
Anonymous aggregators and sensor aggregation
on untrusted servers

Constantinos Patsakis, Michael Clear, Paul Laird

Distributed Systems Group, School of Computer Science and Statistics, Trinity
College, Dublin, Ireland

email: {patsakik,clearm,lairdp}@scss.tcd.ie

Abstract. While multiparty computations are becoming more and more
efficient, their performance has not reached yet the level needed to be
widely deployed for many applications. Nevertheless, the heterogeneous
environment of modern computing needs this functionality in order to
provide users their right to privacy. For a wide range of applications there
is no need for complex computations; operations such as multiplication
or addition might be sufficient. In this work we introduce the concepts
of Anonymous Aggregation and Anonymous Aggregators, two lightweight
cryptographic primitives that can perform specific private computations
efficiently in restricted environments.

Keywords: cryptographic protocols, privacy, anonymity, proxy re-encryption,
multiparty computations

1 Introduction

The computation environment that a common user is using daily is becoming
more and more heterogeneous due to the wide range of interconnected devices
that directly or indirectly are being used, e.g. through cloud computing. There-
fore, the user environment should be considered hostile in most of the cases. In
many scenarios, a user might have to calculate a function in collaboration with
other entities, real users or virtual, which cannot be trusted. Hence user input to
the function should be obfuscated in such way that other users cannot disclose
his input, while enabling the output of the function to be calculated correctly
and efficiently. More formally, we have n entities that want to calculate function
f(x1, x2, ...xn) without disclosing xi, i ∈ {1, 2, ..., n} to any other entity.

1.1 Main contributions

In this work Anonymous aggregation and Anonymous Aggregators are intro-
duced, two lightweight cryptographic primitives that allow users to efficiently
perform specific private computations, such as multiplication and addition, un-
der specific constraints. It is shown that the output of the function can be com-
puted correctly if users’ inputs have been properly bounded. The main difference

with secure multiparty computation is that we lower the security barrier. In the
calculations that are presented in this work all the involved entities are not con-
sidered malicious, so they can be expected to strictly follow the protocol, but
they might collude in order to expose a user’s input. An important limitation,
which depending on the problem can be circumvented through proper imple-
mentation, is that the size of the key increases exponentially with the expected
output. However, as it is illustrated in the experiments, this exponential behavior
does not prevent the usage of anonymous aggregators in practical problems.

1.2 Organization of this work

The rest of this work is organized as follows. In the next section we provide
an overview of the related work, such as secure multiparty computation. The
third section describes some of the building blocks that are needed to construct
Anonymous aggregation and Anonymous Aggregators. Section §4 introduces the
two cryptographic primitives, while in Section §5 some experimental results il-
lustrate their efficiency. Finally, the article concludes with some remarks and
ideas for future work.

2 Related work

The concept of secure multiparty computation was introduced by Yao in [29]
with the introduction of the famous millionaires problem. In this problem, two
millionaires want to compare their assets in order to verify which one is the
richest, but without revealing the actual value of their assets. Some important
foundational advances were made soon after such as [30, 16, 11, 3], however it
took almost two decades for real-world implementations to became practical
[24, 2, 5].

Currently, the prevailing trends in secure multiparty computation can be
categorized as follows, based on chronological order:

– The usage of the original concept from Yao, which is based on computing
encrypted binary circuits of the function to be evaluated. Efficient imple-
mentations of this approach have only recently been introduced [22, 23, 21].

– Nielsen’s approach, introduced in [27]. In this approach, oblivious transfer is
being used and it is mainly focused towards Secure two-party computation
(2PC), such as computing hash functions.

– The SPDZ approach has been introduced in [13] and extended in [14]. SPDZ
is based on the principles of fully homomorphic encryption and can perform
general calculations from an arbitrary number of users.

Apart from the aforementioned schemes which realize secure multiparty com-
putation, closely related to this work are others which might not provide all the
aforementioned features; nevertheless, in well defined and restricted environ-
ments, they can provide more efficient solutions, in terms of performance.

