
A provable secure anonymous proxy signature scheme

without random oracles

Rahim Toluee
1,

, Maryam Rajabzadeh Asaar
1
, Mahmoud Salmasizadeh

2

1
Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

2
Electronics Research Institute, Sharif University of Technology, Tehran, Iran

Abstract

In order to protect the proxy signers’ privacy, many anonymous proxy signature

schemes which are also called proxy ring signatures, have been proposed. Although

the provable security in the random oracle model has received a lot of criticism, there

is no provable secure anonymous proxy signature scheme without random oracles. In

this paper, we propose the first provable secure anonymous proxy signature scheme

without random oracles which is the combination of proxy signature and ring signa-

ture. For the security analysis, we categorize the adversaries into three types accord-

ing to different resources they can get and prove in the standard model that, our pro-

posal is anonymous against full key exposure and existential unforgeable against all

kinds of adversaries with the computational Diffie–Hellman and the subgroup hiding

assumptions in bilinear groups.

Keywords: proxy signature, ring signature, bilinear pairings, provable security, proxy ring

signature, anonymous proxy signature;

1 Introduction

The concept of proxy signature was first introduced by Mambo et al. in 1996 [1, 2]. It

is useful in cases when an original signer, wishes to delegate his signing rights to the

other one, called a proxy signer.

 Corresponding author:

E-mail addresses: rtoluee@ee.sharif.edu (R. Toluee),

asaar@ee.sharif.edu (M.R. Assar),

salmasi@sharif.edu (M. Salmasizadeh).

mailto:toluee@ee.sharif.edu
mailto:asaar@ee.sharif.edu
mailto:salmasi@sharif.edu

Proxy signatures can be combined with other special signatures to obtain several vari-

ants of proxy signatures such as threshold proxy signatures [3, 4], blind proxy signa-

tures [5, 6], proxy ring signatures [7, 8, 20] and ring proxy signatures [19]. (The proxy

ring signature provides the anonymity of the proxy signer while the ring proxy signa-

ture provides the anonymity of the original signer.)

The concept of ring signature was first introduced by Rivest et al. [10]. A ring signa-

ture provides the anonymity of a signer, which means that the verifier knows the sign-

er is a member of a ring, but he doesn’t know exactly who the signer is. There is also

no way to revoke the anonymity of the signer. Ring signatures are related to the group

signatures which were introduced by Chaum and Heyst [11]. But there are two dis-

tinctions between ring signatures and group signatures. First, group signatures have

the additional feature that the anonymity of a signer can be revoked by group manag-

er. Second, in group signature schemes, there exists a trusted third party (TTP) or

group manager who manages the joining of group members, whereas in ring signature

schemes does not exist such trusted party and for members of a ring, the rest of

the members are totally unaware of being involved in the ring. These two prop-

erties make ring signatures widely applicable to many cryptographic schemes [12].

Ring signatures can be combined with other special signatures to obtain several vari-

ants of ring signatures such as threshold ring signatures [16], Identity-based ring sig-

natures [17] and universal designated verifiable ring signatures [18].

Proxy ring signatures, also called anonymous proxy signatures, are useful in cases

when an entity delegates his signing capability to many proxies, called proxy signers

group, while it provides anonymity of proxy signers. A choice is using the group sig-

nature to solve it (take the group manger as the original entity), but in some applica-

tions, unconditional anonymity is necessary. If the proxies hope that nobody (includ-

ing the original signer) can open their identities, the group signature is not suitable for

this situation. So we can use the ring signature to solve this problem and gain the

anonymous proxy signature [8, 13, 14, 15] which was first proposed by Zhang et al. in

2003 [20].

Fuchsbauer and Pointcheval, in 2008 proposed a generic construction named “anon-

ymous proxy signatures” [26]. They proposed no concrete scheme and their purpose

is different from ours. They defined a general model for consecutive delegations of

signing rights with the following properties: “The delegatee actually signing and all

intermediate delegators remain anonymous. As for group signatures, in case of mis-

use, a special authority can open signatures to reveal the chain of delegations and the

signer’s identity”. They gave formal definitions of security and showed them to be

satisfiable by constructing an instantiation proven secure under general assumptions in

the standard model.

