
On Extractability Obfuscation

Elette Boyle∗

Cornell University
ecb227@cornell.edu

Kai-Min Chung
Academia Sinica

kmchung@iis.sinica.edu.tw

Rafael Pass†

Cornell University
rafael@cs.cornell.edu

October 9, 2013

Abstract

We initiate the study of extractability obfuscation, a notion first suggested by Barak et al.
(JACM 2012): An extractability obfuscator eO for a class of algorithms M guarantees that if
an efficient attacker A can distinguish between obfuscations eO(M1), eO(M2) of two algorithms
M1,M2 ∈M, then A can efficiently recover (given M1 and M2) an input on which M1 and M2

provide different outputs.

• We rely on the recent candidate virtual black-box obfuscation constructions to provide can-
didate constructions of extractability obfuscators for NC1; next, following the blueprint
of Garg et al. (FOCS 2013), we show how to bootstrap the obfuscator for NC1 to an
obfuscator for all non-uniform polynomial-time Turing machines. In contrast to the con-
struction of Garg et al., which relies on indistinguishability obfuscation for NC1, our
construction enables succinctly obfuscating non-uniform Turing machines (as opposed to
circuits), without turning running-time into description size.

• We introduce a new notion of functional witness encryption, which enables encrypting a
message m with respect to an instance x, language L, and function f , such that anyone
(and only those) who holds a witness w for x ∈ L can compute f(m,w) on the message
and particular known witness. We show that functional witness encryption is, in fact,
equivalent to extractability obfuscation.

• We demonstrate other applications of extractability extraction, including the first con-
struction of fully (adaptive-message) indistinguishability-secure functional encryption for
an unbounded number of key queries and unbounded message spaces.

• We finally relate indistinguishability obfuscation and extractability obfuscation and show
special cases when indistinguishability obfuscation can be turned into extractability ob-
fuscation.

∗Supported in part by AFOSR YIP Award FA9550-10-1-0093.
†Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft New Faculty Fellowship, NSF Award CNS-

1217821, NSF CAREER Award CCF-0746990, NSF Award CCF-1214844, AFOSR YIP Award FA9550-10-1-0093,
and DARPA and AFRL under contract FA8750-11-2- 0211. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the US Government.

1 Introduction

Obfuscation. The goal of program obfuscation is to “scramble” a computer program, hiding its
implementation details (making it hard to “reverse-engineer”), while preserving the functionality
(i.e, input/output behavior) of the program. A first formal definition of such program obfuscation
was provided by Hada [Had00]: roughly speaking, Hada’s definition—let us refer to it as strongly
virtual black-box—is formalized using the simulation paradigm. It requires that anything an at-
tacker can learn from the obfuscated code, could be simulated using just black-box access to the
functionality.1 Unfortunately, as noted by Hada, only learnable functionalities can satisfy such a
strong notion of obfuscation: if the attacker simply outputs the code it is given, the simulator must
be able to recover the code by simply querying the functionality and thus the functionality must
be learnable.

An in-depth study of program obfuscation was initiated in the seminar work of Barak, Goldreich,
Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+12]. Their central result shows that even if we
consider a more relaxed simulation-based definition of program obfuscation—called virtual black-
box obfuscation—where the attacker is restricted to simply outputting a single bit, impossibility
can still be established (assuming the existence of one-way functions). Their result is even stronger,
demonstrating the existence of families of functions such that given black-box access to fs (for a
randomly chosen s), not even a single bit of s can be guessed with probability significantly better
than 1/2, but given the code of any program that computes fs, the entire secret s can be recovered.
Thus, even quite weak simulation-based notions of obfuscation are impossible.

Barak et al. [BGI+12] also suggested an avenue for circumventing these impossibility results:2

introducing the notions of indistinguishability and “differing-inputs” obfuscation. Roughly speak-
ing, an indistinguishability obfuscator iO for a class of circuits C guarantees that given any two
equivalent circuits C1 and C2 (i.e., whose outputs agree on all inputs) from the class, obfuscations
iO(C1) and iO(C2) of the circuits are indistinguishable. In a very recent breakthrough result, Garg,
Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13] provide the first candidate construction of
indistinguishability obfuscators for all polynomial-size circuits. Additionally, Garg et al [GGH+13]
and even more recently, the elegant works of Sahai and Waters [SW13] and Hohenberger, Sahai
and Waters [HSW13], demonstrate several beautiful (and surprising) applications of the indistin-
guishability obfuscation notion.

In this work, we initiate the study of the latter notion of obfuscation—“differing-inputs”, or as
we call it, extractability obfuscation—whose security guarantees are at least as strong as indistin-
guishability obfuscation, but weaker than virtual black-box obfuscation. We demonstrate candidate
constructions of such extractability obfuscators, and new applications.

Extractability Obfuscation. Roughly speaking, an extractability obfuscator eO for a class of
circuits C guarantees that if an attacker A can distinguish between obfuscations iO(C1), iO(C2) of
two circuits C1, C2 ∈ C, then A can efficiently recover (given C1 and C2) a point x on which C1

and C2 differ: i.e., C1(x) 6= C2(x).3 Note that if C1 and C2 are equivalent circuits, then no such
input exists, thus requiring obfuscations of the circuits to be indistinguishable (and so extractability
obfuscation implies indistinguishability obfuscation).

1Hada actually considered slight distributional weakening of this definition.
2Hada also suggested an approach for circumventing his impossibility result: he suggested sticking with a

simulation-based definition, but instead restricting to particular classes of attacker. It is, however, not clear (to
us) what reasonable classes of attackers are.

3Pedantically, our formalization is a slightly relaxed version of that of [BGI+12]; see Section 3 for details.

1

We may rely on the candidate obfuscator for NC1 of Brakerski and Rothblum [BR13] or Barak
et al. [BGK+13] to obtain extractability obfuscation for the same class. We next demonstrate a
bootstrapping theorem for extractability obfuscation, showing how to obtain extractability obfus-
cation for all polynomial-size circuits. Our transformation follows that of [GGH+13], but incurs a
somewhat different analysis.

Theorem 1.1 (Informally stated). Assume the existence of an extractability obfuscator for NC1

and the existence of a (leveled) fully homomorphic encryption scheme with decryption in NC1

(implied, e.g., by Learning With Errors (LWE)). Then there exists an extractability obfuscation for
P/poly.

Relying on extractability obfuscation, however, has additional advantages: in particular, it
allows us to achieve succinctness of the obfuscated program. Namely, we refer to an extractability
(or indistinguishability) obfuscator as succinct if it can be used to obfuscate (non-uniform) Turing
machines, while ensuring that the size of the obfuscated code preserves a polynomial relation to
the size of the original Turing machine. In contrast, a non-succinct obfuscator may (and, indeed,
the constructions of [GGH+13, BR13] do) turn running time into size: even if the original Turing
machine has a short description, but a long running time, the obfuscated code will have a long
description. To achieve succinctness, we are additionally required to rely on the existence of P-
certificates in the CRS model—namely, succinct non-interactive arguments for P.4

Theorem 1.2 (Informally stated). Assume the existence of an extractability obfuscation for NC1,
the existence of a fully homomorphic encryption scheme with decryption in NC1 (implied, e.g., by
LWE) and P -certificates (in the CRS model). Then there exists a succinct extractability obfuscation
for P/poly.

On a high level, our construction follows the one from [GGH+13] but (1) modifies it to deal with
executions of Turing machines (by relying on an oblivious Turing machine), and more importantly
(2) compresses “proofs” by using P-certificates. We emphasize that this approach does not work in
the setting of indistinguishability obfuscation. Intuitively, the reason for this is that P-certificates
of false statements exist, but are just hard to find; efficiently extracting such P-certificates from a
successful adversary is thus crucial (and enabled by the extractability property).

We next explore applications of extractability obfuscation.

Functional Witness Encryption. Consider the following scenario:

You wish to encrypt the labels in a (huge) graph (e.g., names of people in a social network)
so that no one can recover them, unless there is a clique in the graph of size, say, 100.
Then, anyone (and only those) who knows such a clique should be able to recover the
labels of the nodes in the identified clique (and only these nodes). Can this be done?

The question is very related to the notion of witness encryption, recently introduced by Garg,
Gentry, Sahai, and Waters [GGSW13]. Witness encryption makes it possible to encrypt the graph
in such a way that anyone who finds any clique in the graph can recover the whole graph; if
the graph does not contain any such cliques, the graph remains secret. The stronger notion of
extractable witness encryption, introduced by Goldwasser, Kalai, Popa, Vaikuntanathan, and Zel-
dovich [GKP+13], further guarantees that the graph can only be decrypted by someone who actually

4Such certificates can be either based on knowledge-of-exponent type assumptions [BCCT13], or even on falsifiable
assumptions [CLP13].

2

knowns a clique. However, in contrast to existing notions, here we wish to reveal only the labels
associated with the particular known clique.

More generally, we put forward the notion of functional witness encryption (FWE). An FWE
scheme enables one to encrypt a message m with respect to an NP -language L, instance x and
a function f , such that anyone who has (and only those who have) a witness w for x ∈ L can
recover f(m,w). In the above example, m contains the labels of the whole graph, w is a clique,
and f(m,w) are the labels of all the nodes in w. More precisely, our security definition requires
that if you can tell apart encryptions of two messages m0,m1, then you must know a witness w for
x ∈ L such that f(m0, w) 6= f(m1, w).

We observe that general-purpose FWE and extractability obfuscation actually are equivalent
(up to a simple transformation).

Theorem 1.3 (Informally stated). There exists a FWE for NP and every polynomial-size function
f if and only if there exists an extractability obfuscator for every polynomial-size circuit.

The idea is very simple: Given an extractability obfuscator eO, an FWE encryption of the
message m for the language L, instance x and function f is the obfuscation of the program that
on input w outputs f(m,w) if w is a valid witness for x ∈ L. On the other hand, given a general-
purpose FWE, to obfuscate a program Π, let f be the universal circuit that on input (Π, y) runs
Π on input y, let L be the trivial language where every witness is valid, and output a FWE of the
message Π—since every input y is a witness, this makes it possible to evaluate Π(y) on every y.

Other Applications. Functional encryption [BSW12, O’N10] enables the release of “targeted”
secret keys skf that enable a user to recover f(m), and only f(m), given an encryption of m. It is
known that strong simulation-based notions of security cannot be achieved if users can request an
unbounded number of keys. In contrast, Garg et al. elegantly showed how to use indistinguishability
obfuscation to satisfy an indistinguishability-based notion of functional encryption (roughly, that
encryptions of any two messages m0,m1 such that f(m0) = f(m1) for all the requested secret keys
skf are indistinguishable). The main construction of Garg et al, however, only achieves selective-
message security, where the attacker must select the two message m0,m1 to distinguish before
the experiment begins (and it can request decryption keys skf). Garg et al. observe that if they
make subexponential-time security assumptions, use complexity leveraging, and consider a small
(restricted) message space, then they can also achieve adaptive-message security.

We show how to use extractability obfuscation to directly achieve full adaptive-message security
for any unbounded size message space (without relying on complexity leveraging).

The idea behind our scheme is as follows. Let the public key of the encryption scheme be the
verification key for a signature scheme, and let the master secret key (needed to release secret
keys skf) be the signing key for the signature scheme. To encrypt a message m, obfuscate the
program that on input f and a valid signature on f (with respect to the hardcoded public key)
simply computes f(m). The secret key skf for a function f is then simply the signature on f . (The
high-level idea behind the construction is somewhat similar to the one used in [GKP+13], which
used witness encryption in combination with signature schemes to obtain simulation-based FE for
a single function f ; in contrast, we here focus on FE for an unbounded number of functions).

Proving that this construction works is somewhat subtle. In fact, to make the proof go through,
we here require the signature scheme in use to be of a special delegtable kind—namely, we require
the use of functional signatures [BGI13, BF13] (which can be constructed based on non-interactive
zero-knowledge arguments of knowledge), which make it possible to delegate a signing key sk′ that
allows one to sign only messages satisfying some predicate. The delegation property is only used

3

in the security reduction and, roughly speaking, makes it possible to simulate key queries without
harming security for the messages selected by the attacker.

Theorem 1.4 (Informally stated). Assume the existence of non-interactive zero-knowledge proofs
of knowledge for NP and the existence of extractability obfuscators for polynomial-size circuits.
Then there exists an (adaptive-message) indistinguishability-secure functional encryption scheme
for arbitrary length messages.

Another interesting feature of our approach is that it directly enables constructions of Hier-
archical Functional Encryption (HiFE) (in analogy with Hierarchical Identity-Based encryption
[HL02]), where the secret keys for functions f can be released in a hierarchical way (the top node
can generate keys for subsidiary nodes, those nodes can generate keys for its subsidiaries etc.). To
do this, simply modify the encryption algorithm to release the f(m) message in case you provide
an appropriate chain of signatures that terminates with a signature on f .

From Indistinguishability Obfuscation to Extractability Obfuscation. A natural ques-
tion is whether we can obtain extractability obfuscation from indistinguishability obfuscation. We
address this question in two different settings: first directly in the context of obfuscation, and
second in the language of FWE. (Recall that these two notions are equivalent when dealing with
arbitrary circuits and arbitrary functions; however, when considering restricted function classes,
there are interesting differences).

• We introduce a weaker form of extractability obfuscation, in which extraction is only required
when the two circuits differ on only polynomially many inputs. We demonstrate that any
indistinguishability obfuscation in fact implies weak extractability obfuscation.

Theorem 1.5 (Informally stated). Any indistinguishability obfuscator for P/poly is also a
weak extractability obfuscator for P/poly.

• Mirroring the definition of indistinguishability obfuscation, we may define a weaker notion of
FWE—which we refer to as indistinguishability FWE (or iFWE)—which only requires that
if f(m0, w) = f(m1, w) for all witnesses w for x ∈ L, then encryptions of m0 and m1 are
indistinguishable (in contrast, the stronger notion requires that if you can distinguish between
encryptions of m0 and m1 you must know a witness on which they differ). It follows that iFWE
for languages in NP and functions in P/poly is equivalent to indistinguishability obfuscation
for P/poly, up to a simple transformation. We show that if restricting to languages with
polynomially many witnesses, it is possible to turn any iFWE to an FWE.

Theorem 1.6 (Informally stated). Assume there exists indistinguishability FWE for every
NP language with polynomially many witnesses, and the function f . Then for every language
L in NP with polynomially many witnesses, there exists an FWE for L and f .

Our proof relies on a local list-decoding algorithm for a large-alphabet Hadamard code due to
Goldreich, Rubinfeld and Sudan [GRS00].

Theorems 1.5 and 1.6 are incomparable in that Theorem 1.5 begins with a stronger assumption
and yields a stronger conclusion. More precisely, if one begins with iFWE supporting all languages
in NP and functions in P/poly, then the equivalence between indistinguishability (respectively,
standard) FWE and indistinguishability (resp., extractability) obfuscation, in conjunction with the
transformation of Theorem 1.5, yields a stronger outcome in the setting of FWE than Theorem 1.6:
Namely, a form of FWE where (extraction) security holds as long as the function M(m,w) is

4

not “too sensitive” to m: i.e., if for any two messages m0,m1 there are only polynomially many
witnesses w for which M(m0, w) 6= M(m1, w). This captures, for example, functions M that only
rarely output nonzero values. Going back to the example of encrypting data m associated with
nodes of a social network, we could then allow someone holding clique w to learn whether the nodes
in this clique satisfy some chosen rare property (e.g., contains someone with a rare disease, all have
the same birthday, etc). Indeed, while there may be many cliques (corresponding to several, even
exponentially many, witnesses w), it will be the case that M(m,w) is almost always 0, for all but
polynomially many w.

On the other hand, Theorem 1.6 also provides implications of iFWE for restricted function
classes. In particular, Theorem 1.6 gives a method for transforming indistinguishability FWE
for the trivial function f(m,w) = m to FWE for the same function f . It is easy to see that
indistinguishability FWE for this particular f is equivalent to the notion of witness encryption
[GGSW13], and FWE for the same f is equivalent to the notion of extractable witness encryption
of [GKP+13]. Theorem 1.6 thus shows how to turn witness encryption to extractable witness
encryption for the case of languages with polynomially many witness.

Finally, we leave open whether there are corresponding transformations from indistinguishability
obfuscation in the case of many disagreeing inputs, and iFWE in the case of many witnesses. In the
latter setting, this is interesting even for the special case of witness encryption (i.e., the function
f(m,w) = m).