Clifton et al. in [12] proposed a very efficient and elegant scheme for summing
the shares of n entities anonymously. Their scheme is illustrated in Figure 1.
Let’s assume that n users want to compute the sum of their shares si, without
disclosing the value of their shares. Starting from user 1, each user adds a random
value ri to the current sum and passes that to the next user. The last user add
his value and returns the resulting value to the first one. The first user now
subtracts a value r′1 from the value he is given, so that r1 − r′1 = s1. The next
users do the same, so at the end, when user n subtracts r′n the resulting value
is the sum. The scheme provides an anonymous sum under the assumption that
users do not collude. It is clear that if the previous and the next user of user k
collude, then the share sk can be trivially exposed.

r1 r2 r3 rn−2 rn−1

rn

r ' 1 r ' 2 r ' 3 r ' n−2 r ' n−1

r ' n

Fig. 1. Clifton et al anonymous sum method.

A famous problem in cryptography is the dining cryptographers problem,
introduced by Chaum in [10]. According to the statement of the problem, three
cryptographers dine and the cryptographers are notified by the waiter that their
bill has been payed. The payment has been made by one of the cryptographers
or by the NSA. The problem is to find anonymously whether the payment has
been made by one of them, without disclosing his identity, or by the NSA. While
the provided solution manages to anonymously calculate one bit of information
(0 if it was paid by the NSA or 1 if it was paid by a cryptographer), one of the
main limitations of the proposed protocol, usually named as DC-net is that if
two cryptographers have paid for the dinner, then they cancel each other out, so
the end result is wrong. The protocol has been revised in [17] to allow detection
and identification of “cryptographers” that try to cheat.

Trying to extend this result so that one bit of information can be securely
calculated without cancellations, Hao and Zieliński introduced another protocol,
AV-net, in [18] which is discussed in the next section.

3 Building blocks

3.1 The Anonymous veto protocol of Hao and Zieliński

Hao and Zieliński introduced a very elegant protocol which manages to patch
several vulnerabilities of the dining cryptographers network [18]. The following
scenario illustrates the concept underlying their protocol. Due to extreme cir-
cumstances, n generals from several countries have to decide whether or not they
will invade a certain country. The invasion can only be decided unanimously; thus
if a general decides to veto, the invasion is halted. Obviously the pressure is very
high and in order to avoid pressure to individuals that decide to veto, the voting
has to be made anonymously. Additionally, each party has to be able to compute
and verify the result, even if some entities decide to manipulate the result.

The protocol that provides a solution to this problem has two rounds, where
the involved parties broadcast their results. Initially, all users decide on a finite
cyclic group of prime order q in which the Decision Diffie-Hellman (DDH) prob-
lem is known to be intractable, and choose one of its generators g [6]. Every user
Ui selects a random secret value xi ∈ Zq and in the first round every user broad-
casts gxi as well as a proof of knowledge of xi. Knowing these values, everyone
can calculate the following:

gyi =

i−1∏
j=1

gxj

n∏
j=i+1

g−xj

Note that due to the intractability of the DDH problem, the actual values of yi
cannot be evaluated by any party. In the second round, every user broadcasts a
value gciyi along with a knowledge proof for ci , where:

gciyi =

{
griyi if Ui vetoes.

gxiyi if Ui does not veto.

where ri ∈ Zq is random and xi 6= ri.
If no one vetoes then result would be:

∏n
i=1 g

ciyi = 1 since:
∑n
i=1 xiyi = 0.

Otherwise, in case of veto:
∏n
i=1 g

ciyi 6= 1. In either case, the result can be
computed by everyone and cannot be tampered by anyone. Finally, the identity
of those who have vetoed cannot be deduced.

3.2 Re-encryption

Re-encryption is a cryptographic primitive that enables the transition of a ci-
phertext from one decryption key, to another, without the use of any trusted
third party, or disclosing the keys of the users involved. The concept was intro-
duced in 1998 by Blaze, Bleumer and Strauss in [4].

