Erway et al. [15] were the first to introduce
the new data structure rank-based authenticated skip list (RBASL) which is a special type of the authenticated skip list
[20]. In the DPDP model, there is a client who wants to outsource her file and a server that takes the responsibility for
the storage of the file. The client pre-processes the file and maintains meta data to verify the proofs from the server.
Then she sends the file to the server. When the client needs to check whether her data is intact or not, she challenges
some random blocks. Upon receipt of the request, the server generates the proof for the challenges and sends it back.
The client then verifies the data integrity of the file using this proof. Many other static and dynamic schemes have been
proposed [21], [30], [14], [11] including multi-server optimizations on them [9], [13], [16].

An RBASL, unlike an authenticated skip list, allows a search with indices of the blocks. This gives the opportunity
to efficiently check the data integrity using block indices as proof and update query parameters in DPDP. To employ
indices of the blocks as search keys, Erway et al. proposed using authenticated ranks. Each node in the RBASL has a
rank, indicating the number of the leaf-level nodes that are reachable from that particular node. Leaf-level nodes having
no after links have a rank of 1, meaning they can be used to reach themselves only. Ranks in an RBASL handle the
problem with block numbers in PDP [2], and thus result in a dynamic system.

Nevertheless, in a realistic scenario, the client may wish to change a part of a block, not the whole block. This can
be problematic to handle in an RBASL. To partially modify a particular block in an RBASL, we not only modify a
specified block but also may have to change all following blocks. This means the number of modifications is O(n) in
the worst case scenario for DPDP as well.

Another dynamic provable data possession scheme was presented by Zhang et al. [34]. They employ a new data
structure called a balanced update tree, whose size grows with the number of the updates performed on the data blocks.
Due to this property, they require extra rebalancing operations. The scheme uses message authentication codes (MAC) to
protect the data integrity. Unfortunately, since the MAC values contain indices of data blocks, they need to be recalculated
with insertions or deletions. The data integrity checking can also be costly, since the server needs to send all the challenged
blocks with their MAC values, because the MAC scheme is not homomorphic (see [3]). In our scheme we send only
tags and a block sum, which is approximately of a single block size. At the client side, there is an overhead for keeping
the update tree.

Our proposed data structure FlexList, based on an authenticated skip list, performs dynamic operations (modify, insert,
remove) for cloud data storage, having efficient variable block size updates.

III. Definitions
Skip List is a probabilistic data structure presented as an alternative to balanced trees [29]. It is easy to implement
without complex balancing and restructuring operations such as those in AVL or Red-Black trees [1], [17]. A skip list
keeps its nodes ordered by their key values. We call a leaf-level node and all nodes directly above it at the same index
a tower.

Fig. 1. Regular skip list with search path of node with key 24 highlighted. Numbers on the left represent levels. Numbers inside nodes are key values.
Dashed lines indicate unnecessary links and nodes.

Figure 1 demonstrates a search on a skip list. The search path for the node with key 24 is highlighted. In a basic
skip list, the nodes include key, level, and data (only at leaf level nodes) information, and below and after links (e.g.,
v2.below = v3 and v2.after = v4). To perform the search for 24, we start from the root (v1) and follow the link to v2,
since v1’s after link leads it to a node which has a greater key value than the key we are searching for (∞ > 24). Then,
from v2 we follow link l1 to v4, since the key value of v4 is smaller than (or equal to) the searched key. In general, if the
key of the node where after link leads is smaller or equal to the key of the searched node, we follow that link, otherwise
we follow the below link. Using the same decision mechanism, we follow the highlighted links until the searched node
is found at the leaf level (if it does not exist, then the node with key immediately before the searched node is returned).

We observe that some of the links are never used in the skip list, such as l2, since any search operation with key
greater or equal to 11 will definitely follow link l1, and a search for a smaller key would never advance through l2.
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Fig. 2. Skip list of Figure 1 without unnecessary links and nodes.

Thus, we say links that are not present on any search path, such as l2, are unnecessary. When we remove unnecessary
links, we observe that some nodes, which are left without after links (e.g., v3), are also unnecessary since they do not
provide any new dependencies in the skip list. Although it does not change the asymptotic complexity, it is beneficial
not to include them for time and space efficiency. An optimized version of the skip list from Figure 1 can be seen in
Figure 2 with the same search path highlighted. Formally:
• A link is necessary if and only if it is on any search path.
• A node is necessary if and only if it is at the leaf level or has a necessary after link.
Assuming existence of a collision-resistant hash function family H, we randomly pick a hash function h from H and

let || denote concatenation. Throughout our study we will use: hash(x1, x2, ..., xm) to mean H(x1||x2||...||xm).

Fig. 3. Skip list alterations depending on an update request.

An authenticated skip list is constructed with the
use of a collision-resistant hash function and keeps a
hash value in each node. Nodes at level 0 keep links
to file blocks (may link to different structures e.g., files,
directories, anything to be kept intact) [20]. A hash value
is calculated with the following inputs: level and key of the
node, and the hash values of the node after and the node
below. Through the inputs to the hash function, all nodes
are dependent on their after and below neighbors. Thus,
the root node is dependent on every leaf node, and due
to the collision resistance of the hash function, knowing
the hash value of the root is sufficient for later integrity
checking. Note that if there is no node below, data or a
function of data (which we will call tag in the following
sections) is used instead of the hash of the below neighbor.
If there is no after neighbor, then a dummy value (e.g.,
null) is used in the hash calculation.

A rank-based authenticated skip list (RBASL) is
different from an authenticated skip list by means of how
it indexes data [15]. An RBASL has rank information
(used in hashing instead of the key value), meaning how
many nodes are reachable from that node. An RBASL is capable of performing all operations that an authenticated skip
list can in the cloud storage context.

IV. FlexList
A FlexList supports variable-sized blocks whereas an RBASL is meant to be used with fixed block size since a search
(consequently insert, remove, modify) by index of data is not possible with the rank information of an RBASL. For
example, Figure 3-A represents an outsourced file divided into blocks of fixed size.

In our example, the client wants to change “brown” in the file composed of the text “The quick brown fox jumps
over the lazy dog...” with “red” and the diff algorithm returns [delete from index 11 to 15] and [insert “red” from index
11 to 13]. Apparently, a modification to the 3rd block will occur. With a rank-based skip list, to continue functioning
properly, a series of updates is required as shown in Figure 3-B which asymptotically corresponds to O(n) alterations.
Otherwise, the beginning and the ending indices of each block will be complicated to compute, requiring O(n) time to
translate a diff algorithm output to block modifications at the server side. It also leaves the client unable to verify that
the index she challenged is the same as the index of the proof by the server (this issue is explained in Section V-B with
the verifyMultiProof algorithm). Therefore, for instance a FlexList having 500000 leaf-level nodes needs an expected
250000 update operations for a single variable-sized update. Besides the modify operations and related hash calculations,
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Symbol Description
cn current node
pn previous node, indicates the last node that current node moved from
mn missing node, created when there is no node at the point where a node has to be linked
nn new node
dn node to be deleted

after the after neighbor of a node
below the below neighbor of a node

r rank value of a node
i index of a byte

npi a boolean which is always true except in the inner loop of insert algorithm
tn stack (initially empty), filled with all visited nodes during search, modify, insert or remove algorithms

TABLE II
SYMBOL DESCRIPTIONS OF SKIP LIST ALGORITHMS.

this also corresponds to 250000 new tag calculations either on the server side, where the private key (order of the RSA
group) is unknown (thus computation is very slow) or at the client side, where the new tags should go through the
network. Furthermore, a verification process for the new blocks is also required (that means a huge proof, including half
of the data structure used, sent by the server and the verified by the client, where she needs to compute an expected
375000 hash values). With our FlexList, only one modification suffices as indicated in Figure 3-C.

Due to the lack of providing variable block sized operations with an RBASL, we present FlexList which overcomes
this problem and serves our purposes in the cloud data storage setting. A FlexList stores, at each node, how many bytes
can be reached from that node, instead of how many blocks are reachable. The rank of each leaf-level node is computed
as the sum of the length of its data and the rank of the after node (0 if null). The length information of each data block
is added as a parameter to the hash calculation of that particular block. We discuss the insecurity of an implementation
that does not include the length information in the hash function calculation in Section VI-A. Note that when the length
of data at each leaf is considered as a unit, the FlexList reduces to an RBASL (thus, ranks only count the number
of reachable blocks). Therefore all our optimizations are also applicable to RBASL, which is indeed a special case of
FlexList.