1.1 Overview of the Paper

In Section 2, we present definitions and notation for some of the tools used in the paper. In
Section 3, we introduce the notion of extractability obfuscation and present a bootstrapping trans-
formation from any extractability obfuscator for NC1 to one for all of P/poly. In Section 4,
we define functional witness encryption (FWE), and show an equivalence between FWE and ex-
tractability obfuscation. In Section 5, we describe an application of extractability obfuscation, in
achieving indistinguishability functional encryption with unbounded-size message space. In Sec-
tion 6, we explore the relationship between indistinguishability and extractability obfuscation,
providing transformations from the former to the latter in special cases.

2 Preliminaries

2.1 Fully Homomorphic Encryption

A fully homomorphic encryption scheme E = (GenFHE,EncFHE,DecFHE,EvalFHE) is a public-key
encryption scheme that associates with an additional polynomial-time algorithm EvalFHE, which
takes as input a public key pk, a ciphertext c = EncFHE(pk,m) and a circuit C, and outputs, a
new ciphertext c′ = EvalFHE(pk, c, C), such that DecFHE(sk, c′) = C(m), where sk is the secret
key corresponding to the public key pk. Formally, we require E to have the following correctness
property:

Definition 2.1 (FHE correctness). There exists a negligible function ν(k) such that

Pr
pk,sk←Gen(1k)

 ∀ ciphertexts c1, ..., cn s.t. ci ← Encpk(bi),
∀ poly-size circuits f : {0, 1}n → {0, 1}
Decsk(Evalpk(f, c1, ..., cn)) = f(b1, ..., bn),

 ≥ 1− ν(k).

5

It is required that the size of c′ = EvalFHE(pk,EncFHE(pk,m), C) depends polynomially on the
security parameter and the length of C(m), but is otherwise independent of the size of the circuit
C. For security, we simply require that E is semantically secure. We also require that Eval is
deterministic, and that the decryption circuit Decsk(·) is in NC1. Most known schemes satisfy
these properties. Since the breakthrough of Gentry [Gen09], several fully homomorphic encryption
schemes have been constructed with improved efficiency and based on more standard assumptions
such as LWE (Learning With Errors) (e.g., [BV11, BGV11, GSW13, BV13]).

Remark 2.2 (Homomorphic evaluation of Turing machines). As part of our extractability obfusca-
tion construction for general Turing machines (TM), we require the homomorphic evaluation of an
oblivious Turing machine with known runtime. Recall that a Turing machine is said to be oblivious
if its tape movements are independent of its input. The desired homomorphic evaluation is done
as follows.

Suppose x̂ = (x̂1, x̂2, · · · , x̂k) is an FHE encryption of plaintext message x (where x̂` encrypts
the `th position of x), â = (â1, â2, . . .) an FHE encryption of the tape values, ŝ an FHE ciphertext
of the current state, and M an oblivious Turing machine terminating on all inputs within t steps.
More specifically, a description of M consists of an initial state s and description of a transition
circuit, CM . In each step i = 1, . . . , t of evaluation, M accesses some fixed position posinput(i) of the
input, fixed position postape(i) of the tape (extending straightforwardly to the multi-tape setting),
and the current value of the state, and evaluates CM on these values.

Homomorphic evaluation of M on the encrypted input x̂ then takes place in t steps: In each step
i, the transition circuit CM of M is homomorphically evaluated on the ciphertexts x̂posinput , âpostape ,
and ŝ, yielding updated values for these ciphertexts. The updated state ciphertext ŝ resulting after
t steps is the desired output ciphertext. Note that obliviousness of the Turing machine is crucial
for this efficient method of homomorphic evaluation, as any input-dependent choices for the head
location would only be available to an evaluator in encrypted form.

Overall, homomorphic evaluation of M takes time O(t(k) · poly(k)), and can be described in
space O(|M | · poly(k)).

2.2 (Indistinguishability) Functional Encryption

A functional encryption scheme [BSW12, O’N10] enables the release of “targeted” secret keys
that enable a user to recover f(m)—and only f(m)—given an encryption of m. In this work, we
will consider the indistinguishability notion of security for functional encryption. Roughly, such a
scheme is said to be secure if an adversary who requests and learns secret keys skf for a collection of
functions f cannot distinguish encryptions of any two messages m0,m1 for which f(m0) = f(m1)
for every requested f .

Definition 2.3 (Functional Encryption). [BSW12, O’N10] A functional encryption scheme for
a class of functions F = F(k) over message space M = Mk consists of four algorithms FE =
(Setup,KeyGen, Enc,Dec) with syntax

• Setup(1k): on input the security parameter 1k, Setup outputs public parameters pp and a
master secret key msk.

• KeyGen(msk, f): on input the master secret key msk and function description f ∈ F , KeyGen
outputs a secret key skf .

• Enc(pp,m): on input public parameters pp and message m, Enc outputs a ciphertext c.

• Dec(skf , c): on input a secret key skf and ciphertext c output an evaluated plaintext m′

(allegedly corresponding to f(m)).

6

satisfying the following properties:

• Correctness: For every message m ∈ M and function f ∈ F , there exists a negligible
function µ(k) for which

Pr
[
(pp,msk)← Setup(1k); skf ← KeyGen(msk, f) : Dec(skf ,Enc(pp,m)) 6= f(m)

]
≤ µ(k).

• Indistinguishability Security: The advantage of any PPT adversary A in the following
challenge is negligible in k:

1. Setup: The challenger samples (pp,msk)← Setup(1k) and gives the public parameters pp
to A.

2. Key Queries: A adaptively submits queries fi ∈ F and is given skf1 ← KeyGen(msk, fi)
for each query. This step can be repeated any polynomial number of times.

3. Challenge: A submits two messages m0,m1 ∈ M for which fi(m0) = fi(m1) for every
function fi queried in the key query phase, and is given a challenge ciphertext c ←
Enc(pp,mb) for a randomly selected bit b← {0, 1}.

4. Additional Key Queries: A adaptively submits queries fi ∈ F , subject to the restriction
that fi(m0) = fi(m1). For each such query, A is given skf1 ← KeyGen(msk, fi). This step
can be repeated any polynomial number of times.

5. Guess: A outputs a bit b′ ∈ {0, 1}.
The advantage of A in the game above is defined to be |Pr[b′ = b]− 1

2 |.

2.3 P-Certificates

P-Certificates are a succinct argument system for P. We present P certificates in the CRS model.
Consider the following canonical languages for P: for every constant c ∈ N, let Lc = {(M,x, y) :

M(x) = y within |x|c steps}. Let TM (x) denote the running time of M on input x.

Definition 2.4 (P-certificates). [CLP12] A tuple of probabilistic interactive Turing machines
(CRSGencert, Pcert, Vcert) is a P-certificate system in the CRS model if there exist polynomials
gP , gV , ` such that the following hold:

• Efficient Verification: On input crs← CRSGen(1k), c ≥ 1, and a statement q = (M,x, y) ∈
Lc, and π ∈ {0, 1}∗, Vcert runs in time at most gV (k + |q|).
• Completeness by a Relatively Efficient Prover: For every c, d ∈ N, there exists a

negligible function µ such that for every k ∈ N and every q = (M,x, y) ∈ Lc such that
|q| ≤ kd,

Pr[crs← CRSGen(1k);π ← Pcert(crs, c, q) : Vcert(crs, c, q, π) = 1] ≥ 1− µ(k).

Furthermore, Pcert on input (crs, c, q) outputs a certificate of length `(k) in time bounded by
gP (k + |M |+ TM (x)).

• Soundness: For every c ∈ N, and every (not necessarily uniform) PPT P ∗, there exists a
negligible function µ such that for every k ∈ N,

Pr[crs← CRSGen(1k); (q, π)← P ∗(crs, c) : Vcert(crs, c, q, π) = 1 ∧ q /∈ Lc] ≤ µ(k).

P certificates are directly implied by any publicly-verifiable succinct non-interactive argument
system (SNARG) for P. In particular, we have the following.

7

Theorem 2.5. Assuming that Micali’s CS proof [Mic00] is sound, or assuming the existence of
publicly-verifiable fully succinct SNARG system for P [BCCT13] (which in turn can be based on
any publicly-verifiable SNARG [Gro10, Lip12, GGPR13, BCI+13]), then there exists a P-certificate
system in the CRS model.

It was shown by Chung et al. [CLP12] that P-certificates can be based on falsifiable assump-
tions [Nao03].

2.4 Functional Signatures

In a functional signature scheme, in addition to a master signing key that can be used to sign any
message, there are secondary signing keys for functions f (called skf), which allow one to sign any
message in the range of f .5 We present the definition as considered in [BGI13]. A similar notion
was presented in [BF13] for the special case of functions corresponding to predicates.

Definition 2.6 (Functional Signatures). [BGI13] A functional signature scheme for a message
space M, and function family F = {f : Df → M} consists of algorithms (FS.Setup, FS.KeyGen,
FS.Sign, FS.Verify):

• FS.Setup(1k) → (msk,mvk): the setup algorithm takes as input the security parameter and
outputs the master signing key and master verification key.

• FS.KeyGen(msk, f) → skf : the KeyGen algorithm takes as input the master signing key and
a function f ∈ F (represented as a circuit), and outputs a signing key for f .

• FS.Sign(f, skf ,m) → (f(m), σ): the signing algorithm takes as input the signing key for a
function f ∈ F and an input m ∈ Df , and outputs f(m) and a signature of f(m).

• FS.Verify(mvk,m∗, σ) → {0, 1}: the verification algorithm takes as input the master verifica-
tion key mvk, a message m and a signature σ, and outputs 1 if the signature is valid.

We say that FS is a functional signature scheme for unbounded-length messages if M = {0, 1}∗.
We require the following conditions to hold:

Corectness:
∀f ∈ F , ∀m ∈ Df , (msk,mvk)← FS.Setup(1k), skf ← FS.KeyGen(msk, f), (m∗, σ)← FS.Sign(f, skf ,m),

FS.Verify(mvk,m∗, σ) = 1.

Unforgeability:
The scheme is unforgeable if the advantage of any PPT algorithm A in the following game is
negligible:

• The challenger generates (msk,mvk)← FS.Setup(1k), and gives mvk to A

• The adversary is allowed to query a key generation oracle Okey, and a signing oracle Osign,
that share a dictionary indexed by tuples (f, i), whose entries are signing keys: skif ←
FS.KeyGen(msk, f). This dictionary keeps track of the keys that have been previously gener-
ated during the unforgeability game. The oracles are defined as follows :

– Okey(f, i) :

5Note that this includes as a special case signing permissions defined by predicates, e.g. by considering the function
fP (x) = x if P (x) = 1 and = ⊥ if P (x) = 0.

8

∗ if there exists an entry for the key (f, i) in the dictionary, then output the correspond-
ing value, skif .

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry (f, i)→ skif to

the dictionary, and output skif
– Osign(f, i,m):

∗ if there exists an entry for the key (f, i) in the dictionary, then generate a signature
on f(m) using this key: σ ← FS.Sign(f, skif ,m).

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry (f, i)→ skif to

the dictionary, and generate a signature on f(m) using this key: σ ← FS.Sign(f, skif ,m).

• The adversary wins if it can produce (m∗, σ) such that

– FS.Verify(mvk,m∗, σ) = 1.

– there does not exist m such that m∗ = f(m) for any f which was sent as a query to the
Okey oracle.

– there does not exist a (f,m) pair such that (f,m) was a query to the Osign oracle and
m∗ = f(m).

Function privacy:
Intuitively, we require the distribution of signatures on a message m′ generated via different keys
skf to be computationally indistinguishable, even given the secret keys and master signing key.
Namely, the advantage of any PPT adversary in the following game is negligible:

• The challenger honestly generates a key pair (mvk,msk)← FS.Setup(1k) and gives both values
to the adversary. (Note wlog this includes the randomness used in generation).

• The adversary chooses a function f0 and receives an (honestly generated) secret key skf0 ←
FS.KeyGen(msk, f0).

• The adversary chooses a second function f1 for which |f0| = |f1| (where padding can be used
if there is a known upper bound) and receives an (honestly generated) secret key skf1 ←
FS.KeyGen(msk, f1).

• The adversary chooses a pair of values m0,m1 for which |m0| = |m1| and f0(m0) = f1(m1).

• The challenger selects a random bit b ← {0, 1} and generates a signature on the image
message m′ = f0(m0) = f1(m1) using secret key skfb , and gives the resulting signature
σ ← FS.Sign(skfb ,mb) to the adversary.

• The adversary outputs a bit b′, and wins the game if b′ = b.

Succinctness:
The size of a signature σ ← FS.Sign(skf ,m) is bounded by a polynomial in the security parameter
k, and the size of the output |f(m)|. In particular, it is independent of |m|, the size of the input
to the function, and |f |, the size of a description of the function f .

Theorem 2.7 ([BGI13, BF13]). Given any NIZK argument of knowledge for NP , there exists a
functional signature scheme for unbounded-length messages and functions, satisfying unforgeability
and function privacy. Assuming a succinct non-interactive argument of knowledge (SNARK) for
NP , the corresponding functional signature scheme is also succinct.

We also remark that a straightforward modification of these constructions also yield an analo-
gous result for Turing machines f .

9

3 Extractability Obfuscation

We now present and study the notion of extractability obfuscation, which is a slight relaxation
of “differing-inputs obfuscation” introduced in [BGI+12]. Intuitively, such an obfuscator has the
property that if a PPT adversary can distinguish between obfuscations of two programs M0,M1,
then he must “know” an input on which they differ.

Definition 3.1 (Extractability Obfuscator). (Variant of [BGI+12]6) A uniform PPT machine eO
is an extractability obfuscator for a class of Turing machines {Mk}k∈N if the following conditions
are satisfied:

• Correctness: There exists a negligible function negl(k) such that for every security parameter
k ∈ N, for all M ∈Mk, for all inputs x, we have

Pr[M ′ ← eO(1k,M) : M ′(x) = M(x)] = 1− negl(k).

• Security: For every PPT adversary A and polynomial p(k), there exists a PPT extractor
E and polynomial q(k) such that the following holds. For every k ∈ N, every pair of Turing
machines M0,M1 ∈Mk, and every auxiliary input z,

Pr
[
b← {0, 1};M ′ ← eO(1k,Mb) : A(1k,M ′,M0,M1, z) = b

]
≥ 1

2
+

1

p(k)
(1)

=⇒ Pr
[
w ← E(1k,M0,M1, z) : M0(w) 6= M1(w)

]
≥ 1

q(k)
. (2)

We contrast this definition with that of indistinguishability obfuscation:

Definition 3.2 (Indistinguishability Obfuscator). [BGI+12] A uniform PPT machine iO is an
indistinguishability obfuscator for a class of circuits {Ck} if iO satisfies the Correctness and Security
properties as in Definition 3.1 (for circuit class {Ck} and circuits C0, C1 in the place of Turing
machines), except with Line (2) replaced with the following:

=⇒ ∃w : C0(w) 6= C1(w). (2′)

Note that any extractability obfuscator is also directly an indistinguishability obfuscator, since
existence of an efficient extraction algorithm E finding desired distinguishing input w as in (2) in
particular implies that such an input exists, as in (2′).

Remark 3.3. Note that in the definition of extractability obfuscation, the extractor is given access
to the programs M0,M1. One could consider an even stronger notion of obfuscation, in which the
extractor is given only black-box access to the two programs. As we show in Appendix A, however,
achieving general-purpose obfuscation satisfying this stronger extractability notion is impossible.

We now present specific definitions of extractability obfuscators for special classes of Turing
machines.

6Formally, our notion of extractability obfuscation departs from differing-inputs obfuscation of [BGI+12] in two
ways: First, [BGI+12] require the extractor E to extract a differing input for M0,M1 given any pair of programs
M ′0,M

′
1 evaluating equivalent functions. This is actually equivalent to requiring extraction only when given the

original programs M0,M1, since this definition in particular implies indistinguishability of obfuscations of equivalent
programs. Second, [BGI+12] consider also adversaries who distinguish with negligible advantage ε(k), and require
that extraction still succeeds in this setting, but within time polynomial in 1/ε. In contrast, we restrict our attention
only to adversaries who succeed with noticeable advantage.

10

Definition 3.4 (Extractability Obfuscator for NC1). A uniform PPT machine eONC1 is called an
extractability obfuscator for NC1 if for constants c ∈ N, the following holds: Let Mk be the class
of Turing machines corresponding to the class of circuits of depth at most c log k and size at most
k. Then eO(c, ·, ·) is an extractability obfuscator for the class {Mk}.