The original proposal is a tweaked version of the well known ElGamal encryp-
tion algorithm [15]. So to initialize the algorithm, we have pick a prime number
p of the form p = 2q + 1, where q is prime, and a generator g. We assume that

Alice and Bob are the two users that are going to use this algorithm, so Alice
and Bob pick randomly a and b respectively, so that a, b ∈ Zp. Alice’s public key
is gamod p and Bob’s is gbmod p. If Caroline wants to send message m to Alice,
she picks a random value r and computes:

c1 ≡ mgrmod p

c2 ≡ garmod p

To decrypt the ciphertext, Alice has to calculate:

m ≡ c1(ca
−1

2)−1mod p

We now assume that Alice goes away and she wants her messages to be forwarded
to Bob. However, she does not want to disclose her key to him, or any other entity,
as this will reveal all her previous messages. Therefore she asks her email server
to use an intermediate key ga

−1b. If the mail server is given this key, every new
mail to Alice will be forwarded to Bob and Bob will be able to decrypt it, even
if it was encrypted for him. Additionally, since ga

−1b = (ga
−1

)b nor Alice nor
Bob have to disclose their private keys and the intermediate key can be easily
calculated by Alice and handed to the mail server.

4 Anonymous aggregation & aggregators

4.1 Notation

Let k be an integer. We denote the contiguous set of integers {1, . . . , k} by [k].
Let X and Y be distributions. The notation X ≈

C
Y denotes the fact that both

distributions are computationally indistinguishable to any probabilistic polyno-
mial time (PPT) algorithm.

4.2 Main players and desiderata

In our model we assume the following entities:

The Users: We have a set of n users U1, U2, ..., Un which have already ex-
changed their public keys and want to evaluate a function f(x1, x2, ..., xn),
so that each user Ui provides input xi and his input is not disclosed to any
other user. Moreover, we assume that we do not have malicious users, yet
they are honest but curious. Hence, each user follows the protocol, however,
he may try to find more information about others’ users input.

The Consumer: It is the entity that wants to evaluate function f .
The Aggregator: The aggregator can collect all the data from Users in order

to help in the evaluation of the function and then forward it to the Consumer.
The aggregator has a registry which can be read and written only by the
Users and read by the Consumer. We assume that the Aggregator does not
behave maliciously and that he is honest but curious.

In the proposed model, the entities are clearly distinct just in order to facil-
itate the description of the methodologies. As it will become apparent, a User
can also be the Consumer, or the Consumer and the Aggregator can be the same
entities.

4.3 Definitions of the concepts

Going back to the Anonymous veto protocol of Hao and Zieliński that was de-
scribed in the previous section, we assume for sake of simplicity that user U1

decides to veto. This means that the end product will not be equal to 1. What
will really happen is that we will have:

n∏
i=1

gciyi ≡ gc1y1
n∏
i=2

gxiyi ≡ gr1gx1y1

n∏
i=2

gxiyi ≡ gr1
n∏
i=1

gxiyi ≡ gr1

Thus Ui has not only managed to pass anonymously his veto, but his message
gr1 . In the same if way we assume that U2 had tried to send a his message
anonymously, along with the U1, then clearly the end result would be gr1gr2 ≡
gr1+r2 . From the definition of the Anonymous veto protocol, the values r1 and r2
cannot be recovered, nor the identity of the ones who submitted them. However,
the question now becomes whether the value r1 + r2 can be extracted.

The best way to answer the question is through an example. We assume that
g = 2 and p is k bits long. If the values r1 and r2 are small enough, so that gr1+r2

can be easily brute forced, then the sum can be easily extracted. Additionally,
if we set gri ≡ mi, then instead of the sum, the product of small values can be
extracted.

Generalizing the previous example, we define the anonymous aggregation as
follows.

Definition 1. An anonymous aggregation is a quadruple of algorithms AAn =
(KeyGen, Br, Pub, Aggr), for key generation, broadcast, publishing and ag-
gregation. More precisely:

– The key-generation algorithm (p, g,G) ← KeyGen outputs a prime num-
ber p, a group G of order p for which the DDH problem is intractable and
generator g of the group G∗.