A. Preliminaries

Fig. 4. A FlexList example with 2 sub skip lists indicated.

Algorithm IV.1: nextPos Algorithm
Input: pn, cn, i, level, npi
Output: pn, cn, i, tn
tn = new empty Stack1
while cn can go below OR after do2

if canGoBelow(cn, i) AND cn.below.level ≥ level AND3
npi then

cn = cn.below4
else if canGoAfter(cn, i) AND cn.after.level ≥ level5
then

i = i - cn.below.r; cn = cn.after6
add cn to tn7

In this section, we introduce the helper methods re-
quired to traverse the skip list, create missing nodes,
delete unnecessary nodes, delete nodes, and decide on the
level to insert at, to be used in the essential algorithms
(search, modify, insert, remove). Note that all algorithms
are designed to fill a stack tn where we store nodes which
may need a recalculation of hash values if authenticated,
and rank values if using FlexList. All algorithms that
move the current node immediately push the new current
node to the stack tn as well. Further notations are shown
in Table II.

We first define a concept called sub skip list to make our FlexList algorithms easier to understand. An example is
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illustrated in Figure 4. Let the search index be 250 and the current node start at the root (v1). The current node follows
its below link to v2 and enters a sub skip list (big dashed rectangle). Now, v2 is the root of this sub skip list and the
searched node is still at index 250. In order to reach the searched node, the current node moves to v3, which is the root
of another sub skip list (small dashed rectangle). Now, the searched byte is at index 150 in this sub skip list. Therefore
the searched index is updated accordingly. The amount to be reduced from the search index is equal to the difference
between the rank values of v2 and v3, which is equal to the rank of below of v2. Whenever the current node follows an
after link, the search index should be updated. To finish the search, the current node follows the after link of v3 to
reach the node containing index 150 in the sub skip list with root v3.
nextPos (Algorithm IV.1): The nextPos method moves the current node cn repetitively until the desired position
according to the method (search, insert, remove) from which it is called. There are 4 cases for nextPos:
• insert - moves current node cn until the closest node to the insertion point.
• remove or search - moves current node cn until it finds the searched node’s tower.
• loop in insert - moves cn until it finds the next insertion point for a new node.
• loop in remove - moves current node cn until it encounters the next node to delete.

Algorithm IV.2: createMissingNode Algorithm
Input: pn, cn, i, level
Output: pn, cn, i, tn
tn = new empty Stack1
mn = new node is created using level //Note that rank value for missing node is given ∞2
if canGoBelow(cn,i) then3

mn.below = cn.below; cn.below = mn4
else5

mn.below = cn.after; cn.after = mn6
i = i - cn.below.r //Since current node is going after, i value should be updated7

pn = cn; cn = mn; then cn is added to tn8

createMissingNode (Algorithm IV.2) is used in both the insert and remove algorithms. Since in a FlexList there are
only necessary nodes, when a new node needs to be connected, this algorithm creates any missing node to make the
connection.
deleteUNode (Algorithm IV.3) is employed in the remove and insert algorithms to delete an unnecessary node (this
occurs when a node loses its after node) and maintain the links. It takes the previous node and current node as inputs,
where the current node is unnecessary and meant to be deleted. The purpose is to preserve connections between necessary
nodes after the removal of the unnecessary one. This involves deletion of the current node if it is not at the leaf level. It
sets the previous node’s after or below to the current node’s below. As the last operation of deletion, we remove the
top node from the stack tn, as its rank and hash values no longer need to be updated.

Algorithm IV.3: deleteUNode Algorithm
Input: pn, cn
Output: pn, cn, tn
tn = new empty Stack1
if cn.level == 0 then2

cn.after = NIL3
else4

if pn.below == cn then5
pn.below = cn.below6

else7
pn.after = cn.below8

tn.pop(); cn = pn9

deleteNode method, employed in the remove algorithm,
takes two consecutive nodes, the previous node and the
current node. By setting after pointer of the previous
node to current node’s after, it detaches the current node
from the FlexList.
tossCoins: Probabilistically determines the level value for
a new node tower. A coin is tossed until it comes up heads.
The output is the number of consecutive tails.

B. Methods of FlexList
FlexList is a particular way of organizing data for secure
cloud storage systems. Some basic functions must be

available, such as search, modify, insert and remove. These functions are employed in the verifiable updates. All algorithms
are designed to fill a stack for the possibly affected nodes. This stack is used to recalculate of rank and hash values
accordingly. A search path, which is the basic idea of a proof path, is visible in the stack in the basic algorithms.
search (Algorithm IV.4) is the algorithm used to find a particular byte. It takes the index i as the input, and outputs the
node at index i with the stack tn filled with the nodes on the search path. Any value between 0 and the file size in
bytes is valid to be searched. It is not possible for a valid index not to be found in a FlexList.

In algorithm IV.4, the current node cn starts at the root. The nextPos method moves cn to the position just before
the top of the tower of the searched node. Then cn is taken to the searched node’s tower and moved all the way down
to the leaf level.
modify: By taking index i and new data, we make use of the search algorithm for the node, which includes the byte at
index i, and update its data. It then we recalculate hash values along the search path. The input of this algorithm contains
the index i and new data. The outputs are the modified node and stack tn filled with nodes on the search path.
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Algorithm IV.4: search Algorithm
Input: i
Output: cn, tn
tn = new empty Stack1
cn = root2
// cn moves until cn.after is a tower node of
the searched node
call nextPos3
cn = cn.after then cn is added to tn4
// cn is moved below until the node at the
leaf level, which has data
while cn.level 6= 0 do5

cn = cn.below then cn is added to tn6

insert (Algorithm IV.5) is run to add a new node to the
FlexList with a random level by adding new nodes along
the insertion path. The inputs are the index i and data.
The algorithm generates a random level by tossing coins,
then creates the new node with given data and attaches
it to index i, along with the necessary nodes until the
level. Note that this index should be the beginning index
of an existing node, since inserting a new block inside a
block makes no sense.1 As output, the algorithm returns
the stack tn filled with nodes on the search path of the
new block.

Algorithm IV.5: insert Algorithm
Input: i, data
Output: nn,tn
tn = new empty Stack1
pn = root; cn = root; level = tossCoins()2
call nextPos// cn moves until it finds a missing node or cn.after is where nn is to be inserted3
// Check if there is a node where new node will be linked. if not, create one.
if !CanGoBelow(cn, i) or cn.level 6= level then4

call createMissingNode;5
// Create new node and insert after the current node.
nn = new node is created using level6
nn.after = cn.after; cn.after = nn and nn is added to tn7
// Create insertion tower until the leaf level is reached.
while cn.below 6= null do8

if nn already has a non-empty after link then9
a new node is created to the below of nn; nn = nn.below and nn is added to tn10

call nextPos // Current node moves until we reach an after link that passes through the tower.11
That is the insertion point for the new node.
// Create next node of the insertion tower.
nn.after = cn.after; nn.level = cn.level12
// cn becomes unnecessary as it looses its after link, therefore it is deleted
deteletUNode(pn, cn);13

// Done inserting, put data and return this last node.
nn.data = data14
// For a FlexList, call calculateHash and calculateRank on the nodes in the tn to compute their
(possibly) updated values.

Fig. 5. Insert at index 450, level 4 (FlexList).