Definition 3.5 ((Succinct) Extractability Obfuscator for P/poly). A uniform PPT machine eOP/poly
is called an extractability obfuscator for P/poly if the following holds: For every class of Turing ma-
chines {Mk} with maximum description size s(k) and maximum runtime t(k) polynomial in k, it
holds that eO{Mk} := eOP/poly(·, ·, s(k), t(k)) is an extractability obfuscator for the class {Mk}.
eOP/poly is further said to be succinct if there exist polynomials ps, pt such that for every class
of Turing machines {Mk} with polynomial size and runtime s(k), t(k), for every k ∈ N, and ev-
ery M ∈ Mk, it holds that the obfuscation M ′ ← eOP/poly(1k,M, s(k), t(k)) has size bounded by
ps(s(k), k) and runtime bounded by pt(s(k), t(k), k).

Intuitively, an extractability (or indistinguishability) obfuscator is said to be succinct if it can
be used to obfuscate (non-uniform) Turing machines, in such a way that the size of the obfuscated
program is polynomial in the size of the original Turing machine (without expanding the size to
encompass its runtime).

3.1 Extractability Obfuscation for NC1

In this work, we build upon the existence of any extractability obfuscator for NC1.

Assumption 3.6 (NC1 Extractability Obfuscator). There exists a secure extractability obfuscator
eONC1 for NC1, as in Definition 3.4

In particular, this assumption can be instantiated using the candidate obfuscator for NC1 given by
Brakerski and Rothblum [BR13] or Barak et al. [BGK+13]. These works achieve (stronger) virtual
black-box security within an idealized model, based on certain assumptions. We refer the reader
to [BR13, BGK+13] for more details.

3.2 Amplifying to General Polynomial-Sized Turing Machines

In this section, we demonstrate how to bootstrap from an extractability obfuscator for NC1 to one
for all Turing machines with a polynomial-sized description, by use of leveled fully homomorphic
encryption (FHE). We further achieve succinct extractability obfuscation based on (non-leveled)
fully homomorphic encryption, in conjunction with a P-certificate system (a succinct argument
system for statements in P).7 Our construction follows the analogous amplification transformation
of Garg et. al [GGH+13] in the (weaker) setting of indistinguishability obfuscation.

At a high level, the transformation works as follows. An obfuscation of a Turing machine
M consists of two FHE ciphertexts g1, g2, each encrypting a description of M under a distinct
public key, and an obfuscation of a certain (low-depth) verify-and-decrypt circuit. To evaluate an
obfuscation of M on input x, a user will homomorphically evaluate the oblivious8 universal Turing
machine U(·, x) on both ciphertexts g1 and g2, and generate a P-certificate φ that the resulting
ciphertexts e1, e2 were computed correctly. Then, he will provide a low-depth proof π that the

7P-certificates are immediately implied by any succinct non-interactive argument (SNARG) system for NP, but
can additionally be based on falisifiable assumptions. We refer the reader to Section 2.3 for details.

8A Turing machine is said to be oblivious if the tape movements are independent of the input. Without oblivious-
ness, one would be unable to homomorphically evaluate the Turing machine efficiently, as the location of the head of
the Turing machine is encrypted.

11

certificate φ properly verifies (e.g., simply providing the entire circuit evaluation). The collection
of e1, e2, φ, π is then fed into the NC1-obfuscated program, which checks the proofs, and if valid
outputs the decryption of e1.

Note that the use of computationally sound P-certificates enables the size of the obfuscation of
M to depend only on the description size of M , and not its runtime. This approach is not possible
in the setting of indistinguishability obfuscation, as certificates of false statements exist, but are
simply hard to find.

Theorem 3.7. There exists a succinct extractability obfuscator eO for P/poly, as in Definition 3.5,
assuming the existence of the following tools:

• eONC1: an extractability obfuscator for the class of circuits NC1.

• E = (GenFHE,EncFHE,DecFHE,EvalFHE): a fully homomorphic encryption scheme with decryp-
tion Dec in NC1.

• (CRSGencert, Pcert, Vcert): a P-certificate system in the CRS model.

We first present the construction, and then analyze its properties below.

Extractability Obfuscator eO:

• Obfuscate(1k,M, s(k), t(k)): On input the security parameter 1k, description of a Turing ma-
chine M ∈ Mk, and polynomial bounds on the size s = s(k) and runtime t = t(k) of Turing
machines in the class {Mk} to be obfuscated, do the following:

1. Let Uk be the oblivious universal Turing machine (TM) that accepts as input a TM
description T and a value v, and executes T on input v for t(k) steps.

2. Sample two key pairs for the FHE scheme: (pk1
FHE, sk

1
FHE)← GenFHE(1k) and (pk2

FHE, sk
2
FHE)←

GenFHE(1k).

3. EncryptM under each FHE public key: g1 ← EncFHE(pk1
FHE,M) and g2 ← EncFHE(pk2

FHE,M).
Here we assume M is encoded in a canonical form as an `-bit string for use by the universal
Turing machine Uk(·, ·).

4. Sample a CRS for the P-certificate system: crs← CRSGencert(1
k).

5. Generate an NC1 obfuscation for the program P1sk1FHE,g1,g2
given in Figure 1, as

P ← eONC1(1k, P1sk1FHE,g1,g2
).

(Note that P1 also implicitly has hardcoded crs, pk1
FHE, pk

2
FHE).

6. Output the obfuscation σ = (P, crs, pk1
FHE, pk

2
FHE, g1, g2).

• Evaluate(σ,m, s(k), t(k)): On input an obfuscation σ = (P, crs, pk1
FHE, pk

2
FHE, g1, g2), program

input m, and size and runtime bounds s = s(k), t = t(k) for the relevant class of Turing
machines {Mk}, do the following:

1. Homomorphically evaluate the m-evaluation function independently on the two FHE ci-
phertexts g1, g2 (allegedly encrypting a Turing machine description): i.e.,

e1 = EvalFHE(pk1
FHE, Uk(·,m), g1) and e2 = EvalFHE(pk2

FHE, Uk(·,m), g2),

where Uk is the oblivious universal Turing machine that accepts as input a TM description
T and value v, and executes T on input v for t(k) steps. (See Remark 2.2 for discussion
on homomorphic evaluation of an oblivious Turing machine of known runtime). Denote
this computation (taking as input m and computing e1, e2) by MEval. Note that MEval has
pk1

FHE, pk
2
FHE, g1, g2 hardcoded.

12

The program P1sk1FHE,g1,g2
:

Given input (m, e1, e2, c, φ, π), the program proceeds as follows:

1. Check if π is a valid low-depth proof for the NP statement:

1 = Vcert(crs, c, (MEval,m, (e1, e2)), φ),

where MEval is the computation that takes as input m, has pk1
FHE, pk

2
FHE, g1, g2 hardcoded, and

homomorphically evaluates Uk(·,m) on g1, g2.

2. If the check fails, output ⊥; otherwise, output DecFHE(sk1
FHE, e1).

The program P2sk2FHE,g1,g2
:

Given input (m, e1, e2, c, φ, π), the program proceeds as follows:

1. Same as Step 1 of P1.

2. If the check fails, output ⊥; otherwise, output DecFHE(sk2FHE, e2).

Figure 1: The programs P1 and P2.

2. Generate a P-certificate that e1 and e2 were computed correctly. That is, taking a bound
c ∈ N for whichMEval(m) outputs within |m|c steps, let φ← Pcert(crs, c, (MEval,m, (e1, e2))).

3. Compute a low-depth proof π that φ is a valid P-certificate: i.e., Vcert(crs, c, (MEval,m, (e1, e2)), φ) =
1. This can be achieved by simply providing the complete evaluation tableau of the Vcert
circuit.

4. Run P (m, e1, e2, c, φ, π). (Recall P is an obfuscation of the program P1sk1FHE,g1,g2
, as

described in Figure 1) and output the result.

Proof of Theorem 3.7. We now prove the correctness, succinctness, and security of eO.

Correctness. First, note that the circuit evaluating the program P1sk1FHE,g1,g2
is in NC1. Indeed,

the program is composed of (1) verifying a low-depth proof, which is accomplished in NC1 by
construction, and (2) evaluating the FHE decryption circuit, which is in NC1 by our choice of FHE
scheme.

The correctness of the FHE encryption and evaluation algorithms implies that with overwhelm-
ing probability g1 is a valid encryption of the Turing machine description M and that e1 is an
encryption of Uk(M,m) = M(m). The correctness of the underlying NC1 obfuscator eONC1

guarantees the obfuscation of the program P1sk1FHE,g1,g2
will evaluate the program correctly; the

correctness of the P-certificate scheme provides that the honestly generated certificate will prop-
erly verify; and the check step program itself will pass on honest execution. Therefore, the final
output will be the desired evaluation M(m).

Succinctness. We now analyze the description size and running time of the obfuscation M ′.
Consider first the size of M ′. Recall M ′ is composed of the following elements: a common

reference string crs for the P-certificate system, two FHE public keys pk1, pk2, two FHE ciphertexts
g1, g2 encrypting a description of M , and an obfuscation P of the program P1 with respect to
eONC1 . We have that |crs|, |pk1|, |pk2| = poly(k), and |g1|, |g2| = poly(k) · s(k) (where s = s(k) is
the maximum size of TMs in the classMk). The underlying NC1 obfuscator has the property that

13

|eONC1(C)| = poly(|C|) for any circuit C ∈ NC1, so it remains to analyze the size of a circuit C
representing the program P1.

The program P1 proceeds in two steps. In the second step, it evaluates the decryption circuit
of the FHE scheme on the ciphertext e1. This decryption requires size poly(k) · s(k). In the
first step of P1, it accepts and verifies the consistency of a (low-depth) proof π corresponding to
the computation of Vcert(crs, c, (Eval(Uk(·, ·), g1, g2),m, (e1, e2)), φ), verifying that φ is a valid P-
certificate for the correct homomorphic evaluation yielding e1, e2. The verification of π requires
size equal to the size of Vcert on these inputs. By the efficient verification property of the P-
certificate system, this is bounded by gV (k+ |(Eval(Uk(·, ·), g1, g2),m, (e1, e2))|), where gV is a fixed
polynomial. This expression is dominated by the description size of the universal Turing machine
Uk (which was chosen sufficiently large to evaluate any Turing machine M ∈ Mk). We have that
|Uk| = poly(s(k)). Thus, putting these pieces together, it holds that the |M ′| = poly(k, s(k)), as
desired.

Consider now the runtime of M ′. We analyze each step of Evaluate(σ,m):

1. Homomorphic evaluation of Uk(·,m) on g1, g2: By Remark 2.2, this takes place in time
poly(k, t(k)), where t(k) was a bound on the maximum runtime of Turing machines M ∈Mk.

2. Generating a P-certificate of correctness: By the properties of the P-certificate system, this
Pcert evaluation takes place in time bounded by gP (k + |MEval| + TMEval

(m)), where gP is a
fixed polynomial (and MEval is the program corresponding to the homomorphic evaluation in
Step 1). From above, we have that this is poly(k, t(k)).

3. Compute a low-depth proof that the P-certificate correctly verifies: This corresponds precisely
to the time of evaluating Vcert. By the efficient verification property of the P-certificate system,
this takes place in time gV (k + |(MEval,m, (e1, e2))|), where gV is a fixed polynomial. Since
|e1|, |e2| = poly(k)·s(k) and |MEval| = poly(s(k)), it follows that this step takes time poly(s(k)).

4. Run the obfuscated program P (m, e1, e2, c, φ, π): By assumed properties of the underlying
NC1 extractability obfuscator eONC1 , the runtime of P is polynomial in the runtime of the
original program P1. From the analysis above (since the size of a circuit corresponds also to
its runtime), the runtime of P1 is thus poly(s(k)).

Combining the runtime of each of the above steps, we conclude that the runtime of the obfuscated
program M ′ is poly(k, s(k), t(k)).

Security. Fix any PPT adversary A and polynomial p(k). In order to construct the desired
extractor E, for any pair of Turing machines M0,M1 ∈ Mk we consider a sequence of hybrid ex-
periments, gradually modifying an obfuscation of M0 to M1. From these intermediate experiments,
we will derive a collection of different extraction strategies; the ultimate extractor E will randomly
select one of these strategies in order to attempt extraction. We will show that if A can distinguish
an obfuscation of M0 from one of M1, then it must successfully distinguish between some adjacent
pair of hybrid experiments, which will imply the corresponding “sub”-extractor strategy will suc-
ceed. Since E chooses among these sub-strategies at random, it will choose the successful strategy
with probability at least 1/(# hybrids).

Explicitly, consider the following sequence of hybrids:

• Hyb0: This hybrid corresponds to an honest execution of eO to obfuscate M0.

• Hyb1: Same as hybrid Hyb0, except that the second FHE ciphertext is now generated as an
encryption of M1: g2 ← EncFHE(pk2

FHE,M1).

14

• Hyb2: Same as hybrid Hyb1, except that the obfuscated program P is now generated as
an obfuscation of P2 (which decrypts using the second FHE secret key). That is, P ←
eONC1(P2sk2FHE,g1,g2

).

• Hyb3: Same as hybrid Hyb2, except that the first FHE ciphertext is now also generated as an
encryption of M1: g1 ← EncFHE(pk1

FHE,M1).

• Hyb4: Same as hybrid Hyb3, except that the obfuscated program P is once again generated
as an obfuscation of P1: i.e., P ← eONC1(P1sk1FHE,g1,g2

). Note that this hybrid corresponds to
an honest execution of eO to obfuscate M1.

Step 1: Hyb0 to Hyb1. We argue that no PPT A will be able to distinguish between these
hybrids, and thus we need not address extraction in this case.

Claim 3.8 (Security of FHE). Assuming the FHE scheme E is IND-CPA secure, then the outputs
of Hyb0 and Hyb1 are computationally indistinguishable.

Proof. Suppose there exists a PPT distinguisher A between the two hybrids. We then demonstrate
a PPT attacker AFHE who breaks the IND-CPA security of the FHE scheme.
AFHE begins by executing A and receiving a pair of Turing machine descriptions M0,M1 ∈

Mk. In the FHE security game, AFHE receives a public key pk from the FHE challenger; AFHE

submits M0,M1 as his challenge message pair, and receives a ciphertext g′ (corresponding to an
encryption of one of the two messages). AFHE sets pk2

FHE = pk and g2 = g′. It further samples
a fresh FHE key pair (pk1

FHE, sk
1
FHE) ← GenFHE(1k), generates an encryption of M0 under this

public key, as g1 ← EncFHE(pk1
FHE,M0), and generates an obfuscation of the circuit P1sk1FHE,g1,g2

as

P ← eONC1(P1sk1FHE,g1,g2
). Note that this requires only knowledge of the first FHE secret key (and

not the second, which is unknown to AFHE). AFHE then submits the tuple (P, pk1
FHE, pk

2
FHE, g1, g2)

to the adversary A.
Note that if g′ was an encryption of M0, then this tuple is distributed exactly as the output of

hybrid Hyb0, whereas if g′ was an encryption of M1 the tuple is distributed exactly as in hybrid
Hyb1. Thus, the advantage of AFHE in the FHE security game is identical to the distinguishing
advantage of A, as desired.

Step 2: Hyb1 to Hyb2. We show that any adversary who distinguishes between these hybrids
necessarily implies an extractor who succeeds with noticeable probability in extracting an input x
on which M0 and M1 disagree.

Claim 3.9 (Security of eONC1 , soundness of P-certificates). Suppose eONC1 is an extractabil-
ity obfuscator for the circuit class NC1, and (Pcert, Vcert) is a sound P-certificate system. Then for
any PPT adversary A and polynomial p1(k) there exists a PPT extractor EHyb1 and polynomial
q1(k) such that, for every pair M0,M1 ∈Mk and every auxiliary input z,

Pr
[
b← {1, 2};H ← Hybb(M0,M1) : A(1k, H,M0,M1, z) = b

]
≥ 1

2
+

1

p1(k)

=⇒ Pr[x← EHyb1(1k,M0,M1, z) : M0(x) 6= M1(x)] ≥ 1

q1(k)
.

Proof. Fix a PPT adversary A in the Hyb1 versus Hyb2 distinguishing game. For every choice of
values zv := (pk1

FHE, pk
2
FHE, g1, g2), consider the following adversary ANC1 (induced by A) on the

underlying NC1 extractability obfuscator eONC1 for the pair of NC1 programs P1sk1FHE,g1,g2
and

15

P2sk2FHE,g1,g2
:

The eONC1 adversary ANC1(1k, P1sk1FHE,g1,g2
, P2sk2FHE,g1,g2

, (zA, zv)):

1. ANC1 receives a challenge obfuscation P , generated as either P ← eONC1(P1sk1FHE,g1,g2
) or

P ← eONC1(P2sk2FHE,g1,g2
).