– A randomized broadcasting algorithm gr ← Br(G).

– A one way function gk ← Pub({gr1 , ..., grn}, r,m).

– A deterministic algorithm f(m1, ...mn)← Aggr(s).

For which
n∏
i=1

Pub({gr1 , ..., grn}, ri,mi) = g
∑n

i=1mi

and g
∑n

i=1mi can be brute forced.

As it becomes apparent, in the case of anonymous aggregation, the Con-
sumer and the Aggregator are the same entity. The approach above is followed
in [19] to aggregate the measurements from smart meters. For several applica-
tions however we might need these two entities to be distinct or there might be
scalability or network infrastructure issues. As already discussed the aggrega-
tion is bounded up to a specific integer, therefore if the consumers are many,
so the sum is expected to be big, the options are two, either increase the size
of the key, or install more aggregators. The first solution will introduce a sig-
nificant performance overhead, while the latter will demand the installation of
more aggregators aka more trusted third parties. Moreover, the network infras-
tructure which might introduce other restrictions due to high mobility and lack
of trust. The aforementioned restrictions for instance are common in user-centric
networks, so one of the users might have to become the aggregator. Obviously
the anonymous aggregation approach will reveal the summation value to a user,
which cannot by any chance be considered as a trusted third party from a service
provider.

Therefore, we can extend the anonymous aggregation to allow the same func-
tionality, but without disclosing the result to the Aggregator. For this reason
one more layer can be added to an anonymous aggregation scheme to provide
re-encryption, so an anonymous aggregator is a proxy, between the Users and
the Consumer.

Modifying the original scheme, we have: Initially, users have agreed on the
triplet of values (a, g, p) and they have also agreed with the Consumer to use

ga
−1bmod p for re-encryption, where gbmod p is Consumer’s public key.
In the first round each user Ui creates a random value xi and broadcasts

gximod p. Each user may now calculate:

gyi =

i−1∏
j=1

gxj

n∏
j=i+1

g−xj

In the second round, each user Ui picks a random value ri and broadcasts

ci,1 ≡Mig
rimod p

ci,2 ≡ garimod p
where:

Mi ≡ gxiyi+mi

The anonymous aggregator calculates:

C1 ≡
∏

ci,1 ≡
∏

Mig
rimod p ≡ g

∑
ri
∏

Mi

C2 ≡
∏

ci,2 ≡
∏

garimod p ≡ ga
∑
ri

Thus the value
∏
Mi remains secret to the anonymous aggregator. The anony-

mous aggregator can re-encrypt (C1, C2) for the consumer, who finally, recovers:∏
Mimod p ≡ g

∑
xiyi+mi ≡ g

∑
mi

Obfuscated aggregation Proxy re-encryption

ci ,1=g
xi y i+mi g r imod p

∏mi⇒∑ mi

m1 m2 m3 mk

Users

Anonymous
Aggregator

Consumer

ci , 2=g
arimod p

Fig. 2. Anonymous aggregator

The scheme is illustrated in Figure 2.
Due to the intractability of the DDH problem, one can assume that g

∑
mi ≡

vi, so if the values of vi are small enough so that
∏
vi < p then it becomes

apparent that a product can be privately evaluated, or if properly they are
properly picked, their individual values can be recovered, without disclosing the
identity of the user who selected them. Such examples are going to be discussed
in the following section with experimental results. Depending on whether they
decide that they want anonymous aggregation or anonymous aggregator, the
decryption key can be shared with the aggregator.

4.4 Calculating bigger sums

Using Paillier’s cryptosystem we can calculate anonymously sums of bigger in-
tegers [28]. In this scenario, we assume that the users have created a key for
Paillier’s algorithm, sharing the decryption key with the Consumer. Addition-
ally, users agree on a value g that is going to be used for broadcasting their
messages.

