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Abstract  

In order to protect the proxy signers’ privacy, many anonymous proxy signature 

schemes which are also called proxy ring signatures, have been proposed. Although 

the provable security in the random oracle model has received a lot of criticism, there 

is no provable secure anonymous proxy signature scheme without random oracles. In 

this paper, we propose the first provable secure anonymous proxy signature scheme 

without random oracles which is the combination of proxy signature and ring signa-

ture. For the security analysis, we categorize the adversaries into three types accord-

ing to different resources they can get and prove in the standard model that, our pro-

posal is anonymous against full key exposure and existential unforgeable against all 

kinds of adversaries with the computational Diffie–Hellman and the subgroup hiding 

assumptions in bilinear groups.  

Keywords: proxy signature, ring signature, bilinear pairings, provable security, proxy ring 

signature, anonymous proxy signature;  

_____________________________________________________________________ 

1 Introduction 

The concept of proxy signature was first introduced by Mambo et al. in 1996 [1, 2]. It 

is useful in cases when an original signer, wishes to delegate his signing rights to the 

other one, called a proxy signer.  
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Proxy signatures can be combined with other special signatures to obtain several vari-

ants of proxy signatures such as threshold proxy signatures [3, 4], blind proxy signa-

tures [5, 6], proxy ring signatures [7, 8, 20] and ring proxy signatures [19]. (The proxy 

ring signature provides the anonymity of the proxy signer while the ring proxy signa-

ture provides the anonymity of the original signer.) 

The concept of ring signature was first introduced by Rivest et al. [10]. A ring signa-

ture provides the anonymity of a signer, which means that the verifier knows the sign-

er is a member of a ring, but he doesn’t know exactly who the signer is. There is also 

no way to revoke the anonymity of the signer. Ring signatures are related to the group 

signatures which were introduced by Chaum and Heyst [11]. But there are two dis-

tinctions between ring signatures and group signatures. First, group signatures have 

the additional feature that the anonymity of a signer can be revoked by group manag-

er. Second, in group signature schemes, there exists a trusted third party (TTP) or 

group manager who manages the joining of group members, whereas in ring signature 

schemes does not exist such trusted party and for   members of a ring, the rest of 

the     members are totally unaware of being involved in the ring. These two prop-

erties make ring signatures widely applicable to many cryptographic schemes [12]. 

Ring signatures can be combined with other special signatures to obtain several vari-

ants of ring signatures such as threshold ring signatures [16], Identity-based ring sig-

natures [17] and universal designated verifiable ring signatures [18]. 

Proxy ring signatures, also called anonymous proxy signatures, are useful in cases 

when an entity delegates his signing capability to many proxies, called proxy signers 

group, while it provides anonymity of proxy signers. A choice is using the group sig-

nature to solve it (take the group manger as the original entity), but in some applica-

tions, unconditional anonymity is necessary. If the proxies hope that nobody (includ-

ing the original signer) can open their identities, the group signature is not suitable for 

this situation. So we can use the ring signature to solve this problem and gain the 

anonymous proxy signature [8, 13, 14, 15] which was first proposed by Zhang et al. in 

2003 [20]. 

Fuchsbauer and Pointcheval, in 2008 proposed a generic construction named “anon-

ymous proxy signatures” [26]. They proposed no concrete scheme and their purpose 

is different from ours. They defined a general model for consecutive delegations of 

signing rights with the following properties: “The delegatee actually signing and all 

intermediate delegators remain anonymous. As for group signatures, in case of mis-

use, a special authority can open signatures to reveal the chain of delegations and the 

signer’s identity”. They gave formal definitions of security and showed them to be 

satisfiable by constructing an instantiation proven secure under general assumptions in 

the standard model.  

Yu et al., in 2009 proposed an efficient anonymous proxy signature scheme with 

provable security in the random oracle models [15]. However, provable security in the 

random oracle model is doubtful when the random oracles are instantiated with hash 

functions. Hence, in this paper we propose the first provable secure anonymous proxy 

signature scheme in the standard model without random oracles, based on standard 



assumptions. In this way we make use of two signature schemes: the first one is a 

proxy signature scheme in standard model, which was proposed by Sun et al. in 2011 

[21], and the second one is a ring signature scheme without random oracles, which 

was proposed by Shacham and Waters in 2007[22]. 

