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Abstract. In this note we describe some general-purpose, high-efficiency
elliptic curves targeting at security levels beyond 2128. As a bonus, we
also include legacy-level curves. The choice was made to facilitate state-
of-the-art implementation techniques.

1 Introduction

General-purpose elliptic curves are necessary to attain high-efficiency
implementations of the most common cryptographic protocols like
asymmetric encryption and plain digital signatures (but setting aside
less conventional application like identity-based encryption). The
standard NIST curves [11], though fairly efficient overall, arguably
no longer represent the state of the art in the area [4, 6].

More efficient general-purpose curves have been recently pro-
posed to address this situation [3, 4, 7], but for the 2128 security
level at most, which corresponds to the expected security level of
the standard NIST curve P-256. This is the case of Curve25519 [3]
and Curve1174 [4]. However, while there is reason to look for higher
security curves [12], no similar curves seem to have been proposed
in the literature for higher security levels, matching the presumed
levels of (say) the standard NIST curves P-384 and/or P-521.

In this short note we address this need up to the expected secu-
rity level of P-384, adopting the same settings as Curve25519 and
Curve1174, respectively.
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2 Curve choice

The curves Curve25519 and Curve1174 have been engineered to facil-
itate simple, efficient and secure implementation of general-purpose
elliptic curve cryptosystems, with impressive results [7] and many
useful properties, like the indistinguishability of points from uniform
random strings and many others [4]. On these grounds, it makes sense
to look for similar curves at higher security levels. At the same time,
one can take the opportunity to provide legacy-level curves as well,
matching e.g. the expected security level of the standard NIST curve
P-224.

Curve25519 [3] is an Elligator type 2 curve with the following
properties (among others):

– It is a Montgomery curve [10] over a large prime field Fp;
– The prime p has the form p = 2m−δ where 0 < δ < dlg(p)e = m;
– The prime p satisfies p ≡ 5 (mod 8), hence square root compu-

tation in Fp can be done with the Atkin method [2];
– The value ξ = 2 is a quadratic non-residue in Fp, and hence can

used to define a non-trivial quadratic twist of an elliptic curve
over Fp;

– The curve equation is E : y2 = x3+Ax2+x and the twist equation
is E ′ : v2 = u3 + 2Au2 + 4u, where A > 2 is as small as possible.

– The curve order has the form n = 8r where r is prime;
– The order of the non-trivial quadratic twist of the curve has the

form n′ = 4r′ where r′ is prime, with |r′| = |r|+ 1;

Curve1174 [4] is an Elligator type 1 curve with the following
properties (among others):

– It is an Edwards curve [5, 8] over a large prime field Fp;
– The prime p has the form p = 2m−δ where 0 < δ < dlg(p)e = m;
– The prime p satisfies p ≡ 3 (mod 4), hence square root compu-

tation in Fp can be done with the Cippolla-Lehmer method [9];
– The curve equation is E : x2+y2 = 1+dx2y2 and the equation of

a non-trivial quadratic twist of E is E ′ : u2+ v2 = 1+ (1/d)u2v2,
where d > 1 is as small as possible;

– The curve order has the form n = 4r where r is prime;
– The order of the non-trivial quadratic twist of the curve has the

form n′ = 4r′ where r′ is prime, with |r′| = |r|;



3 The curves

We now list curves for several security levels, up to the level roughly
comparable to the presumed security level of the NIST curve P-384.
The primes have the general form p = 2m−δ for δ as small as possible.
While it would be desirable that δ < 32 (see [4]), this is not always
possible. Yet, insisting that δ < lg p increases the likeliness that any
attack advantage this setting might cause is negligible (exponentially
small). An additional practical constraint is that the value of δ fits
one byte, to facilitate the detection of values outside the valid range
is this is deemed necessary.

Table 1 contains Montgomery curves, while Table 2 contains Ed-
wards curves. For completeness, we include the original Curve25519
and Curve1174.

Table 1. Montgomery curves

curve p A |r| security
Curve22103 2221 − 3 204400 218 2109

Curve25519 2255 − 19 486662 252 2126

Curve383187 2383 − 187 229969 380 2190

Table 2. Edwards curves

curve p −d |r| security
Curve4417 2226 − 5 4417 224 2112

Curve1174 2251 − 9 1174 249 2124

Curve67254 2382 − 105 67254 380 2190

A proof-of-concept implementation of all these curves is avail-
able as part of the RELIC library [1]. Work on a production-quality
implementation is ongoing.

4 Conclusion

We have described general-purpose high-efficiency curves roughly
matching the expected security of the standard NIST curve P-384.
As a bonus, we also provided legacy-level curves roughly matching



the expected security of the standard NIST curve P-224. All curves
follow the Elligator 1 and 2 strategy, which is arguably the state of
the art for the design of cryptographically-oriented elliptic curves.

This is work in progress. Better curves may be suggested as they
become available.
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