In the first round, each user Ui creates a random value xi and broadcasts
gximod N2. Each user may now calculate:

gyi =

i−1∏
j=1

gxj

n∏
j=i+1

g−xjmod N2

In the second round, each user Ui picks a random value ri and broadcasts:

ci ≡ gxiyiγmirNi mod N
2

In order to recover σ =
∑n
i=1mi, the aggregator calculates the product of ci, so:

n∏
i=1

ci ≡
n∏
i=1

gxiyiγmirNi mod N
2 ≡

n∏
i=1

gxiyi

n∏
i=1

γmirNi mod N
2

≡ γ
∑n

i=1mi

n∏
i=1

rNi mod N
2 ≡ γσRNmod N2

4.5 Security Proof

In order to show that the proposed scheme provides the necessary privacy to the
participants, we have to show that the scheme provides privacy against collusions
of up to n− 2 users. It is clear that collusions of n− 1 users cannot be avoided,
e.g. in the case of sum, an adversary knows the end result and the values of
n− 1 users, so the value of the target user can be found trivially. We adopt the
standard simulation-based definition of security in the semi-honest model with
static adversaries where secure channels are assumed to exist between all pairs of
parties, and a secure broadcast channel is also assumed. We base our definition
below on Definition 2.1 in [1]. Here we consider only computational security, and
relax the more standard definition to deterministic functionalities with a single
output, since this paper is concerned with aggregation.

Let m ∈ ({0, 1}∗)n be a vector of the inputs from each party and let π
be a protocol. We define OUTPUTπ(m1, . . . ,mn) as the final aggregated result
computed with protocol π from the input vector m. Furthermore, we define the
view of a party Pi in the execution of protocol π with input vector m as

VIEWπ
i (x) = (mi, ri, µ

(1)
i , . . . , µ

(`)
i)

where mi is party P ′is input, ri is its random coins and µ
(1)
i , . . . , µ

(`)
i are the

` protocol messages it received during the protocol execution. Similarly, the
combined view of a set of I ⊆ {1, . . . ,m} parties is denoted by VIEWπ

I (x).

Definition 2 (t-privacy of n-party protocols for deterministic aggrega-
tion functionalities). Let f : ({0, 1}∗)n → ({0, 1}∗) be a deterministic n-ary
functionality and let π be a protocol. We say that π t-privately computes f if for
every m ∈ ({0, 1}∗)n where |m1| = . . . = |mn|,

OUTPUTπ(m1, . . . ,mn) = f(m1, . . . ,mn) (1)

and there exists a PPT algorithm S such that for every I ⊂ [n] with |I| ≤ t, and
every m ∈ ({0, 1})n where |m1| = . . . = |mn|, it holds that:

{VIEWπ
I (m)} ≈

C
{S(I,mI , fI(m))}. (2)

Theorem 1. Under the DDH assumption, our protocol is computationally t-
private for all t ≤ n.

Proof. Let h = n − t be the number of honest users. If h ≤ 1, it is trivial to
construct a simulator since S can fully learn m and then simulate all parties.
We can write h = 2w + z with w ≥ 0 and 0 ≤ z ≤ 1. Consider the following
series of Hybrids.
Hybrid 0: This is the same as the real distribution i.e. the LHS of Equation
2 with the exception that we “simulate” each honest party Pk using input mk;
therefore we have access to xk.

For 1 ≤ q ≤ w: Hybrid q involves two honest parties which we denote by Pi
and Pj . Without loss of generality, we assume that 1 ≤ i ≤ j ≤ n. Hybrid q:
The changes between Hybrid q and Hybrid q − 1 involve changing the protocol
messages of the honest parties Pi and Pj . Let mi and mj be the inputs of these
honest parties. Generate a uniformly random integer r ∈ {0, . . . , p − 1} and
replace all occurrences of gxixj by gr in the computation of the second messages.
Since we have access to all xk for each k ∈ {1, . . . k} \ {i, j}, it is straightforward
to replace the term gxkxi with gxkx

′
i (resp. for xj). Let vi = gx

′
iyi+mi and vj =

gx
′
jyj+mj be the protocol messages for parties Pi and Pj respectively.
Hybrid q − 1 and Hybrid q are computationally indistinguishable under the

DDH assumption. Hybrid q − 1 involves the DDH instance (g, gxi , gxj , gxixj)
and Hybrid q involves the DDH instance (g, gxi , gxj , gr) where xi, xj and r are
uniformly distributed in {0, . . . , p−1}. A non-negligible advantage distinguishing
between Hybrid 0 and Hybrid 1 implies a non-negligible advantage against DDH.
Hybrid q + 1: Without loss of generality, assume that parties P1, . . . , Ph are
the honest parties. In this Hybrid, the inputs m1, . . . ,mh are replaced by a
random partition of

∑h
k=1mk, namely the values s1, . . . , sh.