2. ANC1 runs the adversary A on input (1k, H,M0,M1, zA), where H is the tuple of values H =
(P, pk1

FHE, pk
2
FHE, g1, g2), where pk1

FHE, pk
2
FHE, g1, g2 are given in zv (Note that for appropriate

distribution of zv, this tuple will correspond to the output distribution of either Hyb1 or Hyb2).
Denote the output of A by guess ∈ {1, 2}.

3. ANC1 outputs guess as his own prediction in the eONC1 distinguishing game.

Note that if the values in zv are generated in the following way, then the tuple of values σ given
to A in Step 2 is distributed identically to the output of either Hyb1 or Hyb2, depending exactly
on whether the challenge obfuscation P was generated as an obfuscation of P1 or P2.

Sampling procedure SampleZ(1k) for zv:

1. Sample two key pairs for the FHE scheme: (pk1
FHE, sk

1
FHE)← GenFHE(1k) and (pk2

FHE, sk
2
FHE)←

GenFHE(1k).

2. Encrypt a description of M0 under the first FHE public key: g1 ← EncFHE(pk1
FHE,M0), and

encrypt a description of M1 under the second FHE key: g2 ← EncFHE(pk2
FHE,M1).

3. Output zv = (pk1
FHE, pk

2
FHE, g1, g2).

Thus, ifA(1k, H,M0,M1, zA) distinguishes betweenH ← Hyb1(M0,M1) andH ← Hyb2(M0,M1)
with advantage 1/p(k) over the entire randomness of the experiment, then with probability at least
1/2p(k) over the choice of zv ← SampleZ(1k), it must hold that A distinguishes between such H
conditioned on the value zv, with advantage 1/2p(k).

Therefore, by the security of the NC1 obfuscator eONC1 , there exists a PPT extractor ENC1

and polynomial q′(k) such that, with probability 1/2p(k) over the choice of zv ← SampleZ(1k),
ENC1 extracts a value x ← ENC1(1k, P1sk1FHE,g1,g2

, P2sk2FHE,g1,g2
, zv) for which the circuits disagree

(i.e., P1sk1FHE,g1,g2
(x) 6= P2sk2FHE,g1,g2

(x)) with success probability 1/q′(k).

It remains to show that any such input x must contain a value m for which M0(m) 6= M1(m).
Indeed, if this is the case, then the algorithm EHyb1 which first samples zv ← SampleZ and then ex-
ecutes ENC1 on the appropriate set of values will have successfully extracted with overall noticeable
success probability 1

p(k)
1

q′(k) .

Recall that the input of P1 (or P2) is a tuple (m, e1, e2, c, φ, π) where m is an input to a circuit
in Ck, e1, e2 are allegedly homomorphically evaluated ciphertexts, c ∈ N is a runtime bound on this
evaluation procedure, φ is a P-certificate that e1, e2 were computed correctly, and π is a low-depth
proof that φ properly verifies.

First, note that Step 1 of the programs P1sk1FHE,g1,g2
and P2sk2FHE,g1,g2

are identical, since they

each have the same pair of ciphertexts g1, g2 hardcoded. So for any input tuple (m, e1, e2, c, φ, π),
this tuple will either pass the verification in both P1 and P2 or fail in both. Thus, in order
for P1sk1FHE,g1,g2

(x) 6= P2sk2FHE,g1,g2
(x) for some x = (m, e1, e2, c, φ, π), it must be that (1) the low-

depth proof π verifies correctly (otherwise both programs output ⊥), and (2) DecFHE(sk1
FHE, e1) 6=

DecFHE(sk2
FHE, e2).

Since the proof π verifies correctly, it must be that indeed 1 = Vcert(crs, c, (MEval,m, (e1, e2)), φ).
That is, φ must be a valid P-certificate that e1, e2 were generated as the result of homomorphi-

16

cally evaluating Uk(·,m) on the (hardcoded) FHE ciphertexts g1, g2, respectively (recall this is
the definition of MEval). By the soundness of the P-certificate system, since ENC1 is an efficient
PPT algorithm, this means that with all but negligible probability this is truly the case: i.e.,
e1 = EvalFHE(pk1

FHE, Uk(·,m), g1) and e2 = EvalFHE(pk2
FHE, Uk(·,m), g2). Recall that g1 and g2 were

generated as encryptions of M0 and M1. By the correctness of the FHE decryption and evaluation
algorithms, this means with all but negligible probability that DecFHE(sk1

FHE, e1) = M0(m) and
DecFHE(sk2

FHE, e2) = M1(m). Thus, the value m satisfies M0(m) 6= M1(m), as desired.

Step 3: Hyb2 to Hyb3. As in Step 1, we argue that no PPT A will be able to distinguish between
these hybrids, and thus we need not address extraction in this case.

Claim 3.10 (Security of FHE). Assuming the FHE scheme E is IND-CPA secure, then the outputs
of Hyb2 and Hyb3 are computationally indistinguishable.

Proof. The claim follows in a nearly identical fashion to that of Claim 3.8.

Step 4: Hyb3 to Hyb4. This step directly mirrors Step 2.

Claim 3.11 (Security of eONC1 , soundness of P-certificates). Suppose that eONC1 is an extractabil-
ity obfuscator for the circuit class NC1, and (Pcert, Vcert) is a sound P-certificate system. Then for
any PPT adversary A there exists a PPT extractor EHyb3 for which the following holds: For every
polynomial p(k), there exists a polynomial q′(k) such that for every pair M0,M1 ∈ Mk and every
auxiliary input z,

Pr
[
b← {3, 4};H ← Hybb(M0,M1) : A(1k, H, z) = b

]
≥ 1

2
+

1

p(k)

Pr[x← EHyb3(1k,M0,M1, z) : M0(x) 6= M1(x)] ≥ 1

q′(k)
.

Proof. The claim follows in an identical fashion to that of Claim 3.9.

Our final extractor E works by choosing at random a ← {1, 3} and then executing the sub-
extractor strategy EHyba .

The proof of Theorem 3.7 follows from Claims 3.8-3.11, in the following fashion. For any
polynomial pA(k), take pE(k) to be the polynomial 1

2q
′(k) given by the eONC1 extraction security

for distinguishing success advantage 1
4pA(k) (i.e., the extraction probability of the eONC1 extractor

is q′(k) if the eONC1 adversary distinguishes with advantage 1
4pA(k)).

Suppose there exists a pair of Turing machines M0,M1 ∈ Ck and auxiliary input z such that A
distinguishes between eO-obfuscations of M0 and M1 with advantage pA(k):

Pr
[
b← {0, 1};C ′ ← eO(1k, Cb) : A(1k, C ′, z) = b

]
≥ 1

2
+

1

pA(k)
.

Then for some i ∈ {0, 1, 2, 3}, A must successfully distinguish between adjacent hybrids Hybi and
Hybi+1 with advantage 1

4pA(k). By Claims 3.8 and 3.10, if it is the case that i = 0 or 2 then we
have a contradiction. If i = 1, then by Claim 3.9 the extraction strategy EHyb1 will succeed with
probability q′(k). Finally, if i = 3, then by Claim 3.11 the extraction strategy EHyb3 will succeed
with probability q′(k).

17

Therefore, with probability 1
2 the constructed extractor E will correctly guess the correct value

of i ∈ {1, 3}, in which case it will succeed in extraction with probability q′(k), hence yielding an
overall extraction probability of 1

2q
′(k), as desired.

We also observe that by using a leveled FHE, and removing the P-certificates from the con-
struction, we can still achieve extractability obfuscation for P/poly, but without succinctness.

Remark 3.12 ((Non-succinct) Extractability Obfuscation from Weaker Assumptions). One may
remove the assumption of P-certificates, and remove the circular security assumption of the FHE
scheme (yielding only leveled FHE), in exchange for losing succinctness of the resulting obfuscator.

More explicitly, the above extractability obfuscator construction eO can be modified as follows.
Instead of generating a P-certificate that the homomorphic evaluation of Uk was performed correctly
and then computing a low-depth proof that the resulting P-certificate properly verifies, simply
generate a (large) low-depth proof of correctness of the homomorphic evaluation directly. Further,
in the place of FHE, simply sample and utilize keys for a leveled FHE scheme with sufficient levels to
support homomorphic evaluation of Uk. The resulting transformation eO′ still satisfies the required
correctness and security properties, but no longer achieves succinctness:

• The leveled FHE scheme will now require larger public key sizes, proportional to the runtime of
the Turing machine M to be obfuscated. Recall the obfuscated program eO′(1k,M) contains
within it two such (leveled) FHE public keys.

• By removing P-certificates, the obfuscation M ′ will now contain an underlying NC1 obfusca-
tion P of a program that verifies the entire homomorphic evaluation of Uk gate by gate. While
this computation is low depth (indeed, the circuit still lies in NC1), the size of the circuit,
and hence the size of P , will grow at least linearly in the runtime of Uk instead of just its size.

Theorem 3.13. Based on any extractability obfuscator for the class of circuits NC1, and leveled
fully homomorphic encryption, there exists a (non-succinct) extractability obfuscator for P/poly.

4 Functional Witness Encryption

We put forth the notion of functional witness encryption (FWE). An FWE scheme enables one
to encrypt a message m with respect to an NP language L, instance x and a function f , such
that anyone that has, and only those that have, a witness w for x ∈ L can recover f(m,w). More
precisely, our security definition requires that if you can distinguish encryptions of two messages
m0,m1, then you must know a witness w for x ∈ L such that f(m0, w) 6= f(m1, w).

For example, an FWE scheme would allow one to encrypt the nodes of a large graph in such a
way that anybody (and only those) who knows a clique in the graph can decrypt the labels on the
corresponding clique.

Definition 4.1 (Functional Witness Encryption). A functional witness encryption scheme for an
NP language L (with corresponding witness relation R) and class of Turing machines {Mk}k∈N,
consists of the following two polynomial-time algorithms:

• Enc(1k, x,m,M): The encryption algorithm takes as input the security parameter 1k, an
unbounded-length string x, a message m ∈MSG for some message space MSG, and a Turing
machine description M ∈Mk, and outputs a ciphertext c.

• Dec(c, w): The decryption algorithm takes as input a ciphertext c and an unbounded-length
string w, and outputs an evaluation m′ or the symbol ⊥.

18

satisfying the following conditions:

Correctness: There exists a negligible function negl(k) such that for every security parameter k,
for any message m ∈ MSG, for any Turing machine M ∈ Mk, and for any x ∈ L such that
R(x,w) holds, we have that

Pr
[
Dec(Enc(1k, x,m,M), w) = M(m,w)

]
= 1− negl(k).

Security: For every PPT adversary A and polynomials p(k), `(k), there exists a PPT extractor
E and polynomial q(k) such that for every security parameter k, every pair of messages
m0,m1 ∈MSGk, every Turing machine M ∈Mk, string x, and auxiliary input z of length at
most `(k),

Pr
[
b← {0, 1}; c← Enc(1k, x,mb,M) : A(1k, c, z) = b

]
≥ 1

2
+

1

p(k)

=⇒ Pr
[
w ← E(1k, p(k), x,m0,m1,M, z) : M(m0, w) 6= M(m1, w)

]
≥ 1

q(k)
.

Definition 4.2 ((Succinct) FWE for NP and P/poly). PPT algorithms (Enc
P/poly
NP ,Dec

P/poly
NP) are

said to compose a functional witness encryption scheme for NP and P/poly if the following holds:
For every NP relation R, and every class of Turing machines {Mk} with maximum description
size s(k) and maximum runtime t(k) polynomial in k, the pair of algorithms induced by

EncR,{Mk}(·, ·, ·, ·) := Enc
P/poly
NP

(
(·, ·, ·, ·), R, s(k), t(k)

)
,

DecR,{Mk}(·, ·) := Dec
P/poly
NP

(
(·, ·), R, s(k), t(k)

)
is a secure FWE scheme for language R and class of Turing machines {Mk}.

(Enc
P/poly
NP ,Dec

P/poly
NP) is further said to be succinct if there exist polynomials ps and pt such that

for every NP relation R, every class of Turing machines {Mk} with polynomial size and runtime
s(k), t(k), every k ∈ N, every polynomial-size string x, every m ∈MSG, and every Turing machine
M ∈Mk, the encryption runtime

c← Enc
P/poly
NP

(
(1k, x,m,M), R, s(k), t(k)

)
is bounded by pt(k, |R|, s(k), t(k)), and the corresponding ciphertext size satisfies

|c| ≤ ps
(
k, |R|, s(k)

)
.

In particular, the ciphertext size depends only on the description size of the supported Turing
machines, without turning size into runtime.

We demonstrate that FWE is, in fact, equivalent to extractability obfuscation, up to a simple
transformation.

Theorem 4.3 (Equivalence of FWE and Extractability Obfuscation). The existence of the follow-
ing two primitives is equivalent:

1. Succinct functional witness encryption for NP and P/poly, as in Definition 4.2.

2. Succinct extractability obfuscation for P/poly, as in Definition 3.5.

19

Roughly, given an extractability obfuscator eO, an FWE encryption of the message m, for the
language L, instance x and function f will be the obfuscation of the program that on input w
outputs f(m,w) if w is a valid witness for x ∈ L. On the other hand, given a general-purpose
FWE, to obfuscate a program Π, let f be the universal circuit that on input (Π, y) runs Π on input
y, let L be the trivial language where every witness is valid, and output a FWE of the message Π.

Proof of Theorem 4.3. We prove equivalence via two implications.

1. (FWE ⇒ Ext-Obf):

Suppose there exists a succinct FWE scheme (Enc
P/poly
NP ,Dec

P/poly
NP) for NP and P/poly. We

construct the desired extractability obfuscator eO = (Obfuscate,Evaluate).

• Obfuscate. Given size and runtime bounds s(k), t(k) for a class of Turing machines
{Mk} with respect we wish to obfuscate, take U s,tk to be the universal Turing machine
accepting input TMs of size s(k) and evaluating them for t(k) steps; denote the size and
runtime of U s,tk by s′ = s′(k), t′ = t′(k). Define Obfuscate{Mk} as follows:

Obfuscate{Mk}(1
k,M): On input the security parameter 1k and Turing machine descrip-

tion M , generate an FWE encryption of the message M (i.e., the Turing machine descrip-
tion), with respect to the trivial NP relation R1(x,w) = 1 ∀x,w, an arbitrary statement
x (say x = 0) and the function U s,tk . That is,

c← EncR1,{M′k}(1
k, 0,M,Uk),

where {M′k} denotes the class of Turing machines of size and runtime bounded by
s′(k), t′(k). Output c as the obfuscation of M .

• Evaluate. Given size and runtime bounds s(k), t(k) for a class of Turing machines {Mk}
with respect to which we wish to obfuscate, define Evaluate{Mk} as follows:
Evaluate{Mk}(c, w): On input an obfuscation c, evaluation input w, and size and runtime
bounds s = s(k), t = t(k) for the class of TMs with respect to which we wish to obfuscate,
do the following. Run the decryption algorithm on c using witness w. That is, output

y = DecR1,{M′k}(c, w)

as the evaluation of the obfuscated program on input w.

Correctness of eO: By the correctness of the FWE scheme, since w is (trivially) a valid witness
for the statement x = 0 under relation R1, and since the program U s,tk has size and runtime
bounded by s′(k), t′(k) (and thus Uk ∈ {M′k}), it holds with overwhelming probability that

DecR1,{M′k}

(
EncR1,{M′k}(1

k, 0,M,Uk), w
)

= Uk(M,w),

which is precisely the desired evaluation M(w).

Succinctness of eO: Let ps, pt be the polynomials dictating the ciphertext size and encryption
runtime of the succinct FWE scheme, as in Definition 4.2. In particular, for NP relation R1

and class of Turing machines {M′k} defined above (namely, containing Turing machines of size
and runtime s′(k), t′(k) such that M′k contains the universal Turing machine Uk of sufficient
size to evaluate all TMs M ∈Mk), it holds that EncR1,{M′k} runs in time pt(k, |R1|, s′(k), t′(k))
and outputs ciphertexts of size ps(k, |R1|, s′(k)). Note that these correspond directly to the
runtime and output size of the constructed obfuscator eO.

20

Now, the trivial relation R1 can be represented in constant size. And, the desired universal
Turing machine can always be chosen with s′(k) ∈ Õ(s(k)) and t′(k) ∈ Õ(t(k)). Thus, for
any choice of fixed polynomial q(k) ∈ kω(1), if we define the polynomials p′t(k) := pt(q(k))
and p′s(k) := ps(q(k)), then it follows that the runtime and output size of the constructed
obfuscator eO are bounded by p′t(k, s(k), t(k)) and p′s(k, s(k)), as required.