Yu et al., in 2009 proposed an efficient anonymous proxy signature scheme with

provable security in the random oracle models [15]. However, provable security in the

random oracle model is doubtful when the random oracles are instantiated with hash

functions. Hence, in this paper we propose the first provable secure anonymous proxy

signature scheme in the standard model without random oracles, based on standard

assumptions. In this way we make use of two signature schemes: the first one is a

proxy signature scheme in standard model, which was proposed by Sun et al. in 2011

[21], and the second one is a ring signature scheme without random oracles, which

was proposed by Shacham and Waters in 2007[22].

Roadmap: The rest of this paper is organized as follows. Preliminaries and security

requirements are given in sections 2 and 3, respectively. Our anonymous proxy signa-

ture scheme is proposed in Section 4. In Section 5, security analysis of our proposal is

given. Finally, comparison and conclusions are given in Sections 6 and 7, respective-

ly.

2 Preliminaries

2.1 Bilinear Pairing

We make use of bilinear groups of composite order. These were introduced by Boneh

et al. [9]. Let be a composite with factorization . We have:

 is a multiplicative cyclic group of order ;

 is its cyclic order- subgroup, and is its cyclic order- subgroup;

 is a generator of , while is a generator of ;

 is a multiplicative group of order ;

 is efficiently computable map with the following properties:

o Bilinear: for all and we have

 () () (1)

o Non-degenerate: () is generator of whenever is generator of

2.2 Computational Diffie-Hellman (CDH) assumption

Given the tuple ()
 for random exponents , the adversary could

solve the CDH problem if he could compute . The CDH assumption states that no

probabilistic polynomial-time (PPT) adversary could solve the CDH problem with

non-negligible probability.

2.3 Subgroup Hiding (SGH) assumption

As noted in [22], this assumption states that for given , selected randomly either

from or (with same probabilities), decide whether is in , is a hard problem.

2.4 Waters signature (WS) in

As noted in [22], the underlying signature scheme is the Waters signature [23]. This

signature was adapted for composite order groups by Boyen and Waters [27]. The

scheme is as follows.

a. Setup

The setup algorithm chooses generators

←

b. Key Generation

 is a generator of . This algorithm picks random exponents (

←) and sets

The public key is ()
 and the private key is ().

c. WS Generation

This algorithm takes as input a message * + as a bit string ()

and then picks a random

← and computes

 ̂ ← . ∏

 /

 (2)

 ̂ ← (3)

The WS signature is ̂ (̂ ̂)
 .

d. WS Verification

A verifier checks that the following equation is satisfied or not

 (̂) (̂
 ∏

) () (4)

If it does not hold, the signature will be rejected. Otherwise, it will be accepted.

This signature is secure assuming CDH is hard in , and is used in our reductions.

3 Security Requirements

3.1 Model of anonymous proxy signature schemes

An anonymous proxy signature (APS) scheme consists of the following algorithms.

a. Setup: Given the system security parameter, this algorithm outputs system’s
parameters. For instance, we can assign this part to a trusted third party.

b. Key Generation: On input a security parameter, this algorithm generates a per-
sonal public-private key pair ().

c. Delegation Generation: On input the system’s parameters, a warrant and the
original signer’s private key , this algorithm generates a delegation signature
 on .

d. Delegation Verification: On input the system’s parameters, the original signer’s
public key and his delegation signature on the warrant , this algorithm
outputs “accept” if the signature is valid, and “reject” otherwise.

e. APS Generation: On input the system’s parameters, a message , the public keys
 of the proxy signers, delegation signature on and one proxy
signer’s secret key, this algorithm generates an APS for the message .

f. APS Verification: On input the system’s parameters, a message m, an APS , the
public key of the original signer, the public keys of the proxy
signers, the warrant and the delegation signature on this algorithm outputs
“accept” if the signature is valid, and “reject” otherwise.

3.2 Anonymity against full key exposure attack in APS schemes

In APS schemes, the anonymity means, informally, that an adversary not be able to

find which member of a proxy signers’ ring generated a particular signature. Motivat-

ed by the work of Bender et al. [24, 25], we provide a formal definition of anonymity

against full key exposure attack of an APS scheme as follows.