An adversary has a zero advantage distinguishing Hybrid q and Hybrid q+1.
To see this, suppose the adversary could distinguish the hybrids. Then it can
determine that some party’s input (say Pi) is not si (let Pi and Pj be a pair
of honest parties considered in one of the previous hybrids). However, this is
not possible since vi = gr

′
for some uniformly random r′, which provides no

information about the message (whether it is mi or si). Note that vj gives no
additional information since it can be derived from vi based on the information
known to the adversary.

Since Hybrid q + 1 no longer relies on the honest parties’ messages, and all
other information needed to construct the distribution can be derived from the
simulators’ inputs in Equation 2, it follows that there exists an algorithm S that
can simulate the real distribution. ut

5 Performance

The proposed schemes are very efficient. In the first round each user has to make
one modular exponentiation and in the second one n multiplications to find gxCyi

one modular exponentiation to calculate gmi and one more modular multipli-
cation. Hence the cost for each individual user is linear in the number of users.
Similarly, the aggregator has to perform n multiplications to recover the value
and probably a brute force attack on the size of

∑
mi. So the time complexity

of participation is linear in the number of users, while the time complexity of
disclosure is O(

√∑
mi) if Pollard’s lambda algorithm is used for recovery of the

sum. The complexity is dominated by one or other of these factors depending
on the system parameters.

5.1 Experimental results

In order to test the efficiency of the two primitives a Python implementation
has been made and the results that are reported were made on a system with
an Intel R© Core

TM

i7-2600 CPU at 3.40GHz processor, 16GB of RAM and run-
ning on 64 bit Ubuntu GNU/Linux kernel 3.8.0-31. The evaluated schemes that
are presented are based on groups Zp where p is 512 bits long. The reported
results refer to the mean values of 1000 experiments. The prime number gener-
ation takes on average 13.7 Mac’s. The reported results calculate all the needed
computations for all the users, without threading.

In our first experiment, we assume that we have 100 users, each of which
picks a random number from one to ten. On average, the result can be retrieved
in 88.11ms.

In the second experiment we calculate private products. We assume that
have 10 users, each of which selects a random 32 bit integer. The product can
be recovered in 7.7 ms .

In the last experiment we perform a decision problem with 100 participants,
so that each of them votes Yes/No. On average this decision can be made pri-
vately within 8.6ms. Detailed results of the experiments above are illustrated in
Table 5.1.

Average Min Max StDev

Private Sum 88.11 87.11 89.11 1.42

Decisions 86.04 84.69 87.38 1.90

Private product 7.7 7.46 7.93 0.33
Table 1. Experimental results, time in ms.

6 Applications

If we assume that the users are fair and follow the protocol without trying to
maliciously manipulate their messages, then many applications can be achieved
with the proposed schemes.

6.1 Collective Decision-making

A typical example is the case of collective decision-making, essentially e-voting
where no party has a vested interest in any outcome, on untrusted server. Typical

e-voting schemes depend on a trusted third party for performing the elections.
However, using anonymous aggregation, the election can be made on an un-
trusted server. The case of a Yes/No decision is quite straightforward and an
evaluation in terms of time requirements is provided in the previous section. Ad-
ditionally, users can select from κ options. To achieve this, if the modulo prime
is p and we have n users, we need prime[κ − 1]n < p, where prime[i] denotes
the ith prime and prime[0] = 1. In this case, we map each of the κ candidates
to one of the first κ values of prime[x]. To cast the vote for option j, user i on
the second round broadcasts:

prime[j]gxiyimod p

Thus the aggregator will retrieve easily number v =
∏
primekj , where

∑
kj = n.