Figure 5 demonstrates the insertion of a new node at index 450 with level 4. nextPos brings the current node to the
closest node to the insertion point with level greater than or equal to the insertion level (c1 in Figure 5). Lines 3-4 create
any missing node at the level, if there was no node to connect the new node to (e.g., m1 is created to connect n1 to).
Within the while loop, during the first iteration, n1 is inserted to level 2 since nodes at levels 3 and 4 are unnecessary in
the insertion tower. Inserting n1 makes d1 unnecessary, since n1 stole its after link. Likewise, the next iteration results
in n2 being inserted at level 1 and d2 being removed. Note that removal of d1 and d2 results in c3 getting connected to
v1. The last iteration inserts n3, and places data. Since this is a FlexList, hashes and ranks of all the nodes in the stack
will be recalculated (c1,m1, n1, c2, c3, n2, n3, v1, v2). Those are the only nodes whose hash and rank values might have
changed.
remove (Algorithm IV.6) is run to remove the node which starts with the byte at index i. As input, it takes the index
i. The algorithm detaches the node to be removed and all other nodes above it while preserving connections between

1In case of an addition inside a block we can do the following: search for the block including the byte where the insertion will take place, add
our data in between the first and second part of data found to obtain new data and employ modify algorithm (if new data is long, we can divide it into
parts and send it as one modify and a series of inserts).



8

the remaining nodes. As output, the algorithm returns the stack tn filled with the nodes on the search path of the left
neighbor of the node removed.

Figure 6 demonstrates removal of the node having the byte with index 450. The algorithm starts at the root c1, and
the first nextPos call on line 2 returns d1. Lines 4-7 check if d1 is necessary. If d1 is necessary, d2 is deleted and we
continue deleting from d3. Otherwise, if d1 is unnecessary, then d1 is deleted, and we continue searching from c1. In our
example, d1 is unnecessary, so we continue from c1 to delete d2. Within the while loop, the first call of nextPos brings
the current node to c3. The goal is to delete d2, but this requires creating of a missing necessary node m1. Note that,
m1 is created at the same level as d2. Once m1 is created and d2 is deleted, the while loop continues its next iteration
starting from m1 to delete d3. This next iteration creates m2 and deletes d3. The last iteration moves the current node
to v2 and deletes d4 without creating any new nodes, since we are at the leaf level. The output stack contains nodes
(c1, c2, c3,m1,m2, v1, v2). Rank and hash values of those nodes could have changed, those values will be recalculated.

Algorithm IV.6: remove Algorithm
Input: i
Output: dn,tn
tn = new empty Stack pn = root; cn = root1
call nextPos // Current node moves until after of the current node is the node at the top of deletion2
tower
dn = cn.after3
// Check if current node is necessary,if so it can steal after of the node to delete, otherwise
delete current node
if cn.level = dn.level then4

deleteNode(cn, dn); dn = dn.below; // unless at leaf level5
else6

deleteUNode(pn, cn);7
// Delete whole deletion tower until the leaf level is reached
while cn.below 6= null do8

call nextPos// Current node moves until it finds a missing node9
// Create the missing node unless at leaf level and steal the after link of the node to delete
call createMissingNode; deleteNode(cn, dn)10
dn = dn.below // move dn to the next node in the deletion tower unless at leaf level11

// For a FlexList, call calculateHash and calculateRank on the nodes in the tn to compute their
(possibly) updated values.

Fig. 6. Remove block at index 450(FlexList).

C. Novel Build from Scratch Algorithm
Algorithm IV.7: buildFlexList Algorithm

Input: B, L, T
Output: root
// H will keep pointers to tower heads
H = new vector is created of size L0 + 11
// Loop will iterate for each block
for i =B.size− 1 to 0 do2

pn= null3
for j = 0 to Li+1 do4

// Enter only if at level 0 or Hj has an element
if Hj 6= null or j = 0 then5

nn = new node is created with level j //if j is 0, Bi,T i are included to the creation of nn6
nn.below = pn; nn.after = Hj // Connect tower head at Hj as an after link7
call calculateRank and calculateHash on nn8
pn = nn; Hj = null9

// Add a tower head to H at HLi
HLi

= pn10
root = HL0

//which is equal to pn11
root.level =∞; call calculateHash on root12
return root13

The usual way to build a skip list (or FlexList) is to perform n insertions (one for each item). When original data
is already sorted, one may insert them in increasing or decreasing order. Such an approach will result in O(n log n)
total time complexity. But, when data is sorted as in the secure cloud storage scenario (where blocks of a file are



9

already sorted), a much more efficient algorithm can be developed. Observe that a skip list contains 2n nodes in total,
in expectation [29]. This is an O(n) value, and thus spending O(n log n) time for creating O(n) nodes is an overkill,
since creation of nodes take a constant time only. We present our novel algorithm for building a FlexList from scratch
in just O(n) time. To the best of our knowledge, such an efficient build algorithm did not exist before.
buildFlexList (Algorithm IV.7) is an algorithm that generates a FlexList over a set of sorted data in time complexity
O(n). It has the small space complexity of O(l) where l is number of levels in the FlexList (l = O(log n) with high
probability). As the inputs, the algorithm takes blocks B on which the FlexList will be generated, corresponding (randomly
generated) levels L and tags T . The algorithm assumes data is already sorted. In cloud storage, the blocks of a file are
already sorted according to their block indices, and thus our optimized algorithm perfectly fits our target scenario. The
algorithm attaches one link for each tower from right to left. For each leaf node generated, its tower follows in a bottom
up manner. As output, the algorithm returns the root node.

Figure 7 demonstrates the building process of a FlexList where the insertion levels of blocks are 4, 0, 1, 3, 0, 2, 0, 1,
4, in order. Labels vi on the nodes indicate the generation order of the nodes. Note that the blocks and the tags for the
sentinel nodes are null values. The idea of the algorithm is to build towers of a given level for each block. As shown in
the figure, all towers have only one link from left side to its tower head (the highest node in the tower). Therefore, we
need to store the tower heads in a vector, and then make necessary connections. The algorithm starts with the creation
of the vector H to hold pointers to the tower heads at line 1. At lines 6-9 for the first iteration of the inner loop, the
node v1 is created which is a leaf node, thus there is no node below. Currently, H is empty; therefore there is no node
at H0 to connect to v1 at level 0. The hash and the rank values of v1 are calculated. Since H is still empty, we do not
create new nodes at levels 1, 2, 3, 4. At line 10, we put v1 to H as H4. The algorithm continues with the next block
and the creation of v2. H0 is still empty, therefore no after link for v2 is set. The hash and the rank values of v2 are
calculated. The next iterations of the inner loop skip the lines 6-9, because H1 and H2 are empty as well. At line 10, v2
is inserted to H2. Then, v3 is created and its hash and rank values are calculated. There is no element at H0 to connect
to v3. Its level is 0, therefore it is added to H as H0. Next, we create the node v4; it takes H0 as its after. The hash
and the rank values are calculated, then v4 is added to H at index 0. The algorithm continues for all elements in the
block vector. At the end of the algorithm, the root is created, connected to the top of the FlexList, then its hash and rank
values are calculated.

Fig. 7. buildFlexList example.

V. FlexList-based Dynamic Secure Cloud Storage
In this section, we describe the application of our FlexList to integrity checking in secure cloud storage systems according
to the DPDP model [15]. The DPDP model has two main parties: the client and the server. The cloud server stores a
file on behalf of the client. Erway et al. showed that an RBASL can be created on top of the outsourced file to provide
proofs of integrity (see Figure 8). The following are the algorithms used in the DPDP model for secure cloud storage
[15]:
• Challenge is a probabilistic function run by the client to request a proof of integrity for randomly selected blocks.
• Prove is run by the server in response to a challenge to send the proof of possession.
• V erify is a function run by the client upon receipt of the proof. A return value of accept ideally means the file is

kept intact by the server.
• prepareUpdate is a function run by the client when she changes some part of her data. She sends the update

information to the server.
• performUpdate is run by the server in response to an update request to perform the update and prove that the

update performed reliably.
• verifyUpdate is run by the client upon receipt of the proof of the update. Returns accept (and updates her meta

data) if the update was performed reliably.
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Fig. 8. Client Server interactions in FlexDPDP.

We construct the above model with FlexList as the authenticated data structure. We provide new capabilities and
efficiency gains as discussed in Section IV and call the resulting scheme FlexDPDP. In this section, we describe our
corresponding algorithms for each step in the DPDP model.

The FlexDPDP scheme uses homomorphic verifiable tags (as in DPDP [15]); multiple tags can be combined to obtain a
single tag that corresponds to combined blocks [3]. Tags are small compared to data blocks, enabling storage in memory.
Authenticity of the skip list guarantees integrity of tags, and tags protect the integrity of the data blocks.

