
Private aggregation on untrusted servers with
customizable thresholds

Constantinos Patsakis, Michael Clear, Paul Laird

Distributed Systems Group, School of Computer Science and Statistics, Trinity
College, Dublin, Ireland

email: {patsakik,clearm,lairdp}@scss.tcd.ie

Abstract. While multiparty computations are becoming more and more
efficient, their performance has not yet reached the level needed to be
widely deployed for many applications. Nevertheless, the heterogeneous
environment of modern computing needs this functionality in order to
provide users their right to privacy. For a wide range of applications there
is no need for complex computations; operations such as multiplication
or addition might be sufficient. In this work we introduce a new mul-
tiparty computation protocol (MPC) for multi-round summation whose
security is based on DDH in the semihonest model. We also introduce the
concept of an anonymous aggregation system that combines MPC with
“blinded” aggregation so that the aggregate values may remain hidden
from the aggregator, and show how to achieve this with our MPC pro-
tocol. We give results on the performance of our solution and discuss
suitable applications.

Keywords: cryptographic protocols, privacy, anonymity, multiparty com-
putation, aggregation

1 Introduction

The computation environment that a common user is using daily is becoming
more and more heterogeneous due to the wide range of interconnected devices
that directly or indirectly are being used, e.g. through cloud computing. There-
fore, the user environment should be considered hostile in most of the cases. In
many scenarios, a user might have to calculate a function in collaboration with
other entities, real users or virtual, which cannot be trusted. Hence user input
to the function should be hidden in such way that other users cannot disclose
his input, while enabling the output of the function to be calculated correctly
and efficiently. More formally, we have n entities that want to calculate function
f(x1, x2, ...xn) without disclosing xi, i ∈ {1, 2, ..., n} to any other entity. This is
a special case of secure multiparty computation (MPC). In this work, we lower
the security barrier of more standard MPC to the setting where we only have
honest-but-curious adversaries ; that is, the entities involved are not considered
malicious, so they can be expected to strictly follow the protocol, but they might
collude in order to expose a user’s input.

In this work, we introduce the notion of an anonymous aggregation system.
In such a system, a set of users wish to allow a specific entity, which we call a
consumer, access to certain aggregates (say, sums or products) of their inputs,
while keeping their inputs private from each other and the consumer. Further-
more, the users need to communicate with an intermediate that acts as a proxy
between the users and the consumer. To reduce bandwidth, it is desirable for
this intermediate to perform aggregation. However, such an aggregator may not
be trusted to learn the aggregate values, and therefore it is necessary to allow
“blinded” aggregation.

A motivating factor for this architecture stems from a limitation with current
solutions, namely they do not scale efficiently without the use of trusted third
parties. This means that if someone wants to provide anonymous summation
with many users, the resultant sum is significantly large. There are two solu-
tions to this. Either he has to increase the key size, imposing a computational
overhead, mainly to the users, or alternatively more aggregators have to be de-
ployed. The latter means that due to the current nature of aggregators, sub-sums
are disclosed to them. Depending on the nature of the aggregated data, this as-
sumption might not be tolerated. To protect users from localized attacks and
blind the result of the aggregation from the aggregator, we separate the entities
of aggregator and consumer.

1.1 Main contributions

We introduce the notion of an anonymous aggregation system, and provide a con-
crete construction. The main technical contribution of this work is an extension
of the MPC protocol from [21]. Our extension offers a trade-off between collusion
tolerance and the number of rounds of aggregation that can be performed from
the same public information. We establish precise bounds and prove the proto-
col secure under the DDH assumption. In contrast, the multi-round protocol in
[21] relies on bilinear pairings. In addition, we show how our protocol can be
adapted to allow an aggregator to perform aggregation “blindly”, thus meeting
our requirements of an anonymous aggregation system.

1.2 Organization of this work

The rest of this work is organized as follows. In the next section we provide
an overview of the related work, including some of the building blocks for our
constructions. Section 3 formalizes an anonymous aggregation system and in-
troduces the main elements of our construction. Section 4 describes our MPC
protocol in detail and gives a proof of security. Section 5 provides some experi-
mental results, while Section 6 discusses possible applications. Finally, the article
concludes with some remarks and ideas for future work.

2 Related work

The concept of secure multiparty computation was introduced by Yao in [32]
with the introduction of the famous millionaires problem. In this problem, two
millionaires want to compare their assets in order to verify which one is the
richest, but without revealing the actual value of their assets. Some important
foundational advances were made soon after such as [33, 17, 11, 3], however it
took almost two decades for real-world implementations to became practical
[26, 2, 5].

Secure multiparty computation can be broadly divided into schemes which
allow arbitrary computations to be performed without leaking information, and
specialised protocols for the evaluation of one particular function, such as sum-
mation, while keeping individual inputs private.

General-purpose schemes include approaches based on Garbled Circuits (ef-
ficient implementations include [24, 25, 23]), Nielsen’s protocol using Oblivious
Transfer [29] and Oblivious RAM [16, 19]. Other protocols use arithmetic cir-
cuits such as those based on the BGW protocol e.g: VIFF [14] and SPDZ which
employs fully homomorphic encryption [15].

2.1 Specialised arithmetic multi-party computations

Schemes for specific arithmetic operations trade generality for greater efficiency
in calculating their particular operation. Many also allow further trade-offs, such
as collusion-resistance against efficiency.