Since prime[κ−1]n < p⇒ v < p. In order to recover the votes, we have to factor
v which is a smooth number, divided only by prime[x], x ∈ {0, ...κ − 1}, which
can be done efficiently.

Only non-contentious decisions can be made with this protocol, as in any
contentious election or decision, there is no way to prevent ballot-stuffing, and
some vote rigging may even be undetectable. It is not reasonable to assume non-
malicious behaviour for contentious issues or elections. There are many instances
where it is in the interests of all parties to a decision to determine the honest
answer to a question. Examples include when the appropriate action for a system
to take is based on sensed data, which may contain errors, so it is important
to determine whether a state being reported by some nodes in a wireless sensor
network is the most prevalent state.

6.2 Anonymous Statistics

It is frequently of value to gather aggregate information from a population who
do not wish to disclose the relevant information regarding themselves. It may be
in everyone’s interests to make the information available to all parties, including
themselves, but the desire to avoid revealing sensitive information may override
the benefit derived from having the accurate information available to everyone.
Examples may include determining the prevalence of threats, those affected by
which would not like to publicise their vulnerability. This could include phys-
ical preparedness of homes, business premises or military installations against
invasion or intrusion, or the patch state of critical nodes following discovery of a
vulnerability in their software. Knowledge of how many systems are potentially
vulnerable is highly valuable to the organisation in planning contingency mea-
sures or allocating resources to resolution, however the possibility that a node
may have been corrupted and leaking information makes it unacceptable to have
nodes directly provide this kind of information directly, as it could be used to
direct attacks exploiting the vulnerability.

6.3 Privacy Preserving Collaborative Filtering

Due to the wide growth of e-commerce, automatic recommender systems and
more specially Collaborative Filtering have become standard components in

many services. In order to enable more private solutions, Privacy Preserving
Collaborative Filtering has been introduced [9, 8]. The proposed protocol can
allow users to send their preferences preserving their privacy, without the use of
a trusted third party.

6.4 Urban-scale sensor aggregation

As already discussed, current state of the art do not allow large-scale aggre-
gation. One solution is to have a large key, but this introduces a significant
performance cost, mainly on the user side. The other solution is to install more
aggregators. While this will keep the size of the key short enough, it will demand
the introduction of many trusted third parties (the local aggregators). However,
in smart cities the environment is very heterogeneous[7, 20, 25, 26] this translates
to many installations from many parties. The proposed solution though man-
ages to minimize this cost by hiding the local summaries from the aggregators,
therefore many services can use them without needing to install separate ones.

7 Conclusions

In this work we introduced two cryptographic primitives, namely the Anony-
mous Aggregation and Anonymous Aggregators, which can be considered an
extension of secure multiparty computations. Contrary to the latter, the two in-
troduced primitives do not offer security from malicious data manipulation, but
are focused on honest but curious users. In this context Anonymous Aggregation
and Anonymous Aggregators offer an efficient alternative to secure multiparty
computations that can be easily deployed and offer private computations to a
wide range of applications. Compaired to other protocols, the proposed ones
allow scalability without the use of trusted third parties or computational over-
head by using longer keys. On the contrary, the role of the aggregator can be
delegated to one of the users or “local” aggregators can be introduced without
exposing the users’ feedback.

References

1. Gilad Asharov and Yehuda Lindell. A full proof of the bgw protocol for perfectly-
secure multiparty computation. Electronic Colloquium on Computational Com-
plexity (ECCC), 18:36, 2011.

2. Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for secure
multi-party computation. In Proceedings of the 15th ACM conference on Computer
and communications security, pages 257–266. ACM, 2008.

3. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 1–10. ACM,
1988.

4. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic
proxy cryptography. In Advances in CryptologyEUROCRYPT’98, pages 127–144.
Springer, 1998.

5. Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, et al. Multiparty computation goes live. IACR Cryptology
ePrint Archive, 2008:68, 2008.