Given an APS scheme and a PPT adversary, consider the following game:

1. Key pairs *()+
 are generated and the set of proxy signers’ public keys

 * +
 is given to the adversary. In addition, the challenger records the random

coins * + used in generating each key pair. Here is a game parameter.

2. The adversary is given access (throughout the entire game) to make APS generation

queries of the form (), where is the message to be signed, is a set of

public keys, and is an index such that holds. The challenger responds with

().

3. The adversary outputs a message , distinct indices , and a ring for

which . A random bit is chosen, and the adversary is given the signa-

ture
(). In addition, the challenger provides the adversary with the

coins * + used to generate the keys.

4. The adversary outputs a bit , and succeeds if .

Definition 1. An APS scheme is anonymous against full key exposure attack if no

PPT adversary has advantage non-negligibly greater than ⁄ of winning in the above

game.

3.3 Existential unforgeability in APS schemes

To discuss the unforgeability of APS schemes, we categorize the adversaries into

three types [15, 21].

Type1: The adversary only has the public keys of the original signer and proxy sign-

ers.

Type2: The adversary has the public keys of the original signer and proxy signers;

besides it has the secret key of the original signer.

Type3: The adversary has the public keys of the original signer and proxy signers;

besides it has the secret keys of some proxy signers.

It can be found that if an APS scheme is existential unforgeable against Type2 and

Type3 adversaries, it is also existential unforgeable against Type1 adversary.

a. Existential unforgeability against adaptive Type2 adversary

The existential unforgeability of an APS scheme against a Type2 adversary means

that it is difficult for any entity, including the original signer, other than the proxy

signers themselves to generate a valid APS on a message it chooses, even he has ob-

tained the secret key of the original signer and some valid anonymous proxy signa-

tures on messages it chooses. Motivated by the work of Bender et al. [24, 25], we

provide a formal definition of existential unforgeability of an APS scheme against

Type2 adversary as follows.

Given an APS scheme and a PPT adversary, consider the following game:

1. Key pairs *()+
 are generated and the set of public keys * +

 , the

public key and secret key of the original signer is given to the adversary. Here is a

game parameter.

2. The adversary is given access (throughout the entire game) to make APS generation

queries of the form (), where is the message to be signed, is a set of

public keys, and is an index such that holds. The challenger responds with

().

3. The adversary is also given access to a corrupt oracle (), which on in-

put , returns .

4. The adversary Outputs () and succeeds if () ,

it never queried () and , where is the set of corrupted users.

Definition 2. An APS scheme is secure against Type2 adversary if no PPT adversary

has a non-negligible advantage in the above game.

b. Existential unforgeability against adaptive Type3 adversary

The existential unforgeability of an APS scheme against a Type3 adversary means

that it is difficult for an attacker to forge a valid delegation signature on a warrant it

chooses, even it has obtained the secret keys of some proxy signers and some other

valid delegation signatures on warrants it chooses. We provide a formal definition of

existential unforgeability of an APS scheme against Type3 adversary as follows.

Given an APS scheme and a PPT adversary, consider the following game:

1. Key pairs *()+
 are generated and the set of public keys * +

 , the

public key of the original signer and the secret keys of some proxy signers is given to

the adversary. Here is a game parameter.

2. The adversary is given access (throughout the entire game) to an oracle

 () such that () returns
() , where

 is the secret key of original signer.

3. The adversary outputs () and succeeds if () and it never

queried .

Definition 3. An APS scheme is secure against Type3 adversary if no PPT adversary

has a non-negligible advantage in the above game.

Definition 4. An APS scheme is existential unforgeable against adaptive chosen-

message attack if it is secure against both Type2 and Type3 adversaries.

4 Proposal

4.1 Setup

The trusted setup algorithm first constructs a group of composite order as

described in section II. It then chooses random exponents (

←) and sets

Let * + * + be a collision-resistant hash function. The setup algorithm

chooses generators

←

Let () be bilinear groups where | | = | | = n, g is the generator of and

denotes an admissible pairing .

The published common reference string includes a description of the groups and

and of the collision-resistant hash , along with (
) and ().

The factorization of is not revealed .Note that anyone can use the pairing to verify

that the pair () is properly formed [22].