A. Preliminaries
Before providing optimized proof generation and verification algorithms, we introduce essential methods to be used in
our algorithms to determine intersection nodes, search multiple nodes, and update rank values. Table III shows additional
notation used in this section.

Symbol Description
hash hash value of a node
rs rank state, indicates the byte count to the left of current node and used to recover i value when roll-back to a

state is done
state state, created in order to store from which node the algorithm will continue, contains a node, rank state, and last

index
C challenged indices vector, in ascending order
V verify challenge vector, reconstructed during verification to check if the proof belongs to challenged blocks, in

terms of indices
p proof node
P proof vector, stores proof nodes for all challenged blocks
T tag vector of challenged blocks
M block sum
ts intersection stack, stores states at intersections in searchMulti algorithm
th intersection hash stack, stores hash values to be used at intersections
ti index stack, stores pairs of integer values, employed in updateRankSum
tl changed nodes’ stack, stores nodes for later hash calculation, employed in hashMulti

start start index in ti from which updateRankSum should start
end end index in ti
first current index in C
last end index in ts

TABLE III
SYMBOLS USED IN OUR ALGORITHMS.

isIntersection: This function is used when searchMulti checks if a given node is an intersection. A node is an intersection
point of proof paths of two indices when the first index can be found following the below link and the second index is
found by following the after link (the challenged indices will be in ascending order). There are two conditions for a
node to be called an intersection node:
• The current node follows the below link according to the index we are building the proof path for.
• The current node needs to follow the after link to reach the element of challenged indices at index last in the

vector C.
If one of the above conditions is not satisfied, then there is no intersection, and the method returns false. Otherwise, it
decrements last and continues trying until it finds a node which cannot be found by following the after link and returns
last′ (to be used in the next call of isIntersection) and true (as the current node cn is an intersection point). Note that
this method directly returns false if there is only one challenged index.
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Algorithm V.1: searchMulti Algorithm
Input: cn, C, first, last, rs, P , ts
Output: cn, P , ts
// Index of the challenged block (key) is calculated according to the current sub skip list root
i = Cfirst−rs1
// Create and put proof nodes on the search path of the challenged block to the proof vector
while Until challenged node is included do2

p = new proof node with cn.level and cn.r3
// End of this branch of the proof path is when the current node reaches the challenged node
if cn.level = 0 and i < cn.length then4

p.setEndF lag(); p.length = cn.length5
//When an intersection is found with another branch of the proof path, it is saved to be
continued again, this is crucial for the outer loop of ‘‘multi’’ algorithms
if isIntersection(cn, C, i, lastk, rs) then6

//note that lastk becomes lastk+1 in isIntersection method
p.setInterF lag(); state(cn.after, lastk, rs+cn.below.r) is added to ts // Add a state for cn.after to7
continue from there later

// Missing fields of the proof node are set according to the link current node follows
if (CanGoBelow(cn, i)) then8

p.hash = cn.after.hash; p.rgtOrDwn =dwn9
cn = cn.below //unless at the leaf level10

else11
p.hash = cn.below.hash; p.rgtOrDwn =rgt12
// Set index and rank state values according to how many bytes at leaf nodes are passed
while following the after link
i -= cn.below.r; rs += cn.below.r; cn = cn.after13

p is added to P14

Proof node is the building block of a proof, used throughout this section. It contains level, data length (if level is 0),
rank, hash, and three boolean values rgtOrDwn, end flag and intersection flag. Level and rank values belong to the
node for which the proof node is generated. The hash is the hash value of the neighbor node, which is not on the proof
path. There are two scenarios for setting hash and rgtOrDwn values:
(1) When the current node follows below link, we set the hash of the proof node to the hash of the current node’s

after and its rgtOrDwn value to dwn.
(2) When the current node follows after link, we set the hash of the proof node to the hash of the current node’s

below and its rgtOrDwn value to rgt.
searchMulti (Algorithm V.1): This algorithm is used in genMultiProof to generate the proof path for multiple nodes
without unnecessary repetitions of proof nodes. Figure 9, where we challenge the node at the index 450, clarifies how
the algorithm works. Our aim is to provide the proof path for the challenged node. We assume that in the search, the
current node cn starts at the root (w1 in our example). Therefore, initially the search index i is 450, the rank state rs
and first are zero, the proof vector P and intersection stack ts are empty.

Fig. 9. Proof path for challenged index 450 in a FlexList.

For w1, a proof node is generated using scenario (1), where p.hash is set to v1.hash and p.rgtOrDwn is set to dwn.
For w2, the proof node is created as described in scenario (2) above, where p.hash is set to v2.hash and p.rgtOrDwn is
set to rgt. The proof node for w3 is created using scenario (2). For w4 and w5, proof nodes are generated as in scenario
(1). The last node c1 is the challenged leaf node, and the proof node for this node is also created as in scenario (1). Note
that in the second, third, and fifth iterations of the while loop, the current node is moved to a sub skip list (at line 13
in Algorithm V.1). Lines 4-5 (setting the end flag and collecting the data length) and 6-7 (setting intersection flag and
saving the state) in Algorithm V.1 are crucial for generation of proof for multiple blocks. We discuss them later in this
section.
updateRankSum: This algorithm, used in verifyMultiProof, is given the rank difference as input, the verify challenge
vector V , and indices start and end (on V ). The output is a modified version of the verify challenge vector V ′. The



12

procedure is called when there is a transition from one sub skip list to another (larger one). The method updates entries
starting from index start to index end by rank difference, where rank difference is the size of the larger sub skip list
minus the size of the smaller sub skip list.

Finally, tags and combined blocks will be used in our proofs. For this purpose, we use an RSA group Z∗N , where
N = pq is the product of two large prime numbers, and g is a high-order element in Z∗N [15]. It is important that the
server does not know p and q. The tag t of a block m is computed as t = gm mod N . The block sum is computed

as M =
|C|∑
i=0

aimCi
where C is the challenge vector containing block indices and ai is the random value for the ith

challenge.

B. Handling Multiple Challenges at Once
Client server interaction (Figure 8) starts with the client pre-processing her data (creating a FlexList for the file and
calculating tags for each block of the file). The client sends the random seed she used for generating the FlexList to
the server along with a public key, data, and the tags. Using the seed, the server constructs a FlexList over the blocks
of data and assigns tags to leaf-level nodes. Note that the client may request the root value calculated by the server to
verify that the server constructed the correct FlexList over the file. When the client checks and verifies that the hash of
the root value is the same as the one she had calculated, she may safely remove her data and the FlexList. She keeps
the root value as meta data for later use in the proof verification mechanism.

To challenge the server, the client generates two random seeds, one for a pseudo-random generator that will generate
random indices for bytes to be challenged, and another for a pseudo-random generator that will generate random
coefficients to be used in the block sum. The client sends these two seeds to the server as the challenge, and keeps
them for verification of the server’s response.

1) Proof Generation: genMultiProof (Algorithm V.2): Upon receipt of the random seeds from the client, the server
generates the challenge vector C and random values A accordingly and runs the genMultiProof algorithm in order to
get tags, file blocks, and the proof path for the challenged indices. The algorithm searches for the leaf node of each
challenged index and stores all nodes across the search path in the proof vector. However, we have observed that regular
searching for each particular node is inefficient. If we start from the root for each challenged block, there will be a lot
of replicated proof nodes. In the example of Figure 9, if proofs were generated individually, w1, w2, and w3 would be
replicated 4 times, w4 and w5 3 times, and c3 2 times. To overcome this problem we save states at each intersection
node. In our optimal proof, only one proof node is generated for each node on any proof path. This is beneficial in
terms of not only space but also time. The verification time of the client is greatly reduced since she computes less hash
values.

Fig. 10. Multiple blocks are challenged in a FlexList.

