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Abstract

The anonymous communication protocol Tor constitutes the most widely deployed technology
for providing anonymity for user communication over the Internet. Several frameworks have been
proposed that show strong anonymity guarantees for such protocols; none of these frameworks,
however, are capable of modeling the class of traffic-related timing attacks against Tor, such as
traffic correlation and website fingerprinting.

In this work, we present TUC: the first framework that allows for rigorously proving strong
anonymity guarantees in the presence of time-sensitive adversaries that mount traffic-related timing
attacks. TUC incorporates a comprehensive notion of time in an asynchronous communication model
with sequential activation, while offering strong compositionality properties for security proofs. We
apply TUC to evaluate a novel countermeasure for Tor against website fingerprinting attacks. Our
analysis relies on a formalization of the onion routing protocol that underlies Tor and proves rigorous
anonymity guarantees in the presence of traffic-related timing attacks.
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1 Introduction

Anonymous communication protocols, as provided by the Tor network [53], are an increasingly popular
way for users to improve their privacy by hiding their location, i.e., their IP address. The Tor network
is currently used by hundreds of thousands of users around the world [52].

In order to precisely understand the anonymity guarantees provided by Tor, several rigorous analyses
have been conducted [2, 9, 21, 51, 3, 22], which show strong anonymity guarantees for the onion routing
protocol used by Tor; however, all of these analyses abstract from network-level timing attacks, such
as traffic correlation or website fingerprinting, which arguably form the most important class of attacks
against Tor’s anonymity guarantees [14, 19, 43, 31, 23, 30, 41, 44, 46, 47, 55, 32]. One of the main obstacles
in including such time-sensitive attacks into a rigorous analysis is the lack of a communication model
that enables a composable security analysis of complex protocols against time-sensitive adversaries.

In this paper, we follow the successful line of research on simulation-based composable security,
started with Goldreich et al. [25] and put forward by [6, 12, 16, 28, 39, 42], which enable a composable
security analysis of complex cryptographic protocols.

Contribution. In this work, we present TUC: the first framework that allows for rigorously proving
strong anonymity guarantees in the presence of time-sensitive adversaries that mount traffic-related
timing attacks. TUC incorporates a comprehensive notion of time in an asynchronous communication
model with sequential activation, while offering strong compositionality properties for security proofs.
In particular, TUC is based on a modified version of GNUC [28], which is one of the recent pieces of
work [12, 39] that address many of the problems faced by earlier designs for simulation-based security
frameworks [11].

We discuss the modifications to the communication model of GNUC in order to adequately account for
time, and we show solutions for problems that occur when handling time-sensitive interaction between
different parties over the network. In particular, we discuss that previous frameworks inherently are
not suited for modeling time-sensitive asynchronous communication because they allow unrestricted
activation orders: it might, e.g., happen that a message that was sent in the past (over a direct connection)
arrives after a time-out mechanism already closed a port, only because the sending party was not activated
early enough. We propose a remedy by only allowing consistency enforcing activation orders, which
enforce that all parties receive all messages at the correct time. It turns out that all consistency enforcing
activation orders are equivalent. As a result, we fix the activation order and thereby, in contrast to
previous work, neither the environment nor the adversary has to learn any unrealistic information about
activation requests. We show that valued properties, such as the joint state theorem anduniversal
composability, hold in our time-sensitive framework as well.

Finally, we apply TUC to the onion routing protocol that underlies Tor, and we show how traffic-
related timing attacks, such as inter-packet delay, traffic watermarking, and website fingerprinting at-
tacks, can be mounted by an adversary in TUC. Next, we propose a countermeasure against website
fingerprinting attacks and utilize TUC to prove k-recipient anonymity guarantees for this countermea-
sure.

Outline. Section 2 discusses related work. Section 3 introduces the time-sensitive TUC framework,
and presents the activation order independence of TUC. Section 4 then introduces the notion of secure
realization into this time sensitive communication model and shows that classic results of composable
security are preserved in the time sensitive setting. In Section 6, we discuss how known traffic-related
timing attacks on Tor can be represented in TUC. Moreover, we provide a countermeasure against website
fingerprinting attacks and prove it secure in TUC.

2 Related Work

Tor [53] is one of the most widely used anonymous communication protocols to date [52] and is based on
the (first generation) onion routing protocol by Goldschlag et al. [26]. There has been significant work
in analyzing the anonymity guarantees provided by Tor [9, 21, 51, 22, 20, 4]. The major shortcoming of
previous work is that it does not consider timing features of network traffic, which are used in timing-
based traffic analyses. Considering the amount of proposed attacks [46, 23, 14, 55, 44, 8, 48, 27, 18]
in the literature that use these timing features, it is clear that a rigorous framework that encompasses
time-sensitive adversaries is required.
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Some protocols, such as the onion routing protocol, are inherently insecure against global adversaries,
but provide guarantees against partially global adversaries, which might only control servers or the user’s
links (like ISPs), and are useful in practice. Such systems cannot always be properly analyzed in time-
insensitive frameworks [6, 12, 16, 28, 39, 42] because in these frameworks partially global adversaries are
too weak: they cannot measure time-sensitive features, such as measure inter-packet delay or throughput
per time interval, and they thus can also not measure effects of some active attacks, such as traffic
watermarking or slowing down certain parties by mounting denial-of-service attacks. Since TUC enables
the adversary to measure time-sensitive features, this family of attacks can be mounted by an adversary
in TUC; thus, TUC is better suited for analyzing such weaker adversary scenarios.

This work contributes to the successful line of work on simulation-based universal composability
frameworks [6, 12, 16, 28, 39, 42]. These frameworks allow for a composable analysis of large and
complex multi-party protocols, where the security of the whole protocol is derived from the security
analysis of the sub-protocols of which it is composed. We chose to base our TUC framework on the
GNUC framework by Hofheinz and Shoup [28]. While GNUC is not as general as other frameworks
due to its strict poly-time notion and its tree-like structure of party-structure, it has the advantage
that a composed ideal poly-time protocol implies a composed real poly-time protocol due to its strict
polynomial-time notion [28, Section 11.8], and simplifies the proof of the composition theorem and
thereby also our extension due to its simple party-structure. We are, however, confident that the main
mechanisms for introducing our comprehensive notion of time, including time-sensitive adversaries, can
also be applied to other frameworks, such as the RSIM[6], IITM [39], and UC [12] framework.

Previous work on synchronous communication granting protocol parties the capability to measure
time or to proceed round-wise in order to enable proofs about properties, such as guaranteed termination
or input termination [34, 1, 16, 10, 35, 45, 49]. Such approaches, however, do not grant the adversary
the capability to measure the time at which a message arrives.

Modeling timing attacks in synchronous frameworks might be possible, assuming very fast rounds
and thus highly synchronized clocks, (in the order of milliseconds), but such an approach has two severe
technical limitations: first, highly synchronized clocks can seldom be assumed in practice, in particular
not for commodity hardware; second, such an attempt would technically only result in guarantees for
protocols with highly synchronized clocks but not for protocols with loosely synchronized or unsynchro-
nized clocks, while traffic-related timing attacks solely depends on the adversary’s clock and not on the
protocol parties’ clocks. TUC grants the adversary access to a precise clock, independent of the parties’
clocks.

Networks of timed automata are well studied. However, they are seldom used for cryptographic
purposes since timed automata are not as expressive as Turing machines. Thus, networks of timed
automata are not sufficiently expressive for the analysis of cryptographic protocols. In particular, an
adversary represented by a timed automata would be too weak.

There has been work on the time sensitive analysis of Dolev-Yao style abstracted cryptographic
protocols using timed automata [7, 15, 33, 38, 37, 40]. However, this line of work analyzes Dolev-Yao
style abstractions and therefore does not offer the full generality of networks of Turing machines.