4.2 Key Generation

Original signer picks random

← and sets his secret key and his pub-

lic key . In the same way, the proxy ring members compute their private

keys and public keys. Note that, we have

 ()
 (5)

4.3 Delegation Generation

Let () be a -bit warrant to be signed by the original signer. This

algorithm picks a random

← and computes the delegation () and

sends it to the proxy ring members, where

 (
 ∏

)

 (6)

 (7)

4.4 Delegation Verification

Upon receiving (, ,), this algorithm checks that the following equation is

satisfied or not

 () (
 ∏

) () (8)

If it does not hold, the delegation will be rejected. Otherwise, it will be accepted.

4.5 APS Generation

This algorithm takes as input a message * + , a ring of public keys of proxy

signers, the signature on , and a key pair () , where

←

No key may appear twice in , and must include .

Let | |; it parses the elements of as for each i, .

Let be the index such that . We define

 2

Now for each , , the algorithm chooses a random exponent

← and sets

 ← .

/

 (9)

 ← (.

/

)

 (10)

 ← ∏

 (11)

 ← ∑

 (12)

It computes () ← (). Finally, it chooses

← and computes

 ← (
 ∏

)

 (13)

 ← (14)

 ← (15)

The signature is output as , where

 .() *()+
 /

4.6 APS Verification

The verifier computes () ← (). Let | |; it parses the

elements of as for each , and checks that no element is repeated

in and rejects otherwise. Then it parses the signature as .() * (

) +
 / . (If this parse fails, reject.). The verifier checks first that the

* +
 are valid or not

 (()) () (16)

If any of the proofs is invalid, reject. Otherwise, verifier sets ← ∏

 . Accept if

the following equation is satisfied

 () (
 ∏

) () (

 ∏

) (17)

Note that, there is exactly one non-zero value amongst * +, and we have

 ()(
) (18)

The correctness of the proposal can be verified directly, as following equations

 () ((
 ∏

)

)

 () () .(∏

)

 /. ()

 ((∏

)

) () () ((
 ∏

)

) ()

 (∏

) () () (∏

) ()

 (
 ∏

) () (
 ∏

) () ()

 (
 ∏

) () (
 ∏

) () (
)

 (
 ∏

) () () (
 ∏

)

 (
 ∏

) () (
 ∏

)

5 security analysis

We will analyze the security of our proposal in this section. Our proposal is warrant

based and the delegation is original signer’s signature on the warrant which

contains proxy signers’ public key, a period of validity, the restrictions on the

messages that the signer can sign and so on. Therefore, this kind of proxy

signature can prevent the misuse of the delegation [21]. Some other properties such

as distinguishability (distinguishable from normal signatures) and nondeniability can

be achieved naturally too. Therefore, we mainly focus on the anonymity and the exis-

tential unforgeability of our proposal.

5.1 Anonymity

Theorem 1. Our proposal is anonymous against full key exposure attack if SGH

problem is hard.

Proof. Consider a challenger that wants to solve the SGH (subgroup hiding) problem.

The group order , the description of the group with the generators of and ,

which in Game 0, is chosen randomly from and in Game 1, is chosen random-

ly from , is given to the challenger. After receiving a SGH challenge (), the

challenger follows the setup algorithm of Section 4 to obtain system parameters. It

then runs for times to obtain public-private key pairs

*()+
 and the randomnesses * +

 used in each run and sends the public

parameters to an adversary and plays the anonymity game with it. The adversary re-

quests a challenge by sending to the challenger the values (). Here

and are indices such that , . The challenger chooses

← * + , creates

the signature ← (

), and responds to the adversary with and

the randomnesses * +
 used to generate the keys. The adversary finally guesses

for . If it answers correctly, then the challenger outputs 1, guessing ; other-

wise it outputs 0, guessing .

We define the advantage of the adversary in the Game , , by

 and

the advantage of the challenger in the SGH game by
 . We know ,

 - , - , therefore

 , | - , | -

 , - , -
 ()

In Game 1, is a generator of , therefore exist such that .

/

 and we have

 (|) . .

/ /

 () () (.