Clifton et al. in [12] proposed a very efficient and elegant scheme for summing
the shares of n entities anonymously. Let’s assume that n users want to compute
the sum of their shares si, without disclosing the value of their shares. Starting
from user 1, each user adds a random value ri to the current sum and passes
that to the next user. The last user add his value and returns the resulting
value to the first one. The first user now subtracts a value r′1 from the value
he is given, so that r1 − r′1 = s1. The next users do the same, so at the end,
when user n subtracts r′n the resulting value is the sum. The scheme provides
an anonymous sum under the assumption that users do not collude. It is clear
that if the previous and the next user of user k collude, then the share sk can
be trivially exposed, however, replacing the ring with an k-pass permuted path
without duplicate neighbours increases the number of corrupt parties required
to reveal an input to 2k. In this manner the communicational overhead is traded
off against the collusion-tolerance of the scheme.

A significant disadvantage of the share-based anonymous sum protocol is that
to achieve collusion tolerance of n − 2, a total of nbn2 c messages must be sent
serially, with each node sending and receiving bn2 c messages. This is not practical
where latency is an issue or where large numbers of nodes are involved. Proto-
cols involving self-cancelling blinding variables alleviate this problem, allowing
a constant number of communication rounds for an arbitrary number of partic-
ipants. Yang et al. use two rounds of communication, with the first establishing
common key material [31]. Shi et al. allow aggregation to be performed with a

single round of comunication [30], however the protocol relies upon the existence
of a secret share of zero, which must be supplied in advance by a trusted dealer
or created using another protocol.

2.2 One bit multi-party computations

A famous problem in cryptography is the dining cryptographers problem, in-
troduced by Chaum in [10]. According to the statement of the problem, three
cryptographers dine and the cryptographers are notified by the waiter that their
bill has been payed. The payment has been made by one of the cryptographers
or by the NSA. The problem is to find anonymously whether the payment has
been made by one of them, without disclosing his identity, or by the NSA. While
the provided solution manages to anonymously calculate one bit of information
(0 if it was paid by the NSA or 1 if it was paid by a cryptographer), one of the
main limitations of the proposed protocol, usually named as DC-net is that if
two cryptographers have paid for the dinner, then they cancel each other out, so
the end result is wrong. The protocol has been revised in [18] to allow detection
and identification of “cryptographers” that try to cheat.

Trying to extend this result so that one bit of information can be securely
calculated without cancellations, Hao and Zieliński introduced another protocol,
AV-net, in [20] which is discussed in the next section.

2.3 The Anonymous veto protocol of Hao and Zieliński

Hao and Zieliński introduced a very elegant protocol which manages to patch
several vulnerabilities of the dining cryptographers network [20]. The following
scenario illustrates the concept underlying their protocol. Due to extreme cir-
cumstances, n generals from several countries have to decide whether or not they
will invade a certain country. The invasion can only be decided unanimously; thus
if a general decides to veto, the invasion is halted. Obviously the pressure is very
high and in order to avoid pressure to individuals that decide to veto, the voting
has to be made anonymously. Additionally, each party has to be able to compute
and verify the result, even if some entities decide to manipulate the result.

The protocol that provides a solution to this problem has two rounds, where
the involved parties broadcast their results. Initially, all users decide on a finite
cyclic group of prime order q in which the Decision Diffie-Hellman (DDH) prob-
lem is known to be intractable, and choose one of its generators g [6]. Every user
Ui selects a random secret value xi ∈ Zq and in the first round every user broad-
casts gxi as well as a proof of knowledge of xi. Knowing these values, everyone
can calculate the following:

gyi =

i−1∏
j=1

gxj
n∏

j=i+1

g−xj

Note that due to the intractability of the DDH problem, the actual values of yi
cannot be evaluated by any party. In the second round, every user broadcasts a

value gciyi along with a knowledge proof for ci , where:

gciyi =

{
griyi if Ui vetoes.

gxiyi if Ui does not veto.

where ri ∈ Zq is random and xi 6= ri.
If no one vetoes then result would be:

∏n
i=1 g

ciyi = 1 since:
∑n
i=1 xiyi = 0.

Otherwise, in case of veto:
∏n
i=1 g

ciyi 6= 1. In either case, the result can be
computed by everyone and cannot be tampered by anyone. Finally, the identity
of those who have vetoed cannot be deduced.

Kursawe et al. extended the Anonymous veto protocol enabling the aggre-
gation of smart meter values [21]. The concept that they used is quite easy to
follow. Since xiyi cancel each other out when summed, the authors saw that
they could embed a value that cannot be traced, due to the intractability of the
DDH problem. Therefore, the exponent of each user becomes xiyi + mi. This
way, if one multiplies the published values, he will compute:

n∏
i=1

gxiyi+mi ≡
n∏
i=1

gxiyigmi ≡
n∏
i=1

g
∑
xiyi + g

∑
mi ≡ g

∑
mi

This means that if the value
∑
mi is quite small, then it could be easily

brute forced, recovering the true value of the sum, without though disclosing the
values mi that each user submitted.

3 High-Level Architecture for Anonymous Aggregation

In what follows, we will first introduce the main actors and desiderata. After-
wards, we will gradually start extending the current protocols, discussing the
features that each abstraction introduces.

3.1 Main actors and desiderata

In our model we assume the following entities:

The Users: We have a set of n users U1, U2, ..., Un which have already ex-
changed their public keys and want to evaluate a function f(x1, x2, ..., xn),
so that each user Ui provides input xi and his input is not disclosed to any
other user. Moreover, we assume that we do not have malicious users, yet
they are honest but curious. Hence, each user follows the protocol, however,
he may try to find more information about others’ users input. During the
protocol initialization, the users will have to send their privacy preferences,
the number of people that have to collude in order to recover their submitted
value.

The Consumer: It is the entity that wants to evaluate function f .

The Aggregator: The aggregator can collect all the data from Users in order
to help in the evaluation of the function and then forward it to the Consumer.
The aggregator has a registry which can be read and written only by the
Users and read by the Consumer. We assume that the Aggregator does not
behave maliciously and that he is honest but curious.