3 Time-sensitive Network Model

In this section we present TUC, the first simulation-based composability framework that considers a
time-sensitive adversary. TUC builds upon previous asynchronous simulation-based frameworks, such as
GNUC [28] and the framework by Unruh [54], but fundamentally extends these frameworks by incorpo-
rating a notion of time while preserving the highly desired properties such as universal composability

A general overview. We introduce time by capturing via a timer the current global time for every
machine in the network. Whenever a machine is activated, its timer is updated based on the number
of steps done by the machine and the speed of it. The speed of a machine is either predetermined if
it already existed at initialization, or is determined by the protocol that it executes if the machine is
created during runtime. Furthermore, we require that the actual local time experienced by each machine
is given by a strictly monotonically increasing function of its current global time, thereby modeling
unsynchronized clocks.

We stick to the classic sequential activation model; however, by introducing a notion of time we
inherently also allow parallel computation. Therefore, it can happen that one machine is already far
in the future while all other machines are still in the past. In order to achieve consistency, i.e. to
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〈pid, ((main, sp))〉

〈pid, ((main, sp), (prot1, sp1))〉

〈pid, ((main, sp), (prot1, sp1), (prot2, sp2))〉

〈pid, ((main, sp), (prot1, sp
′
1))〉

〈pid, ((main, sp), (prot1, sp
′
1), (prot3, sp3))〉

〈env〉

(a) Tree Structure of Parties

〈pid, (α1)〉

〈pid, (α1, α2)〉

〈pid, (α1, α2, α3)〉

〈pid, (α1, α
′
2)〉

〈pid, (α1, α
′
2, α4)〉

〈env〉

〈adv, (β1, β2)〉

〈adv, (β1)〉

〈adv, (β1, β3)〉

〈adv, (β1, β4)〉

(b) Network Adversary and Communication

Figure 1: The Network Model in TUC

achieve that no party receives messages from the future, we introduce a distinguished machine, called
the execution. This execution basically manages the timer of each machine and the timely delivery of
messages between machines.

The execution attaches to each message that is sent through the network a time-stamp, which is only
visible to the execution. This time-stamp, loosely speaking, denotes the local time of the sending party
when the message was sent.

The environment and the adversary might consist of several machines that work in parallel. A natural
way of modeling this capability is to represent these environment and the adversary as a set of parallel
machine. While such a model is more accurate, we decided for the sake simplicity to over-approximate
this strength of the environment and the adversary by allowing both parties to make an arbitrary (but
poly-bounded) amount of computation steps in one time-step.

As in GNUC, a protocol is formalized as a runtime library that assigns to each machine the program
code to be executed by the respective machine and the speed of the machine that executes the code. We
stress that a network has only one such runtime library, i.e. one protocol.

3.1 Execution

The whole network is run inside single a machine we call execution (EXEC). The execution runs all
parties in the network as sub-machines, delivers messages between these sub-machines, and maintains
a timer for every sub-machine. We define the output of EXEC as the output of the environment Env
after observing the communication between the involved parties. We capture this output by introducing
a random variable.

Definition 1. The execution EXEC is a probabilistic, poly-time Turing Machine which receives the se-
curity parameter η and outputs a value in {0, 1}. EXECη(Π,A,Env) denotes the output of Env after
EXEC ran the network of machines running protocols in Π together with the network adversary A and
the environment Env. EXEC stops whenever Env halts and outputs a bit.

We first describe the single aspects of the execution EXEC in the subsequent subsections, and at the
end of this section we present the full description of EXEC in Figure 8.

3.1.1 Machines & Session Identifiers

In order to adequately represent complex protocols in our model, we adopt the notion of protocol
machines from GNUC [28].1 Each party P that participates in network communication is represented
by a tree of machines, each of which provides the sub-protocols used by P . This tree structure simplifies
the substitution operation, which is used in the composition theorem (presented in Section 3.3.1). Our
definition of a party is in line with what is presented as a structured system of interactive machines
presented in [28, Section 3].

Each machine M in the network is identified by a unique machine ID idM . This machine ID consists
of a party identifier pidM and a session identifier sidM : idM = 〈pidM , sidM 〉. The session identifier

1Currently, our framework uses Turing machines as a machine model, but for analyzing timing leakage of algorithms
other machine models might be better suited, such as Random Access Machines, or a machine model that even incorporates
cache. We leave such extension for future work.
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sid = (α1, . . . , αk) consists of the parent session identifier (α1, . . . , αk−1), the protocol name protNAME,
some session parameters sp, and the role: αk = (protNAME, sp, role). The protocol name is used to
determine the code executed by the respective machine, as detailed in Section 3.3.

Definition 2. The machine ID idM of a machine M is a tuple idM = 〈pidM , sidM 〉, where pid is
the party identifier and sid = (α1, . . . , αk) the session identifier of M . The last component of αk =
(protNAME, sp, role) is the basename of M , where protNAME specifies protocol name executed by M , sp
contains session parameters, and role specifies the role in the protocol, e.g., client or server.
The machine ID is unique to each machine.

Given such machine IDs idM , we define a party as a collection of machines {M1, . . . ,Ml} such that
each machine Mi has the same party identifier pidMi

and the session identifiers of all machines induce a
tree, if the parent session identifier of each machine is the session identifier of another machine (except
for the root).

Definition 3. A party P is a collection of machines {M1, . . . ,Ml} with following properties:

P1 : ∀i, j ∈ {1, . . . , j} : pidMi
= pidMj

P2 : ∃!M ∈ {M1, . . . ,Ml} : sidM = (α) (called root of P )

P3 : ∀Mj ∈ {M1, . . . ,Ml} \ {M},∃Mi ∈ {M1, . . . ,Ml} : sidMj
is a one-step extension of sidMi

, i.e.
sidMi

= (α1, . . . , αk−1) and sidMj
= (α1, . . . , αk)

By Definition 2 and 3, the set of machines inside a party P put up a a tree, given we understand each
session ID as a node in a graph and have an edge between session IDs that are one-step extensions of
each other.

Corollary 1. A party P consists of a tree of machines.

Accordingly we will occasionally denote machines in such a machine-tree as nodes, and, given a pair of
machines Mi and Mj satisfying property P3, we call Mi parent of Mj , and Mj child of Mi.

As we will discuss in Section 3.1.4, we restrict communication between machines to communication
between parent-children pairs, and machines that are so-called peers: a peer is a machine with the same
protocol name protNAME and the same session parameter sp for a basename (protNAME, sp, role).

Definition 4. Two machines M and M ′ with the basenames (protNAMEM , spM , roleM ) and
(protNAMEM ′ , spM ′ , roleM ′) are peers if pidM 6= pidM ′ and they both have the same protocol name
protNAMEM = protNAMEM ′ and the same session parameter spM = spM ′ .

This formalization follows the intuition that a party P represents the protocol stack executed on a real
world machine, and network communication is done between sub-processes running the same protocol-
code.2

We adopt all of the constraints listed in [28, Section 4,5] that ensure that each party indeed consists
of a tree of machines and that each machine can only communicate with its parent, its children and its
peers.

Inside a party, a machine in the machine tree can create new machines as children by sending a
message to the yet non-existent machine. The execution then checks whether the message sent induces
a valid extension – where validity is defined by the protocol used in the network, see Section 3.3 – of the
machine tree and creates the new machine.

3.1.2 Environment and Adversary

Influences to network communication outside of the regular parties are traditionally captured in two
special parties: the environment represents user behavior, operating systems or other entities that control
the actions of the network parties, while the adversary represents adversarial behavior in the network.

Definition 5. The network adversary A is the unique party with party identifier pidA = adv. The
environment Env consists of only one machine with machine ID idEnv = 〈env〉 and is parent of all root
machines of parties in the network.

2More general protocol models are conceivable; however, we inherit this restriction from GNUC.
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Initialization: All input tapes are set to empty, all timer-variables are set to the initial value and no links
are compromised.
Machine Activation: Every time a machine M ∈ M gives control to the network execution, to current
global time TM for M is updated according to

TM := TM +
n

cM
,

where n is the number of steps done by M in its last activation and cM is its speed.

upon input (time) from M ∈M
1: retrieve TM
2: compute local time tM := fM (TM )
3: activate M with input tM on the time tape

before every input (cmd, t) from M ∈ {A,Env}
1: if t > 0 then
2: set TM := TM + t
3: proceed with cmd
4: else activate M with error

Figure 2: Timing and Initialization in EXEC with machine set M, where fM is the M ′s local time
function and fM = id for M ∈ {Env,A}

Similarly to the other parties, A consists of a machine-tree, where A has a sub-adversary for each
basename in the network. Each of these sub-adversaries receives intercepted messages from the network
originating from machines with the respective basename. The distributed design of the adversary allows
us to formulate the construction for the composition theorem in Section 4.2.2 in a much simpler way.
The tree-structure of the adversary is depicted in Figure 1b.