We explain genMultiProof (Algorithm V.2) using Figure 10 and notations in Table III. By taking the index array of
challenged nodes as input (challenge vector C generated from the random seed sent by the client contains [170, 320,
470, 660] in the example), the genMultiProof algorithm generates the proof P , collects the tags into the tag vector T ,
calculates the block sum M at each step, and returns all three. The algorithm starts traversing from the root (w1 in our
example) by retrieving it from the intersection stack ts at line 3 of Algorithm V.2. Then, in the loop, we call searchMulti,
which returns the proof nodes for w1, w2, w3 and c1. The state of node w4 is saved in the stack ts as it is the after
of an intersection node, and the intersection flag for proof node for w3 is set. Note that proof nodes at the intersection
points store no hash value. The second iteration starts from w4, which is the last saved state. New proof nodes for w4,
w5 and c2 are added to the proof vector P , while c3 is added to the stack ts. The third iteration starts from c3 and
searchMulti returns P , after adding c3 to it. Note that w6 is added to the stack ts. In the last iteration, w6 and c4 are
added to the proof vector P . As the stack ts is empty, the loop is over. Note that all proof nodes of the challenged
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indices have their end flags and length values set (line 5 of Algorithm V.1). When genMultiProof returns, the output
proof vector should be as in Figure 11. At the end of the genMultiProof algorithm the proof and tag vectors and the
block sum are sent to the client for verification.

Algorithm V.2: genMultiProof Algorithm
Input: C, A
Output: T , M , P

Let C= (i0, . . . , ik) where ij is the (j + 1)th challenged index; A = (a0, . . . , ak) where aj is the (j + 1)th

random value; statem = (nodem, lastIndexm, rsm)
cn = root; rs = 0; M = 0; ts, P and T are empty; state(root, k, rs) added to ts1
// Call searchMulti method for each challenged block to fill the proof vector P
for i = 0 to k do2

state = ts.pop()3
cn = searchMulti(state.node,C, i,state.end,state.rs,P ,ts)4
// Store tag of the challenged block and compute the block sum
cn.tag is added to T and M += cn.data*ai5

Fig. 11. Proof vector for Figure 10 example.

2) Verification: verifyMultiProof (Algorithm V.3): Remember that the client keeps random seeds used for the
challenge. She generates the challenge vector C and random values A according to these seeds. If the server is honest,
these will contain the same values as the ones the server generated. There are two steps in the verification process: tag
verification and FlexList verification.
Tag verification is done as follows: Upon receipt of the tag vector T and the block sum M , the client calculates

tag =
|C|∏
i=0

T ai
i mod N and accepts iff tag = gM mod N . By this, the client checks the integrity of file blocks by tags.

Later, when tags are proven to be intact by FlexList verification, the file blocks will be verified. FlexList verification
involves calculation of hashes for the proof vector P . The hash for each proof node can be calculated in different ways
as described below using the example from Figure 10 and Figure 11.

The hash calculation always has the level and rank values stored in a proof node as its first two arguments.
• If a proof node is marked as end but not intersection (e.g., c4, c2, and c1), this means the corresponding node was

challenged (to be checked against the challenged indices later), and thus its tag must exist in the tag vector. We
compute the corresponding hash value using that tag, the hash value stored in the proof node (null for c4 since it
has no after neighbor, the hash value of v4 for c2, and the hash value of v3 for c1), and the corresponding length
value (110 for c4, 80 for c2 and c1).

• If a proof node is not marked and rgtOrDwn = rgt or level = 0 (e.g., w6, w2), this means the after neighbor
of the node is included in the proof vector and the hash value of its below is included in the associated proof node
(if the node is at leaf level, the tag is included instead). Therefore we compute the corresponding hash value using
the hash value stored in the corresponding proof node and the previously calculated hash value (hash of c4 is used
for w6, hash of w3 is used for w2).

• If a proof node is marked as intersection and end (e.g., c3), this means the corresponding node was both challenged
(thus its tag must exist in the tag vector) and is on the proof path of another challenged node; therefore, its after
neighbor is also included in the proof vector. We compute the corresponding hash value using the corresponding
tag from the tag vector and the previously calculated hash value (hash of w6 for c3).

• If a proof node is marked as intersection but not end (e.g., w5 and w3), this means the node was not challenged
but both its after and below are included in the proof vector. Hence, we compute the corresponding hash value
using the previously calculated two hash values (the hash values calculated for c2 and for c3, respectively, are used
for w5, and the hash values calculated for c1 and for w4, respectively, are used for w3).
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• If none of the above is satisfied, this means a proof node has only rgtOrDwn = dwn (e.g., w4 and w1), meaning
the below neighbor of the node is included in the proof vector. Therefore we compute the corresponding hash value
using the previously calculated hash value (hash of w5 is used for w4, and hash of w2 is used for w1) and the hash
value stored in the corresponding proof node.

We treat the proof vector (Figure 11) as a stack and do necessary calculations as discussed above. The calculation
of hashes is done in the reverse order of the proof generation in genMultiProof algorithm. Therefore, we perform the
calculations in the following order: c4, c6, c3, c2, w5, . . . until the hash value for the root (the last element in the stack)
is computed. Observe that to compute the hash value for w5, the hash values for c3 and c2 are needed, and this reverse
(top-down) ordering always satisfies these dependencies. Finally, we compute the corresponding hash values for w2 and
w1. When the hash for the last proof node of the proof path is calculated, it is compared with the meta data that the
client possesses (in line 22 of Algorithm V.3).

The check above makes sure that the nodes, whose proofs were sent, are indeed in the FlexList that correspond to the
meta data stored at the client. But the client also has to make sure that the server indeed proved storage of data that she
challenged. The server may have lost those blocks but may instead be proving storage of some other blocks at different
indices. To prevent this, the verify challenge vector, which contains the start indices of the challenged nodes (150, 300,
450, and 460 in our example), is generated by the rank values included in the proof vector (in lines 5, 9, 10, 13, 14, and
18 of Algorithm V.3). With the start indices and the lengths of the challenged nodes given, we check if each challenged
index is included in a node that the proof is generated for (as shown in line 22 of Algorithm V.3). For instance, we know
that we challenged index 170, c1 starts from 150 and is of length 80. We check if 0 ≤ 170 − 150 < 80. Such a check
is performed for each challenged index and each proof node with an end mark.

Algorithm V.3: verifyMultiProof Algorithm
Input: C, P , T , MetaData
Output: accept or reject
Let P = (A0, . . . , Ak), where Aj = (levelj , rj , hashj , rgtOrDwnj , isInterj , isEndj , lengthj) for j = 0, . . . , k; T
= (tag0, . . . , tagn), where tagm = tag for challenged blockm for m = 0, . . . , n;
start = n; end = n; t = n; V = 0; hash = 0; hashprev = 0; startTemp = 0; th and ti are empty stacks1
// Process each proof node from the end to calculate hash of the root and indices of the
challenged blocks
for j = k to 0 do2

if isEndj and isInterj then3
hash = hash(levelj , rj , tagt,hashprev , lengthj ); decrement(t)4
updateRankSum(lengthj , V , start, end); decrement(start) // Update index values of challenged blocks on5
the leaf level of current part of the proof path

else if isEndj then6
if t 6= n then7

hashprev is added to th8
(start, end) is added to ti9
decrement(start); end = start10

hash = hash(levelj , rj , tagt,hashj , lengthj); decrement(t)11
else if isInterj then12

(startTemp,end) = ti.pop()13
updateRankSum(rprev , V , startTemp,end) // Last stored indices of challenged block are updated14
to rank state of the current intersection
hash = hash(levelj , rj , hashprev , th.pop())15

else if rgtOrDwnj = rgt or levelj = 0 then16
hash = hash(levelj ,rj ,hashj ,hashprev)17
updateRankSum(rj− rprev , V , start, end) // Update indices of challenged blocks, which are on the18
current part of the proof path

else19
hash = hash(levelj , rj , hashprev , hashj)20

hashprev = hash; rprev = rj21
//endnodes is a vector of proof nodes marked as End in the order of appearance in P
if ∀a, 0 ≤ a ≤ n , 0 ≤ Ca −Va < endnodesn−a.length OR hash 6= MetaData then22

return reject23
return accept24

C. Verifiable Variable-size Updates
The main purpose of the insert, remove, and modify operations (update operations) of our FlexList being employed in
the cloud setting is that we want the update operations to be verifiable. The purpose of the following algorithms is to
verify the update operation and compute new meta data to be stored at the client through the proof sent by the server.