While the entities are considered distinct, depending on the application scenario
some of them can be the same real entity, for instance, the Consumer and the
Aggregator can be the same real entity. Next we present a formal definition.

3.2 Formal Definition

An anonymous aggregation scheme consists of a secure multi-party computation
(MPC) protocol for a deterministic functionality f :Mn →M over some mes-
sage space M together with a means to “blind” the result from an aggregator
(and indeed the participants) such that only a designated party can recover the
result. We formalize these requirements in the following definition.

Definition 1. An anonymous aggregation system for n parties with collusion
tolerance t and supporting ζ(n, t) aggregation rounds of a functionality f :Mn →
M is a tuple of algorithms AAn = (ParamGen,KeyGen, Init,Pub,Aggr,Recover)
for public parameter generation, key generation, initialization of a protocol “ses-
sion”, publication of a value, aggregation (potentially blind aggregation by an
aggregator) and a recovery of the result (potentially by a designated consumer).
More precisely:

– ParamGen takes as input a security parameter, and outputs public parame-
ters PP, which all entities receive.

– KeyGen takes as input public parameters PP and outputs a public and private
key.

– Init takes as input public parameters PP, a number of parties n and a list of
n public keys pk1, . . . , pkn, and the public key of a consumer pkc. It outputs
information π describing a “session” or execution of the protocol.

– Pub takes as input protocol “session” π, a party number i ∈ {1, . . . , n}, a
round number ρ and an input value m ∈ M. It outputs a protocol message
Pρ,i.

– Aggr takes as input public parameters PP and a list of n protocol messages
Pρ,1, . . . , Pρ,n. It outputs an element P ′.

– Recover takes as input public parameters PP, an element P ′, and a private
key skc (private key of the consumer). It outputs a result m′ ∈M.

Definition 1 encompasses all of the components of an anonymous aggregation
system (AAS). Since it is costly for parties to generate, broadcast, and verify
keys, an AAS facilitates running multiple “rounds” with the same public keys.
How many rounds can be executed with the same public keys is determined as a
function ζ of the number of users n and the desired collusion tolerance t. Thus,
we write the maximum number of rounds as ζ(n, t). For security reasons, a party
will execute at most ζ(n, t) rounds.

In order to use the system, it is first necessary to generate the public pa-
rameters which are made known to all entities. Let PP ← ParamGen(κ) for
some security parameter κ. In a given “session” or execution of the proto-
col, every party will have to be aware of each other’s public key. Such pub-
lic keys are freshly generated for each protocol session. Therefore, all parties
Ui will run (pki, ski) ← KeyGen(PP) to generate a key pair, and then broad-
cast pki. Furthermore, a consumer may also generate a key pair i.e. it may
run (pkc, skc) ← KeyGen(PP). To begin a protocol session, each party runs
π ← Init(PP, n, pk1, . . . , pkn, pkc). Note that the consumer’s public key may also
be pki for some 1 ≤ i ≤ n, or alternatively, it may be a “null” public key such
that everyone ca n recover the results. For a given round ρ, party Ui whose input
value in that round is mρ,i ∈ M, computes Pρ,i ← Pub(π, i, ρ,mρ,i) and broad-
casts it. The aggregator simply needs to run P ′ ← Aggr(PP, Pρ,1, . . . , Pρ,n) and
hand P ′ρ to the consumer, who can then compute m′ρ ← Recover(PP, P ′ρ, skc). It
should hold that m′ρ = f(mρ,1, . . . ,mρ,n).

In this paper, we deal with operations such as summation and multiplication
and therefore, the result m′ρ leaks nothing about the ordering of mρ,1, . . . ,mρ,n.
Hence, the system allows anonymity. If we abstract away the notion of blind
aggregation (ignore the consumer’s keys pkc and skc), we are left with an MPC
protocol. Assuming all parties have pre-agreed a set of parameters generated
with ParamGen, the first phase of an MPC protocol can be seen as the generation
and broadcasting of public keys (generated with KeyGen) followed by each party
running Init and broadcasting the protocol messages obtained from Pub. In the
final phase, each party can simply run Aggr followed by Recover to produce the
MPC protocol’s output. In the next section, we give an introductory overview of
the particular MPC protocol at the heart of the anonymous aggregation system
proposed in th is paper. We explore this MPC protocol in more detail in Section
4 where we prove its security.

3.3 Overview of our MPC protocol

Recall the protocol of kursawe et al. [21] described in Section 2.3, which allows
n parties to privately compute the sum of their inputs. To extend this protocol,
the first step is to generalize the yi coefficients. Their main property is that
they allow

∑
xiyi ≡ 0, nevertheless, there are many other choices fulfilling this

property. One could map the yis used in the protocols of Hao and Zieliński and
Kursawe et al. to the following matrix A:

A =

0 −1 −1 −1 −1
1 0 −1 −1 −1

1 1 0 · · ·
...

...
...

...
. . .

...
1 1 1 · · · 0

where the row i represents the coefficients that of xjs that have to be added in
order to be multiplied with xi

1. The matrix A is a skew-symmetric matrix, that
is −A = AT , but clearly any such matrix can be used instead of the proposed
one. So far this does not give us any advantages over the standard protocol of
Kursawe et al.

Enabling reuse of published information As previously discussed, users
could agree upon a skew-symmetric matrix to generate the yi coefficients. How-
ever, if they would like to compute one more summary, then they could not use
the previous values. The reason is that an adversary could deduce important
information from that. For instance, if they had originally published gxiyi+mi1

and then gxiyi+mi2 , given that m1 and m2 are small, the value m1 −m2 could
easily be calculated. It becomes apparent that a new matrix should be generated
to protect users’ privacy.