3.1.3 Timing

We finally extend the basic communication model presented in the previous sections to include time. We
achieve this by attaching a timer to each machine in the network and by utilizing the execution EXEC to
maintain these timers. In order to allow un-synchronized clocks between network parties, we introduce
local-time functions, which transform the timer’s value to the local time experienced by each machines.
We achieve time-consistency for messages exchanged between machines by introducing time-stamps for
these messages. The execution EXEC utilizes these time-stamps for a timely delivery of messages to the
recipient.

We introduce time into our model by assigning a timer to every machine in the system.

Definition 6. The timer TM ∈ Q of a machine M is a rational-valued variable associated with M that
is maintained by the execution.

The timer TM is initialized to 0 at the beginning of the execution. TM records the current global time
of M and is updated every time M returns control to the execution. How much TM is updated depends
on the speed of M . Each machine has a different speed. Except for the environment and the adversary,
the speed of each machine M is characterized by a speed coefficient cM , which specifies how many
computation steps M does per time unit. Hence, for the timer TM of M we have

TM := TM +
n

cM

where n is the number of steps M did in its last activation.
The poly-time notion we use in our communication model (see Section 3.1.9) necessitates that a

machine makes a polynomially bounded number of steps per time unit: a machine with an exponential
speed coefficient would not be able to meaningfully progress in time as each machine in our network
model is restricted to at most a polynomial number of computation steps per activation. Hence, we
require the speed coefficients be polynomials.

Definition 7. The speed coefficient of a machine M specifies the number of computation steps that
M can perform per unit time. The speed coefficient is a polynomial cM ∈ N[X]. Whenever M returns
control to the execution, TM is updated by TM := TM + n

cM (η) where n is the number of steps M did in

its last activation and η is the security parameter.

Local time functions are needed to model unsynchronized local clocks, only loosely synchronized
clocks, or too fast or too slow clocks. Each machine M can requests its local time by sending a (time)
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request to the execution. EXEC then computes the local time of M by applying M ’s local time function
fM to its current global time TM . The execution and the simulating machine in the internal simulation
lemma (Lemma 2) need to be able to efficiently compute and invert the local time; thus, we require that
the local time function be efficiently computable and invertible function.

Definition 8. The local time function fM : Q→ Q of M is a strictly monotonically increasing, efficiently
computable and efficiently invertible function that transforms the value of TM to M ’s local time fM (TM ).

We require the local time function to be invertible as EXEC needs to invert the local time function
in order to process delayed message sending, which is an option for protocol machines in the network
and will be required in our constructions in Section 7. We make a worst case assumption and define the
local time function of the environment Env and the network adversary A to be the identity function(see
Figure 2).

Speed coefficients and local time functions are fixed once the machine is spawned. Formally, the speed
coefficient and the local time function depend on the protocol, the session parameter, the role, and the
party ID. In order to assign speed coefficients to dynamically created machines, we require the protocol
Π to determine for each basename not only the code to be executed but also a distribution over the
speed coefficients and a distribution over local time functions (see Definition 21). The execution draws
the speed coefficients from these distributions whenever a new machines is created during runtime.

In the real world, the environment and the adversary might consist of several machines that work
in parallel. A natural way of modeling this strength is to represent the environment and the adversary
as a set of parallel machines. While such a model is more accurate, for the sake of simplifying proofs,
we abstract this strength of the environment and the adversary by allowing both parties to make an
arbitrary amount of computation steps per unit time.3

Definition 9. A machine M is timeless if it does not have a speed coefficient and M itself tells the
execution the time-difference by which its timer increases next time it returns control to the execution.

Note that by the notion of poly-time we introduce in Section 3.1.9 this still restricts both to at most a
polynomial number of computation steps (in the security parameter η) per activation.

3.1.4 Communication Model

We differentiate between inner party communication between parent and children nodes inside a party
and network communication between peers using a notion of ports: we distinguish between environment,
subroutine, and network port. Figure 1b illustrates this with thick lines for inner party communication
and dashed lines for network communication.

Definition 10. A port p of a machine M is a set of one input tape pin and one output tape pout that is
used by the execution to pass information to M . Each machine has one environment port sid(M).Env,
a network port sid(M)net and a set of subroutine ports SM .

For communication over the network, M sends its messages over its network port, addressing the
recipient using the recipient’s machine id. All incoming messages are received through M ’s network port
as well. A machine M can only send messages over the network to another machine M ′ if either M ′ is
a peer of M or M ′ is the network adversary.

M uses it environment port sid(M).Env to communicate with its parent, or if M is a root node, with
the environment. The set of subroutine ports SM contains a unique port for each child of M . In case M
wants to create a new machine M ′ as a child, M creates a new port p′ in S and addresses M ′ through
this port. EXEC then recognizes that p′ is not in use yet and creates a new machine M ′, as detailed in
Figure 3.

Inner party ports follow the naming convention pid.sid1.sid2. Here pid is the process ID of the party,
sid1 is the session ID of the parent node Mp, and sid2 the session ID of the child node Mc. Note that
Mc communicates to its parent via its environment ports. The execution therefore makes an implicit
port translation between environment ports of children nodes and inner party communication ports as
defined above. Through this, we realize a variant of what is introduced as Caller ID Translation in [28,
Section 4]. The methods used for message passing inside EXEC are presented in Figure 3.

3For the completeness of the dummy adversary, the adversary needs to be able to forward message in a way that
is unobservable for the protocol even though every message-forwarding costs time. For that situation, we make use of
the timelessness of the dummy adversary and show that if the dummy adversary proceeds in exponentially small steps,
message-forwards remains unobservable for the protocol (see proof of Lemma 3).
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upon (m, id) on port net from M ∈ M at time
TM

1: if id is a peer of id(M) then
2: (r,m, Tm)← NET(id(M), id,m, TM )
3: if r = A then
4: put (m,TmM,net) into QAi of the corre-

sponding sub-adversary Ai.
5: activate Ai.
6: else
7: put (m,Tm, net) into Qid

8: if Mid in listen state then
9: if TM ≤ T̃Mid then

10: set T̃Mid := TM
11: activate listen(Mid)
12: else
13: activate Mid

14: else
15: return error to M

upon (delay,m, t) on port q from M ∈M
1: if t ≥ fM (TM ) then
2: compute global time T = f−1

M (t)
3: execute appropriate send message for m with

time stamp T for port q
4: else
5: return error to M

upon m on port p 6= net from M ∈ M at time
TM

1: if there is a machine with input port p then
2: let id be the machine ID of the unique machine

with input port p
3: put (m,TM , p) into QMid

4: if Mid in listen state then
5: if TM ≤ T̃Mid then
6: set T̃Mid := TM
7: activate listen(Mid)
8: else
9: activate Mid

10: else
11: if p = pid(M).sid(M).sid′∧

sid′ proper extension of sid(M) then
12: let (cd ,S,LT ) = Π(pid(M), basename(sid′))

13: sample speed c′ from S
14: sample local time function f from LT
15: create a new machine M ′ with code cd ,
16: sid(M ′) := sid′

17: c(M ′) := c′

18: set up translation of M ′’s environment port
to p

19: set TM′ = TM
20: put (m,TM , p) into QM′

21: activate M ′

22: else
23: return error to M

Figure 3: Communication methods in EXEC with machine set M and protocol Π

For the case that a machine waits for incoming messages, we introduce a listen-command: (listen, T ).
As soon as this command is sent, the execution EXEC will not activate these machines until either (i)
they receive a message, or (ii), they can no longer receive a message before time T . The machines also
have the possibility to set T =∞ the machines then will not be activated unless they receive a message.
Once the machine is activated, their timer is also updated, either to the time-stamp of the received
message, or T if the machine is activated without a message.