Security of eO: Fix any PPT extractability obfuscation adversary A and polynomial p(k). By
the construction of eO, it is the case that A is also a valid adversary in the FWE security
game. Thus, by the (extractability) security of the FWE scheme, there exists a PPT extractor
E and polynomial q′(k) such that for every pair of messages M0,M1, every Turing machine
T ∈ M′k (in particular, for Uk ∈ M′k), every statement x (in particular, for x = 0), and
all auxiliary input z, if A can distinguish between FWE ciphertexts Enc(1k, 0,M0, Uk) and
Enc(1k, 0,M1, Uk) with advantage 1/q(k), then E successfully extracts a witness w for which
Uk(M0, w) 6= Uk(M1, w). But, these ciphertexts correspond directly to the distribution of
obfuscations eO(M0) and eO(M1). Further, Uk(M0, w) = M0(w) and Uk(M1, w) = M1(w).
Thus, it follows that if A distinguishes between eO(M0) and eO(M1) with advantage 1/q(k)
then E extracts an input w for which M0(w) 6= M1(w) with probability 1/q′(k), as desired.

2. (Ext-Obf ⇒ FWE):

Suppose there exists a succinct extractability obfuscator eOP/poly for P/poly. We construct
the desired FWE scheme (Enc,Dec).

• Encrypt. Given an NP relation R and size and runtime bounds s(k), t(k) on the desired
class of supported Turing machine computations {Mk}, define EncR,{Mk} as follows:

EncR,{Mk}(1
k, x,m,M): On input the security parameter 1k, an unbounded-length string

x, message m ∈ MSG, and Turing machine M ∈ Mk, define {M′k} to be the class of
Turing machines whose size and runtime are bounded by (s(k) + |R|) and (t(k) + |R|),
and generate an obfuscation

σ ← Obfuscate{M′k}(1
k, PR,x,m,M)

of the following program PR,x,m,M (w):

(a) If R(x,w) 6= 1, then output ⊥.

(b) Else, evaluate and output M(m,w).

Output the obfuscation σ as the desired ciphertext.

• Decrypt. Given NP relation R and size and runtime bounds s(k), t(k) on the desired
class of supported Turing machine computations {Mk}, define DecR,{Mk} as follows:
DecR,{Mk}(σ,w): On input a ciphertext σ and witness w, execute the obfuscated program
σ on input w: i.e., output y = Evaluate{M′k}(σ,w).

Correctness of (Enc,Dec): Note that PR,x,m,M ∈ M′k, since its size and runtime are given
by (s(k) + |R|) and (t(k) + |R|). Thus, by the correctness of the extractability obfuscator
eO{M′k}, for every k ∈ N, every Turing machine M ∈ Mk, and every valid witness w such
that R(x,w) = 1, it holds that

Evaluate{Mk}
(
Obfuscate{Mk}(1

k,M), w
)

= PR,x,m,M (w) = M(w),

as desired.

Succinctness of (Enc,Dec): Let ps, pt be the polynomials dictating the output size and runtime
of the succinct obfuscation scheme, as in Definition 3.5. In particular, when obfuscating

21

with respect to Turing machine class {M′k} defined above (with size and runtime bounded
by (s(k) + |R|) and (t(k) + |R|), it holds that Obfuscate{M′k} runs in time pt(t(k) + |R|)
and has output size ps(s(k) + |R|). By the construction of the FWE scheme, these values
directly correspond to the runtime and ciphertext output size of the FWE encryption algorithm
EncR,{Mk}. Thus, succinctness of the FWE scheme follows directly, with equivalent polynomial
bounds ps, pt.

Security of (Enc,Dec): Fix any PPT FWE adversary A and polynomial p(k). By the con-
struction of the FWE scheme, it is the case that A is also directly a valid adversary in the
extractability obfuscation security game. Thus, by the security of eO, there exists a PPT
extractor E and polynomial q(k) such that for every pair of Turing machines T0, T1 ∈M′k and
every auxiliary input z, if A can distinguish between obfuscations Obfuscate{M′k}(1

k, T0) and

Obfuscate{M′}(1
k, T1) with advantage q(k), then E successfully extracts an input w for which

T0(w) 6= T1(w) with probability q′(k). In particular, for any pair of messages m0,m1 ∈MSG,
this property holds for the pair of Turing machines PR,x,m0,M , PR,x,m1,M ∈ M′k. But, these
obfuscations correspond directly to the distributions of FWE ciphertexts Enc(1k, x,m0,M)
and Enc(1k, x,m1,M). Thus, it follows that if A succeeds in the FWE security game with
advantage q(k) then E extracts a witness w for which PR,x,m0,M (w) 6= PR,x,m1,M (w) with
probability q′(k). Finally, note that on input w these two programs both run the same ver-
ification step checking if R(x,w) = 1. So if PR,x,m0,M (w) 6= PR,x,m1,M (w), it must be that
R(x,w) = 1 holds (otherwise both programs output ⊥), and that M(m0, w) 6= M(m1, w), as
desired.

5 Applications to Functional Encryption

Recall the definition of (indistinguishability) Functional Encryption (FE), given in Section 2.2. We
show how to use extractability obfuscation to directly achieve functional encryption for unbounded
number of key queries and with full adaptive-message security for any unbounded size message
space (without relying on complexity leveraging).

The intuition behind our scheme is simple. Let the public key of the FE scheme be the verifi-
cation key for a signature scheme, and let the master secret key (needed to release secret keys skf)
be the signing key for the signature scheme. To encrypt a message m, obfuscate the program that
on input f and a valid signature on f (given the public key) simply computes f(m). The secret key
skf for a function f is then simply the signature on f . (The high-level idea behind the construction
is somewhat similar to the one used in [GKP+13], which uses witness encryption in combination
with signature schemes to obtain simulation-based FE for a single function f ; in contrast, we here
focus on FE for an unbounded number of functions).

Proving that this construction works is somewhat subtle. In fact, to make the proof go through,
we require the signature scheme in use to be of a special delegtable kind—namely, we require the
use of functional signatures [BGI13, BF13] (which can be constructed based on non-interactive
zero-knowledge arguments of knowledge), which make it possible to delegate a signing key sk′ that
enables one to sign only messages that satisfy some predicate.9 The delegation property is only
used in the security reduction and, roughly speaking, makes it possible to simulate key queries
without harming security for the messages selected by the attacker.

9Note that functional signatures were not needed in [GKP+13], as they only consider a single key query. In our
case, functional signatures are needed to answer “CCA”-type key queries.

22

Theorem 5.1. Assume the existence of non-interactive zero-knowledge arguments of knowledge
(NIZKAoK) for NP and the existence of a extractability obfuscators for P/poly. Then there exists
a (fully) indistinguishability-secure functional encryption scheme for arbitrary length messages.

We first present the construction. Let (FWE.Enc,FWE.Dec) be a FWE scheme for NP and
P/poly, as in Definition 4.2. Recall by Theorem 4.3 this is equivalent to an extractability obfus-
cator for P/poly. Let (Sig.Setup,Sig.KeyGen,Sig.Sign,Sig.Verify) be a succinct functional signature
scheme for P/poly, as guaranteed by Theorem 2.7 based on NIZKAoK. Consider the following tuple
of algorithms.

• FE.Setup(1k): On input the security parameter 1k, FE.Setup samples a key pair (mskSig, vk)←
Sig.Setup(1k) for the signature scheme, and generates a key sk1 ← Sig.KeyGen(msk, 1) that
allows signing all messages (i.e., always-accepting predicate 1(M) = M ∀M). It outputs
pp = vk and msk = (sk1, vk).

• FE.KeyGen(msk,M): On input the master secret key msk = (sk1, vk) and description of a
Turing machine M , FE.KeyGen generates a signature on M via σM ← Sig.Sign(sk1,M). It
outputs skM := σM .

• FE.Enc(pp,m): On input the public parameters pp = vk and message m, FE.Enc does the fol-
lowing. Define the NP relation Rvk such that Rvk(x, (wf , wσ, p(k))) = 1 iff Verify(vk, wf , wσ) =
1 (i.e., a message-signature pair wf , wσ with respect to vk, together with an arbitrary polyno-
mial p(k), yield a valid witness for any statement x).

Let t(k) be a time bound on the desired class of supported Turing machines {Mk}, and let
{Uk} be the class of universal Turing machines that evaluate an input TM for t(k) steps.
Denote by U ∈ Uk the Turing machine whose input is composed of: a message m, a Turing
machine description M , a string σ, and a polynomial tM (k); and which evaluates the Turing
machine M on input m for min{t(k), tM (k)} steps.

Output an FWE encryption of message m with respect to an arbitrary statement x = 0 and
the Turing machine U ∈ {Uk}:

c← FWE.EncRvk,{Uk}(1
k, 0,m,U).

• FE.Dec(skM , c): On input a secret key skM = σM and ciphertext c, output the FWE decryption
of c using witness (M,σM , tM (k)), where tM (k) is a runtime bound on M . That is, evaluate
FWE.DecRvk,{Uk}(c, (M,σM , tM (k))).

Proof. We analyze the correctness, security, and ciphertext/key sizes of the constructed scheme.

Correctness. Follows by the correctness of the FWE and functional signature schemes. Namely,
given any signature σM on a Turing machine M , the tuple (M,σM , tM (k)) will be a valid wit-
ness for the statement x = 0 with respect to Rvk, and thus for properly generated ciphertext
FWE.EncRvk,{Uk}(1

k, 0,m,U), the output of decryption FWE.DecRvk,{Uk}(c, (M,σM , tM (k))) =
U(m, (M,σM , tM (k))) = M(m) by construction.

Security. Let A be a PPT functional encryption adversary, and let Q(k) be an upper bound on
the number of key queries made by A during the FE security game.

At a high level, the proof of security will follow three steps: First, we argue that A’s distin-
guishing advantage in the FE security game cannot decrease by too much if we instead answer his
post-challenge key queries using a restricted signing key skPeq , which only allows signing messages

23

corresponding to Turing machines M for which M(m0) = M(m1) (where m0,m1 are the selected
challenge messages). This will hold by the function privacy property of the functional signature
scheme. Next, we show that by the security of the FWE, any such adversary who succeeds in
distinguishing a ciphertext of m0 versus m1 with noticeable probability within this game implies
the existence of an extractor E who can efficiently find a witness w = (M ′, σM ′ , `(k)) (for the re-
lation Rvk) for which U(m0, (M

′, σM ′ , `(k))) 6= U(m1, (M
′, σM ′ , `(k))); in particular, σM ′ must be

a valid signature on some machine M ′ for which M ′(m0) 6= M ′(m1). Finally, we demonstrate that
such an extractor can be used to produce a forgery in the functional signature scheme, providing a
contradiction.

We proceed with the first step. Consider the following hybrid experiments:

Hybrid 0. The standard functional encryption security game. Namely,

1. The adversary A receives public parameters pp for the FE scheme, where (pp,msk) ←
FE.Setup(1k). Recall msk consists of a signing key sk1 that enables signing all messages.

2. A adaptively makes key queries for Turing machines M , and for each receives σM ←
Sig.Sign(sk1,M).

3. After some number of queries, A outputs a pair of messages (m0,m1) for which M(m0) =
M(m1) for each queried M . The FE challenger samples a random bit b← {0, 1}, generates
an encryption of mb via c ← FWE.EncRvk,{Uk}(1

k, 0,mb, U), and sends c to A as the
challenge ciphertext.

4. A may continue to adaptively make key queries for programs M , with the restriction that
M(m0) = M(m1). Each query is answered as above.

5. Eventually, A outputs a guess b′ for the bit b.

Hybrids i = 1, . . . , Q. Same as the previous hybrid, except that the first i post-challenge key
queries are answered with respect to a restricted signing key skPeq for the function (predicate)
Peq that allows one to sign exactly Turing machine descriptions M for which M(m0) = M(m1).
Namely,

1.-3. Identical to Hybrid 0.

4. The FE challenger generates a limited signing key skPeq ← Sig.KeyGen(msk, Peq). A
may continue to adaptively make key queries for programs M , with the restriction that
M(m0) = M(m1).
The first i such queries are answered using this restricted key: σM ← Sig.Sign(skPeq ,M).
All remaining queries are answered using the standard key: σM ← Sig.Sign(sk1,M).

5. Identical to Hybrid 0.

For i = 0, . . . , Q, denote by advzi the advantage of A in guessing the bit b in Hybrid i on
auxiliary input z, (as a function of the security parameter k). The theorem follows from the
following sequence of claims:

Claim 5.2. There exists a negligible function ν(k) such that for each i ∈ [Q], and for any auxiliary
input z, advzi ≥ advzi−1 − ν(k).

Proof. This claim will hold by the function privacy property of the functional signature scheme.
Namely, for each i ∈ [Q] consider the following adversary:
Aipriv(1K , z):

1. Aipriv is given keys (vk,msk)← Sig.Setup(1k) in the function privacy challenge.

24

2. Aipriv submits the all-accepting function 1(M) ≡M as the first of his two challenge functions,
and receives a corresponding signing key sk1 ← Sig.KeyGen(msk, 1).

3. Aipriv simulates interaction with the functional encryption adversary A. First, he forwards vk
to A as the public parameters of the FE scheme. For each key query M made by A, the
adversary Aipriv generates a signature on M using the key sk1: i.e., σM ← Sig.Sign(sk1,M).

4. Eventually, A outputs a pair of messages m0,m1. Aipriv generates a challenge ciphertext in the

FE game by sampling a random bit b← {0, 1} and encrypting c← FWE.EncRvk,{Uk}(1
k, 0,mb, U).

Aipriv sends c to A.

5. Aipriv submits as his second challenge function Peq defined by Peq(M) = M if M(m0) = M(m1)
and = ⊥ otherwise. He receives a corresponding signing key skPeq ← Sig.KeyGen(msk, Peq).

6. Aipriv now simulates interaction with A as follows. (Note that any queried M for which
M(m0) 6= M(m1) is ignored).

For the first i − 1 of A’s post-challenge key queries M , Aipriv generates a signature using key
skPeq : i.e., σM ← Sig.Sign(skPeq ,M).

For A’s ith post-challenge query, Aipriv submits the pair of preimages (M,M) to the function
privacy challenger (note that 1(M) = Peq(M) = M), and receives a signature σM generated
either using key sk1 or key skPeq .

For A’s remaining post-challenge queries, Aipriv generates a signature using key sk1: i.e., σM ←
Sig.Sign(sk1,M).

7. Eventually A outputs a bit b′. If b′ = b correctly guesses the bit sampled in Step 4, then Aipriv
outputs 1; otherwise, Aipriv outputs Peq.

Note that if the function privacy challenger selected the function 1, thenAipriv perfectly simulates

Hybrid i−1, and if the challenger selected the function Peq, then Aipriv perfectly simulates Hybrid i.

Thus, Aipriv’s advantage in the function privacy game is exactly equal to the difference advzi −advzi−1.
By the function privacy property of the functional signature scheme, it thus follows that this
difference is negligible.

Next, we use the FWE security to show that any successful distinguishing adversary in this
Hybrid Q experiment implies an extractor who finds a witness for the statement x = 0 with respect
to the relation Rvk, for which the FWE function evaluations on m0 and m1 differ.

Claim 5.3. Suppose there exists auxiliary input zA and polynomial p(k) for which advzAQ ≥ 2/p(k).
Then there exists a PPT extractor E, a polynomial q(k), and efficiently samplable distribution D
such that with probability 1/p(k) over (vk,m0,m1, zE)← D it holds that

Pr
[
w ← E(1k,m0,m1, zE) : Rvk(x = 0, w) = 1 ∧ U(m0, w) 6= U(m1, w)

]
≥ 1

q(k)
.

Proof. Define the following distribution D, as a function of A and zA:

Distribution D:

1. Sample a key pair for the functional signature scheme (vk,msk)← Sig.Setup(1k), and generate
a signing key for the “all-accepting” function 1(M) ≡M , by sk1 ← Sig.KeyGen(msk, 1).

2. Simulate the action of A within the Hybrid Q experiment on auxiliary input zA. Namely,
forward the public parameters pp := vk to A, and answer each of his (adaptive) key queries
M by producing a signature on M using key sk1.

25

3. At some point, A outputs a pair of messages m0,m1 for the Hybrid Q FE ciphertext challenge.
Denote by viewA the current complete view of the adversaryA up to this point of the simulation
(which will enable one to return A to this state and continue simulation consistently).

4. Generate a signing key for the function Peq defined by Peq(M) = M if M(m0) = M(m1) and
= ⊥ otherwise. Namely, skPeq ← Sig.KeyGen(msk, Peq).