It becomes apparent that users could co-operate in the generation of the skew-
symmetric matrix, defining their collusion thresholds. Definitely, by lowering the
threshold users are making some compromises in their privacy. Nevertheless, this
is speeding up the calculations and decreasing the communication overhead. The
compromise, depending on the nature of the network, the trust of the users and
the importance of protected information can imply a good balance in the user’s
benefit.

Thus, we argue that in order to minimize the bandwidth overhead and com-
munication between users, instead of agreeing on a matrix A, users on the ini-
tialization of the scheme agree on a random seed that is used to generate a series
of matrices Aρ. However, we must allow each Aρ’s independent entries to be
uniformly random over Zp instead of over {−1, 1} in order to avoid a straight-
forward linear algebra attack. Instead of using the public keys of the parties (i.e.
the gxi) for a single aggregation, we observe that we can re-use them for multiple
aggregation “rounds” provided we use a different skew-symmetric matrix A in
each round, where the independent entries of each A is uniformly random over
Zp. We use a hash function to derive the matrix A for each round. in each round.

Nevertheless, since the reuse of gxi in many rounds, might enable collusion
attacks, the amount of matrices that can be generated is bounded by n−t

2 , where
t is the minimum threshold. More details on the latter bound are given in the
Section 4. The advantage of allowing users to reuse their published values is
that it decreases the computational and communication cost. Rather than going
through the first step of the algorithm again, generating, publishing gxi and
downloading the output of the other users, users recompute locally the new
instance of matrix A and compute the new values of gyi . It turns out that
Kursawe et al. propose a variant of their protocol that similarly supports multiple
rounds, but they rely on bilinear pairings to achieve this. Our protocol instead
relies only on DDH, but the number of rounds we can support is at most n−2

2 .
An extension, beyond the scope of this paper, sees the matrix take on an

additional role, in which users can use it to indicate which entities, or at least

1 It is easy to see that A× [x1, x2, · · · , xn] returns the coefficients that each xi has to
be multiplied to generate the according yi.

how many, must collude in order to recover their input. This information is then
used to insert zero or non-zero values in the appropriate cells of the matrix,
reducing the computational load per user, at the cost of a diminished number
of rounds. To understand how this achieved, it has to be noted that the more
zeros one introduces to his rows, the fewer published values he has to multiply
in order to calculate his base value for each round of the protocol.

3.4 Blind Aggregation

Recall that in Section 3.2, we decomposed an anonymous aggregation system
into two parts: MPC and blind aggregation. In this section, we describe how our
MPC protocol can be combined with a means to provide the latter. Given the
public key gc of a consumer C, we show how each party can “blind” his protocol
messages using gc. Moreover, an aggregator is still able to compress the blinded
protocol messages of all parties into a blinded element, from which only C can
recover the result using her private key c.

In our definition of an anonymous aggregation system in Section 3.2, the Init
algorithm accepted the public key of a consumer as input. For our system, let
this be gc where c is the consumer’s private key. In each round, a user Ui who
runs our MPC protocol produces a protocol message Mi. For more details on the
structure of Mi, see the discussion in the next section. For our purposes here it
is sufficient to say that aggregation is performed by computing

∏n
i=1Mi. In each

aggregation round the users do not just send Mi as they would in the “bare”
MPC protocol, but:

ci,1 = Mig
ri

ci,2 = gcri

where ri is uniformly random in Zp. The aggregator will therefore calculate:

C1 =
∏

ci,1 =
∏

Mig
ri = g

∑
ri
∏

Mi

C2 =
∏

ci,2 =
∏

gari = gc
∑
ri

Thus the value
∏
Mi remains secret to the aggregator. The consumer can then

recover
∏
Mi by computing ∏

Mi = C1 · C−c
−1

2

where c−1 denotes the inverse of c in Z∗p. Therefore, the consumer has the same
view as a party in standard MPC.

4 Multiparty Computation Protocol for Aggregation

In this section, we first introduce some notation and then provide a formal
description of our multiparty computation protocol (MPC) for secure summation
in the semihonest model. Note that this section focuses exclusively on our MPC
protocol.

4.1 Notation

Let k be an integer. We denote the contiguous set of integers {1, . . . , k} by [k].
Let X and Y be distributions. The notation X ≈

C
Y denotes the fact that both

distributions are computationally indistinguishable to any probabilistic polyno-
mial time (PPT) algorithm.

4.2 Protocol Description

Our protocol builds on the work in [21] to add support for multiple “rounds”
of aggregation using the same public keys generated by all parties in the initial
stage. Moreover, instead of relying on additional assumptions to achieve this
(as is the case in [21] where bilinear groups are employed), our construction
provides security in the semihonest model for max(1, bn−t2 c) rounds where t is
the collusion tolerance. This is optimal for our techniques.

Let A ∈ Zk×kp be a skew-symmetric matrix with uniformly random entries
in Zp. Each row of A represents a quadratic polynomial over Zp in k unknowns.
There are k(k − 1)/2 possible monomials. Thus, A can be transformed into a

coefficient matrix B ∈ Zk×k(k−1)/2p . We write this as B = coeff(A). It follows
that rank(B) = k− 1. Therefore, no linear combination of k− 1 equations yields
0.

Let H : {0, 1}∗ → Zp be a hash function. We define a function χ : Zp × Z→
Zn×np that takes a random seed and a round number, and outputs a pseudo-
random skew-symmetric matrix over Zp. Let s ∈ {0, 1}∗ be a seed. The skew-
symmetric matrix A(i) for round i is generated as follows:

– set A
(i)
j,k ← H(s ‖ i ‖ j ‖ k).