Roadmap: The rest of this paper is organized as follows. Preliminaries and security 

requirements are given in sections 2 and 3, respectively. Our anonymous proxy signa-

ture scheme is proposed in Section 4. In Section 5, security analysis of our proposal is 

given. Finally, comparison and conclusions are given in Sections 6 and 7, respective-

ly. 

2 Preliminaries 

2.1 Bilinear Pairing 

We make use of bilinear groups of composite order. These were introduced by Boneh 

et al. [9]. Let   be a composite with factorization     . We have: 

   is a multiplicative cyclic group of order  ; 

    is its cyclic order-  subgroup, and   is its cyclic order-  subgroup; 

    is a generator of  , while   is a generator of   ; 

    is a multiplicative group of order  ; 

          is efficiently computable map with the following properties: 

o Bilinear: for all        and       we have 

  (     )   (   )   (1) 

o Non-degenerate:  (   ) is generator of    whenever   is generator of    

2.2 Computational Diffie-Hellman (CDH) assumption  

Given the tuple (       )   
  for random exponents        , the adversary could 

solve the CDH problem if he could compute    . The CDH assumption states that no 

probabilistic polynomial-time (PPT) adversary could solve the CDH problem with 

non-negligible probability. 



2.3  Subgroup Hiding (SGH) assumption  

As noted in [22], this assumption states that for given  , selected randomly either 

from   or    (with same probabilities), decide whether   is in   , is a hard problem. 

2.4 Waters signature (WS) in     

As noted in [22], the underlying signature scheme is the Waters signature [23]. This 

signature was adapted for composite order groups by Boyen and Waters [27]. The 

scheme is as follows. 

a. Setup 

The setup algorithm chooses generators 

               

 
←    

b. Key Generation 

  is a generator of   . This algorithm picks random exponents (   
 
←   )  and sets 

      

      

The public key    is (     )    
  and the private key    is (   ). 

c. WS Generation 

This algorithm takes as input a message   *   +  as a bit string (          ) 

and then picks a random  
 
←    and computes 

   ̂ ←    .  ∏  
 

   
   /

 

 (2) 

   ̂ ←    (3) 

The WS signature is  ̂  (  ̂   ̂)    
 . 

d. WS Verification  

A verifier checks that the following equation is satisfied or not 

  (  ̂  )   (  ̂  
 ∏  

 

   
   )   (     ) (4) 

If it does not hold, the signature will be rejected. Otherwise, it will be accepted.  

This signature is secure assuming CDH is hard in   , and is used in our reductions. 



3 Security Requirements 

3.1 Model of anonymous proxy signature schemes 

An anonymous proxy signature (APS) scheme consists of the following algorithms. 

a. Setup: Given the system security parameter, this algorithm outputs system’s 
parameters. For instance, we can assign this part to a trusted third party. 

b. Key Generation: On input a security parameter, this algorithm generates a per-
sonal public-private key pair (     ). 

c. Delegation Generation: On input the system’s parameters, a warrant   and the 
original signer’s private key    , this algorithm generates a delegation signature 
  on  . 

d. Delegation Verification: On input the system’s parameters, the original signer’s 
public key     and his delegation signature    on the warrant  , this algorithm 
outputs “accept” if the signature is valid, and “reject” otherwise. 

e. APS Generation: On input the system’s parameters, a message  , the public keys 
          of the   proxy signers, delegation signature    on   and one proxy 
signer’s secret key, this algorithm generates an APS   for the message  . 

f. APS Verification: On input the system’s parameters, a message m, an APS  , the 
public key     of the original signer, the public keys          of the   proxy 
signers, the warrant   and the delegation signature    on   this algorithm outputs 
“accept” if the signature is valid, and “reject” otherwise. 

3.2 Anonymity against full key exposure attack in APS schemes 

In APS schemes, the anonymity means, informally, that an adversary not be able to 

find which member of a proxy signers’ ring generated a particular signature. Motivat-

ed by the work of Bender et al. [24, 25], we provide a formal definition of anonymity 

against full key exposure attack of an APS scheme as follows.  

Given an APS scheme and a PPT adversary, consider the following game: 

1. Key pairs *(       )+   
  are generated and the set of proxy signers’ public keys 

  *   +   
  is given to the adversary. In addition, the challenger records the random 

coins *  + used in generating each key pair. Here   is a game parameter. 

2. The adversary is given access (throughout the entire game) to make APS generation 

queries of the form (        ), where   is the message to be signed,   is a set of 

public keys, and   is an index such that       holds. The challenger responds with 

        
(      ). 