5. Output the tuple (vk,m0,m1, zE = (zA, viewA, skPeq)).

We now define an adversary AFWE for the FWE scheme, as a function of A. Given a tuple of
values (vk,m0,m1, zE = (zA, viewA, skPeq)) from the support of D, and a ciphertext c, AFWE does
the following:

Adversary AFWE(1k, vk,m0,m1, zE , c):

1. Using viewA, return A to the same state of execution as in the corresponding earlier simulation
during the D sampling process.

2. Simulate the actions of A upon receiving challenge ciphertext c. For each subsequent key
query M made by A, answer by producing a signature on M using key skPeq .

3. Eventually, A outputs a bit guess b′ for the challenge ciphertext.

4. Output the bit b.

Note that the interaction with the adversary A in sampling from D is precisely a simulation
of Steps 1-3 in the Hybrid Q experiment (except the challenge ciphertext generation), and the
interaction with A made by AFWE is precisely a simulation of the remaining Steps 4-5 of Hybrid Q.

We are assuming advzAQ ≥ 2/p(k) (i.e., the adversary A distinguishes challenge ciphertexts in
Hybrid Q with noticeable advantage 2/p(k)). That is,

Pr
[
(vk,m0,m1, zE)← D(A, zA); b← {0, 1}; c← FWE.EncRvk,{Uk}(1

k, 0,mb, U);

b′ ← AFWE(1k, vk,m0,m1, zE , c) : b = b′
]
≥ 1

2
+

2

p(k)
.

This implies that with probability at least 1/p(k) over (vk,m0,m1, zE)← D, we have

Pr
[
b← {0, 1}; c← FWE.EncRvk,{Uk}(1

k, 0,mb, U); b′ ← AFWE(1k, vk,m0,m1, zE) : b′ = b
]
≥ 1

2
+

1

p(k)
.

But, this says exactly that the adversary AFWE succeeds in distinguishing FWE ciphertexts with no-
ticeable advantage 1/p(k). Therefore, by the security of the FWE scheme, there exists a correspond-
ing extractor E and polynomial q(k) such that, with probability 1/p(k) over (vk,m0,m1, zE)← D
it holds that

Pr
[
w ← E(1k,m0,m1, zE) : Rvk(x = 0, w) = 1 ∧ U(m0, w) 6= U(m1, w)

]
≥ 1

q(k)
,

as desired.

Finally, we prove that such an extractor cannot exist, as it would break the unforgeability of
the underlying functional signature scheme.

Claim 5.4. There cannot exist a PPT algorithm E as in Claim 5.3.

26

Proof. Suppose, to the contrary, such a PPT E exists. We will use E to construct an adversary Asig

who breaks the unforgeability of the underlying functional signature scheme. At a high level, Asig

proceeds as follows. First, he will use his functional signature oracles Osign and Okey to simulate
interaction with A in the pre-challenge portion of the Hybrid Q interaction, and then to request
the special key skPeq . Together, this will allow Asig to sample a tuple according to the distribution
D. Then, given this tuple, Asig can simply execute the extractor algorithm E to produce (with
noticeable probability) a witness w for the relation Rvk for which U(m0, w) 6= U(m1, w). But,
recalling the choice of Turing machine U and relation Rvk, it holds that a witness w contains a
Turing machine description M ′ and signature σM ′ on M ′ with respect to vk. We will then argue
that this pair (M ′, σM ′) yields a forgery in the functional signature game.

Formally, consider the following adversary Asig.

Adversary Asig(1k, zA):

1. Asig produces a sample from the distribution D, as follows:

(a) Asig receives a verification key vk for the functional signature challenge.

(b) Simulate the action of A within the Hybrid Q experiment on auxiliary input zA. First,
forward the public parameters pp := vk to A. For each FE key query M made by A, Asig

makes a query to his signing oracle σM ← Osign(1, 1,M); i.e., for function 1(M) ≡ M ,
consistent index i = 1 (so that all queries are answered with the same key sk1), on the
message M . Send σM to A as the response to his key generation query.

(c) At some point A outputs a pair of messages m0,m1. Denote by viewA the view of A up
to this point in the simulation.

(d) Asig queries his signing key oracle Okey(Peq) on the function Peq defined by Peq(M) = M
if M(m0) = M(m1) and = ⊥ otherwise. Denote the resulting key by skPeq .

(e) Output the tuple (vk,m0,m1, zE = (zA, viewA, skPeq)) as the sample from D.

Note that by construction this tuple indeed has the correct distribution D.

2. Asig then executes the extractor algorithm E on input (1k,m0,m1, zE). Denote the output by
w = (M ′, σM ′ , `(k)).

3. Asig outputs the pair (M ′, σM ′) as his forgery in the functional signature scheme.

Note that since the tuple (vk,m0,m1, zE) generated by Asig in Step 1 is distributed accord-
ing to D, we have by Claim 5.3 that with probability 1/p(k) over this sampling, it holds that
E(1k,m0,m1, zE) succeeds in producing a witness w = (M ′, σM ′ , `(k)) for which Rvk(x = 0, w) = 1
and that U(m0, w) 6= U(m1, w) with probability 1/p(k).

Now, recall the choice of relation Rvk and Turing machine U . A tuple (M ′, σM ′ , `(k)) is a
witness for the statement x = 0 with respect to Rvk if and only if σM ′ is a valid signature on M ′

with respect to vk: that is, Sig.Verify(vk,M ′, σM ′) = 1. It remains to show that M ′ is not covered by
any of Asig’s key generation/signing oracle queries in the function signature game (so that the pair
(M ′, σM ′) indeed constitutes a forgery). Recall the Turing machine U takes as input a message m,
a Turing machine description M ′, a signature σM ′ , and polynomial `(k), and outputs the evaluation
of M ′ on input m (executed for `(k) steps). Thus, U(m0, (M

′, σM ′ , `(k))) 6= U(m1, (M
′, σM ′ , `(k)))

means that M(m0) 6= M(m1). But, in the functional encryption security game, all key generation
queries M made by the adversary A must satisfy M(m0) = M(m1) (otherwise either the pair of
messages (m0,m1) or the query M would have been deemed invalid). Further, by definition it holds
that Peq(M ′) = ⊥, so that the queried key skPeq does not enable signing M ′.

27

Thus, we have that with probability (1/p(k))(1/q(k)), the adversary Asig produces a valid
forgery (M ′, σM ′) in the functional signature scheme, contradicting its assumed security.

Security of the constructed FE scheme follows.

Efficiency Analysis. Let s(k), t(k) be polynomial bounds on the size and runtime of TMs in the
supported class of Turing machines {Mk}.

• Setup: Sampling a verification key for the functional signature scheme takes time poly(k), and
results in public parameters of size poly(k).

• KeyGen: A secret key skM for Turing machine M is a signature on M , which is of size poly(k).

• Encryption: An encryption of a message is an FWE encryption of m, together with Turing
machine U (defined in FE.Enc), performed with respect to the NP relation Rvk and class
of universal Turing machines {Uk} that execute an input TM for a maximum of t(k) steps
(note that this Turing machine class has size bound sU (k) = O(1)). Rvk corresponds to
verifying a signature on a Turing machine from the class {Mk}, which takes time proportional
to s(k). Thus, by succinctness of the FWE scheme, the corresponding ciphertext size is
poly(k, |Rvk|, sU (k)) = poly(k, s(k)).

• Decryption: Takes time poly(k, s(k), t(k)).

6 Relating Extractability and Indistinguishability Obfuscation

A natural question is whether we can obtain extractability obfuscation from indistinguishability
obfuscation. We address this question in two different settings: first directly in the context of
obfuscation, and second in the language of FWE. (Recall that these two notions are equivalent
when dealing with arbitrary circuits and arbitrary functions; however, when considering restricted
function classes, there are interesting differences).

In Section 6.1, we demonstrate that any indistinguishability obfuscation in fact implies a weak
version of extractability obfuscation, in which extraction is only guaranteed when the two circuits
differ on only polynomially many inputs. In Section 6.2, we define a weaker notion of FWE
mirroring the definition of indistinguishability obfuscation, and provide a transformation from any
such indistinguishability FWE to standard FWE for languages with polynomially many witnesses.

The two results are incomparable, in that the former transformation (in Section 6.1) starts with
a stronger assumption and yields a stronger result. Indeed, if one begins with indistinguishability
FWE for all NP and P/poly, then by the equivalence of FWE and obfuscation, the former trans-
formation yields a stronger outcome in the setting of FWE, guaranteeing indistinguishability of
encryptions of messages m0,m1 with respect to a function f and NP statement x with potentially
exponentially many witnesses, as long as only polynomially many such witnesses w produce differing
outputs f(m0, w) 6= f(m1, w). On the other hand, the FWE transformation (in Section 6.2) also
treats the case of restricted function classes. For example, it provides a method for transforming
indistinguishability FWE for the trivial function f(m,w) = m to FWE for the same function f .
It is easy to see that indistinguishability FWE for this particular f is equivalent to the notion of
witness encryption [GGSW13], and FWE for the same f is equivalent to the notion of extractable

28

witness encryption of [GKP+13]. The transformation in Section 6.2 thus shows how to turn wit-
ness encryption to extractable witness encryption for the case of languages with polynomially many
witness.

6.1 From Indistinguishability Obfuscation to Extractability Obfuscation for
Circuits with Polynomial Differing Inputs

We show that indistinguishability obfuscation directly implies a weak version of extraction obfusca-
tion, where extraction is successful for any pair of circuits C0, C1 that vary on polynomially many
inputs.

Definition 6.1 (Weak Extractability Obfuscation). A uniform transformation O is a weak ex-
tractability obfuscator for a class of Turing machines M = {Mk} if the following holds. For
every PPT adversary A and polynomial p(k), there exists a PPT algorithm E and polynomials
pE(k), tE(k) for which the following holds. For every polynomial d(k), for all sufficiently large
k, and every pair of circuits M0,M1 ∈ Mk differing on at most d(k) inputs, and every auxiliary
input z,

Pr
[
b← {0, 1}; M̃ ← O(1k, Cb) : A(1k, M̃ ,M0,M1, z) = b

]
≥ 1

2
+

1

p(k)

=⇒ Pr
[
x← E(1k,M0,M1, z) : M0(x) 6= M1(x)

]
≥ 1

pE(k)
,

and the runtime of E is tE(k, d(k)).

Theorem 6.2. Let O be an indistinguishability obfuscator for P/poly. Then O is also a weak
extractability obfuscator for P/poly.

Denote by n = n(k) the (polynomial) input length of the circuits in question. At a high level,
the extractor E associated with an adversary A performs a form of binary search over {0, 1}n for
a desired input by considering a sequence of intermediate circuits lying “in between” C0 and C1.
The goal is that after n iterations, E will reach a pair of circuits CLeft, CRight for which: (1) A can
still distinguish between obfuscations {O(CLeft)} and {O(CRight)}, and yet (2) CLeft and CRight are
identical on all inputs except a single known x, for which CLeft(x) = C0(x) and CRight(x) = C1(x).
Thus, by the indistinguishability security of O, it must be that E has extracted an input x for
which C0(x) 6= C1(x).

To demonstrate, consider the case where the circuits C0, C1 differ on a single unknown input
x∗. In the first step, the extractor algorithm E will consider an intermediate circuit CMid equal
to C0 on the first half of its inputs, and equal to C1 on the second half of its inputs. Then since
CMid(x∗) ∈ {C0(x∗), C1(x∗)} and all three circuits agree on inputs x 6= x∗, it must be that CMid

is equivalent to either C0 or C1. By the security of the indistinguishability obfuscator, it follows
that the obfuscations of such equivalent circuits are indistinguishable. But, if an adversary A
distinguishes between obfuscations of C0 and C1 with noticeable advantage ε, then A must suc-
cessfully distinguish between obfuscations of C0 & CMid or CMid & C1. Namely, it must be the
case that A’s distinguishing advantage is very small between one of these pairs of distributions
(corresponding to the case CMid ≡ Cb) and is nearly ε for the other pair of distributions (corre-
sponding to CMid 6≡ C1−b). Thus, by generating samples from these distributions and estimating
A’s distinguishing advantages for the two distribution pairs, E can determine whether CMid ≡ C0

or CMid ≡ C1 and, in turn, has learned whether x∗ lies in the first or second half of the input space.

29

This process is then repeated iteratively within a smaller window (i.e., considering a new interme-
diate circuit lying “in between” CMid and Cb for which CMid 6≡ Cb). In each step, we decrease the
input space by a factor of two, until x∗ is completely determined.

The picture becomes more complicated, however, when there are several inputs on which C0

and C1 disagree. Here the intermediate circuit CMid need not agree with either CLeft or CRight

on all inputs. Thus, whereas above A’s distinguishing advantage along one of the two paths was
guaranteed to drop no more than a negligible amount, here in each step A’s advantage could split by
as much as half. At this rate, after only log k iterations, A’s advantage will drop below usable levels,
and the binary search approach will fail. Indeed, if C0, C1 differ on superpolynomially may inputs
d(k) ∈ kω(1), there may not even exist a pair of adjacent circuits CLeft and CRight satisfying the
desired properties (1) and (2) described above. (Intuitively, for example, it could be the case that
each time one evaluation is changed from C0(x) to C1(x), the adversary’s probability of outputting
1 increases by the negligible amount 1/d).

We show, however, that if there are polynomially many differing inputs D ⊂ {0, 1}n for which
C0(x) 6= C1(x), then this issue can be overcome. The key insight is that, in any step of the binary
search where the adversary’s distinguishing advantage may split noticeably among the two possible
continuing paths, this step must also split the set of differing inputs into two subsets: that is,
the number of points d′ on which CLeft and CRight disagree is equal to the sum of the number of
points dL on which CMid and CLeft disagree and the number of points dR on which CMid and CRight

disagree. Then even though the adversary’s distinguishing advantage may split as ε′ = εL + εR,
for at least one of the two paths b ∈ {L,R}, it must be that the ratio of εb/db ≥ ε′/d′ is roughly
maintained (up to a negligible amount). Since there are only polynomially many total disagreeing
inputs d(k) ∈ kO(1) to start, and assuming A begins with noticeable distinguishing advantage, the
original ratio ε/d at the root node begins as a noticeable amount. And so we are guaranteed that
there exists a path down the tree for which ε′/d′ (and, in particular, the intermediate distinguishing
advantage ε′) stays above this noticeable amount ε/d. Our extractor E will find this path by simply
following all paths which maintain distinguishing advantage above this value. By the security of
the indistinguishability obfuscation scheme, there will be at most polynomially many such paths
(corresponding to those terminating at the special inputs x ∈ D), and all other paths in the tree
will be pruned.

More specifically, our extractor algorithm E runs as follows. At the beginning of execution, it
sets a fixed threshold thresh = ε/dk based on the original (signed) distinguishing advantage ε of A
and the number of inputs d on which the circuits differ (note that if this value d = d(k) is unknown,
E will repeat the whole extraction procedure with guesses k, k2, k22 , k23 , etc, for this value). At
each step it considers three circuits CLeft, CMid, CRight, and estimates A’s (signed) distinguishing
advantage between obfuscations of CLeft & CMid and of CMid & CRight, using repeated sampling
with sufficiently low error (err = ε/dk2). For each pair that yields distinguishing probability above
thresh (which could be neither, one, or both pairs), E recurses by repeating this process at a circuit
lying between the relevant window. More explicitly, if the left pair yields sufficient distinguishing
advantage, then E will repeat the process for the triple of circuits CLeft, C ′, CMid for the circuit C ′

“halfway between” CLeft, CMid; analogous for the right pair; if both surpass threshold, E repeats
for both; and if neither surpass threshold, then E will not continue down this path of the binary
search.

We prove that for appropriate choice of threshold, E will only ever visit polynomially many
nodes in the binary search tree, and will be guaranteed to find a complete path for which A’s dis-
tinguishing advantage maintains above threshold through all n steps down the tree (thus specifying
a desired n-bit distinguishing input).

30

Iterate(m, err, thresh, vL, vR, vM):

1. If m = 1 then BREAK (terminating all execution of E) and RETURN vL as the final extracted
input value.

2. Estimate A’s signed advantage εL ∈ [−1, 1] in distinguishing between the distributions
{O(CvL)} and {O(CvM)} with additional inputs 1k, CvL , CvM , z, using sampling such that
the additive estimation error is greater than err with at least 1 − 2−k probability. (Note this
requires O(k/err2) samples).

3. Repeat the process to estimate A’s signed advantage εR in distinguishing between {O(CvM)}
and {O(CvR)} within the same parameters.

4. Based on the values of εL, εR, iterate as follows:

• If εL > thresh: Continue along the left path in the binary search. That is, take vR ← vM

and vM ← d(vR − vL)/2e), and recurse as Iterate(m− 1, err, thresh, vL, vR, vM).