Timing in communication. In contrast to other sequential activation models, messages in TUC are
not directly delivered to the recipient because there might be another message from a yet not activated
machine that has to arrive earlier. More formally, if M sends a message to M ′ and TM > TM ′ , then
the message obviously should not reach M ′ until TM ′ ≥ TM . The execution remedies this problem by
utilizing time stamps.

Definition 11. The time stamp of a message m sent by a machine M is the updated value of the timer
TM at the point when M sends the message.

The execution attaches this time-stamp to each message before it is sent to the recipient. On the
recipient’s end we use time-ordered queues, called input queues, which organize all messages that still
need to be received, and release them once the recipient has progressed far enough in time. It is crucial
that we deliver all messages at once; otherwise it is not clear how to internally simulate several machines
(see the proof of Lemma 2).

Definition 12. The input queue QM of a machine M is a priority queue which receives all messages
directed to M as input and uses their time-stamp as the keys which are sorted. On request with a
time-stamp T , QM returns all messages with time-stamp Tm ≤ T .

When delivering m, EXEC puts the tuple (m,Tm, p) into the input queue QM ′ of M ′. Here p denotes
the port through which M ′ receives the message m. Whenever M is in the listen state, i.e. listen for
new messages, the execution retrieves all messages from QM with time-stamps Tm ≤ TM and forwards
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activate listen(M)

1: if ∀M ′ ∈M \ {M} : T̃M′ ≥ T̃M then
2: if M is timeless then
3: set TM = T̃M
4: else

5: set TM =
dT̃M ·cMe

cM
6: if QM is not empty then
7: Pull messages (m1, Tm1 , p1), . . . , (ml, Tml , pl)

with time-stamps Tmi ≤ TM from QM
8: activate M with m1, . . . ,ml on ports

p1, . . . , pl
9: else

10: activate M without input
11: activate ACT with a activation request

upon output (listen, T ) from M ∈M
1: set T̃M := T
2: activate listen(M)

upon activation by M ∈M without output

1: activate ACT with activation request

upon input (activate,M) from ACT

1: if M in listen state then
2: call activate listen(M)
3: else
4: activate M

Figure 4: Activation order methods in EXEC with machine set M and activation strategy ACT

them to M . In case there are several messages in QM ′ that could be retrieved at time TM ′ , QM ′ simply
returns all of them. All methods involved in message passing are presented in Figure 3.

3.1.5 Consistency Enforcing Scheduling

Other simulation-based frameworks use a sequential activation model: machines in the network directly
activate each other by sending messages and the environment or the adversary decides which machine is
activated in case no messages. We call these decisions the activation strategy. Keeping to this unrestricted
sequential activation model, however, causes several problems as soon as time is introduced: messages
from the past arrive at nodes which are already in the future or the activation order (which is usually
represented by the adversary or the environment) can push machines arbitrarily far into the future. The
example below shows how this can lead into problems with a timeout mechanism, assuming the adversary
decides the activation order.

Example 1: Inconsistencies with unrestricted sequential activation strategies. Consider ma-
chines M and M ′ which go into a timeout state if they do not receive a message up to some point in
time T ∗

1: Env repeatedly actives machine M through A, which causes M to activate for one step and then
return to the listening state. This effectively pushes M to time T > T ∗ the future.

2: M goes into the timeout state, as it did not receive any message until time T ∗

3: Env tells machine M ′ to send a message to M at time T0. Including processing the command, the
message is sent at time T ′

4: M receives a message from time T ′ < T ∗ at time T ∗.

M now erroneously went into the timeout state, even though M ′ sent a message to M before the timeout
should have occurred. �

We avoid such inconsistencies as follows: we introduce a special (listen, T ) state for the machines in the
network, in which they have to be in order to receive messages. Furthermore, we deviate slightly from
the traditional sequential activation model by discarding activation commands that do not satisfy the
following consistency enforcing property.

Definition 13 (Consistency Enforcing). An activation order of machines is consistency enforcing, if
∀M ′ 6= M : T̃M ≤ T̃ ′M whenever M is activated from the listening state. Here T̃M is the virtual time of
the machine M defined as follows:

• T̃M = min{T, Tm}, where Tm is the smallest time-stamp of a message in QM (or ∞ if no such
message exists), if M is in the (listen, T ) state

• T̃M = TM , if M is not in the (listen, T ) state

Consistency enforcing activation orders resolve inconsistencies regarding timing that might otherwise
occur in decisions made by machines in the network: for example, a machine deciding to cause a time-out
after not receiving messages up to some point in time T can be sure that it will not receive any messages
“from the past” after doing so, contrary to above example.
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Upon activation with input (write, D, d,M, TM ):

1: let D[Ti,∞] be the last version of D
2: set D[Ti,TM ] := D[Ti,∞]

3: remove D[Ti,∞]

4: set D[TM ,∞] := d
5: return confirmation to M

Upon activation:

1: if there is an input (lookup, D,M, TM ) then
2: put the request (lookup, D,M, TM ) into the queue QL
3: let T ∗ be the smallest timer value in MMEM

4: while ∃ lookup requests QL with time stamp T ≤ T ∗ do
5: remove request (lookup, D′,M ′, TM′) with smallest time stamp TM′ from QL
6: return data set D[Ti,Ti+1], TM ∈ [Ti, Ti+1) to requesting party M

Figure 5: The shared memory MEM

Corollary 2. Under consistency enforcing activation orders, whenever a machine M is activated from
the listen state at time T , M receives all messages m with time-stamp Tm ≤ T and any messages not yet
received were sent at a time T ′ > T .

3.1.6 Activation strategies

We need an activation strategy to determine the machine to be activated next whenever a machine turns
inactive after switching into the listen state. Under consistency enforcing activation orders, however, we
cannot take the same approach as previous frameworks, in which the adversary decides the activation
strategy: since the adversary is a time-sensitive component of the network and thus also affected by
consistency enforcing activation order, the network can end up in a deadlock situation where all machines
can either not be activated, or are stuck in the listen state. To avoid this problem we introduce the
activation strategy as a sub-machine of the execution EXEC.

Definition 14. The activation strategy ACT is a probabilistic, poly-time TM, which, given the state of
the network as input, determines the next machine to be activated.

ACT does not have a timer and implements the activation order based on the current state of the
network. EXEC enforces the consistency enforcing property be checking the required conditions whenever
ACT wants to activate a machine. In Section 3.2.1, we show that all consistency enforcing activation
orders are equivalent. The activation methods are depicted in Figure 4.

3.1.7 Shared Memory

As in other simulation-based framework, our goal is to analyze complex protocols by simplifying them
to ideal functionalities with additional capabilities. We captures these capabilities in form of shared
memory between all ideal peers in the network. Access to shared memory is granted via a special port
through which parties can request read/write actions on the memory.

Definition 15. A shared memory MEM is a machine without a timer which, given the current state of
the network, implements time-sensitive data exchange outside of message passing. The set of machines
with access to MEM is denoted with MMEM.

MEM maintains every version D[T1,T2] of each data-set D with respect to time (organizing them
through time-intervals [T1, T2] between changes) and on request at time T returns the version D[Ti,Ti+1]

of data set D with T ∈ [T1, Ti+1)

Note that, similar to the activation strategy presented in the last section, shared memory does not have a
timer, is therefore outside of time. Technically this means that both activation strategy as well as shared
memory are part of the execution, which is the only part of our network model that is not time-sensitive.
We however separate them from EXEC as sub-machines for a more modular definition.
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Similar to the activation orders, the concept shared memory causes consistency issues: For example,
what happens if a party that lives in the past changes a data set a party living in the future already read
(in the future)?

Example 2: Consistency issues in shared memory.
Consider two machines M (living at time TM ) and M ′ (living at time TM ′ < TM ) which both access the
shared memory MEM to read/modify a data-set d.

1: Env tells M to read d from MEM
2: M reads d from MEM at time TM + δ
3: Env tells M ′ to modify d in MEM
4: M ′ modifies d in MEM at time TM ′ + δ′ < TM + δ

M now has read the value of d which is actually no longer correct, as M ′ modified d in the past after M
read it. �

We solve these consistency issues by using a variant of consistency enforcing activation orders.