3. The adversary outputs a message   , distinct indices       , and a ring   for 

which            . A random bit   is chosen, and the adversary is given the signa-

ture        
(      ). In addition, the challenger provides the adversary with the 

coins *  + used to generate the keys. 



4. The adversary outputs a bit   , and succeeds if     . 

Definition 1. An APS scheme is anonymous against full key exposure attack if no 

PPT adversary has advantage non-negligibly greater than   ⁄  of winning in the above 

game.  

3.3 Existential unforgeability in APS schemes 

To discuss the unforgeability of APS schemes, we categorize the adversaries into 

three types [15, 21]. 

Type1: The adversary only has the public keys of the original signer and proxy sign-

ers. 

Type2: The adversary has the public keys of the original signer and proxy signers; 

besides it has the secret key of the original signer. 

Type3: The adversary has the public keys of the original signer and proxy signers; 

besides it has the secret keys of some proxy signers. 

It can be found that if an APS scheme is existential unforgeable against Type2 and 

Type3 adversaries, it is also existential unforgeable against Type1 adversary. 

a. Existential unforgeability against adaptive Type2 adversary 

The existential unforgeability of an APS scheme against a Type2 adversary means 

that it is difficult for any entity, including the original signer, other than the proxy 

signers themselves to generate a valid APS on a message it chooses, even he has ob-

tained the secret key of the original signer and some valid anonymous proxy signa-

tures on messages it chooses. Motivated by the work of Bender et al. [24, 25], we 

provide a formal definition of existential unforgeability of an APS scheme against 

Type2 adversary as follows. 

Given an APS scheme and a PPT adversary, consider the following game: 

1. Key pairs *(       )+   
  are generated and the set of public keys   *   +   

 , the 

public key and secret key of the original signer is given to the adversary. Here   is a 

game parameter. 

2. The adversary is given access (throughout the entire game) to make APS generation 

queries of the form (        ), where   is the message to be signed,   is a set of 

public keys, and   is an index such that       holds. The challenger responds with 

        
(      ). 

3. The adversary is also given access to a corrupt oracle        ( ), which on in-

put  , returns    . 

4.  The adversary Outputs (            ) and succeeds if       (        )   , 

it never queried (           ) and       , where   is the set of corrupted users. 



Definition 2. An APS scheme is secure against Type2 adversary if no PPT adversary 

has a non-negligible advantage in the above game. 

b. Existential unforgeability against adaptive Type3 adversary 

The existential unforgeability of an APS scheme against a Type3 adversary means 

that it is difficult for an attacker to forge a valid delegation signature on a warrant it 

chooses, even it has obtained the secret keys of some proxy signers and some other 

valid delegation signatures on warrants it chooses. We provide a formal definition of 

existential unforgeability of an APS scheme against Type3 adversary as follows.  

Given an APS scheme and a PPT adversary, consider the following game: 

1. Key pairs *(       )+   
  are generated and the set of public keys   *   +   

 , the 

public key of the original signer and the secret keys of some proxy signers is given to 

the adversary. Here   is a game parameter. 

2. The adversary is given access (throughout the entire game) to an oracle 

              (   )  such that               ( )  returns         
( ) , where 

    is the secret key of original signer. 

3. The adversary outputs (      ) and succeeds if     (      )    and it never 

queried   . 

Definition 3. An APS scheme is secure against Type3 adversary if no PPT adversary 

has a non-negligible advantage in the above game. 

Definition 4. An APS scheme is existential unforgeable against adaptive chosen-

message attack if it is secure against both Type2 and Type3 adversaries. 

4 Proposal 

4.1 Setup 

The trusted setup algorithm first constructs a group   of composite order      as 

described in section II. It then chooses random exponents (    

 
←   )  and sets 

       

         

        

Let    *   +   *   +  be a collision-resistant hash function. The setup algorithm 

chooses generators 

               

 
←    

Let (    ) be bilinear groups where |   | = |   | = n, g is the generator of   and   

denotes an admissible pairing         . 



The published common reference string includes a description of the groups   and    

and of the collision-resistant hash  , along with (      
 ) and (               ). 

The factorization of   is not revealed .Note that anyone can use the pairing to verify 

that the pair (    ) is properly formed [22]. 

