
A note on high-security
general-purpose elliptic curves

Diego F. Aranha1, Paulo S. L. M. Barreto2?, Geovandro C. C. F. Pereira2, and
Jefferson E. Ricardini2

1 Computer Science Dept, University of Brasília.
E-mail: dfaranha@unb.br

2 Escola Politécnica, University of São Paulo.
E-mails: {pbarreto,geovandro,jricardini}@larc.usp.br

Abstract. In this note we describe some general-purpose, high-efficiency
elliptic curves tailored for security levels beyond 2128. For completeness,
we also include legacy-level curves at standard security levels. The choice
of curves was made to facilitate state-of-the-art implementation tech-
niques.

1 Introduction

General-purpose elliptic curves are necessary to attain high-efficiency implemen-
tations of the most common cryptographic protocols like asymmetric encryption
and plain digital signatures (but setting aside less conventional application like
identity-based encryption). The standard NIST curves [13], though fairly effi-
cient overall, arguably no longer represent the state of the art in the area [4, 6].

More efficient general-purpose curves have been recently proposed to address
this situation [3,4, 7], but for the 2128 security level at most, which corresponds
to the expected security level of the standard NIST curve P-256 (or its binary
counterpart, B-283). This is the case of Curve25519 [3] and Curve1174 [4]. How-
ever, while there is reason to look for higher security curves [14], no similar
curves seem to have been proposed in the literature for higher security levels,
matching the presumed levels of (say) the standard NIST curves P-384 and/or
P-521.

In this short note we address this need up to the expected security level of
P-384, adopting the same settings as Curve25519 and Curve1174, respectively.

2 Curve choice

The curves Curve25519 and Curve1174 have been engineered to facilitate simple,
efficient and secure implementation of general-purpose elliptic curve cryptosys-
tems, with impressive results [7]. On these grounds, it makes sense to look for

? Supported by CNPq research productivity grant 306935/2012-0.

similar curves at higher security levels. At the same time, one can take the oppor-
tunity to provide curves matching the expected security levels of other standard
NIST curves, the most prominent case being P-224 (and its binary counterpart,
B-233), corresponding approximately to the security level of 3DES [11].

Curve25519 [3] is an Elligator type 2 curve with the following properties
(among others):

– It is a Montgomery curve [12] over a large prime field Fp;
– The prime p has the form p = 2m − δ where 0 < δ < dlg(p)e = m;
– The prime p satisfies p ≡ 5 (mod 8), hence square root computation in Fp

can be done with the Atkin method [2];
– The value ξ = 2 is a quadratic non-residue in Fp, and hence can used to

define a non-trivial quadratic twist of an elliptic curve over Fp;
– The curve equation is E : y2 = x3 + Ax2 + x and the twist equation is
E′ : v2 = u3+2Au2+4u, where A > 2, A ≡ 2 (mod 4), (A−2)/4 is as small
as possible (so as to improve arithmetic performance), and A2 − 4 is not a
square (so that the curve has a unique point of order 2 and the Montgomery
ladder yields a complete addition law).

– The curve order has the form n = 8r where r is prime;
– The order of the non-trivial quadratic twist of the curve has the form n′ = 4r′

where r′ is prime, with |r′| = |r|+ 1;

Curve1174 [4] is an Elligator type 1 curve with the following properties
(among others):

– It is an Edwards curve [5, 9] over a large prime field Fp;
– The prime p has the form p = 2m − δ where 0 < δ < dlg(p)e = m;
– The prime p satisfies p ≡ 3 (mod 4), hence square root computation in Fp

can be done with the Cippolla-Lehmer method [10];
– The curve equation is E : x2 + y2 = 1 − dx2y2 and the equation of a non-

trivial quadratic twist of E is E′ : u2 + v2 = 1 − (1/d)u2v2, where d > 1 is
as small as possible;

– The curve order has the form n = 4r where r is prime;
– The order of the non-trivial quadratic twist of the curve has the form n′ = 4r′

where r′ is prime, with |r′| = |r|;

3 The curves

We now list curves for several security levels, up to the level roughly comparable
to the presumed security level of the NIST curve P-384. The primes have the
general form p = 2m − δ for δ as small as possible. While it would be desirable
that δ < 32 (see [4]), this is not always possible. Yet, insisting that δ < lg p
increases the likeliness that any attack advantage this setting might cause is
negligible (exponentially small). An additional practical constraint is that the
value of δ fits one byte, to facilitate the detection of values outside the valid
range is this is deemed necessary.

Table 1 contains Montgomery curves, while Table 2 contains Edwards curves.
For completeness, we include the original Curve25519 and Curve1174. The prime
group order is r. For the Montgomery (Elligator 2) curves, the suggested base
point or order r is given by its x-coordinate, which is as small as possible when
viewed as a natural number.