1) Performing an Update: performUpdate is run at the server side upon receipt of an update request to the index i
from the client. We consider it to have three parts: proveModify, proveInsert, proveRemove. The server runs genMultiProof
algorithm to acquire a proof vector in a way that it covers the nodes which may get affected from the update. For a
modify operation the modified index (i), for an insert operation the left neighbor of the insert position (i-1), and for a
remove operation the left neighbor of the remove position and the node at the remove position (i-1, i) are to be used as
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challenged indices for genMultiProof Algorithm. Then the server performs the update operation as it is using the regular
FlexList algorithms, and sends the new meta data to the client.

2) Verifying an Update: The algorithm verifyUpdate of the DPDP model, in our construction, not only updates her
meta data but also verifies if it is correctly updated at the server by checking whether or not the calculated meta data
and the received one are equal. It makes use of one of the following three algorithms due to the nature of the update,
at the client side.
verifyModify (Algorithm V.4) is run at the client to approve the modification. The client alters the last element of the
received proof vector and calculates temp meta data accordingly. Later she checks if the new meta data provided by the
server is equal to the one that the client has calculated. If they are the same, then modification is accepted, otherwise
rejected.

Algorithm V.4: verifyModify Algorithm
Input: C, P , T , tag, data, MetaData, MetaDatabyServer
Output: accept or reject, MetaData′

Let C= (i0) where i0 is the modified index; P = (A0, . . . , Ak), where Aj = ( levelj , rj , hashj , rgtOrDwnj ,
isInterj , isEndj , lengthj) for j = 0, . . . , k; T = (tag0), where tag0 is tag for block0 before modification;
P, T are the proof and tag before the modification; tag and data are the new tag and data of the
modified block
if !VerifyMultiProof(C, P , T , MetaData) then1

return reject;2
else3

i = size(P ) - 14
hash = hash(Ai.level, Ai.rank - Ai.length + data.length, tag, Ai.hash, data.length)5
// Calculate hash values until the root of the Flexlist
MetaDatanew = calculateRemainingHashes( i-1, hash, data.length - Ai.length, P )6
if MetaDatabyServer = MetaDatanew then7

Metadata = MetaDatanew8
return accept9

else10
return reject11

verifyInsert (Algorithm V.5) is run to verify the correct insertion of a new block to the FlexList, using the proof vector
and the new meta data sent by the server. It calculates the temp meta data using the proof P as if the new node has been
inserted in it. The inputs are the challenged block index, a proof, the tags, and the new block information. The output
is accept if the temp root calculated is equal to the meta data sent by the server, otherwise reject.

Algorithm V.5: verifyInsert Algorithm
Input: C, P , T , tag, data, level, MetaData, MetaDatabyServer
Output: accept or reject, MetaData′

Let C= (i0) where i0 is the index of the left neighbor; P = (A0, . . . , Ak), where Aj = ( levelj , rj , hashj ,
rgtOrDwnj , isInterj , isEndj , lengthj) for j = 0, . . . , k; T = (tag0) where tag0 is for precedent node of
newly inserted node; P, T are the proof and tag before the insertion; tag, data and level are the
new tag, data and level of the inserted block
if !VerifyMultiProof(C, P , T , MetaData) then1

return reject;2
else3

i = size(P ) - 1; rank = Ai.length; rankTower = Ai.rank - Ai.length + data.length4
hashTower = hash(0, rankTower, tag, Ai.hash, data.length)5
if level 6= 0 then6

hash = hash(0, Ai.length, tag0, 0);7
decrement(i)8
while Ai.level 6= level or (Ai.level = level and Ai.rgtOrDwn = dwn) do9

if Ai.rgtOrDwn = rgt then10
rank += Ai.rank - Ai+1.rank11
// Ai.length is added to hash calculation if Ai.level = 0
hash = hash(Ai.level, rank, Ai.hash, hash)12

else13
rankTower += Ai.rank - Ai+1.rank14
hashTower = hash(Ai.level, rankTower, hashTower, Ai.hash)15

decrement(i)16
hash = hash(level, rank + rankTower, hash, hashTower)17
MetaDatanew = calculateRemainingHashes(i, hash, data.length, P )18
if MetaDatabyServer = MetaDatanew then19

MetaData = MetaDatanew20
return accept21

return reject22

The algorithm is explained using Figure 12 as an example where a verifiable insert at index 450 occurs. The algorithm
starts with the computation of the hash values for the proof node n3 as hashTower at line 5 and v2 as hash at line 7.
Then the loop handles all proof nodes until the intersection point of the newly inserted node n3 and the precedent node
v2. In the loop, the first iteration calculates the hash value for v1 as hash. The second iteration yields a new hashTower
using the proof node for d2. The same happens for the third iteration but using the proof node for d1. Then the hash
value for the proof node c3 is calculated as hash, and the same operation is done for c2. The hash value for the proof
node m1 (intersection point) is computed by taking hash and hashTower. Following this, the algorithm calculates all
remaining hash values until the root. The last hash value computed is the hash of the root, which is the temp meta data.
If the server’s meta data for the updated FlexList is the same as the newly computed temp meta data, then the meta data
stored at the client is updated with this new version.



16

Fig. 12. Verifiable insert example.

verifyRemove (Algorithm V.6) is run to verify the correct removal of a block in the FlexList, using the proof and the
new meta data by the server. Proof vector P is generated for the left neighbor and the node to be deleted. It calculates
the temp meta data using the proof P as if the node has been removed. The inputs are the proof, a tag, and the new
block information. The output is accept if the temp root calculated is equal to the meta data from the server, otherwise
reject.

Algorithm V.6: verifyRemove Algorithm
Input: C, P , T , MetaData, MetaDatabyServer
Output: accept or reject, MetaData′

Let C= (i0, i1) where i0, i1 are the index of the left neighbor and the removed index respectively; P
= (A0, . . . , Ak), where Aj = (levelj , rj , hashj , rgtOrDwnj , isInterj , isEndj , lengthj) for j = 0, . . . , k; T
= (tag0, tag1) where tag1 is tag value for deleted node and tag0 is for its precedent node ; P, T are
the proof and tags before the removal;
if !VerifyMultiProof(C, P , T , MetaData) then1

return reject2
else3

dn = size(P ) - 1; i = size(P ) - 2; last = dn4
while !Ai.isEnd do5

decrement(i)6
rank = Adn.rank; hash = hash(0, rank, tag0, Adn.hash, Adn.length)7
decrement(dn)8
if !Adn.isEnd or !Ai.isInter then9

decrement(i)10
while !Adn.isEnd or !Ai.isInter do11

if Ai.level < Adn.level or Adn.isEnd then12
rank += Ai.rank - Ai+1.rank13
// Ai.length is added to hash calculation if Ai.level = 0
hash = hash(Ai.level, rank, Ai.hash, hash)14
decrement(i)15

else16
rank += Adn.rank - Adn+1.rank17
hash = hash(Adn.level, rank, hash, Adn.hash)18
decrement(dn)19

decrement(i)20
MetaDatanew = calculateRemainingHashes(i, hash, Alast.length, P )21
if MetaDatabyServer = MetaDatanew then22

MetaData = MetaDatanew23
return accept24

return reject25

The algorithm will be discussed through the example in Figure 13, where a verifiable remove occurs at index 450.
The algorithm starts by placing iterators i and dn at the position of v2 (line 6) and d4 (line 4), respectively. At line
7, the hash value (hash) for the node v2 is computed using the hash information at d4. dn is then updated to point at
node d3 at line 8. The loop is used to calculate the hash values for the newly added nodes in the FlexList using the
hash information in the proof nodes of the deleted nodes. The hash value for v1 is computed by using hash in the first
iteration. The second and third iterations of the loop calculate the hash values for m2 and m1 by using hash values stored
at the proof nodes of d3 and d2 respectively. Then the hash calculation is done for c3 by using the hash of m1. After the
hash of c2 is computed using the hash of c3, the algorithm calculates the hashes until the root. The hash of the root is
the temp meta data. If the server’s meta data for the updated FlexList is verified using the newly computed temp meta
data, then the meta data stored at the client is updated with this new version.

VI. Analysis
A. Security Analysis
Note that within a proof vector, all nodes which are marked with the end flag “E” contain the length of their associated
data. These values are used to check if the proof in the process of verification is indeed the proof of the block corresponding
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Fig. 13. Verifiable remove example.

to the challenged index. A careless implementation may not consider the authentication of the length values. To show
the consequence of not authenticating the length values, we will use Figure 10 and Figure 11 as an example.