Definition 16. Shared memory access is consistency enforcing if a lookup requests (lookup, D,M, TM )
is only processed if ∀M ′ ∈MMEM : T ′M ≥ TM .

If this condition is not true, the shared memory puts the request together with its time stamp into a
input queue QL, which sorts all unanswered requests by their time stamps. Upon every activation, MEM
checks QL for unanswered lookup requests and retrieves the one with the smallest time stamp. MEM then
checks the lookup request for validity (based on its time stamp), and processes it if it is. In case MEM
cannot process any lookup requests, it finishes the execution without sending a confirmation message.
Figure 5 gives a possible pseudo-code implementation of a shared-memory unit in the time-sensitive
network model.

As a consequence of consistency enforcing memory access we get Corollary 3 which ensures consistency
of shared memory entries read by machines in the network.

Corollary 3. If a data set D is read by a party M from a consistency enforcing shared memory MEM
at time T , then any changes to D will only happen at a point in time T ′ ≥ T .

3.1.8 Compromisation

An important part in the analysis of protocols is accurately modeling adversarial capabilities, which
includes restricting the adversary’s access to the network, as well as differentiating between active and
passive adversaries.

Link corruption. Previous composability frameworks assume a global adversary which intercepts
all messages sent between parties over the network. This is a necessity for realization proofs between
protocols which do not inherently leak information to the adversary. However, in the special case of
anonymous communication (AC) protocols, a global adversary poses a problem: Tor, e.g., is not secure
against global adversaries [55, 47, 44, 14], it is not even designed to be secure against global adversaries.
Previous work on the analysis of Tor shows how partial compromisation of the network can be modeled
by introducing special network functionalities Fnet, which are used as a link between parties [2]. Fnet

only leaks a message to the network adversary if the communication link they represent is compromised.
To simplify the analysis, especially with regard to AC protocols, we assume an initially uncompro-

mised network. The environment Env, however, can compromise network communication links between
two machines by sending a compromise message to the execution EXEC indicating which link should be
compromised. Afterwards, any communication on the compromised link is forwarded to the adversary
A (see Figure 6).

We assume that inner-party communication, i.e. communication between children and parent nodes
inside a party P , cannot be intercepted without compromising the party: a party models a system that
resides at one physical location.

In order to keep EXEC modular, we introduce a network topology sub-machine NET, which handles
all requests regarding compromised links: compromisation requests from Env are forwarded to NET,
which internally maintains the corruption status of the network, and on request from EXEC, determines
whether a messages can be directly forwarded to the recipient, or is intercepted by the network adversary.
As we discuss for future work in Section 8, NET can also be extended to include network latency and
other parameters of the network.
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upon (compromise, id1) from parent of Mid1

1: if Mid1
/∈ CM then

2: replace Mid1 code to cdcomp
3: CM := CM ∪ {Mid1}
4: send (compromise) to Mid1

5: else
6: return error to Env

upon input (compromise, id1, id2) from Env

1: NET(compromise, id1, id2)
2: activate Env with (compromised, id1, id2) as

input.

Figure 6: Corruption Commands in EXEC for Adaptive Compromisation

upon (compromise, id1) from parent of Mid1

1: if Mid1
/∈ CM ∧M did not receive a message yet then

2: replace Mid1
’s code to cdcomp

3: CM := CM ∪ {Mid1
}

4: send (compromise) to Mid1

5: else
6: return error to Env

Figure 7: Machine Corruption in EXEC for Static Compromisation

Party corruption. The network machines themselves can also be completely compromised by the
environment Env. Upon receiving a compromisation message compromise, EXEC replaces the code
executed by the receiving machine M with the following code of a compromised machine cdcomp and
forwards the corruption message to M , which in turn responds with an answer to Env containing the
current state of M and from then on is under full control of the adversary(see Fig. 6). cdcomp is defined
as follows: whenever M receives a message, it is forwarded to the adversary, who in turn instructs M .

Since the adversary is modeled as a network party, we cover passive as well as active adversaries: a
passive adversary would simply forward all messages he intercepts, while an active adversary can send
additional messages through the network as well as change intercepted messages.

The analysis of AC protocols usually differentiates between two important classes of Compromisation.

Definition 17. An execution allows for static compromisation if machines and communication links
can only be compromised at initialization. It allow for adaptive compromisation if the environment can
compromise even during run-time.

While the presentation of EXEC in Figure 8 works for the adaptive case, we need to make some
changes for the static case: In the static case, a set of machines and links is already compromised at the
beginning of the execution and corruption commands are no longer available for the environment during
the execution.

Compromised machines however can still create new machines. These new machines should be com-
promisable before they start to interact with the rest of the network. We therefore allow for a modified
machine compromisation method in the static case, which only forwards the compromise command if it
is the first message the newly created machine receives (see Fig. 7).

3.1.9 Runtime Bounds

Correctly addressing polynomial runtime bounds for networks of machines has been a point of major
debate in the literature [29]. We adopt the solution put forward in [28, Section 6] . We only give a high
level idea of the notion of a probabilistic polynomial time network and refer to the GNUC paper for a
thorough discussion [28, Section 6].

The IITM-model proposes a simpler notion of poly-time machines which is compatible with our
communication model as well. As discussed in [28, Section 11.8] however, this notion does not imply
poly-boundedness for the composition of poly-bounded machines, which the definition in GNUC does.

We require that each message sent through the network begins with the string 1η, where η is the
security parameter used in the execution. If a machine is activated without a message, it receives the
string 1η on a special activation input port. This ensures that on any activation, the activated machine
has an input. We define polynomial time based on this input.
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Run-time of machines in the network is defined based on the length of the messages they exchange,
i.e. the flow between machines. To this end we denote with fep(η) the flow from the environment Env
to protocol machines Π, with fea(η) the flow from Env to the adversary A, and with fap(η) the flow
from A to Π.

We only consider environments which on each activation are polynomially bounded in their input
and which additionally are well-behaved.

Definition 18. An environment Env is well-behaved if there is a polynomial p such that for every
adversary and for all security parameters η,

fe(η) = fep(η) + fea(η) ≤ p(η)

With this, we can define probabilistic, poly-time protocols.

Definition 19. Let TΠ
η [Π,Env,A] denote the accumulated number of steps done by all machines running

Π. A protocol Π is probabilistic, poly time (PPT) if there exists a polynomial p such that for all every
well-behaved environments Env, TΠ

η [Π,Env,A] can be bounded by

Pr[TΠ
η [Π,Env,A] > p(fep(η) + fea(η))] ≤ negl(η)

In order to get an overall poly-time execution, we also only allow bounded adversaries.

Definition 20. An adversary A is bounded for Π if A is time-bounded for Π, i.e. there exists a
polynomial p such that for all well-behaved environments Env we have that

Pr[TAη [Π,Env,A] > p(fep(η) + fea(η))] ≤ negl(η)

and if A is flow-bounded for Π, i.e. there exists a polynomial p′ such that for all well behaved environments

Pr[fap(η) > p′(fea(η))] ≤ negl(η)

With these restrictions we get an execution EXEC which overall uses a polynomial number of steps
in the security parameter η.

Lemma 1. For all well-behaved environments Env, all PPT protocols Π, all bounded adversaries A for
Π and all inputs x ∈ {0, 1}p(η) the execution EXECη(Π,A,Env) is probabilistic polynomial time in η with
overwhelming probability.

The lemma follows, on the one hand, from Π and A being polynomially time-bounded in their in-
coming flow (with overwhelming probability), A being flow bounded (with overwhelming probability),
and Env being well-behaved. On the other hand we have that EXEC only requires polynomial time to
update the timers of each machine, compute their local time-functions, compute the input queues of each
machine and check the condition for consistency enforcing activation orders. EXEC therefore overall only
uses polynomial time.

Note that we also inherit the notion of invitations from GNUC. This technical artifact is sometimes
required for the construction of the simulators in proofs of secure realization (see 4), which often cannot
wait until they receive a message from the environment before they interact with protocol machines.
For brevity we do not directly include them into our construction, but stress that their inclusion do not
cause any problems with runtime bounds: invited messages do not count towards the flow we bound.
But since only polynomially many invitations are generated, the overhead of invited messages can be
polynomially bounded as well.