6. Dan Boneh. The decision diffie-hellman problem. In Algorithmic number theory,
pages 48–63. Springer, 1998.

7. Francesco Calabrese, Massimo Colonna, Piero Lovisolo, Dario Parata, and Carlo
Ratti. Real-time urban monitoring using cell phones: A case study in rome. Intel-
ligent Transportation Systems, IEEE Transactions on, 12(1):141–151, 2011.

8. Fran Casino, Josep Domingo-Ferrer, Constantinos Patsakis, Domenec Puig, and
Agusti Solanas. Privacy preserving collaborative filtering with k-anonymity
through microaggregation. In e-Business Engineering (ICEBE), 2013 IEEE 10th
International Conference on, pages 490–497. IEEE, 2013.

9. Fran Casino, Constantinos Patsakis, Domenec Puig, and Agusti Solanas. On pri-
vacy preserving collaborative filtering: Current trends, open problems, and new
issues. In e-Business Engineering (ICEBE), 2013 IEEE 10th International Con-
ference on, pages 244–249. IEEE, 2013.

10. David Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65–75, 1988.

11. David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally
secure protocols. In Proceedings of the twentieth annual ACM symposium on The-
ory of computing, pages 11–19. ACM, 1988.

12. Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and Michael Y
Zhu. Tools for privacy preserving distributed data mining. ACM SIGKDD Explo-
rations Newsletter, 4(2):28–34, 2002.

13. I. Damgard, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. Cryptology ePrint Archive, Report 2011/535,
2011. http://eprint.iacr.org/.

14. Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. Practical covertly secure mpc for dishonest majority or: Breaking
the spdz limits. Cryptology ePrint Archive, Report 2012/642, 2012. http://

eprint.iacr.org/.
15. Taher ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. Information Theory, IEEE Transactions on, 31(4):469–472,
1985.

16. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 218–229. ACM, 1987.

17. Philippe Golle and Ari Juels. Dining cryptographers revisited. In Advances in
Cryptology-Eurocrypt 2004, pages 456–473. Springer, 2004.

18. Feng Hao and Piotr Zieliński. A 2-round anonymous veto protocol. In Security
Protocols, pages 202–211. Springer, 2009.

19. Klaus Kursawe, George Danezis, and Markulf Kohlweiss. Privacy-friendly aggre-
gation for the smart-grid. In Privacy Enhancing Technologies, pages 175–191.
Springer, 2011.

20. Nicholas D Lane, Shane B Eisenman, Mirco Musolesi, Emiliano Miluzzo, and An-
drew T Campbell. Urban sensing systems: opportunistic or participatory? In

Proceedings of the 9th workshop on Mobile computing systems and applications,
pages 11–16. ACM, 2008.

21. Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert
adversaries. IACR Cryptology ePrint Archive, 2013:79, 2013.

22. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Advances in Cryptology-
EUROCRYPT 2007, pages 52–78. Springer, 2007.

23. Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-
choose oblivious transfer. Journal of cryptology, 25(4):680–722, 2012.

24. Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay-secure two-
party computation system. In USENIX Security Symposium, pages 287–302, 2004.

25. A. Manzoor, C. Patsakis, M. Bouroche, S. Clarke, V. Cahill, J. McCarthy, and
G. Mullarkey. Data sensing and dissemination framework for smart cities. Pro-
ceedings of MobilWare 2013, November 11-12, Bologna, Italy., 2013.

26. A. Manzoor, C. Patsakis, A Morris, J. McCarthy, G. Mullarkey, H. Pham,
S. Clarke, V. Cahill, and M. Bouroche. CityWatch: Exploiting Sensing Data to
Manage Cities Better. Transactions on Emerging Telecommunication Technologies,
2014.

27. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In
Advances in Cryptology–CRYPTO 2012, pages 681–700. Springer, 2012.

28. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in cryptologyEUROCRYPT99, pages 223–238. Springer, 1999.

29. Andrew Chi-Chih Yao. Protocols for secure computations. In FOCS, volume 82,
pages 160–164, 1982.

30. Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations of
Computer Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