• If εR > thresh: Continue along the right path in the binary search. That is, take vL ← vM

and vM ← d(vR − vL)/2e), and recurse as Iterate(m− 1, err, thresh, vL, vR, vM).

Note that if both εL, εR surpass the threshold, then both paths of recursion are followed.

Figure 2: Recursion algorithm Iterate, used by the extractor E.

We now formalize this intuition.

Proof of Theorem 6.2. Fix a PPT adversary A and polynomial p(k) corresponding to A’s distin-
guishing advantage. For any pair of circuits C0, C1 and every value v ∈ {0, . . . , 2n}, define the
circuit (taking n-bit inputs):

Cv(x) =

{
C0(x) if x < v

C1(x) if x ≥ v
.

Note that the size of Cv is O(|C0| + |C1|). (We slightly abuse notation here, treating bit strings
in some cases as integers and in others as bit strings; we will continue to do so for notational
convenience).

Consider the following extractor algorithm E associated with A, given a security parameter 1k,
a pair of circuits C0, C1, and auxiliary input z. We assume E knows a polynomial upper bound
d = d(k) on the number of differing points between C0 and C1; otherwise, it can simply perform
a repeated doubling search, repeating the following algorithm for d(k) = k, k2, k22 , k23 , etc. until
successfully extracting (which is efficiently testable). For simplicity, we further assume that the ad-
versary’s original signed distinguishing advantage is positive (i.e., that Pr[A(1k,O(C1), C0, C1, z)] >
Pr[A(1k,O(C0), C0, C1, z)]); to treat both cases, the extraction algorithm can be run twice, once
as written, and once with all signs and inequalities flipped.

Extractor E(1k, C0, C1, z):

1. Set ε = 1/p(k), err = ε/k2d and thresh = ε/kd. These values will not change during the
recursion. Recall E must extract when A has distinguishing advantage 1/p(k), and d = d(k)
is an upper bound on the number of differing points of C0, C1.

2. Begin the recursion: Execute Iterate(n, err, thresh, vL = 0, vR = 2n, vM = 2n−1), as defined in
Figure 2.

31

We now prove that, if A distinguishes between obfuscations of a pair of circuits C0, C1 with
advantage 1/p(k) then E successfully extracts an input x for which C0(x) 6= C1(x) with noticeable
probability.

Lemma 6.3. Suppose there exists a polynomial d(k), circuits C0, C1 ∈ Ck disagreeing on d(k)
inputs, and auxiliary input z for which

Pr
[
b← {0, 1}; C̃ ← O(1k, Cb) : A(1k, C̃, C0, C1, z) = b

]
≥ 1

2
+

1

p(k)
. (3)

Then the algorithm E on input (1k, C0, C1, z) terminates within time tE(k, d(k)) for fixed polynomial
tE, and it holds that

Pr[v ← E(1k, C0, C1, z) : C0(v) 6= C1(v)] ≥ 1− negl(k).

Proof. Denote by D ⊂ {0, 1}n the subset of inputs on which C0 and C1 differ: i.e., D = {x ∈
{0, 1}n : C0(x) 6= C1(x)}, and d(k) = |D|. The lemma follows from three claims:

1. The runtime of E is bounded by tE(k, d(k)) for fixed polynomial tE .

2. If E reaches Iterate at level m = 1, then it succeeds in extracting.

3. If the number of differing inputs of C0, C1 is bounded by d(k), and A’s advantage in distin-
guishing {O(C0)}, {O(C1)} is at least 1/p(k), then with overwhelming probability E will reach
an execution of Iterate at level m = 1.

Claim 1. The runtime of E is bounded by tE(k, d(k)) for some fixed polynomial tE .

Proof. Associate the possible paths in the binary search process of E with a binary tree. Denote
by T (m, `) an upper bound on the runtime of the iteration process when initiated on a node in the
binary search tree at level m (i.e., containing 2m leaf nodes), and where ` of its descendent leaf
nodes correspond to inputs x ∈ D. In particular, T (n(k), d(k)) is a bound on the total runtime of
E. We make the following observations:

• T (m, 0) = 0 for any level m. Namely, any such path will yield a negligible distinguishing
advantage (since all intermediate circuits will be equivalent), which for sufficiently large k will
not exceed the threshold ε/kd, and hence such a path will never be taken by E.

• T (m, `) ≤ q(k, d(k)) + T (m − 1, `L) + T (m − 1, `R), where `L, `R denote the number of leaf
nodes x ∈ D below the left and right child of the current node (so that `L + `R = `), and q is
a fixed polynomial.

Indeed, in each level of iteration, E runsO(k(1/err2)) = O(k5d2/ε2) executions of the adversary
algorithm A (which runs in polynomial time t(k)) in order to estimate A’s distinguishing
advantage to both the left and the right in the binary search tree, and then in the worst case
recurses along both paths. Recalling ε = 1/p(k), we have q(k, d(k)) = O(t(k) · k5d(k)2p(k)2).

Therefore, combining the two relations, it must be that T (n, d(k)) ≤ q(k, d(k)) ·N , where N is
equal to the total number of nodes in the binary search tree containing a nonzero number of leaf
nodes x ∈ D beneath them. But, we know that N ≤ n(k) · d(k), since there are d(k) relevant leaf
nodes, and the depth of the tree is n. Hence, the claim holds.

32

Claim 2. Suppose E returns a value v. Then it holds that C0(v) 6= C1(v).

Proof. Recall that E returns a value v upon execution of Iterate at level m = 1 for some triple of
values vL, vR, vM . In order for such a call to be made, it must be in the previous step that the mea-
sured distinguishing advantage of A between obfuscations of the “left” and “right” circuits CvL and
CvR surpassed the threshold value thresh = ε/kd. By the choice of sampling parameters, together
with a Chernoff bound, it then holds with overwhelming probability (since E visits only polynomi-
ally many nodes) that A’s true advantage at this node is at least thresh− err = ε/kd− ε/k2d, which
is a fixed noticeable function of k (recall ε = 1/p(k)). By the security of the indistinguishability
obfuscator O, it must be that CvL 6≡ CvR . But, since we are at level m = 1, the circuits CvL and
CvR are identical except on input vL, on which CvL(vL) = C0(vL) and CvR(vL) = C1(vL). Thus,
the returned value vL must be a differing input, as desired.

Claim 3. Suppose |D| ≤ d(k) and A distinguishes between obfuscations of C0, C1 with signed
advantage 1/p(k): i.e., Pr[A(1k,O(C1), C0, C1, z)] ≥ Pr[A(1k,O(C0), C0, C1, z)] + 1/p(k). Then
with overwhelming probability, E will return some value v.10

Proof. Let α ≥ 1/p(k) denote the true signed distinguishing advantage of A between the obfusca-
tions {O(C0)} and {O(C1)}. For each node in the binary search tree, associate with this node the
true signed distinguishing advantage of A for the corresponding pair of obfuscated circuits (main-
taining canonical fixed ordering for the sign). For example, the root node corresponds to value α,
its left child corresponds to the signed probability difference that A outputs 1 given an obfuscation
of C0 and the “middle” circuit C2n−1 , and so on.

Consider a node v′, its labelled distinguishing advantage ε′, and the number of its descendent
leaf nodes d′ contained in D. By definition, for any node v′ in the tree and its two children it
holds that εL + εR = ε′ (this is true as we consider signed advantage values) and dL + dR = d′. We
consider two different cases for how these values split from v′ among its children.

• Claim 3.1: If d′ = db > 0 for b ∈ {L,R}: Then εb > ε′ − µ(k) for negligible function µ(k).

Note that the condition d′ = db means that db̄ = 0 for the other path b̄ 6= b. As argued above,
by the security of the indistinguishability obfuscator, for each node in the tree which does
not have any descendent leaf nodes x ∈ D corresponding to a differing input, this node must
correspond to some negligible distinguishing advantage εb̄ < µ(k). Thus, we have εb > ε′−µ(k).

• Claim 3.2: If d′ > dL, dR: Then there exists b ∈ {L,R} for which εb/db ≥ ε′/d′.
Suppose to the contrary we have εb/db < ε′/d′ for both values of b ∈ {L,R}. That is,
εbd′ < ε′db. Then, combining these expressions for both values of b, it must be that

(εL + εR)d′ < ε′(dL + dR). (4)

But we have that εL + εR = ε′ and dL +dR = d′, and so Inequality (4) yields the contradiction
ε′d′ < ε′d′. Thus, the claim holds.

Note that we are not concerned with the third case of d′ = 0, as we are interested only in the paths
down to the differing inputs x ∈ D (which have d′ > 0 at all intermediate nodes).

Combining the two sub-claims, we have that for every node with d′ > 0, there must exist
b ∈ {L,R} for which db 6= 0 and εb/db ≥ ε′/d′ − µ(k). Indeed, this follows directly for the case

10Recall to address the case of negative signed advantage −1/p(k), the extraction algorithm E can be run a second
time, with all signs and inequalities flipped.

33

of Claim 3.2, and in the case of Claim 3.1 it holds since εb ≥ ε′ − µ(k) and db = d′ ≥ 1 for some
b ∈ {L,R}.

Thus, since we begin at the root node with ratio α/d (corresponding to A’s original signed
distinguishing advantage α and the total number of differing inputs d = d(k)), then by applying
the above sub-claims n times inductively, it must be the case that for some complete path down
the tree, every intermediate node along the path satisfies

ε′

d′
≥ α

d
− n · µ(k) ≥ ε

2d
,

where the second inequality holds for sufficiently large k, since µ(k) is negligible in k, and we have
α ≥ ε. In particular, since d′ ≥ 1, it must be that ε′ ≥ ε/2d for each node along the path.

Now, consider the algorithm E. Recall that E estimates the distinguishing advantage of A at
each visited node via sampling with additive estimation error err = ε/k2d, and continues down a
path if the measured value surpasses thresh = ε/kd. By a Chernoff bound (since E only visits
polynomially many nodes), it holds with overwhelming probability that E successfully estimates
the true distinguishing probability label of each visited node within additive error err = ε/k2d.
But then, for each node along the path above, the measured value must be at least ε/2d − err =
ε/2d − ε/k2d ≥ (ε/d)(1/2 − 1/k2) ≥ ε/kd = thresh. Therefore, E will necessarily follow this path
in the binary search path down all the way to the associated leaf x∗. The claim follows.

Combining Claims 1-3, this concludes the proof of Lemma 6.3.

Therefore, by the existence of the extractor algorithm E constructed above, it follows that the
indistinguishability obfuscator O is also a weak extractability obfuscator.

Note that Theorem 6.2 implies, for example, that for the class of polynomial multipoint locker
functions (i.e., functions evaluating to nonzero bit strings at polynomially many hidden points),
indistinguishability obfuscation is equivalent to extractability obfuscation.

6.2 From Indistinguishability FWE to FWE for Languages with Polynomial
Witnesses

We now address this question in the language of FWE.
Mirroring the definition of indistinguishability obfuscation, we define a weaker notion of FWE—

which we refer to as indistinguishability FWE—which only requires that if f(m0, w) = f(m1, w)
for all witnesses w for x ∈ L, then encryptions of m0 and m1 are indistinguishable. Recall that,
in contrast, the stronger notion requires that if you can distinguish between encryptions of m0 and
m1 you must know a witness on which they differ.

Definition 6.4 (Indistinguishability Functional Witness Encryption). An indistinguishability func-
tional witness encryption (iFWE) scheme for an NP language L (with corresponding relation R)
and class of functions F = {Fk} consists of encryption and decryption algorithms Enc,Dec with
the same syntax as standard FWE, satisfying the same correctness property, and the following
(weaker) security property:

34

(Indistinguishability) security: For every PPT adversary A and polynomial `(·), there exists a
negligible function ν(·) such that for every security parameter k, every function f ∈ Fk, pair
of messages m0,m1 ∈ MSGk, a string x ,and an auxiliary information z of length at most
`(k) for which f(m0, w) = f(m1, w) for every witness w of x ∈ L,∣∣∣Pr

[
A(1k,Enc(1k, x,m0, f), z) = 1

]
− Pr

[
A(1k,Enc(1k, x,m1, f), z) = 1

]∣∣∣ < ν(k).

Using the same transformation as in the Extractability Obfuscation-FWE equivalence (see The-
orem 4.3), it can be seen that indistinguishability FWE for P/poly and NP is directly equivalent
to indistinguishability obfuscation for P/poly.

Theorem 6.5 (Equivalence of Indistinguishability FWE and Indistinguishability Obfuscation).
The existence of the following two primitives are equivalent:

• Succinct indistinguishability functional witness encryption for NP and P/poly.

• Succinct indistinguishability obfuscation for P/poly.

We now consider the question of whether we can turn any indistinguishability FWE into an
FWE. We provide an affirmative answer for two restricted cases.

The first result is derived from the indistinguishability obfuscation to weak extractability ob-
fuscation transformation from the previous section. Loosely, it says that from indistinguishability
FWE for P/poly, we can obtain a weak form of FWE where (extraction) security holds as long as
the function f(m,w) is not “too sensitive” to m: i.e., if for any two messages m0,m1 there are
only polynomially many witnesses w for which f(m0, w) 6= f(m1, w). For example, this captures
functions f that only rarely output nonzero values. Going back to the example of encrypting data
m associated with nodes of a social network, we could then allow someone holding clique w to learn
whether the nodes in this clique satisfy some chosen rare property (e.g., contains someone with a
rare disease, all have the same birthday, etc). Then, while there may be many cliques (correspond-
ing to several, even exponentially many, witnesses w), it will hold that f(m,w) is almost always 0,
for all but polynomially many w.

The second result considers indistinguishability FWE for general function classes (instead of
just P/poly), but restricts to NP languages with polynomial witnesses. In the encrypted social
network example, this allows basing on a weaker assumption (not requiring the original iFWE
scheme to support all P/poly), but would restrict to social networks with only polynomially many
cliques. The transformation preserves the supported function class: For example, given iFWE for
the singleton function class {f(m,w) = m} (corresponding to standard witness encryption), one
obtains standard FWE for the same class (i.e., extractable witness encryption). This result requires
a new approach, and makes use of techniques in error-correcting codes.

We proceed to elaborate our first result. First, consider the implications of the transformation
from the previous section within the setting of FWE. Suppose we start with an iFWE scheme
for NP and P/poly. Recall that such a scheme is equivalent to an indistinguishability obfuscator
for P/poly, up to a simple transformation. Then using Theorem 6.2, from this we obtain a weak
extractability obfuscator (as per Definition 6.1).

Now, consider the result of applying the simple extractability obfuscation-to-FWE equivalence
transformation (see Theorem 4.3) to this weak extractability obfuscator. Recall that in the trans-
formation, a message m is encrypted with respect to NP relation R, instance x and function f
by obfuscating the function f ′m that on input w verifies whether R(x,w) = 1 and, if so, outputs
f(m,w). The obfuscated program constitutes the ciphertext of m. If the obfuscator is a standard

35

extractability obfuscator, then the resulting scheme is a standard FWE. However, starting with a
weak extractability obfuscator (which only guarantees extraction for function pairs f0, f1 that agree
on all but polynomially many inputs), then we will only achieve extraction in the resulting FWE in
the case that the obfuscated programs f ′m for different messages m agree on all but polynomially
many inputs. That is, when R, x, and f satisfy f(m0, w) = f(m1, w) for all but polynomially many
witnesses w of R(x,w) = 1, for any pair of messages m0,m1.

Definition 6.6. We say a class of functions F = {Fk} has t-bounded sensitivity with respect to
message space MSG and NP language L (with relation R), if for every f ∈ Fk, every m0,m1 ∈
MSG, and every x ∈ {0, 1}∗ there are at most t(|x|) witnesses w such that R(x,w) = 1 and it
holds that f(m0, w) 6= f(m1, w).

As a special case, if the language L has only polynomially many witnesses for each statement,
then this property is satisfied for any class of functions.

Putting the pieces together, we have the following corollary to Theorem 6.2.

Corollary 6.7. Suppose there exists indistinguishability functional witness encryption for NP and
P/poly. Then for any polynomial t(·), there exist functional witness encryption schemes for any
class of functions F = {Fk}, message space MSG, and NP language L, for which F has t-bounded
sensitivity with respect to MSG and L.

However, as discussed above, this result requires one to begin with indistinguishability FWE
supporting all functions in P/poly. But what about the case of restricted function classes? For
example, Corollary 6.7 provides no implications to the case of (standard) witness encryption and
extractable witness encryption. We next provide a (slightly weaker) transformation for general
function classes, for the special case of NP languages with polynomially many witnesses.

Definition 6.8. Let L be an NP language with corresponding relation R. We say that L has
t-bounded witness if for every x ∈ {0, 1}∗, there are at most t(|x|) distinct witnesses w such that
R(x,w) = 1.