3.1.10 Discussion

Modeling asynchronous communication despite consistency enforcing scheduling. In other
simulation-based framework, such as UC, GNUC, RSIM, IITM, the environment (or sometimes the
network adversary) decides which machines are activated next. Quantifying over all possible activation
strategies in particular includes those scenarios in which a message transmission is arbitrarily delayed.
Canetti argues that such an activation order is chosen for modeling asynchronous communication [12,
page 28].
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In spite of consistency enforcing activation orders, TUC can be used to model asynchronous com-
munication by protocols that do not use their local clock.4 Arbitrary networks delays for compromised
links can be modeled in TUC since the network adversary can arbitrarily delay a message.

Beside the advantage that asynchronous communication can be modeled by arbitrary activation
strategies, another effect of (traditional) arbitrary activation strategies is that it can model, by not
activating a machine, crashed nodes, but only if these machines would not have received any message
(otherwise this message would activate them). Since this mechanism anyway only covers machines that
would not have received any messages, we believe that such crashes should rather be explicitly modeled,
i.e., in the same way as corruptions, and not via an activation strategy.

Encoding our approach in previous frameworks. It might be possible to wrap each machine M
in the network in a local wrapper W that performs the same actions as the execution EXEC in TUC. W
would count the number of steps that M performs and divides these steps by the speed of that party to
calculate M ’s current time. This wrapper W would for each outgoing message from M add a timestamp
and for each incoming remove the timestamp before forwarding it to the recipient. Moreover, W would
order every incoming messages in a time-ordered input queue and only deliver those message to M for
which M already proceeded far enough in time.

Such a network of locally wrapped machinesW (M1), . . . ,W (Mn), however, does not ensure the consis-
tency enforcing property for activation orders, i.e., allows inconsistent activation orders (see Example 1).
Since consistency enforcing is a global property the local wrappers W would have to synchronize their
timer information to find the next, eligible party and activate this party (by sending some dummy mes-
sage). Although it might be possible to show that such an encoding is equivalent to our approach, we
believe that it is more elegant and easier to understand to incorporate time-sensitive adversaries as done
in TUC.

3.2 Properties of EXEC

We present two properties which will be helpful for proving the security properties of TUC.

3.2.1 Simplified activation strategy

It turns out that under consistency enforcing all activation strategies are equivalent to the following
activation strategy SAS, as long as no deadlocks occur: the next machine to be activated is selected
based on each machine’s timer T by randomly selecting a machine with the lowest timer value.

Theorem 1. Let EXEC′k,S,t(Π,A,Env) denote the machine that executes EXECk(Π,A,Env) with the

activation strategy S. Moreover EXEC′k,S,t(Π,A,Env) records the internal states of all machines in the
execution after each step together with the global time in which that machine was during that state. After
the execution finished, EXEC′k,S,t(Π,A,Env) outputs the sequence of all states of all machines (including
A and Env) up to the time t. Let reach(S, t) denote the following property: the probability that for all A
and all Env and all x ∈ {0, 1}∗ in EXEC′k,S,t(Π,A,Env) all machines reach a time > t is overwhelming
in k.

Let A be a (potentially timeless) machine and let S1, S2 be any two activation strategies, i.e., any
two machines that, given all the information that the execution EXEC has, (adaptively) determine which
machine shall be activated next. For all sets of machines P := {P1, . . . , Pn} (n ∈ N), S1 is indistinguish-
able from S2, i.e., for all points in time t ∈ Q and for all distinguisher machines D there is a negligible
function such that:

reach(S1, t) and reach(S2, t) =⇒∣∣∣Pr[b← 〈D | EXEC′η,S1,t(Π,A,Env)〉 : b = 1]

− Pr[b← 〈D | EXEC′η,S2,t(Π,A,Env)〉 : b = 1]
∣∣∣

≤ µ(η)

Proof. First, we prove the following statement.

4Even the slightly stronger setting in which each party uses its local clock, but the clocks are completely unsynchronized
can be modeled by unsynchronized local time functions (see Section 3.1.3).
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Claim 1: For two activation strategies S1 and S2, EXEC′η,S1,t(Π,A,Env) is indistinguishable from

EXEC′η,S2,t(Π,A,Env) if and only if the sequence of results of all listen-commands, i.e., the input message
with which the respective machine is activated, is indistinguishable in both scenarios.

Proof of Claim 1. By the definition of EXEC all the information that A can observe is independent
of the activation order except of the results of the pull-queries to the input queue QA. Hence, it is
indistinguishable whether the strategy S1 or S2 has been used. The reverse direction holds because
every machine can use the result from the listen -command to distinguish the two settings. �

Let EXEC′η,S1,t,i(Π,A,Env) be the execution (with the activation strategy S1) that stops after the

ith activation of a machine that is in the listen state. Let EXEC′η,S2,t,i(Π,A,Env) be defined analogously.
We perform a proof by induction over the activation of machines that are in the listen state.
Induction basis (i = 0): By Claim 1 the two activation strategies are indistinguishable.
Induction step (i > 0): We know that for all i − 1th listen activations the two activation strategies

S1 and S2 are indistinguishable. Thus, the results of all i− 1 listen-commands are indistinguishable for
both activation strategies S1 and S2. Thus, by Claim 1, it remains to show that also seeing the result of
the ith listen-command is indistinguishable.

Let M be the ith machine that is activated in the listen state. If no machine sent a message to M
since the i − 1th listen-command, the statement follows by induction hypothesis. Assume that at least
one message has been send to M since the i− 1th listen activation. Let T be the global time of M when
it issue the listen-command. By consistency enforcing property of the activation order, we know that all
machines are at least in time T ′ ≥ T when M is activated in its listen state for any activation strategy
S that lets all machines reach the (global) time T . By the definition of EXEC, we know that after M is
activated (upon a listen-command) no machine can send a message M that will get a timestamp ≤ T .
Hence, the input of the listen activation, i.e., the inputs from the input queue QM , are independent from
the activation strategy. Hence, by Claim 1, the statement follows.

Theorem 1 directly implies that the activation strategy SAS is indistinguishable from any other
activation strategy as long as no deadlock occurs.

Corollary 4 (SAS is equivalent to all deadlock-free activation strategies). The activation strategy SAS
is indistinguishable from any other, deadlock-free activation strategy(in the sense of Lemma 1).

3.2.2 Internal Simulation of Multiple Machines

Here we show that a finite number n of timed machines M1, . . . ,Mn in our network can be simulated by a
single machine M∗ which shows same behavior as the n separate machines. While the internal simulation
is clearly not a problem if M∗ is timeless (even if some of the simulated machines are timeless), this is
not clear for the case where M∗ is a timed machine with a timer that automatically progresses in time
whenever M∗ does a computation step.

The following lemma will allow us to simplify large parts of the theorems we show regarding the
security definition we introduce in section 4.

Lemma 2. For any set of n timed machines M1, . . . ,Mn in the network there exists a single timed
machines M∗ which shows the same behavior as M1, . . . ,Mn for consistency enforcing activation orders.

Proof. We construct and show that M∗ sends the same messages as M1, . . . ,Mn, together with the same
time-stamps, into the network.

Construction: We set the speed coefficient of M∗ to cM∗ = n · cM ′ +O(n), where M ′ ∈ {M1, . . . ,Mn}
is the machine with the highest speed coefficient. The local time function of M∗ is the identity.5 This
allows M∗ to do at least one computation with every internally simulated machine without progressing
in time further than M ′ (since each simulated computation step also causes one computation step in
M∗).

M∗ inherits all ports of the machines it simulates. Thus all messages intended for the internal
machines are first received by M∗, who then forwards them appropriately.

In particular this implies that M∗ has more than one network port: M∗ has n network ports, each
of which are identified with the identifiers of M1, . . . ,Mn. This is necessary since M∗ needs to be able
to differentiate between the recipients of messages coming into M1, . . . ,Mn and the senders of messages

5This is important for recomputing the execution EXEC.
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going out of M1, . . . ,Mn. Since EXEC automatically identifies network ports based in machine ID, mes-
sages targeted at machines inside M∗ are automatically forwarded to M∗.