The scenario starts with the client challenging the server on the indices {170, 400, 500, 690} that correspond to nodes
c1, v4, c3, and c4 respectively. The server finds out that he does not possess v4 anymore, and therefore, instead of that
node, he will try to deceive the client by sending a proof for c2. The proof vector will just be the same as the proof
vector illustrated in Figure 11 with a slight change done to deceive the client. The change is done to the fourth entry
from the top (the one corresponding to c2): Instead of the original length 80, the server puts 105 as the length of c2.
The verification algorithm (without authenticated length values) at the client side will accept this fake proof as follows:
• The block sum value and the tags get verified since both are prepared using genuine tags and blocks of the actual

nodes. The client cannot realize that the data of c2 counted in the block sum is not 105 bytes, but 80 bytes instead.
This is because the largest challenged data (the data of c4 of length 110 in our example) hides the length of the
data of c2.

• Since the proof vector contains genuine nodes (though not necessarily all the challenged ones), when the client uses
verifyMultiProof algorithm on the proof vector from Figure 11, the check on line 22 (Algorithm V.3), “hash 6=
MetaData” will be passed.

• The client also checks that the proven nodes are the challenged ones by comparing the challenge indices with the
reconstructed indices by “∀a, 0 ≤ a ≤ n , 0 ≤ Ca −Va < endnodesn−a.length” (Algorithm V.3 on line 22). This
check will also be passed because:
– c1 is claimed to start at index 150 and contain 80 bytes, and hence includes the challenged index 170 (verified

as 0 < 170− 150 < 80).
– c2 is claimed to start at index 300 and contain 105 bytes, and hence includes the challenged index 400 (verified

as 0 < 400− 300 < 105).
– c3 is claimed to start at index 450 and contain 100 bytes, and hence includes the challenged index 500 (verified

as 0 < 500− 450 < 100).
– c4 is claimed to start at index 640 and contain 110 bytes, and hence includes the challenged index 690 (verified

as 0 < 690− 640 < 110).
There are two possible solutions. We may include either the authenticated rank values of the right neighbors of the

end nodes to the proofs, or use the length of the associated data in the hash calculation of the leaf nodes. We choose
the second solution, which is authenticating the length values, since adding the neighbor node to the proof vector also
adds a tag and a hash value, for each challenged node, to the communication cost.
Lemma 1. If there exists a collision resistant hash function family, FlexList is an authenticated dictionary.

Proof: The only difference between FlexList and RBASL is the calculation of the rank values at the leaf levels. All
rank values, which are used in the calculation of the start indices of the challenged nodes, are used in hash calculations
as well. Therefore, both length and rank values contribute to the calculation of the hash value of the root. To deceive
the client, the adversary should fake the rank or length value of at least one of the proof nodes. By Theorem 1 of [25],
if the adversary sends a verifying proof vector for any node other than the challenged ones, we can break the collision
resistance of the hash function, using a simple reduction. Therefore, we conclude that our FlexList protects the integrity
of the tags and data lengths associated with the leaf-level nodes.

Remember that the tags verification protects the integrity of the data itself, based on the factoring assumption, as
shown by DPDP [15]. Combining this with Lemma 1 concludes security of FlexDPDP.
Theorem 1. If the factoring problem is hard and a collision resistant hash function family exists, then FlexDPDP is
secure.
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Proof: Consider the proof by Erway et al. for Theorem 2 of [15]. Replacing Lemma 2 of [15] in that proof with
our Lemma 1 yields an identical challenger, and the exact proof shows the validity of our theorem.

B. Performance Analysis
We have developed a prototype implementation of an optimized FlexList (on top of our optimized skip list and
authenticated skip list implementations). We used C++ and employed some methods from the Cashlib library [23],
[10]. The local experiments were conducted on a 64-bit machine with a 2.4GHz Intel 4 core CPU (only one core is
active), 4GB main memory and 8MB L2 cache, running Ubuntu 12.10. As security parameters, we used 1024-bit RSA
modulus, 80-bit random numbers, and SHA-1 hash function, overall resulting in an expected security of 80-bits. All our
results are the average of 10 runs. The tests include I/O access time since each block of the file is kept on the hard
disk drive separately, unless it stated otherwise. The size of a FlexList is suitable to keep a lot of FlexLists in RAM.

For energy efficiency tests (Figure 15 and 18), we used Watts up Pro meter. It measures the total energy consumption of
the connected device. We conducted the tests and took their energy consumption measurements. Then, we measured the
average energy cost for the idle time when no tests were taking place. The difference between these two measurements
were used in the calculation of the results. Energy consumption and time (CPU) gain results are close for both graphs.
For the energy efficiency tests we do not take I/O delay into account. Therefore, we argue that energy efficiency of our
algorithms is directly impacted by the CPU usage time of them. Therefore, our algorithms that optimize operations in
the FlexList creation and multi-challenge proof generation are efficient in terms of both time and energy.

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Number of blocks

N
um

be
r 

of
 li

nk
s 

or
 n

od
es

 

 

Optimal number of nodes
Optimal number of links
Standard number of nodes
Standard number of links

Fig. 14. The number of nodes and links used on top of leaf level nodes, before and after optimization.

1) Core FlexList Algorithm Performance: One of the core optimizations in a FlexList is done in terms of the structure.
Our optimization, removing unnecessary links and nodes, ends up with 50% less nodes and links on top of the leaf nodes,
which are always necessary since they keep the file blocks. Figure 14 shows the number of links and nodes used before
and after optimization. The expected number of nodes in a regular skip list is 2n [29] (where n represents the number of
blocks): n leaf nodes and n non-leaf nodes. Each non-leaf node makes any left connection below its level unnecessary
as described in Section III. Since in a skip list, half of all nodes and links are at the leaf level in expectation, this
means half of the non-leaf level links and half of the leaf level links are unnecessary, making a total on n unnecessary
links. Since there are n/2 non-leaf unnecessary links, it means that there are n/2 non-leaf unnecessary nodes as well,
according to unnecessary node definition (Section III). Hence, there are n−n/2 = n/2 non-leaf necessary nodes. Since
each necessary node has 2 links, in total there are 2 ∗n/2 = n necessary links above the leaf level. Therefore, in Figure
14, there is an overlap between the standard number of non-leaf nodes (n) and the optimal number of the non-leaf links
(n). Therefore, we eliminated approximately 50% of all nodes and links above the leaf level (and 25% of all).

Moreover, we presented a novel algorithm for the efficient building of a FlexList. Figure 15 demonstrates energy
consumption and time ratios between the buildFlexList algorithm and building FlexList by means of insertion (in sorted
order). The time ratio is calculated by dividing the time spent for the building FlexList using insertion method by the time
needed by the buildFlexList algorithm. The same ratio equation is applied to the energy consumption ratio calculation.
In our energy-time ratio experiments, we do not take into account the disk access time; therefore there is no delay for
I/O switching. The energy and time ratio values are close to each other because of the same reason: the more time,
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Fig. 15. Time and energy ratios on buildFlexList algorithm against insertions.

the algorithm executes, the more energy is spent. As expected, buildFlexList algorithm outperforms the regular insertion
method, since in the buildFlexList algorithm the expensive hash calculations are performed only once for each node in
the FlexList. So practically, the buildFlexList algorithm reduced the time to build a FlexList for a file of size 400MB
with 200000 blocks from 12 seconds to 2.3 seconds and for a file of size 4GB with 2000000 blocks from 128 seconds
to 23 seconds.

256 512 1024 2048 4096 8192 16384 32768 65536 131072
0

50

100

150

200

250

Block Size [Bytes]

S
er

ve
r 

T
im

e 
[m

s]

 

 

16 MB File
160 MB File
1600 MB File

Fig. 16. Server time for 460 random challenges as a function of block size for various file sizes.