– set A
(i)
k,j ← −A

(i)
j,k

for every j, k satisfying 1 ≤ j < k ≤ n. The remaining entries of A(i) are set to
zero. By construction, A(i) is skew-symmetric. Furthermore, rank(coeff(A(i))) =
n− 1.

Suppose there are n parties and the desired collusion tolerance is T ≤ n− 2.

Then the protocol can accommodate ` ≤ bn−Tc2 independent aggregations. We
call each aggregation a “round”. We use the term stage to describe what is
commonly referred to as a round in the multiparty computation literature. Let
β > 0 denote the size of the message space i.e. every party chooses her input for
a given round from the set {0, . . . , β}. Therefore, the sums are bounded from
above by nβ.

A public seed s is deterministically derived from the users’ public keys gen-
erated in the first stage of the protocol. Alternatively, s may be pre-agreed or
collaboratively generated. In the security proof, it is assumed to be unique for a
given protocol execution.

The “public parameters” used in the protocol consist of a description of a
cyclic group G of order p together with a generator g of G. It is assumed that

the Decisional Diffie-Hellman (DDH) problem is intractable in G. These public
parameters PP = (G, g, p) are known to all parties Pi.

The protocol proceeds in the following stages:

1. Setup: Party Pi generates a secret key xi ∈ Zp and computes her public
key ui = gxi ∈ G. She broadcasts ui.

2. For every r ∈ {1, . . . , `}:
Round r:
– Party Pi chooses her input m

(r)
i ∈ {0, . . . , β}.

– Compute A(r) ← χ(s, i).

– Compute w ←
∏n
j∈1 u

A
(r)
i,j

j ∈ G.

– Compute v
(r)
i ← wxi · gm

(r)
i ∈ G.

– Broadcast v
(r)
i .

3. Output: The protocol produces an output of ` elements, namely the sum
of the inputs in each round. To compute the sum σr for round r:

– Compute z ←
∏n
j=1 v

(r)
j .

– Use Pollard’s Lambda algorithm to compute the discrete log σr ∈ {0, . . . , nβ}
of z with respect to g in G. The time complexity of Pollard’s lambda
algorithm is

√
nβ.

– The final output is (σ1, . . . , σ`).

It can be easily observed that for any 1 ≤ r ≤ `,
n∏
j=1

v
(r)
j = g

∑n
j=1m

(r)
j (1)

4.3 Security

In order to show that the proposed protocol provides the necessary privacy to
the participants, we have to show that it provides privacy against collusions
of up to t users when executed with at most max(1, bn−t2 c) rounds. Intuitively,
suppose n−2 users collude, then it should not be possible for the colluding users
to learn anything about the 2 honest users’ inputs beyond their sum. If n − 1
users collude, then we expect them to learn the honest party’s input. So for the
case of n − 1 ≤ t ≤ n, there is no privacy requirement, and thus these trivial
cases are easily handled in meeting our security definition below.

We adopt the standard simulation-based definition of security in the semi-
honest model with static adversaries where secure channels are assumed to exist
between all pairs of parties along with a secure broadcast channel. We base our
definition below on Definition 2.1 in [1]. Here we consider only computational
security, and relax the more standard definition to deterministic functionalities
with a single output, since this paper is concerned with aggregation. Note that
this definition is general enough to accommodate multi-round aggregation as
provided by our protocol.

Let m ∈ ({0, 1}∗)n be a vector of the inputs from each party and let π
be a protocol. We define OUTPUTπ(m1, . . . ,mn) as the final aggregated result

computed with protocol π from the input vector m. Furthermore, we define the
view of a party Pi in the execution of protocol π with input vector m as

VIEWπ
i (x) = (mi, ri, µ

(1)
i , . . . , µ

(`)
i)

where mi is party P ′is input, ri is its random coins and µ
(1)
i , . . . , µ

(`)
i are the

` protocol messages it received during the protocol execution. Similarly, the
combined view of a set of I ⊆ {1, . . . , n} parties is denoted by VIEWπ

I (x).

Definition 2 (t-privacy of n-party protocols for deterministic aggrega-
tion functionalities). Let f : ({0, 1}∗)n → ({0, 1}∗) be a deterministic n-ary
functionality and let π be a protocol. We say that π t-privately computes f if for
every m ∈ ({0, 1}∗)n where |m1| = . . . = |mn|,

OUTPUTπ(m1, . . . ,mn) = f(m1, . . . ,mn) (2)

and there exists a PPT algorithm S such that for every I ⊂ [n] with |I| ≤ t, and
every m ∈ ({0, 1})n where |m1| = . . . = |mn|, it holds that:

{VIEWπ
I (m)} ≈

C
{S(I,mI , fI(m))}. (3)

The correctness condition given in 2 above holds for our protocol from Equation
1.

Lemma 1. Let m = bk/2c. Let A(1), . . . , A(m) be skew-symmetric k × k ma-
trices with uniformly random entries in Zp. Let B(1) = coeff(A(1))[1, . . . , k −
1], . . . , B(m) = coeff(A(m))[1, . . . , k−1] where the notation [1, . . . , k−1] signifies

the first k−1 rows of the matrix. Let M = (B(1); . . . ;B(m)) ∈ Zm(k−1)×m(k−1)
p be

the joint matrix consisting of k−1 rows from each of the m coefficient matrices.

Then Pr[rank(M) 6= m(k − 1)] ≤ poly(k)
p .