/

)

 (|) (|) (20)

In other words, the adversary can obtain no information from the pair () of the

signature, for in Game 1. Because and are independent of the signer

choice, therefore the only part of signature may have information for the adversary, is

 . But, is the unique value satisfying (17) because of having fixed other parts of

the signature . Thus the indices and are independent of the entire signature . It

means

 (21)

We define
 to be the advantage of the adversary in the anonymity game

and

 to be the advantage of the challenger in the SGH problem solving. Be-

cause in Game 0, the environment of the adversary is the same as in the anonymity

game, we have

 (22)

Putting equations (19), (21) and (22) together, we obtain

 (23)

5.2 Unforgeability

Theorem 2. Our proposal is existential unforgeable against adaptive chosen-message

attack if is collision-resistant and CDH is hard in .

Proof. We need to show that our proposal is secure against Type2 and Type3 adver-

saries in the standard model.

Theorem 2.1. Our proposal is secure against Type2 adversary if is collision-

resistant and CDH is hard in .

Proof. First we need some requirements as follows

 If satisfies and , for all we have

 , iff (24)

Thus we have

 iff , for the pair () that satisfies (16).

 If and are generators of and respectively, is a random genera-

tor of for all

←

 and

←

 .

 For all and , we have

 () (25)

 For all and , we have

 () () () (26)

For the proof of Theorem 2.1. we define three types of adversaries as follows:

TypeI: The adversary issues two pairs () and () such that ()
() but () ().

TypeII: The adversary does not issue a hash collision as above and it forges such that

∑

TypeIII: The adversary does not issue a hash collision as above and it forges such

that ∑

We show a challenger which is given the factorization , can break one of our

complexity assumptions, based on a forger adversary.

TypeI Adversary. Consider a challenger that wants to solve the collision-resistance

problem. The challenger follows the setup algorithm of part 4 to obtain system pa-

rameters. It then runs for times to obtain public-private key pairs

*()+
 and sends the public parameters to an adversary. The challenger also

initializes the set of corrupted users as ← and continues the unforgeability

game with the adversary. The adversary makes signing queries and corruption que-

ries. A signing query is of the form (), where is an index such that
 . When it makes a signing query, the challenger responds with

 ← () and it keeps the pairs (() ()) included in signing

queries of the adversary. A corruption query is of the form , where s is an index such

that . When the adversary makes a corruption query, the challenger responds

with to it and adds to . Eventually, the adversary outputs a tuple

() and wins the game if

 it never made a signing query () for any s;

 * + ;

 () satisfies (17);

In addition, the challenger keeps the pair () included in its forgery. In this type

of adversary there are two pairs () and () such that ()
 () . The challenger outputs this pair as a collision and succeeds when the

adversary does.

We define

 to be the advantage of the adversary in the unforgeability game

and

 to be the advantage of the challenger in the collision-resistance prob-

lem solving, so have

 (27)

TypeII Adversary. Consider a challenger that wants to solve the CDH problem. The

group order and its factorization , the description of the group with and

 the generators of and respectively, and a pair ()
 is given to the

challenger. It’s goal is to compute . The challenger chooses a collision-resistant

hash function * + * + and picks

←

 and

← . Then it sets

 ←

 ←

 ←

 ←

 is a random generator of . Anyone can use the pairing to verify that the pair

() is properly formed.

 () () () () () () () (28)

The challenger picks exponents

← , and sets ←

 and ←

for . It picks random exponents and sets user keys as ← and

 ← for . Then the challenger sends the generators and , the pa-

rameters () and () , the description of and the public keys

* +
 to an adversary. The challenger responds the signing and corruption queries

of the adversary as above. Eventually, the adversary outputs a forgery

ple () , where | | . We can parse the as () and

assume a mapping , - , - such that (), for .

The challenger parses as .() *()+
 / . (We assume a non-

trivial adversary, so this parse must succeed and each pair () must satisfy (16)).

After parsing we have for each ,

 .

 /

 .(())

 /

 (())
 (29)

Now we define

 ∑

 () (30)

 ∑

 (31)

Putting equations (29-31) together, we have

 ∏

 ()

 (32)

Finally, the challenger computes () ← () and sets

 ← ∑

 (33)

 ← ∑

 (34)

We raise both sides of equation (17) to power , by substituting parameters

() as above, using equations (24-26) and equations (32-34), we have

 (

()
) .

 / (.

 /

) (.

 /

) .