4.2 Key Generation 

Original signer picks random   

 
←    and sets his secret key         and his pub-

lic key        . In the same way, the proxy ring members compute their private 

keys and public keys. Note that, we have  

     (   )
  (5) 

4.3 Delegation Generation 

Let    (          ) be a  -bit warrant to be signed by the original signer. This 

algorithm picks a random   
 
←   and computes the delegation    (       ) and 

sends it to the proxy ring members, where 

         ( 
 ∏   

   
   )

  
 (6) 

         (7) 

4.4 Delegation Verification 

Upon receiving ( ,    ,    ), this algorithm checks that the following equation is 

satisfied or not 

  (     )   (     
 ∏   

   
   ) (     ) (8) 

If it does not hold, the delegation will be rejected. Otherwise, it will be accepted. 

4.5 APS Generation 

This algorithm takes as input a message   *   + , a ring   of public keys of proxy 

signers, the signature    on  , and a key pair  (     )      , where  

  

 
←   

       

       

No key may appear twice in  , and   must include     . 

Let     |   |; it parses the elements of   as      for each i,      . 



Let    be the index such that       . We define  

    2
               

                  
  

Now for each  ,      , the algorithm chooses a random exponent   
 
←   and sets  

   ← .
  

  
/
  

    (9) 

   ← (.
  

  
/
      

   )
  

 (10) 

  ← ∏   
 
    (11) 

  ← ∑   
 
    (12) 

It computes (          ) ←  (     ). Finally, it chooses  
 
←   and computes  

   ←        ( 
 ∏   

 
   

  )
 
     (13) 

   ←    (14) 

    ←     (15) 

The signature is output as  , where  

  .(        ) *(     )+   
 /        

4.6 APS Verification  

The verifier computes (          )  ←  (     ). Let     |   |; it parses the 

elements of   as        for each  ,       and checks that no element is repeated 

in   and rejects otherwise. Then it parses the signature   as  .(        ) * (    

  ) +   
 /       . (If this parse fails, reject.). The verifier checks first that the 

*  +   
 are valid or not 

  (      (     ))   (    ) (16) 

If any of the proofs is invalid, reject. Otherwise, verifier sets  ← ∏   
 
   . Accept if 

the following equation is satisfied 

  (    )   (    
 ∏  

 

   
   )  (        ) (    

 ∏   
   

   ) (17) 

Note that, there is exactly one non-zero value amongst *  +, and we have 

     (   )( 
 ) (18) 



The correctness of the proposal can be verified directly, as following equations 

 (    )   (       ( 
 ∏  
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  (     ) (    ) .(  ∏   
 
   

  )
 
   /. (     ) 

  ((  ∏  
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    ) (     ) (     ) (  ∏ 
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) (     ) (    
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  (    
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) (     ) (    
 ∏ 
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  (    
 ∏ 
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5 security analysis 

We will analyze the security of our proposal in this section. Our proposal is warrant 

based and  the  delegation  is  original  signer’s  signature  on  the warrant  which  

contains  proxy signers’ public  key,  a  period  of  validity,  the restrictions  on  the  

messages  that  the  signer  can  sign  and  so  on. Therefore,  this  kind  of  proxy  

signature  can  prevent  the  misuse  of the delegation [21]. Some other properties such 

as distinguishability (distinguishable from normal signatures) and nondeniability can 

be achieved naturally too. Therefore, we mainly focus on the anonymity and the exis-

tential unforgeability of our proposal. 

5.1 Anonymity 

Theorem 1. Our proposal is anonymous against full key exposure attack if SGH   

problem is hard. 



Proof. Consider a challenger that wants to solve the SGH (subgroup hiding) problem. 

The group order  , the description of the group   with the generators   of   and  , 

which in Game 0,   is chosen randomly from    and in Game 1,   is chosen random-

ly from  , is given to the challenger. After receiving a SGH challenge (       ), the 

challenger follows the setup algorithm of Section 4 to obtain system parameters. It 

then runs                for   times to obtain public-private key pairs 

*(       )+   
  and the randomnesses *  +   

  used in each run and sends the public 

parameters to an adversary and plays the anonymity game with it. The adversary re-

quests a challenge by sending to the challenger the values (            ). Here    

and    are indices such that     ,       . The challenger chooses   
 
← *   + , creates 

the signature  ←    (    
     

       ), and responds to the adversary with   and 

the randomnesses *  +   
  used to generate the keys. The adversary finally guesses    

for  . If it answers correctly, then the challenger outputs 1, guessing     ; other-

wise it outputs 0, guessing    .  