Proof. We can rearrange the rows of M such that the t-th block M (t) consists
of the t-th rows of the coefficient matrices. In each such row, there are only
k − 1 nonzero entries. Eliminating the zero columns results in an m × (k − 1)
matrix M (t)′ with independent and uniformly random elements from Zp. Since
m < k − 1, the probability that M (t)′ is linearly independent is at least the
probability that its left m×m submatrix is linearly independent.It is mentioned
in [4] (the result is due to Cooper [13]) that the probability that an m × m
random matrix over Zp is linearly independent is at least

m∏
i=1

(1− 1

pi
).

Now the probability that this does not hold is bounded by m
p . Observe that if

M (t) is linearly independent for all 1 ≤ k−1 then so is M , since each submatrix
M (t) contains a unique column that is zero in all other submatrices, provided
that a submatrices’s unique column is nonzero. The probability of the latter not

holding is k−1
pm . Therefore, an upper bound on the probability of M not being

linearly independent is

k − 1

pm
+
m(k − 1)

p
=

poly(k)

p
.

ut
.

Theorem 1. Under the DDH assumption, our multi-round protocol is compu-
tationally t-private for all t ≤ n with at most max(1, b(n− t)/2c) rounds in the
random oracle model.

Proof. Let ` ≤ max(1, b(n − t)/2c) be the number of rounds. Let h = n − t be
the number of honest users. If h ≤ 1, it is trivial to construct a simulator S since
S can fully learn m and then simulate all parties. Therefore, we assume that
h ≥ 2. Let w = h(h− 1)/2. Consider the following series of Hybrids.
Hybrid 0: This is the same as the real distribution i.e. the LHS of Equation 3

with the exception that we “simulate” each honest party Pk using input m
(ρ)
k ;

therefore we have access to xk.
For 1 ≤ q ≤ w: Hybrid q involves two honest parties which we denote by Pi

and Pj . Their equations share the monomial xixj . There are w = h(h − 1)/2
such monomials and the goal of each Hybrid q is to replace the q-th monomial
with a uniformly random element.
Hybrid q: The changes between Hybrid q and Hybrid q − 1 involve changing

the protocol messages of the honest parties Pi and Pj in all ` rounds. Let m
(ρ)
i

and m
(ρ)
j be the inputs of these honest parties in round ρ. Generate a uniformly

random integer r ∈ {0, . . . , p − 1} and replace all occurrences of gxixj by gr in
the computation of the second messages in all rounds.

Hybrid q − 1 and Hybrid q are computationally indistinguishable under the
DDH assumption. Hybrid q − 1 involves the DDH instance (g, gxi , gxj , gxixj)
and Hybrid q involves the DDH instance (g, gxi , gxj , gr) where xi, xj and r are
uniformly distributed in {0, . . . , p−1}. A non-negligible advantage distinguishing
between Hybrid 0 and Hybrid 1 implies a non-negligible advantage against DDH.
Hybrid w + 1: (where w = h(h − 1)/2) H is modelled as a random oracle
and as such the skew-symmetric matrices contain uniformly random elements
in Zp. In this Hybrid, we program H such that the joint coefficient matrix

M ∈ Z`(n−t−1)×(n−t)(n−t−1)/2p formed from the coefficient matrix in every round
is linearly independent. By Lemma 1, the probability of M not being linearly

independent when generated as in the real world is at most poly(n−t)
p . Because

p is superpolynomial in the security parameter, an adversary has a negligible
chance between distinguishing Hybrid w + 1 and Hybrid w.
Hybrid w + 2: Without loss of generality, assume that parties P1, . . . , Ph are
the honest parties. For all 1 ≤ i < h and 1 ≤ ρ ≤ `, replace the protocol

message v
(ρ)
i of party Pi in round ρ with gr

(ρ)
i · gm

(ρ)
i for uniformly random

r
(ρ)
i ∈ Zp. Furthermore, for every 1 ≤ ρ ≤ `, replace the protocol message v

(ρ)
h

with g−
∑h−1
j=1 r

(ρ)
j +m

(ρ)
h . Due to the linear independence of the coefficient matrix

M ∈ Z`(n−t−1)×(n−t)(n−t−1)/2p , distinguishing between Hybrid w+ 2 and Hybrid
w + 1 is impossible.

Hybrid w + 3 Finally, in this Hybrid, the inputs m
(ρ)
1 , . . . ,m

(ρ)
h are replaced

by a random partition of
∑h
k=1m

(ρ)
k , namely the values s

(ρ)
1 , . . . , s

(ρ)
h for every

ρ ∈ {1, . . . , `}.
An adversary has a zero advantage distinguishing Hybrid w + 3 and Hybrid

w + 2. To see this, suppose the adversary could distinguish the hybrids. Then

it can determine that some party’s input (say Pi) in some round ρ is not s
(ρ)
i .

But v
(ρ)
i = gr

′
for some uniformly random r′, which provides no information

about the message (whether it is m
(ρ)
i or s

(ρ)
i). Note that v

(ρ)
h gives no additional

information since it can be derived from the information known to the adversary
(recall that the sum of each round is known).

Since Hybrid w + 3 no longer relies on the honest parties’ messages, and all
other information needed to construct the distribution can be derived from the
simulators’ inputs in Equation 3, it follows that there exists an algorithm S that
can simulate the real distribution. ut

5 Performance

The proposed system is very efficient. In the initial stage, each user has to make
one modular exponentiation to generate her public key. Then for each round, she
has to perform n− 1 hash function evaluations in addition to n exponentiations
and n multiplications in the group G. If blind aggregation is also employed, two
more exponentiations and a single multiplication are required. Note that the cost
for each individual user is linear in the number of users. Similarly, the aggregator
has to perform n multiplications to recover the value and probably a brute force
attack on the size of

∑
mi. So the time complexity of participation is linear in

the number of users, while the time complexity of disclosure is O(
√∑

mi) if
Pollard’s lambda algorithm is used for recovery of the sum. The complexity is
dominated by one or other of these factors depending on the system parameters.