 /

 () (()
 .

 /

 .

 /

) (35)

So the answer to the CDH problem is

 0()
 .

 /

 .

 /

 1
 ()

 (36)

Remind that in this type of adversary, .

The challenger succeeds whenever the adversary does. So by defining

 to

be the advantage of the challenger in the CDH problem solving, we have

 (37)

TypeIII Adversary. We wish to convert a TypeIII adversary to a Waters signature

forger in . The proof proceeds as follows.

The group order and its factorization , the description of the group with

and the generators of and respectively, WS public parameters ̂ ̂ ̂

all in , and a WS public key ()
 is given to a challenger. The challenger

chooses a collision-resistant hash function * + * + and picks

←

 ,

← and

← . Then it sets

 ←

 ←

 ←

 ←

The challenger picks random exponents

← and sets ← ̂ and

 ← ̂
 , for For generating user keys, it first picks randomly from

* +, then for each , it chooses a random exponent

← and sets

 ← and ← and for , picks

← and sets ←

 . It sends

the generators and , the parameters () and (), the description

of and the public keys * +
 to an adversary. The adversary makes signing que-

ries and corruption queries. A corruption query is of the form , where is an index

such that . When it makes a corruption query, the challenger responds with

 unless equals , in which case the challenger declares failure and exits.

A signing query is of the form (), where is an index such that .

When the adversary makes a signing query, if , the challenger responds

with ← (). If , it first requests from WS signing oracle a

signature on () ← () . The WS signing oracle responds

with ̂ (̂ ̂)
 . Then the challenger blinds the signature ̂ and projects it into

G, as follows. Let | |. The challenger parses as (). For ,
we define

 2

 (38)

For each , , the challenger picks a random exponent

← and sets

similar (9) and (10). By defining similar (11) and (12) and choosing

← , it

computes

 ← ̂

 (

 ∏

)

 (39)

 ← ̂
 (40)

 ←

By substituting parameters () as above and using equations (39, 40) and

(24-26), we have

 ()

 () (̂
) (

) (

 ∏

)

 (

)

 () (̂) (

) (

 ∏

)

 (

)

 () (

) (̂ ̂

 ∏ ̂

) () (∏

) ()

 () () (̂ ̂
 ∏ ̂

) (∏

) ()

 () (
) (̂

 (̂

)∏(̂

)

) ()

 () (
) (∏

) ()

 () (
) (∏

) ()

 () () (
) (∏

) ()

 (
 ∏

) () (∏

)

Above proofs satisfies equation (17). Thus the challenger responds to the adversary

with

 .() *()+
 /

Eventually, the adversary outputs a forgery tuple (), where | |.
We can parse the as () and assume a mapping , - , - such

that (), for . Besides, the adversary must not have made a corrup-

tion query at any of the indices * ()+
 .

The challenger parses as .() *()+
 / . (We assume a non-

trivial adversary, so this parse must succeed and each pair () must satisfy (16)).

Since the adversary is TypeIII, there is exactly one index * + such

that . If () , the challenger declares failure and exits, otherwise we have

for each ,

 (

)

 ∏

 ()

 (41)

Finally, the challenger computes () ← () . We raise both

sides of equation (17) to power , by substituting parameters () as above,

using equations (24-26) and equation (41), we have

 ((
)) (.

 /

 ̂ ∏ ̂

) .

 / ()

So ((
)

) is a valid WS signature on ().

We define

 to be the advantage of the challenger in the creating a WS for-

gery. Index is uniformly chosen from the set * + and the challenger succeeds

in creating a WS forgery whenever the adversary does, so we have

 (42)

Note that WS is unforgeable if CDH is hard in .

Theorem 2.2. Our proposal is secure against Type3 adversary if CDH is hard in .

Proof. Consider a challenger wants to solve the CDH problem in which a random

tuple () and the group order is given to the challenger and its goal is to

compute . The adversary interacts with the challenger in this game.

The challenger picks following exponents

 for each ,

Now, the challenger sets the public parameters to be

 and for

Besides, he sets the original signer’s public key to be

We further define the following function

 () ∑

 (43)

So, we have

 ∏

 () (44)

Then, the challenger sends the public parameters to the adversary and responds the

delegation signature queries of it as follows.