We define the advantage of the adversary in the Game  ,      , by     
      

 and 

the advantage of the challenger in the SGH game by     
   . We know   ,   

  -    ,      -         , therefore  

    
      

     
      

   ,        |      -    ,        |      -   

    ,               -     ,               -        
     (  ) 

In Game 1,   is a generator of  , therefore exist            such that .
  

  
/      

     and we have 

 (  |    )  . .
  

  
/     /

   
 (    )    (    )    (    .

  

  
/
  

)
   

 

  (  |    )  (  |    ) (20) 

In other words, the adversary can obtain no information from the pair (     ) of the 

signature, for       in Game 1. Because    and    are independent of the signer 

choice, therefore the only part of signature may have information for the adversary, is 

  . But,    is the unique value satisfying (17) because of having fixed other parts of 

the signature  . Thus the indices    and    are independent of the entire signature  . It 

means  

     
      

    (21) 

We define     
     to be the advantage of the adversary in the anonymity game 

and     
   

 to be the advantage of the challenger in the SGH problem solving. Be-

cause in Game 0, the environment of the adversary is the same as in the anonymity 

game, we have 

     
      

      
      (22) 



Putting equations (19), (21) and (22) together, we obtain 

     
          

   
  (23) 

5.2 Unforgeability 

Theorem 2. Our proposal is existential unforgeable against adaptive chosen-message 

attack if   is collision-resistant and CDH is hard in   . 

Proof. We need to show that our proposal is secure against Type2 and Type3 adver-

saries in the standard model.  

Theorem 2.1. Our proposal is secure against Type2 adversary if   is collision-

resistant and CDH is hard in   . 

Proof. First we need some requirements as follows 

 If    satisfies            and           , for all     we have 

       ,       iff       (24) 

Thus we have  
 

     iff     , for the pair (     ) that satisfies (16). 

 If   and   are generators of    and    respectively,        is a random genera-

tor of   for all   
 
←  

  and   
 
←  

 . 

 For all      and     , we have  

  (   )    (25) 

 For all          and         , we have  

  (         )   (     ) (     ) (26) 

For the proof of Theorem 2.1. we define three types of adversaries as follows: 

TypeI: The adversary issues two pairs (   )  and (     )  such that  (   )  
(     ) but  (     )   (       ). 

TypeII: The adversary does not issue a hash collision as above and it forges such that 

∑        

TypeIII: The adversary does not issue a hash collision as above and it forges such 

that ∑        

We show a challenger which is given the factorization     , can break one of our 

complexity assumptions, based on a forger adversary. 

TypeI Adversary. Consider a challenger that wants to solve the collision-resistance 

problem. The challenger follows the setup algorithm of part 4 to obtain system pa-



rameters. It then runs                for   times to obtain public-private key pairs 

*(       )+   
  and sends the public parameters to an adversary. The challenger also 

initializes the set   of corrupted users as  ←    and continues the unforgeability 

game with the adversary. The adversary makes signing queries and corruption que-

ries. A signing query is of the form (        ), where   is an index such that     
 . When it makes a signing query, the challenger responds with 

 ←    (              )  and it keeps the pairs ( ( )  ( ))  included in signing 

queries of the adversary. A corruption query is of the form  , where s is an index such 

that      . When the adversary makes a corruption query, the challenger responds 

with     to it and adds     to   . Eventually, the adversary outputs a tuple 

(           ) and wins the game if  

 it never made a signing query (          )  for any s; 

    *   +   ; 

 (           ) satisfies (17); 

In addition, the challenger keeps the pair (     ) included in its forgery. In this type 

of adversary there are two pairs (   )  and (     )  such that   (     )  
 (       ) . The challenger outputs this pair as a collision and succeeds when the 

adversary does. 

We define     
  

 to be the advantage of the adversary in the unforgeability game 

and     
      

 to be the advantage of the challenger in the collision-resistance prob-

lem solving, so have 

     
  

      
      

 (27) 

TypeII Adversary. Consider a challenger that wants to solve the CDH problem. The 

group order   and its factorization      , the description of the group   with   and 

  the generators of    and    respectively, and a pair (     )    
  is given to the 

challenger. It’s goal is to compute    . The challenger chooses a collision-resistant 

hash function   *   +  *   +  and picks   
 
←  

  and      
 
←  . Then it sets 

 ←      

 ←       

  ←        

  ←       

  is a random generator of  . Anyone can use the pairing to verify that the pair 

(    ) is properly formed. 