5.1 Experimental results

In order to test the efficiency, we implemented our MPC protocol from Section
4 using Sage. Our results here refer to the cost of this protocol. The results that
are reported were obtained on a system with an Intel Core i5-3340M processor
clocked at 2.70 GHz, 4GB of RAM and running on 64 bit Debian GNU/Linux
3.2.41. The evaluated schemes that are presented are based on a multiplicative
subgroup Z∗q where q = 2p + 1 for a randomly generated 512-bit prime p. The
reported results refer to the mean values of 1000 experiments. In the experiment,
the computation time for each user in a given stage of the protocol is calculated
(as mentioned above, this relates to the MPC protocol only). We consider three
stages: key generation, round evaluation and result recovery. The latter includes

aggregation and extraction of the aggregate value. We evaluate the protocol for
both private sum and private product. For the former, result recovery entails
Pollard’s lambda algorithm. For key generation, /dev/urandom was used.

Each experiment was run 1000 times for n = 100 users. Each user’s input
value in all cases was randomly sampled in the range {0, . . . , 10, 000} (i.e. β =
10, 000). For all stages, we measure the cost of the computation on one user’s
side. The results are illustrated in Table 5.1. ’ Suppose a satisfactory collusion

Average Min Max StDev

Key Generation 0.166 0.157 0.370 0.009

Round Computation (Our protocol) 27.19 26.42 28.67 0.42

Round Computation (Kursawe et al.) 0.88 0.32 2.24 0.37

Result Recovery (Sum) 10.15 7.18 40.78 4.66

Result Recovery (Product) 0.082 0.078 0.115 0.003
Table 1. Experimental results, time in ms

tolerance is 1/3; that is, t = 33 for n = 100, then we can securely evaluate
bn−t2 c = 33 rounds. Although each round is more expensive than that of Kursawe
et al., we amortize key generation (which is comparitively not too expensive from
the table), potential key verification and bandwidth for key broadcasts over a
large number of rounds.

6 Applications

If we assume that the users are fair and follow the protocol without trying to
maliciously manipulate their messages, then many applications can be achieved
with the proposed schemes.

6.1 Collective Decision-making

A typical example is the case of collective decision-making, essentially e-voting
where no party has a vested interest in any outcome, on an untrusted server.
Typical e-voting schemes depend on a trusted third party for performing the
elections. However, using anonymous aggregation, the election can be made on
an untrusted server. The case of a Yes/No decision is quite straightforward and
an evaluation in terms of time requirements is provided in the previous section.
Additionally, users can select from κ options. To achieve this, if the prime mod-
ulus is p and we have n users, we need prime[κ−1]n < p, where prime[i] denotes
the ith prime and prime[0] = 1. In this case, we map each of the κ candidates
to one of the first κ values of prime[x]. To cast the vote for option j, user i on
the second round broadcasts:

prime[j]gxiyimod p

Thus the aggregator will easily retrieve the number v =
∏
primekj , where∑

kj = n. Since prime[κ−1]n < p⇒ v < p. In order to recover the votes, we have
to factor v which is a smooth number, divided only by prime[x], x ∈ {0, ...κ−1},
which can be done efficiently.

Only non-contentious decisions can be made with this protocol, as in any
contentious election or decision, there is no way to prevent ballot-stuffing, and
some vote rigging may even be undetectable. It is not reasonable to assume non-
malicious behaviour for contentious issues or elections. There are many instances
where it is in the interests of all parties to a decision to determine the honest
answer to a question. Examples include when the appropriate action for a system
to take is based on sensed data, which may contain errors, so it is important
to determine whether a state being reported by some nodes in a wireless sensor
network is the most prevalent state.

6.2 Anonymous Statistics

It is frequently of value to gather aggregate information from a population who
do not wish to disclose the relevant information regarding themselves. It may be
in everyone’s interests to make the information available to all parties, including
themselves, but the desire to avoid revealing sensitive information may override
the benefit derived from having the accurate information available to everyone.
Examples may include determining the prevalence of threats, those affected by
which would not like to publicize their vulnerability. This could include phys-
ical preparedness of homes, business premises or military installations against
invasion or intrusion, or the patch state of critical nodes following discovery of a
vulnerability in their software. Knowledge of how many systems are potentially
vulnerable is highly valuable to the organization in planning contingency mea-
sures or allocating resources to resolution, however the possibility that a node
may have been corrupted an d leaking information makes it unacceptable to
have nodes directly provide this kind of information directly, as it could be used
to direct attacks exploiting the vulnerability.

6.3 Privacy Preserving Collaborative Filtering

Due to the wide growth of e-commerce, automatic recommender systems and
more specially Collaborative Filtering have become standard components in
many services. In order to enable more private solutions, Privacy Preserving
Collaborative Filtering has been introduced [9, 8]. The proposed protocol can
allow users to send their preferences preserving their privacy, without the use of
a trusted third party.

6.4 Urban-scale sensor aggregation

As already discussed, current state of the art does not allow large-scale aggre-
gation. One solution is to have a large key, but this introduces a significant

performance cost, mainly on the user side. The other solution is to install more
aggregators. While this will keep the size of the key short enough, it will demand
the introduction of many trusted third parties (the local aggregators). However,
in smart cities the environment is very heterogeneous[7, 22, 27, 28] this translates
to many installations from many parties. The proposed solution though man-
ages to minimize this cost by hiding the local summaries from the aggregators,
therefore many services can use them without needing to install separate ones.