2) FlexDPDP Performance: Proof Generation Performance : Figure 16 shows the server proof generation time for
FlexDPDP as a function of the block size by fixing the file size to 16MB, 160MB, and 1600MB. As shown in the figure,
with the increase in block size, the time required for the proof generation increases, since with a higher block size, the
block sum generation takes more time. Interestingly though, with extremely small block sizes, the number of nodes in
the FlexList become so large that it dominates the proof generation time. Since 2KB block size worked best for various
file sizes, our other tests employ 2KB blocks. These 2KB blocks are kept on the hard disk drive, on the other hand
the FlexList nodes are much smaller and subject to be kept in RAM. While we observed that buildFlexList algorithm



20

runs faster with bigger block sizes (since there will be fewer blocks), the creation of a FlexList happens only once. On
the other hand, the proof generation algorithm runs periodically depending on the client, therefore we chose to optimize
for its running time.
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Fig. 17. Performance gain graph ([460 single proof / 1 multi proof] for 460 challenges).

The performance of our optimized implementation of the proof generation mechanism is evaluated in terms of
communication and computation. We take into consideration the case where the client wishes to detect with more
than 99% probability if more than a 1% of her 1GB data is corrupted by challenging 460 blocks; the same scenario as
in PDP and DPDP [2], [15]. In our experiment, we used a FlexList with 500,000 nodes, where the block size is 2KB.

In Figure 17 we plot the ratio of the unoptimized proofs over our optimized proofs in terms of the FlexList proof size
and computation, as a function of the number of challenged nodes. The unoptimized proofs correspond to proving each
block separately, instead of using our genMultiProof algorithm for all of them at once. Our multi-proof optimization
results in 40% computation and 50% communication gains for FlexList proofs. This corresponds to FlexList proofs
being up to 1.75 times as fast and 2 times as small.

We also measure the gain in the total size of a FlexDPDP proof and computation done by the server in Figure 17.
With our optimizations, we clearly see a gain of about 35% and 40% for the overall computation and communication,
respectively, corresponding to proofs being up to 1.60 times as fast and 1.75 times as small. The whole proof roughly
consists of 213KB FlexList proof, 57KB of tags, and 2KB of block sum. Thus, for 460 challenges as suggested by PDP
and DPDP [2], [15], we obtain a decrease in total proof size from 485KB to 272KB, and the computation is reduced
from 19ms to 12.5ms by employing our genMultiProof algorithm. We could have employed gzip to eliminate duplicates
in the proof, but it does not perfectly handle the duplicates and our algorithm also provide computation (proof generation
and verification) time optimization as well. Compression is still beneficial when applied on our optimal proof.

Furthermore, we tested the performance of genMultiProof algorithm in terms of energy efficiency. The time and energy
ratio graph for the genMultiProof algorithm is shown in Figure 18. We have tested the algorithm in different file size
scenarios, starting a file size from 4MB to 4GB (where block size is 2KB, and thus the number of blocks increase with
the file size). In constant scenario we applied the same challenge size of 460. Our results showed a relative decline in the
performance of the genMultiProof as the number of blocks in the FlexList increases. This is caused by the number of
challenges being constant. Because as the number of blocks in the FlexList grows, the number of repeated proof nodes
in the proof decreases. In proportional scenario, we have the time and energy ratio for 5, 46 and 460 challenges for
the block number of 20000, 200000 and 2000000 respectively. The graph shows a relative incline in the performance of
genMultiProof for the proportional number of challenges to the number of blocks in a file. The algorithm has a clear
efficiency gain in the computation time in comparison to the generating each proof individually.

Provable Update Performance: In FlexDPDP, we have optimized algorithms for verifiable update operations. The
results for the basic functions of the FlexList (insert,modify, remove) against their verifiable versions are shown in
Figure 19. The regular insert method takes more time than any other method, since it needs extra time for the memory
allocations and I/O delay. The remove method takes less time than the modify method, because there is no I/O delay
and at the end of the remove algorithm there are less nodes that need recalculation of the hash and rank values. As
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Fig. 18. Time and energy ratios on genMultiProof algorithm.
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Fig. 19. Performance evaluation of FlexList methods and their verifiable versions.

expected, the complexity of the FlexList operations increase logarithmically. The verifiable versions of the functions
require an average overhead of 0.05 ms for a single run. For a single verifiable insert, the server needs less than
0.4ms to produce a proof in a FlexList with 2 million blocks (corresponding to a 4GB file). These results show that the
verifiable versions of the updates can be employed with only little overhead.

3) Comparison with Static Cloud Storage on the PlanetLab: We compare static PDP with FlexDPDP, which is a
dynamic system. The server in PDP computes the sum of the challenged blocks and the multiplication and exponentiation
of their tags. FlexDPDP server only computes the sum of the blocks and FlexList proof, but not the multiplication and
exponentiation of their tags, which are expensive cryptographic computations. In such a scenario the FlexDPDP server
outperforms such a naive PDP server, since the multiplication of tags in PDP takes much longer than the FlexList
proof generation in FlexDPDP. This result is in contract to the fact that PDP proofs take O(1) time and space whereas
FlexDPDP proofs require O(log n) time and space, due to a huge difference in the constants in the Big-Oh notation.

We note that it is possible for PDP to be implemented by the server sending the tags to the client and the client
computing the multiplication and exponentiation of the tags. If this is done in a PDP implementation, even though the
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proof size grows, the PDP server can respond to challenges faster than FlexDPDP. Therefore, we realize that where to
handle the multiplication and exponentiation of tags is an implementation decision for PDP.

PDP PDP∗ FlexDPDP
Local Server Computation 413.19 12.97 38.60
Close Client Total 466.82 557.49 649.11
Mid-range Client Total 496.856 714.47 874.63
Distant Client Total 551.376 986.98 1023.25

TABLE IV
TIME SPENT FOR A CHALLENGE OF SIZE 460, IN MILLISECONDS. PDP∗ IS THE MODIFIED PDP SCHEME, WHERE WE SEND ALL CHALLENGED TAG

VALUES TO THE CLIENT INSTEAD OF MULTIPLYING THEM.

We deployed FlexDPDP, together with original and modified PDP versions, on a world-wide network test bed,
PlanetLab. On PlanetLab, a node has minimum requirements of having 6x Intel Xeon E5 cores @ 2.2GHz processor, 24
GB of RAM, and 2TB shared hard disk space. The nodes are also required to have minimum of 400kbps of bi-directional
bandwidth to the Internet [26] As a central point in Europe, we chose a node in Berlin, Germany2 as the server. We
measured the whole time spent for one challenge at both the client and the server side (Table IV). We moved our client
location and tested serving a close range client in Munich, Germany3, a mid-range client in Koszalin, Poland4, and a
distant client in Lisbon, Portugal5. We used a single core at each side. The protocols are run on a 1GB file, which is
divided into blocks of 2KB, having 500000 nodes.

Inducting from Table IV, we conclude that using 6 cores (usual core count in PlanetLab nodes), a PDP server can
answer 14.5 queries per second whereas a server using PDP∗ and FlexDPDP can serve 462 queries and 155.5
queries per second respectively. We discern that, for the server, tag multiplication is the most time consuming task in
each challenge. It is clear that to increase the server throughput, tag multiplication should be delegated to the client.
This delegation increases the total time spent by the client a bit more than it saves from the server, since the tags should
be sent over the network. However, the outcome is the dramatic increase in the server throughput. Note that, when one
considers the total time a client spends for sending a challenge, obtaining the proof, and verifying it, the overhead of
being dynamic (FlexDPDP vs. PDP∗) is around 40 to 90 ms, which is a barely-visible difference for a real-life application
(especially considering that the whole process takes on the order of a second).

VII. Conclusion and Future Work
The security and privacy issues are significant obstacles toward the cloud storage adoption [36]. With the emergence of
cloud storage services, data integrity has become one of the most important challenges. Early works have shown that the
static solutions with optimal complexity [2], [30], and the dynamic solutions with logarithmic complexity [15] are within
reach. However, a DPDP [15] solution is not applicable to real life scenarios since it supports only fixed block size and
therefore lacks flexibility on the data updates, while the real life updates are likely not of constant block size. We have
extended earlier studies in several ways and provided a new data structure (FlexList) and its optimized implementation
for use in the cloud data storage. A FlexList efficiently supports variable block sized dynamic provable updates, and we
showed how to handle multiple proofs and updates at once, greatly improving scalability. As future work, we plan to
further study parallelism and energy efficiency. We also aim to extend our system to peer-to-peer settings.
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