Theorem 6.9. For every function class F = {Fk} and polynomial t(·), if there exist indistin-
guishability functional witness encryption schemes for F and every t-bounded witness NP language,
then for every t-bounded witness NP language L (with corresponding relation R), there exists a
functional witness encryption schemes for F and L.

Proof. Let L be a t-bounded witness NP language with corresponding relation R for some polyno-
mial t(·). Define q(·) such that for every k ∈ N, q(k) is the smallest prime ≥ 8t(k). Assume without
loss of generality (by padding) that any witness of any x ∈ L has length u(|x|) for some polynomial
u. To construct a functional witness encryption scheme (Enc,Dec) for L and F , we consider the
following NP language L′.

L′ = {(x, r, a) : ∃w ∈ {0, 1}u(|x|) s.t. (R(x,w) = 1) ∧ (r ∈ Fu(|x|)
q(|x|)) ∧ (〈r, w〉 = a)},

where Fq = {0, . . . , q − 1} is the prime field of size q and 〈·, ·〉 denotes inner product over Fuq .
Let (Enc′,Dec′) be a indistinguishability functional witness encryption scheme for L′ and F .

We construct a functional witness encryption scheme (Enc,Dec) for L and F as follows.

• Enc(1k, x,m, f): On input the security parameter 1k, statement x ∈ {0, 1}∗, message m ∈
MSGk, and function f ∈ Fk, Enc generates a ciphertext c as follows.

36

– Let q = q(|x|) and u = u(|x|). Sample r ← Fuq uniformly at random.

– For every a ∈ Fq, compute ca = Enc′(1k, (x, q, r, a),m, f).

– Output c = {ca}a∈Fq .

• Dec(c, w): On input a ciphertext c = {ca}a∈Fq and a witness w ∈ {0, 1}∗, Dec runs Dec′(ca, w)
for every a ∈ Fq. If there exists some a such that Dec′(ca, w) 6= ⊥, then output the first non-⊥
Dec′(ca, w). Otherwise, output ⊥.

It is not hard to see that correctness of (Enc′,Dec′) implies correctness of (Enc,Dec): For every
k, x,m, f, w, if w is a witness for x ∈ L, then there exists some a ∈ Fq such that w is a witness for
(x, q, r, a) ∈ L′, and for the first such a, by the correctness of (Enc′,Dec′), Dec′(ca, w) = f(m,w) with
1−negl(k) probability, which implies that Dec(Enc(1k, x,m, f), w) output f(m,w) with 1−negl(k)
probability as well.

We proceed to prove security of (Enc,Dec). At a high level, we show that if an adversary A can
distinguish Enc(1k, x,m0, f) and Enc(1k, x,m1, f) with a non-negligible advantage, then there is a
non-negligible fraction of r ∈ Fuq such that we learn non-trivial information about the value of 〈r, w〉
for some witness w such that f(m0, w) 6= f(m1, w). Note that a linear function gw(r) := 〈r, w〉
can be viewed as a q-ary Hadamard code of w. The non-trivial information allows us to obtain
a (randomized) function h(r) that agree with gw(r) on non-negligibly more than 1/q fraction of
points. We can then apply the local list-decoding algorithm of Goldreich, Rubinfield, and Sudan
[GRS00] to recover w.

Formally, let A be a PPT adversary and ` be a polynomial. We construct a PPT extractor
E for A as follows. Let q̃ be a polynomial, and fix a security parameter k. Given two messages
m0,m1 ∈ MSGk, a function f ∈ F , a string x and an auxiliary information z of length at most `
such that

Pr
[
b← {0, 1}; c← Enc(1k, x,mb, f) : A(1k, c, z) = b

]
≥ 1

2
+

1

q̃(k)
,

we first construct a randomized function h : Fu(|x|)
q → Fq with non-trivial agreement to a q-ary

Hadamard codeword gw for some witness w.
For notational convenience, let c(m, r, a) = Enc′(1k, (x, r, a),m, f), and note that Enc(1k, x,mb,M) =

{c(mb, r, a)}a∈Fq for uniformly random r. By a standard averaging argument, it follows that with
probability at least ε = 1/2q̃(k) over r ← Fuq ,

|Pr[A(1k, {c(m0, r, a)}a∈Fq , z) = 1]− Pr[A(1k, {c(m1, r, a)}a∈Fq , z) = 1] ≥ ε. (5)

Now, for every r ∈ Fuq and a ∈ {0, . . . , q}, define hybrid distributions

Dr,a = (c(m1, r, 0), . . . , c(m1, r, a− 1), c(m1, r, a), . . . , c(m1, r, q − 1)).

If r is such that Eq. (5) holds, then by an averaging argument, there exists some a∗ ∈ [q] such that

|Pr[A(1k,Dr,a∗−1, z) = 1]− Pr[A(1k,Dr,a∗ , z) = 1] ≥ ε/q.

Note thatDr,a∗−1 andDr,a∗ only differ in their a-th coordinate, which is c(m0, r, a
∗) = Enc′(1k, (x, r, a∗),m0, f)

for Dr,a∗−1 and c(m1, r, a
∗) = Enc′(1k, (x, r, a∗),m1, f) for Dr,a∗ . Thus, (indistinguishability) secu-

rity of (Enc′,Dec′) implies that there exists some w for x ∈ L such that (i) 〈w, r〉 = a∗ and (ii)
f(m0, w) 6= f(m1, w). Furthermore, let Sr ⊆ Fq be the set of a ∈ Fq such that |Pr[A(1k,Dr,a−1, z) =
1] − Pr[A(1k,Dr,a, z) = 1]| ≥ ε/4q. (Indistinguishability) security of (Enc′,Dec′) implies that for

37

every a ∈ Sr, there exists some w for x ∈ L such that (i) 〈w, r〉 = a and (ii) f(m0, w) 6= f(m1, w).
Recall that there are at most t witnesses for x ∈ L, so |Sr| ≤ t.

Now, let us consider the following (efficient) randomized function h : Fuq → Fq. On input r ∈ Fuq ,
h performs the following.

• For each a ∈ Fq, h estimates the distinguishing gap |Pr[A(1k,Dr,a−1, z) = 1]−Pr[A(1k,Dr,a, z) =
1]| using sampling such that the estimation error is ≤ ε/10q with at least 1− 2−k probability.

• Let S′r be the subset of Fq such that the estimated distinguishing gap is ≥ ε/3q. If S′r is
non-empty, then h outputs a random element in S′r. Otherwise, h outputs a random element
in Fq.

Claim 6.10. There exists a witness w for x ∈ L such that f(m0, w) 6= f(m1, w) and

Pr[r ← Fuq : h(r) = 〈w, r〉] ≥ 1/q + ε/2t.

Proof. For every r ∈ Fuq , by an union bound, with probability at least 1 − q · 2−k all estimation
has error at most ε/10q. In this case, S′r ⊂ Sr and if r satisfies Eq. (5), then S′r is non-empty (at
least contains a∗). Let t′ ≤ t be the number of witnesses for x ∈ L such that f(m0, w) 6= f(m1, w).
Recall that at least ε-fraction of r satisfies Eq. (5). We have

Pr[r ← Fuq , a← h(r) : ∃w for x ∈ L s.t. 〈w, r〉 = a] ≥ ε+ (1− ε) · t′/q − q · 2−k.

Therefore, by averaging, there exists a witness w such that

Pr[r ← Fuq : h(r) = 〈w, r〉] ≥ (ε+ (1− ε) · t′/q − q · 2−k)/t′ ≥ 1/q + ε/2t.

The above claim says that h has non-trivial (i.e., non-negligibly greater than 1/q) agreement
with the q-ary Hadamard code gw of a desired witness w. Note that by a standard Chernoff bound,
with overwhelming probability over the randomness of h (where each input r use independent
coins), h with fixed randomness has at least 1/q+ ε/4t agreement with gw. We can then finish the
proof by letting the extractor E invoke the local list-decoding algorithm of Goldreich, Rubinfield,
and Sudan [GRS00] from the following theorem to recover w in polynomial time.

Theorem 6.11 ([GRS00]). Let Fq be a prime field, h : Fuq → Fq be a function. Let k ∈ N and
ε ∈ (0, 1) be parameters. There exists an algorithm that given k, ε and oracle access to h, runs in
poly(ku/ε) time and with probability at least 1−2k outputs a list of linear polynomials that contains
all linear polynomials that agree with h on at least 1/q + ε fraction of points.

We remark that, in particular, Theorem 6.9 gives a method for transforming indistinguishability
FWE for the trivial function f(m,w) = m to FWE for the same function f . It is easy to see that
indistinguishability FWE for this particular f is equivalent to the notion of witness encryption [?],
and FWE for the same f is equivalent to the notion of extractable witness encryption of [GKP+13].
Theorem 6.9 thus shows how to turn witness encryption to extractable witness encryption for the
case of languages with polynomially many witness.

38

References

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composi-
tion and bootstrapping for snarks and proof-carrying data. In STOC, pages 111–120,
2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In TCC, pages 315–
333, 2013.

[BF13] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. Cryptology ePrint
Archive, Report 2013/413, 2013.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6, 2012.

[BGI13] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. Cryptology ePrint Archive, Report 2013/401, 2013.

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protect-
ing obfuscation against algebraic attacks. Cryptology ePrint Archive, Report 2013/631,
2013.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic en-
cryption without bootstrapping. Electronic Colloquium on Computational Complexity
(ECCC), 18:111, 2011.

[BR13] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. Cryptology ePrint Archive, Report 2013/563, 2013.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for
public-key cryptography. Commun. ACM, 55(11):56–64, 2012.

[BV11] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. To appear in TCC 2010, 2011.

[BV13] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure as pke. Cryp-
tology ePrint Archive, Report 2013/541, 2013.

[CLP12] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero knowl-
edge from falsifiable assumptions. Cryptology ePrint Archive, Report 2012/563, 2012.

[CLP13] Ran Canetti, Huijia Lin, and Omer Paneth. Public-coin concurrent zero-knowledge in
the global hash model. In TCC, pages 80–99, 2013.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without pcps. In EUROCRYPT, pages 626–645, 2013.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In STOC, pages 467–476, 2013.

39

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In CRYPTO (2),
pages 536–553, 2013.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, pages 321–340, 2010.

[GRS00] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with
queries: The highly noisy case. SIAM J. Discrete Math., 13(4):535–570, 2000.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO
(1), pages 75–92, 2013.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In ASIACRYPT, pages 443–457,
2000.

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
EUROCRYPT, pages 466–481, 2002.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2013/509, 2013. http://eprint.iacr.org/.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In TCC, pages 169–189, 2012.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, pages 96–109,
2003.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. http://eprint.iacr.org/.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: De-
niable encryption, and more. Cryptology ePrint Archive, Report 2013/454, 2013.
http://eprint.iacr.org/.

A Impossibility of Black-Box Extractability Definition

One may consider a stronger notion of extractability obfuscation, where the extractor algorithm E
is not given access to the circuits C0, C1 on which A distinguishes (and on which E must extract a
disagreeing input), but rather is only allowed black-box access to the two circuits in question. That
is, for every PPT adversary A and polynomial p(k), this definition would require the existence of
a PPT extractor algorithm E and polynomial q(k) such that for every security parameter k, every
auxiliary input z, and every pair of circuits C0, C1 ∈ Ck, if∣∣∣Pr[C̃ ← O(C0) : 1← A(1k, z, C0, C1, C̃)]− Pr[C̃ ← O(C1) : 1← A(1k, z, C0, C1, C̃)]

∣∣∣ ≥ 1

2
+

1

p(k)
,

then

Pr[x← EC0(·),C1(·)(1k, z) : C0(x) 6= C1(x)] ≥ 1

q(k)
.

As we now show, however, such a definition is impossible to achieve.

40

To demonstrate impossibility, we draw upon a class of circuits that was shown to be unobfuscat-
able in the virtual black box setting [?]. Namely, let (Gen,Enc,Dec,Eval) be a semantically secure
fully homomorphic encryption scheme for n-bit messages and ciphertext size N . For each security
parameter k, consider the class of circuits

Ck = {Ck,a,b,v,pk,sk,â}a,b,v∈{0,1}k,(pk,sk)∈Gen(1k),â∈Enc(pk,a) ,

taking N -bit inputs, where

Ck,a,b,v,pk,sk,â(x) =

(pk, â) if x = 0

b if x = a

v if Dec(sk, x) = b

0 else

.

Note that given any circuit C̃ evaluating Ck,a,b,v,pk,sk,â, one can homomorphically evaluate C̃ on the
received ciphertext â (given “for free” by C̃), in order to generate a valid encryption of the hidden
value b, and then can feed this new ciphertext back into C̃ to reveal the secret string v. Thus,
there exists a PPT algorithm A which, given any obfuscation C̃ ← O(Ck,a,b,v,pk,sk,â) (and auxiliary
input z = ∅), succeeds with probability 1 in identifying the vector v. In particular, for every
a, b, v, pk, sk, â, A will distinguish between obfuscations {O(Ck,a,b,v,pk,sk,â)} and {O(Ck,a,b,0,pk,sk,â)}.

Now, since O is assumed to satisfy the above BB-extractability obfuscation security, there must
exist a PPT extractor algorithm E and a polynomial q(k) such that, for every a, b, v, pk, sk, â, then
given only black-box access to the circuits Ck,a,b,v,pk,sk,â and Ck,a,0,0,pk,sk,â, the algorithm E extracts
an input x for which Ck,a,b,v,pk,sk,â(x) 6= Ck,a,b,0,pk,sk,â(x) with probability 1/q(k). In particular, for
empty auxiliary input z = ∅, it holds that

Pr
[
(pk, sk)← Gen(1k); a, b, v ← {0, 1}n; â← Enc(pk, a);x← EC0(·),C1(·)(1k, z)

: C0(x) 6= C1(x)
]
≥ 1

q(k)
,

where C0 := Ck,a,b,v,pk,sk,â and C1 := Ck,a,b,0,pk,sk,â.
However, we now argue that such an extractor violates the semantic security of the FHE scheme.

Recall the circuits C0, C1 differ only on inputs x for which Dec(sk, x) = b (on these inputs C0(x) = v,
whereas C1(x) = 0). Since b was randomly chosen from an exponentially large set of values, to find
such an input with noticeable probability, the extractor must query one of the circuits on input a,
otherwise his view is independent of b. But, if the original ciphertext c is an encryption of 0 instead
of a, then the view of E is also independent of a, and thus this cannot occur.

More formally, consider the following adversary AFHE in the FHE semantic security game.

The adversary AFHE:

1. AFHE receives a public key pk generated by the FHE challenger as (pk, sk)← Gen(1k).

2. Sample random values a, b, v ← {0, 1}n. Submit (a, 0) as the message pair for the FHE
challenge. In response, AFHE receives a ciphertext c generated either as c ← Enc(pk, a) or
Enc(pk, 0).

3. AFHE interacts with the obfuscation extractor E, simulating black-box access to the pair of
circuits C0 = Ck,a,b,v,pk,sk,c and C1 = Ck,a,b,0,pk,sk,c, with the challenge ciphertext c. More
specifically, AFHE answers queries as follows (for both circuits):

41

• Query at 0: output the pair (pk, c).

• Query at a: End the simulated interaction, and output guess ‘a’ in the FHE challenge.

• For any other query value: output 0.

4. If E queried either circuit on input a, then AFHE outputs ‘a’ as his guess in the FHE challenge.
Otherwise, AFHE outputs ‘0’ as his guess.

Denote by B the set of inputs {b̂ : Dec(sk, b̂) = b}.
Consider first the case that c was generated as an encryption of 0. Then the view of E,

consisting of only auxiliary input z = ∅ and the “freebie” values (pk, c), is information theoretically
independent of both a and b. Thus, the probability that E will query either circuit on input a or
x ∈ B is bounded by 2−N + 2−n, which is negligible in n. In particular, the probability of AFHE

outputting ‘a’ in the FHE challenge in this case is negligible.
Now, consider the case that c was generated as an encryption of a. We know that if E is given

correct black-box access to C0 and C1, then he will succeed with noticeable probability 1/q(k)in
extracting an input on which they differ (namely, an input x ∈ B). By the same argument as
above, the probability of E querying either circuit on an input x ∈ B before making a query on
input a is negligible, since the view of E up to this point is information theoretically independent
of b. But, AFHE’s simulation of black-box access to C0 and C1 is perfect up until this point. Thus,
it must be that E queries one of the circuits on input a with noticeable probability 1/q(k) in this
case, and so AFHE outputs ‘a’ in the FHE challenge with noticeable probability, breaking security
of the FHE.

42