7 Conclusions

In this work we introduced the notion of an anonymous aggregation system and
presented a practical realization. As a building block of the latter, we presented
an MPC protocol that allows multiple rounds of aggregation to be performed by
lowering the collusion threshold. We showed this to be secure in the semihonest
model assuming the hardness of DDH. Coupled with a method of blind aggre-
gation, our proposed system offers scalability and input privacy without the use
of trusted third parties.

References

1. Gilad Asharov and Yehuda Lindell. A full proof of the bgw protocol for perfectly-
secure multiparty computation. Electronic Colloquium on Computational Com-
plexity (ECCC), 18:36, 2011.

2. Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for secure
multi-party computation. In Proceedings of the 15th ACM conference on Computer
and communications security, pages 257–266. ACM, 2008.

3. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 1–10. ACM,
1988.

4. I. F. Blake and C. Studholme. Properties of random matrices and applications.
Unpublished report available at http://www.cs.toronto.edu/~cvs/coding, 2006.

5. Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, et al. Multiparty computation goes live. IACR Cryptology
ePrint Archive, 2008:68, 2008.

6. Dan Boneh. The decision diffie-hellman problem. In Algorithmic number theory,
pages 48–63. Springer, 1998.

7. Francesco Calabrese, Massimo Colonna, Piero Lovisolo, Dario Parata, and Carlo
Ratti. Real-time urban monitoring using cell phones: A case study in rome. Intel-
ligent Transportation Systems, IEEE Transactions on, 12(1):141–151, 2011.

8. Fran Casino, Josep Domingo-Ferrer, Constantinos Patsakis, Domenec Puig, and
Agusti Solanas. Privacy preserving collaborative filtering with k-anonymity
through microaggregation. In e-Business Engineering (ICEBE), 2013 IEEE 10th
International Conference on, pages 490–497. IEEE, 2013.

9. Fran Casino, Constantinos Patsakis, Domenec Puig, and Agusti Solanas. On pri-
vacy preserving collaborative filtering: Current trends, open problems, and new
issues. In e-Business Engineering (ICEBE), 2013 IEEE 10th International Con-
ference on, pages 244–249. IEEE, 2013.

10. David Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65–75, 1988.

11. David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally
secure protocols. In Proceedings of the twentieth annual ACM symposium on The-
ory of computing, pages 11–19. ACM, 1988.

12. Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and Michael Y
Zhu. Tools for privacy preserving distributed data mining. ACM SIGKDD Explo-
rations Newsletter, 4(2):28–34, 2002.

13. C. Cooper. On the rank of random matrices. Random Struct. Algorithms, 16:2000,
2000.

14. I. Damg̊ard, M. Geisler, M. Krøigaard, and J. Nielsen. Asynchronous Multiparty
Computation: Theory and Implementation. Public Key Cryptography, pages 160–
179, 2009.

15. I. Damgard, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. Cryptology ePrint Archive, Report 2011/535,
2011. http://eprint.iacr.org/.

16. O. Goldreich. Towards a Theory of Software Protection and Simulation by Obliv-
ious RAMs. In Proceedings of the nineteenth annual ACM symposium on Theory
of computing, pages 182–194, 1987.

17. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 218–229. ACM, 1987.

18. Philippe Golle and Ari Juels. Dining cryptographers revisited. In Advances in
Cryptology-Eurocrypt 2004, pages 456–473. Springer, 2004.

19. S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 513–524, New York, NY, USA, 2012.
ACM.

20. Feng Hao and Piotr Zieliński. A 2-round anonymous veto protocol. In Security
Protocols, pages 202–211. Springer, 2009.

21. Klaus Kursawe, George Danezis, and Markulf Kohlweiss. Privacy-friendly aggre-
gation for the smart-grid. In Privacy Enhancing Technologies, pages 175–191.
Springer, 2011.

22. Nicholas D Lane, Shane B Eisenman, Mirco Musolesi, Emiliano Miluzzo, and An-
drew T Campbell. Urban sensing systems: opportunistic or participatory? In
Proceedings of the 9th workshop on Mobile computing systems and applications,
pages 11–16. ACM, 2008.

23. Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert
adversaries. IACR Cryptology ePrint Archive, 2013:79, 2013.

24. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Advances in Cryptology-
EUROCRYPT 2007, pages 52–78. Springer, 2007.

25. Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-
choose oblivious transfer. Journal of cryptology, 25(4):680–722, 2012.

26. Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay-secure two-
party computation system. In USENIX Security Symposium, pages 287–302, 2004.

27. A. Manzoor, C. Patsakis, M. Bouroche, S. Clarke, V. Cahill, J. McCarthy, and
G. Mullarkey. Data sensing and dissemination framework for smart cities. Pro-
ceedings of MobilWare 2013, November 11-12, Bologna, Italy., 2013.

28. A. Manzoor, C. Patsakis, A Morris, J. McCarthy, G. Mullarkey, H. Pham,
S. Clarke, V. Cahill, and M. Bouroche. CityWatch: Exploiting Sensing Data to
Manage Cities Better. Transactions on Emerging Telecommunication Technologies,
2014.

29. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In
Advances in Cryptology–CRYPTO 2012, pages 681–700. Springer, 2012.

30. E. Shi, R. Chow, T. H. H. Chan, Dawn Song, and Eleanor Rieffel. Privacy-
Preserving Aggregation of Time-Series Data. Technical report, UC Berkeley, 2011.

31. Z. Yang, S. Zhong, and R. N. Wright. Privacy-Preserving Classification of Cus-
tomer Data Without Loss of Accuracy. In SIAM International Conference on Data
Mining, pages 1–11, 2005.

32. Andrew Chi-Chih Yao. Protocols for secure computations. In FOCS, volume 82,
pages 160–164, 1982.

33. Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations of
Computer Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