When the challenger receives a of a warrant , it randomly chooses and com-

putes

 ()
(∏

)

 ()
(())

 (())

 ()(())

 (())

 ()

By defining ̅

 ()
, we have

 (())

 ̅
 (45)

 ̅

 ()

 ()
 (46)

So, the challenger answers as (

). Note that the verification equation (8)

is satisfied.

The adversary will output a forge signature
 (

) on a warrant such that

 has not been queried during the delegation signature queries and
 is a valid

signature of the warrant .

If () (), the challenger will abort. Otherwise, we set the signature as

(

) ((∏

)

)

So the answer to the problem is

 (47)

The challenger succeeds whenever the adversary does, so we have

 (48)

Putting equations (27), (37), (42) and (48) together, we obtain

 (49)

6 Comparisons

In this section, we will compare our proposal with others from the computational costs,
construction and model of provable security of schemes viewpoints. Since the pairing
computation is the most time consuming, we compare the computational costs of
schemes based on the number of pairing operations used. To generate an APS on a
message with a warrant and by using proxy signers, we summarize the compari-
sons in the Table 1:

Number of Pairing
Operations Used

Definition of APS
Model of Provable

Security

Zhang's
Scheme [20]

proxy signer’s privacy

protection
random oracle

model

Yu’s Scheme
[15]

proxy signer’s privacy

protection
random oracle

model

Fuchsbauer’s
Scheme [26]

no concrete
scheme

anonymity for delegatee
and delegators (Group

Signature-Based)

without random
oracles

Our Proposal
proxy signer’s privacy

protection
without random

oracles

Table 1. Comparison of our proposal construction and model of provable security with existing schemes

7 Conclusions

In this paper, we proposed the first provable secure anonymous proxy signature

scheme without random oracles which is the combination of proxy signature and ring

signature. This proposal avoids the criticisms of the random oracle model and be-

comes needful whenever proxy signer wants to sign message on behalf of the original

signer providing anonymity.

For the security analysis, we categorized the adversaries into three types according to

different resources they can get and showed that, our proposal to be anonymous

against full key exposure attack and existential unforgeable against all kinds of adver-

saries in the standard model with the computational Diffie–Hellman and the subgroup

hiding assumptions in bilinear groups.

The signature in our proposal is of size group elements for members of proxy

signers and requires pairings to verify.

References

[1] M. Mambo, K. Usuda, E. Okamoto, Proxy signatures for delegating signing opera-

tion, 3rd ACM Conference on Computer and Communications Security (1996) 48-

57.

[2] M. Mambo, K. Usuda, E. Okamoto, Proxy signature: Delegation of the power to

sign messages, IEICE Transactions on Fundamentals, Vol. E79-A, No. 9 (1996)

1338-1353.

[3] C. Ma, J. Ao, Group-based proxy re-encryption scheme secure against chosen ci-

phertext attack, International Journal of Network Security, Vol. 8, No. 3 (2009)

266-270.

[4] K. Zhang, Threshold proxy signature schemes, Proceedings of the First Interna-

tional Workshop on Information Security (1997) 282-290.

[5] W.D. Lin, J.K. Jan, A security personal learning tools using a proxy blind signature

scheme, Proceedings of International Conference on Chinese Language Compu-

ting, Illinois, USA (July 2000) 273-277.

[6] G.K. Verma, A proxy blind signature scheme over braid groups, International

Journal of Network Security, Vol. 9, No. 3 (2009) 214-217.

[7] A.K. Awasthil, S. Lal, ID-based ring signature and proxy ring signature schemes

from bilinear pairings, International Journal of Network Security, Vol. 4, No. 2

(Mar 2007) 187-192.

[8] J. Li, T. H. Yuen, X. F. Chen, et al, Proxy ring signature: Formal definitions, effi-

cient construction and new variant, Proceedings of International Conference of

Computational Intelligence and Security, Vol. 2 (2006) 1259-1264.

[9] D. Boneh, E.J. Goh, K. Nissim, Evaluating 2-DNF formulas on cipher texts, In J.

Kilian, editor, Proceedings of TCC 2005, number 3378 in LNCS, Springer-Verlag

(Feb 2005) 325-341.