  (   )   (       )   (    ) (     )   (     )   (           )   (    )  (28) 



The challenger picks exponents              

 
←  , and sets   ←    

 and   ←     

for       . It picks random exponents    and sets user keys as    ←     and 

   ←     for      . Then the challenger sends the generators   and  , the pa-

rameters (       )  and (          ) , the description of   and the public keys 

*   +   
  to an adversary. The challenger responds the signing and corruption queries 

of the adversary as above. Eventually, the adversary outputs a forgery 

ple  (           ) , where     |  | . We can parse the    as (           )  and 

assume a mapping   ,    -  ,   - such that       ( ), for       . 

The challenger parses    as .(        ) *(     )+   
  /        . (We assume a non-

trivial adversary, so this parse must succeed and each pair (     ) must satisfy (16)). 

After parsing we have for each  ,        

   
 

   . 
 

     

  /
  

 .(   ( ))     

  /
  

 (   ( )   )
     (29) 

Now we define 

   ∑   
  

     ( ) (30) 

   ∑   
  

    (31) 

Putting equations (29-31) together, we have 

     ∏  
 

    

       (  )
 
 (32) 

Finally, the challenger computes (          )  ←  (       ) and sets 

  ←    ∑     
 
    (33) 

  ←    ∑     
 
    (34) 

We raise both sides of equation (17) to power    , by substituting parameters 

(         ) as above, using equations (24-26) and equations (32-34), we have 

 (      
  

(  ) 
)   .  

    /   (.  

  /
  

   )   (.  

  /
  

   )  .      

  /  

   (     )     ((  )     
   .  

  /
  

 .  

  /
  

    

     ) (35) 

So the answer to the CDH problem is  

     0(  )     
   .  

  /
  

 .  

  /
  

    

   1
  (   )

 (36) 

Remind that in this type of adversary,    .  



The challenger succeeds whenever the adversary does. So by defining     

      
 to 

be the advantage of the challenger in the CDH problem solving, we have 

     
  

      

      
 (37) 

TypeIII Adversary. We wish to convert a TypeIII adversary to a Waters signature 

forger in   . The proof proceeds as follows. 

The group order   and its factorization      , the description of the group   with   

and   the generators of    and    respectively, WS public parameters  ̂   ̂     ̂  

all in   , and a WS public key (     )    
  is given to a challenger. The challenger 

chooses a collision-resistant hash function   *   +  *   +  and picks    
 
←  

 , 

     
 
←   and  

 
←  . Then it sets 

 ←      

 ←    
   

  ←        

  ←       

The challenger picks random exponents           
 
←   and sets   ←  ̂     and 

  ←  ̂  
  , for        For generating user keys, it first picks randomly    from 

*       +, then for each     , it chooses a random exponent   

 
←   and sets 

   ←     and    ←     and for   ,   picks   
 
←   and sets     ←    

  . It sends 

the generators   and  , the parameters (       ) and (          ), the description 

of   and the public keys *   +   
  to an adversary. The adversary makes signing que-

ries and corruption queries. A corruption query is of the form  , where   is an index 

such that      . When it makes a corruption query, the challenger responds with 

    unless   equals   , in which case the challenger declares failure and exits. 

A signing query is of the form (        ), where   is an index such that      . 

When the adversary makes a signing query, if      , the challenger responds 

with  ←    (              ). If     , it first requests from WS signing oracle a 

signature on  (          )  ←   (     ) . The WS signing oracle responds 

with  ̂  (  ̂   ̂)    
 . Then the challenger blinds the signature  ̂ and projects it into 

G, as follows. Let    | |. The challenger parses   as (           ). For       , 
we define  

    2
                      
                             

 (38) 

For each  ,       , the challenger picks a random exponent   
 
←   and sets       

similar (9) and (10). By defining     similar (11) and (12) and choosing  
 
←  , it 

computes 
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By substituting parameters (         ) as above and using equations (39, 40) and 

(24-26), we have  
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Above proofs satisfies equation (17). Thus the challenger responds to the adversary 

with  

  .(        ) *(     )+   
 /        

Eventually, the adversary outputs a forgery tuple (           ), where    |  |. 
We can parse the    as (           ) and assume a mapping   ,    -  ,   - such 

that       ( ), for       . Besides, the adversary must not have made a corrup-

tion query at any of the indices * ( )+   
  . 