Table 1. Montgomery curves

curve p A |r| security x r

Curve2213 2221 − 3 117050 218 2108.8 4 42124916667422874679167211073468\
21679268950819803963049443350528\
91

Curve25519 2255 − 19 486662 252 2125.8 9 72370055773322622139731865630429\
94240857116359379907606001950938\
285454250989

Curve383187† 2383 − 187 229969 380 2189.8 5 24626253872746549507674400062589\
75862817483704404090416747124418\
61257488060594435036992487765060\
6926799392131911201

†Less implementation-friendly curve; more efficient replacement is under way.

Table 2. Edwards curves

curve p d |r| security r

Curve4417 2226 − 5 4417 224 2111.8 26959946667150639794667015087019\
63059840670773950791945064254090\
7951

Curve1174 2251 − 9 1174 249 2124.3 90462569716653277674664832038037\
42800923390352794954740234892617\
73642975601

Curve67254 2382 − 105 67254 380 2189.8 24626253872746549507674400062589\
75862817483704404090416745738034\
55766305456464917126265932668324\
4604346084081047321

A proof-of-concept implementation of all these curves is available as part of
the RELIC library [1]. Work on a production-quality implementation is ongoing.

4 Conclusion

We have described general-purpose high-efficiency curves roughly matching the
expected security of the standard NIST curves P-384, and as a bonus, also curves
roughly matching the expected security of the standard NIST curves P-224. All

curves follow the Elligator (1 and 2) strategy, which is arguably the state of the
art for the design of cryptographically-oriented elliptic curves.

This is work in progress. Better curves may be suggested as they become
available.

Acknowledgements

We are grateful to S. Neves for providing independent verification of the cor-
rectness of the curves included here, and to T. Lange for pinpointing typos in a
previous version of this note and for suggesting many improvements.

References

1. D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography.
2. O. Atkin. Square roots and cognate matters modulo p = 8n+ 5. Number Theory

mailing list, 1992. http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=
nmbrthry&O=T&P=562.

3. Dan J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key Cryptography – PKC
2006, volume 3958 of Lecture Notes in Computer Science, pages 207–228. Springer,
2006.

4. Dan J. Bernstein, M. Hamburg, A. Krasnova, and T Lange. Elligator: Elliptic-
curve points indistinguishable from uniform random strings. IACR Cryptology
ePrint Archive, report 2013/325, 2013.

5. Dan J. Bernstein and Tanja Lange. Security dangers of the NIST curves. In
K. Kurosawa, editor, Advances in Cryptology – Asiacrypt 2007, volume 4833 of
Lecture Notes in Computer Science, pages 29–50. Springer, 2007.

6. Dan J. Bernstein and Tanja Lange. Security dangers of the NIST curves. Invited
talk, International State of the Art Cryptography Workshop, Athens, Greece, 2013.

7. Dan J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new
cryptographic library. In Alejandro Hevia and Gregory Neven, editors, Latincrypt
2012, volume 7533 of Lecture Notes in Computer Science, pages 159–176. Springer,
2012.

8. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

9. Harold M. Edwards. A normal form for elliptic curves. Bulletin of the American
Mathematical Society, 44:393–422, 2007.

10. D. H. Lehmer. Computer technology applied to the theory of numbers. In W. J.
LeVeque, editor, Studies in Number Theory. Mathematical Association of America,
1969.

11. Stefan Lucks. Attacking triple encryption. In Serge Vaudenay, editor, Fast Software
Encryption – FSE 1998, volume 1372 of Lecture Notes in Computer Science, pages
239–253. Springer, 1998.

12. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48:243–264, 1987.

13. National Institute of Standards and Technology – NIST. Federal Information Pro-
cessing Standard (FIPS 186-4) – Digital Signature Standard (DSS), July 2013.

14. National Security Agency – NSA. Suite B Cryptography / Cryptographic Interoper-
ability, January 2009. http://www.nsa.gov/ia/programs/suiteb_cryptography/
index.shtml.

A Legacy-level curves

Under certain circumstances where one needs a lower but still reasonable security
level, or must adhere to layout constraints of legacy applications, or simply
cannot afford higher-security curves for lack of computational resources (as may
be the case on certain very constrained platforms typical of the Internet of
Things), curves matching the expected security level of (say) the NIST curves
B-163 or P-192 may be useful.

Though the primary purpose of this note is to suggest some curves at high
security levels, for completeness we list a few possible alternatives for those
legacy-level curves on Tables 3 and 4.

Table 3. Legacy-level Montgomery curves

curve p A |r| security x r

Curve15991 2159 − 91 197782 156 277.8 3 91343852333181432387730411159116\
468190437625759

Curve19119 2191 − 19 401606 188 293.8 3 39231885846166754773973683894960\
6720982395986066128979649

Table 4. Legacy-level Edwards curves

curve p d |r| security r

Curve42000 2157 − 133 42000 155 277.3 45671926166590716193865246478592\
509883108923719

Curve65896 2191 − 69 65896 189 294.3 78463771692333509547947367790096\
2674043917376225288258601

B Verifying the curves

The following Magma [8] script checks that the curves presented in this note
do indeed satisfy the requirements in Section 2, except the condition that the
coefficients A and d in the curve equations E : y2 = x3+Ax2+x and E : x2+y2 =
1+dx2y2 are as small as possible in absolute integer value. Extending the script
so as to check this last condition is straightforward, but the processing time can
be very long (several weeks for the highest security levels, if run sequentially).