[10] R. Rivest, A. Shamir, Y. Tauman, How to leak a secret, AsiaCrypt'01, LNCS 2248,

Springer-Verlag (2001) 552-565.

[11] D. Chaum, E. Heyst, Group signature, EUROCRYPT 1991, LNCS 547, Springer-

Verlag (1991) 257-265.

[12] R. Rivest, A. Shamir, Y. Tauman, How to leak a secret: Theory and applications of

ring signatures, Essays in Theoretical Computer Science: in Memory of Shimon

Even, LNCS 3895, Springer-Verlag (2006) 164-186.

[13] A.K. Awasthil, S. Lal, A new proxy ring signature scheme, Proceeding of RMS

2004, Agra, INDIA (2004).

[14] H. Xiong, Z. Qin, F. Li, A Certificateless Proxy Ring Signature Schemewith Prov-

able Security, International Journal of Network Security, Vol. 12, No. 2 (Mar

2011) 92-106.

[15] Y. Yu, C. Xu, X. Huang,Y. Mu, An efficient anonymous proxy signature scheme

with provable security, Computer Standards & Interfaces 31 (2009) 348–353.

[16] E. Bresson, J. Stern, M. Szydlo, Threshold ring signatures and applications to ad-

hoc groups, In CRYPTO 2002, Proceedings, Volume 2442 of Lecture Notes in

Computer Science, Springer (2002) 465–480.

[17] S. Chow, S. Yiu, L. Hui, Efficient identity based ring signature, In ACNS 2005,

Proceedings, Volume 3531 of Lecture Notes in Computer Science, Springer

(2005).

[18] J. Li , Y. Wang, Universal designated verifier ring signature (proof) without ran-

dom oracles, In Emerging Directions in Embedded and Ubiquitous Computing

2006, Proceedings, Volume 4097 of Lecture Notes in Computer Science, Springer

(2006) 332–341.

[19] W. Baodian, Z. Fangguo, C. Xiaofeng, Ring Proxy Signatures, Journal of Electron-

ics (China), Vol. 25 No. 1 (January 2008).

[20] F. Zhang, R. Safavi-Naini, C. Lin, New Proxy Signature, Proxy Blind Signature

and Proxy Ring Signature Schemes from Bilinear Pairings, IACR Cryptology

ePrint Archive 2003: 104 (2003).

[21] Y. Sun, C. Xu, Y. Yu, Y. Mu, Strongly unforgeable proxy signature scheme secure

in the standard model, The Journal of Systems and Software 84 (2011) 1471–1479.

[22] H. Shacham, B. Waters, Efficient Ring Signatures Without Random Oracles, In T.

Okamoto and X. Wang, eds., Proceedings of PKC 2007, Vol. 4450 of LNCS,

Springer-Verlag (Apr 2007) 166–180.

[23] B. Waters, Efficient identity-based encryption without random oracles, In R.

Cramer, editor, Proceedings of Eurocrypt 2005, Vol. 3494 of LNCS, Springer-

Verlag (May 2005) 114- 127.

[24] A. Bender, J. Katz, R. Morselli, Ring signatures: Stronger definitions, and con-

structions without random oracles, Cryptology ePrint Archive, Report 2005/304

(2005), http://eprint.iacr.org

[25] A. Bender, J. Katz, R. Morselli, Ring signatures: Stronger definitions, and con-

structions without random oracles, In S. Halevi and T. Rabin, editors, Proceedings

of TCC 2006, Volume 3876 of LNCS, Springer-Verlag (Mar 2006) 60-79.

[26] G. Fuchsbauer, D. Pointcheval, Anonymous Proxy Signatures, In The 6th Confer-

ence on Security in Communication Networks (SCN '08), Springer, Vol. 5229,

Amalfi, Italy (2008) 201-217.

[27] X. Boyen, B. Waters, Compact group signatures without random oracles, In S.

Vaudenay, editor, Proceedings of Eurocrypt 2006, Volume 4004 of LNCS, Spring-

er-Verlag (May 2006) 427-444.

http://www.informatik.uni-trier.de/~ley/db/journals/iacr/iacr2003.html#ZhangSL03
http://www.informatik.uni-trier.de/~ley/db/journals/iacr/iacr2003.html#ZhangSL03