In principle, M∗ simply emulates the network execution for the machines it simulates, managing message
passing from the machines to the real execution EXEC and the activation order. As shown in Lemma 1,
M∗ can adopt the strategy of activating the machine with the lowest timer value.

In particular, M∗ now works as follows: on regular activation, M∗ simulates each machine M1, . . . ,Mn

for one computation step at a time, each time activating a machine M ′ with the lowest timer TM ′

(randomly choosing one if more than one machine is at time TM ′). M∗ stops the simulation if all
machines with the lowest timer value are either in the listening state or returned control to the execution.
M∗ sends each message sent out by the simulated machines using the delayed sending command (see
Figure 3), using the appropriate time-stamps.

M∗ performs idle steps until its own timer matches the lowest timer value T ′. Then, M∗ turns into
the listening state of the network port of machine Mi if there is a machine Mi at T ′ that is in the listening
state (randomly choosing one if there is more than one), or simply returning control to EXEC otherwise.

If activated from the listening state, M∗ automatically receives all messages on its ports with time-
stamps smaller than TM∗ . These messages are forwarded to the message queues of the machines inside
M∗, with TM∗ as a time-stamp, and each machine is in turn activated for one computation step each.
M∗ then continues with the usual activation order as described above.

Upon a command (listen, T ) from a party, M∗ computes the virtual time T̃M for each machine M
and handles the (listen, T ) command as EXEC. M∗ can compute for a machine M the virtual time T̃M
since it knows the speed coefficient of M and the content of the input queue of M .

We show by induction over the activations of M∗ that M∗ shows the same behavior towards the rest of
the network as M1, . . . ,Mn:

Activation 1: On initial activation, all timers are the initial value, and no machine is in the lis-
tening state. M∗ will in turn simulate each internal machine until all machines with the lowest timer T ′

either sent a message or went into the listening state.
Due to our selection of the speed coefficient cM∗ of M∗, we have that at this point TM∗ < T ′, with

enough time for M∗ to forward all messages sent by the simulated machines using the delayed sending
command, and turning into the listen state at time T ′. Since all messages until T ′ were sent with the
right time stamp, and the simulated machines are activated in the same order as they would have been
activated from the execution (due to consistency enforcing scheduling), the behavior of M∗ is the same
as the behavior of each single machine M1, . . . ,Mn.

Activation i → i + 1: M∗ is either gets activated regularly or from a listening state. The for-
mer case is the same as for the initial activation above, hence we only consider the activation from the
listening state.

Being activated from a listening state means there are machines with timer value TM∗ simulated in
M∗, which also are in the listening state. Due to consistency enforcing scheduling, each of these machines
receive all messages they would have received in the regular network as well (since all other machines in
the network have progressed past TM∗).

Messages forwarded to machines which are not in the listening state at time TM∗ correctly receive these
messages once they go into the listening state. The potentially changed time-stamp of these messages
inside M∗ does not influence the behavior of each machine as they do not receive the time-stamp of the
message (it is only used by the network execution, which here is simulated by M∗).

Hence all machines receive the same messages as in the regular network, at the same points in time,
and thus will also produce the same output messages, at the same points in time, as well.

We stress that Lemma 2 does not enforce the tree-restrictions of machines inside a party defined in
Section 3.1.1. One should still mind these restrictions if composition is to be used on together with
above construction.

As a corollary, we can show that a timeless machine can also internally simulate other timeless
machines.

Corollary 5. For any set of n machines M1, . . . ,Mn in the network there exists a single timeless
machines M∗ which shows the same behavior as M1, . . . ,Mn for consistency enforcing activation orders.
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Proof. The simulator is exactly constructed as in the proof of Lemma 2 except that the activation
is slightly modified. All timed machines are only activated once in one point in time, but timeless
machines are activated (in a round-robin manner) as often as they stay in that point in time. Moreover,
if a simulated timeless machine Mi sends a message at time t and no other machine wants to perform a
computation, M∗ performs a (listen, t) command, where t is the minimal time of the next timed machine
that could perform a step and a message that shall be sent or.

3.3 Protocols

A protocol is a runtime library that assigns to each basename (i.e., protocol name, session parameter,
and role) used in session IDs the respective program code to be executed by the respective machine
and the speed of the machine that executes the code. Recall that a network has only one such runtime
library, i.e., one protocol. This library assigns to all parties the respective code and speed for the single
machines.

In the definition below, we denote with Dist(X) ⊂ X → [0, 1] the set of distributions over the natural
numbers (without 0). Moreover, we denote with MonA→B the set of strictly monotic functions from A
to B and with D the set of machine IDs.

Definition 21. For a set P of party IDs and a set of basenames D, a protocol is a runtime library
π : P ×D → {0, 1}∗×Dist(N)×Dist(MonQ→Q), which assigns every party pid ∈ P and basename d ∈ D
the code c ∈ {0, 1}∗ run by every machine with basename d, an efficiently computable speed-distribution
S ∈ Dist(N[X]) from which the execution EXEC can draw the speed coefficient for newly created machines,
and an efficiently computable local-time function distribution F ∈ Dist(MonQ→Q) over strictly monotic
functions.
A protocol π′ is a subprotocol of π over domain D′ if D′ ⊆ D and π restricted to D′ equals π.

A protocol Π also restricts the set of protocol-names {d1, . . . dl} ⊂ D that a machine ID d ∈ D can
call as subroutines. By the requirements listed in in [28, Section 5], these restrictions constitute an
acyclic call graph on the protocol-names with a unique root r. We then call Π rooted at r. With this,
the machine-trees representing a party in the network effectively are a protocol-tree, representing the
different protocols and subprotocols used by a party for communication in the network.

Example 3: Protocol. Consider a network run by an execution EXEC with protocol Π and a ma-
chine M with machine ID idM = (pid, ((main, x, empty))) wants to invoke a new TLS connection to
another machine in the network. M would then address a new machine M ′ with machine ID idM ′ =
(pid, ((main, x, empty), (tls, x′, empty))) over the port pid.((main, x, empty)).((main, x, empty), (tls, x′, empty)).
EXEC recognizes that M ′ does not yet exist and checks whether ((main, x, empty), (tls, x′, empty)) is a
proper extension of ((main, x, empty)) (i.e. main is allowed to invoke tls as a subprotocol). If the check
succeeds, EXEC creates a new machine, queries (cd ,S,LT )← Π(idM) and assigns the new machine cd as
its code, a speed coefficient c′ drawn from S as its speed, and a local time function f drawn from LT . �

3.3.1 Composition

Composition of protocols is a useful tool for analyzing complex protocols by breaking them down into
simpler to analyze, smaller sub protocols. In Section 4 we present the universal composability theorem
which allows us to derive the security of a composed protocol from the security of its parts.

The following definitions are in line with the definitions for composition in GNUC [28, Section 5].

Definition 22. The sub-protocol Π′ = Π|x of Π is the restriction of Π to D′, the set of all basenames
reachable from the basename x.

We denote with Π\x the protocol over all protocol names which are reachable from the root r without
going through a node with basename x.

Definition 23. Let Π′ = Π|x be a sub-protocol of Π and let Π′1 be a protocol rooted at x. Π′1 is
substitutable for Π′ if for all y ∈ D(Π \ x) it holds that Π(y) = Π′1(y)

We denote the substitution of Π′ in Π as Π1 = Π[Π′/Π′1]. That is, Π1|x = Π′1 and Π1 \ x = Π \ x.
Composition in our network model comes down to replacing sub-trees inside the machine-tree of a

party. Figure 9 gives an example for such a substitution. On the protocol level, composition comes down
to replacing the code provided for all basenames in a sub-tree of the acyclic call graph of basenames.
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Initialization: All input tapes are set to empty, all timer-variables are set to the initial value and no links are
compromised.
Machine Activation: Every time a party M ∈ M gives control to the network execution, to current global time
TM for M is updated according to TM := TM + n

cM
, where n is the number of steps done by M in its last activation

and cM is its speed coefficient.

upon (m, id) on port net from M ∈M at time TM
1: if id is a peer of id(M) then
2: (r,m, Tm)← NET(id(M), id,m, TM )
3: if r = A then
4: put (m,TmM,net) into QAi

of the correspond-
ing sub-adversary Ai.