The challenger parses    as .(        ) *(     )+   
  /        . (We assume a non-

trivial adversary, so this parse must succeed and each pair (     ) must satisfy (16)). 

Since the adversary is TypeIII, there is exactly one index   *        +  such 

that     . If  ( )    , the challenger declares failure and exits, otherwise we have 

for each  ,        
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      ∏  
 

    

    (    )
     

  
 (41) 

Finally, the challenger computes  (          )  ←  (       ) . We raise both 

sides of equation (17) to power   , by substituting parameters (         ) as above, 

using equations (24-26) and equation (41), we have  

 ((     
  )    )  (.  

  /
  

  ̂ ∏ ̂ 
  

 

   

)   .     

     /   (     ) 

So ((     
  )     

  ) is a valid WS signature on  (       ). 

We define     
     

 to be the advantage of the challenger in the creating a WS for-

gery. Index    is uniformly chosen from the set *       + and the challenger succeeds 

in creating a WS forgery whenever the adversary does, so we have 

     
  

        
     

 (42) 

Note that WS is unforgeable if CDH is hard in   . 

Theorem 2.2. Our proposal is secure against Type3 adversary if CDH is hard in  . 

Proof.  Consider a challenger wants to solve the CDH problem in which a random 

tuple (       )    and the group order   is given to the challenger and its goal is to 

compute    . The adversary interacts with the challenger in this game.  

The challenger picks following exponents 



    
 
       

 
   for each  ,        

Now, the challenger sets the public parameters to be 

     

        
 and        for          

Besides, he sets the original signer’s public key to be 

       

We further define the following function 

  ( )     ∑     
 
    (43) 

So, we have 

   ∏   
   

       ( ) (44) 

Then, the challenger sends the public parameters to the adversary and responds the 

delegation signature queries of it as follows. 

When the challenger receives a of a warrant  , it randomly chooses      and com-

putes 
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By defining  ̅     
 

 ( )
, we have 
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So, the challenger answers as    (   
    

). Note that the verification equation (8) 

is satisfied. 

The adversary will output a forge signature   
  (   

     
 ) on a warrant    such that 

   has  not  been  queried  during  the  delegation signature queries and   
  is a valid 

signature of the warrant   . 



If  (  )    (    ), the challenger will abort. Otherwise, we set the signature as  

(   
     

 )  (  (  ∏   
  

 

   
)

 

   ) 

So the answer to the     problem is  

     
   
 

   
  (47) 

The challenger succeeds whenever the adversary does, so we have 

     
  

      
     

 (48) 

Putting equations (27), (37), (42) and (48) together, we obtain 

     
  

     
          

            
     

     
     

 (49) 

6 Comparisons 

In this section, we will compare our proposal with others from the computational costs, 
construction and model of provable security of schemes viewpoints. Since the pairing 
computation is the most time consuming, we compare the computational costs of 
schemes based on the number of pairing operations used. To generate an APS   on a 
message   with a warrant   and by using   proxy signers, we summarize the compari-
sons in the Table 1: 

 
Number of Pairing 
Operations Used 

Definition of APS 
Model of Provable 

Security 

Zhang's 
Scheme [20] 

     
proxy signer’s privacy 

protection 
random oracle 

model 

Yu’s Scheme 
[15] 

    
proxy signer’s privacy 

protection 
random oracle 

model 

Fuchsbauer’s 
Scheme [26] 

no concrete 
scheme 

anonymity for delegatee 
and delegators (Group 

Signature-Based ) 

without random 
oracles 

Our Proposal      
proxy signer’s privacy 

protection 
without random 

oracles 

Table 1. Comparison of our proposal construction and model of provable security with existing schemes 

7 Conclusions 

In this paper, we proposed the first provable secure anonymous proxy signature 

scheme without random oracles which is the combination of proxy signature and ring 



signature. This proposal avoids the criticisms of the random oracle model and be-

comes needful whenever proxy signer wants to sign message on behalf of the original 

signer providing anonymity. 

For the security analysis, we categorized the adversaries into three types according to 

different resources they can get and showed that, our proposal to be anonymous 

against full key exposure attack and existential unforgeable against all kinds of adver-

saries in the standard model with the computational Diffie–Hellman and the subgroup 

hiding assumptions in bilinear groups.  

The signature in our proposal is of size      group elements for   members of proxy 

signers and requires      pairings to verify. 
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