Independent verification has been kindly provided in Sage by S. Neves at http:
//eden.dei.uc.pt/~sneves/647.sage.

function MontyCurve(m, A)
p := 2^m;
repeat

p := PreviousPrime(p);
until p mod 8 eq 5;
delta := 2^m - p;
if delta gt m then

return false;
end if;
F := GF(p);
z := 2;
if IsSquare(F!z) then

return false;
end if;
if IsSquare(F!A - 2) or IsSquare(F!A^2 - 4) then

return false;
end if;
// NB: now (A - 2)/(A + 2) is not a square either
// check curve y^2 = x^3 + A*x^2 + x:
ok, E := IsEllipticCurve([0, F!A, 0, 1, 0]);
if not ok then

return false;
end if;
n := #E;
if (n mod 8 ne 0) or not IsProbablePrime(n div 8) then

return false;
end if;
// check twist v^2 = u^3 + A*z*u^2 + z^2*u:
ok, Et := IsEllipticCurve([0, F!A*z, 0, F!z^2, 0]);
if not ok then

return false;
end if;
nt := #Et;
if (nt mod 4 ne 0) or not IsProbablePrime(nt div 4) then

return false;
end if;
t := p + 1 - n;
if nt ne p + 1 + t then

return false;
end if;
r := n div 8; // "|r| =", Round(Log(2, r));
sec := Log(2, Sqrt(Pi(RealField())*r/4));
"Good Elligator 2 curve: y^2 = x^3 + "*Sprint(A)*"*x^2 + x",

"over GF(2^"*Sprint(m)*" - "*Sprint(delta)*")",
"at sec level 2^"*Sprint(sec),
" with r =", r;
assert IsProbablePrime(r);
// find base point:
x := 0;
repeat

repeat
x +:= 1;

until IsSquare(F!x^3 + A*F!x^2 + F!x);
G := E![F!x, Sqrt(F!x^3 + A*F!x^2 + F!x)];

until IsZero(r*G);
"Base point:", G;
return true;

end function;

m := 159; A := 197782;
if not MontyCurve(m, A) then

"LOGIC ERROR!";
end if;

m := 191; A := 401606;
if not MontyCurve(m, A) then

"LOGIC ERROR!";
end if;

m := 221; A := 117050;
if not MontyCurve(m, A) then

"LOGIC ERROR!";
end if;

m := 255; A := 486662;
if not MontyCurve(m, A) then

"LOGIC ERROR!";
end if;

m := 383; A := 229969;
if not MontyCurve(m, A) then

"LOGIC ERROR!";
end if;

function EddieCurve(m, d)
p := 2^m;
repeat

p := PreviousPrime(p);

until p mod 4 eq 3;
delta := 2^m - p;
if delta gt m then

return false;
end if;
F := GF(p);
e := 1 + d;
if IsSquare(F!e) or IsSquare(-F!d) or not IsSquare(F!d) then

return false;
end if;
s := Sqrt(F!d);
if not IsSquare(2*(s - 1)/(s + 1)) then

return false;
end if;
// check curve x^2 + y^2 = 1 - dx^2y^2,
// or equivalently y^2 = x^3 + [(4/e - 2)e]x^2 + [e^2]x:
ok, E := IsEllipticCurve([0, (4 - 2*F!e), 0, F!e^2, 0]);
if not ok then

return false;
end if;
n := #E;
if (n mod 4 ne 0) or not IsProbablePrime(n div 4) then

return false;
end if;
// check twist x^2 + y^2 = 1 - (1/d)x^2y^2,
// or equivalently v^2 = u^3 + [(4/e - 2)]u^2 + u:
ok, Et := IsEllipticCurve([0, (4/F!e - 2), 0, 1, 0]);
if not ok then

return false;
end if;
nt := #Et;
if (nt mod 4 ne 0) or not IsProbablePrime(nt div 4) then

return false;
end if;
t := p + 1 - n;
if nt ne p + 1 + t then

return false;
end if;
r := n div 4; // "|r| =", Round(Log(2, r));
sec := Log(2, Sqrt(Pi(RealField())*r/4));
"Good Elligator 1 curve: x^2 + y^2 = 1 - "*Sprint(d)*"*x^2*y^2",
"over GF(2^"*Sprint(m)*" - "*Sprint(delta)*")",
"at sec level 2^"*Sprint(sec),
" with r =", r;
assert IsProbablePrime(r);

return true;
end function;

m := 157; d := 42000;
if not EddieCurve(m, d) then

"LOGIC ERROR!";
end if;

m := 191; d := 65896;
if not EddieCurve(m, d) then

"LOGIC ERROR!";
end if;

m := 226; d := 4417;
if not EddieCurve(m, d) then

"LOGIC ERROR!";
end if;

m := 251; d := 1174;
if not EddieCurve(m, d) then

"LOGIC ERROR!";
end if;

m := 382; d := 67254;
if not EddieCurve(m, d) then

"LOGIC ERROR!";
end if;