5: activate Ai.
6: else
7: put (m,Tm, net) into Qid

8: if Mid in listen state then
9: if TM ≤ T̃Mid

then

10: set T̃Mid
:= TM

11: activate listen(Mid)
12: else
13: activate Mid

14: else
15: return error to M

upon m on port p 6= net from M ∈M at time TM
1: if there is a machine with input port p then
2: let id be the machine ID of the unique machine

with input port p
3: put (m,TM , p) into QMid

4: if Mid in listen state then
5: if TM ≤ T̃Mid

then

6: set T̃Mid
:= TM

7: activate listen(Mid)
8: else
9: activate Mid

10: else
11: if p = pid(M).sid(M).sid′∧

sid′ proper extension of sid(M) then
12: let (cd ,S,LT ) = Π(pid(M), basename(sid′))
13: sample speed c′ from S
14: sample local time function f from LT
15: create a new machine M ′ with code cd ,
16: sid(M ′) := sid′

17: c(M ′) := c′

18: set up translation of M ′’s environment port to
p

19: set TM′ = TM
20: put (m,TM , p) into QM′
21: activate M ′

22: else
23: return error to M

upon input (compromise, id1, id2) from Env

1: NET(compromise, id1, id2)
2: activate Env with (compromised, id1, id2) as input.

upon (compromise, id1) from parent of Mid1

1: if Mid1
/∈ CM then

2: replace Mid1
code to cdcomp

3: CM := CM ∪ {Mid1
}

4: send (compromise) to Mid1

5: else
6: return error to Env

upon (delay,m, t) on port q from M ∈M \ {Env,A}
1: if t ≥ fM (TM ) then
2: compute global time T = f−1

M (t)
3: execute appropriate send message for m with time

stamp T for port q
4: else
5: return error to M

upon input (time) from M ∈M
1: retrieve TM
2: compute local time tM := fM (TM ).
3: activate M with input tM on the time tape.

before every input (cmd, t) from M ∈ {A,Env}
1: if t > 0 then
2: set TM := TM + t
3: proceed with cmd
4: else activate M with error

upon output (listen, T ) from M ∈M
1: set T̃M := T
2: activate listen(M)

upon activation by M ∈M without output

1: activate ACT with scheduling request

upon input (activate,M) from ACT

1: if M in listen state then
2: call activate listen(M)
3: else
4: activate M

activate listen(M)

1: if ∀M ′ ∈M \ {M} : T̃M′ ≥ T̃M then
2: if M is timeless then
3: set TM = T̃M
4: else
5: let k∗ = min{k ∈ N | k

cM
≥ T̃M}

6: set TM = k
cM

7: if QM is not empty then
8: Pull messages (m1, Tm1 , p1), . . . , (ml, Tml , pl)

with time-stamps Tmi ≤ TM from QM
9: activate M with m1, . . . ,ml on ports p1, . . . , pl

10: else
11: activate M without input
12: activate ACT with a scheduling request

Figure 8: The full description of the execution EXEC for the time-sensitive network execution with adap-
tive compromisation. The machine set M denotes all machines, including environment and adversary,
A denotes all machines in the adversary party.

3.4 Ideal Functionalities

Typically, the notion of secure realization is used to prove that a protocol Π is as secure as a simpler
protocol π that has some additional capabilities, such as a shared memory for all machines running π.
Protocols that have such additional capabilities are called ideal functionalities.
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(a) Real Protocol
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F

S

(b) Substitution with Ideal Functionality

Figure 9: Substitution operation and the construction for the universal composability theorem – a sub-
protocol is substituted for an ideal functionality F and its sub-adversary by the simulator S used in the
universal composability proof

An ideal functionality is a protocol, i.e., every party contains a copy of the ideal functionality in its
protocol tree, and all of these copies share a common state (see Section 3.1.7). Since such a copy of the
ideal functionality is part of the protocol tree, we allow the basenames of each machine to require ideal
or real protocol code, instead of classifying ideal machines by their party IDs, as in GNUC [28].

In contrast to previous work, we furthermore allow ideal functionalities to have children. Whenever
ideal machines use common routines, such as communication channels, it is very convenient to be able
to formalize such a routine as a child, e.g., as an ideal functionality for communication channels.

We adopt the restriction from GNUC that ideal machines can only communicate with ideal peers in
the network and that ideal machines cannot be compromised.

Previous work [12, 28, 39] models ideal functionalities as a single, separate machine that has a direct
connection to the rest of the protocol via a so-called dummy nodes that solely forwards messages between
the ideal functionality and the parent protocol.

In a time-sensitive setting, however, an ideal functionality has to abstract several machines, each of
which has their own timer. It is therefore much more natural to consider distributed ideal functionalities
than having a central ideal functionality: in the centralized setting the ideal functionality would have to
manage the timers of each machine it replaced (each of which was in different parties in the network),
as well as manage the additional delay the dummy nodes create. In the distributed setting, on the other
hand, each instance of the ideal functionality is a separate machine with its own timer, allowing for a
much simpler construction.

In the following, we therefore use distributed ideal functionalities, in particular for our abstraction of
the onion routing protocol used in Tor (see Section 6).

3.4.1 Central vs. Distributed Ideal Functionalities

A central ideal functionality is a machine without parents that is a peer of so-called dummy nodes. Similar
to previous work, a dummy node is linked to a central ideal functionality F (see below). Upon receiving
a messages from its parent node, a dummy node forwards this message to the machine F . Analogously,
upon receiving a message from the machine F , the dummy node forwards this message to its parent
node. A dummy node can not have any children. Similar to functionality nodes, dummy node can not
be compromised.

For the sake of convenience, we treat dummy nodes as re-wirings, i.e., reroutings. Formally, dummy
nodes live at all points in time at once, we say they are omni-time machines. Upon receiving a message
at time t they also forward the message at time t, without any delay. It would be possible use normal
machines as dummy nodes, but then the central ideal functionalities would have to compensate the time
the dummy nodes need for forwarding messages.

In contrast to a central ideal functionality, we call an ideal functionality as considered in our frame-
work, i.e., that consists of several nodes with the same code and a shared memory, a distributed ideal
functionality.

We define for every central ideal functionality a corresponding distributed ideal functionality. Each
replica uses the same code of the central ideal functionality but we replace each memory access with an
access to the shared memory. Analogously, we define for every distributed ideal functionality a central
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ideal functionality by using the one code that all machines share and replacing each access to the shared
memory with access to the local memory.6

Corollary 6. Let Fr be a distributed ideal functionality without children and Fc be the corresponding
central ideal functionality. Then, Fr ≥t Fc and Fc ≥t Fr.
Proof. This lemma directly follows the internal simulation lemma (Lemma 2) and from Corollary 3, i.e.,
from the consistency enforcing scheduling of a shared memory: every write operation is scheduled before
any other read operations that take place by parties that are already in the future.

A note on adding omni-time dummy nodes. Extending our framework with such dummy nodes
that are omni-time machines, still preserves all previously proven statements. The crucial difference is
in the internal simulation lemma (Lemma 2 and Corollary 5). The internal simulation is perform almost
verbatim with the difference that dummy nodes are not internally executed but rather understood as
re-wiring instructions: given a machine M that has a dummy nodes child that in turn in connected to an
ideal functionality F , in the internal simulation the port to the dummy node child is directly connected
to the corresponding port in F . With this construction almost by the same arguments Lemma 2 and
Corollary 5 hold, which in turn implies the completeness of the dummy adversary (Lemma 3) and the
composition theorem (Theorem 2).
This concludes the presentation of the time-sensitive network model used in TUC on which we want to
base our time-sensitive analysis of anonymous communication protocols. The next section presents the
security notion we will use for this analysis.

4 Secure Realization

We present the notion of secure realization adopted in TUC and show that important properties of secure
realization such as the completeness of the dummy adversary and universal composability hold.

4.1 Security Definition

In the same spirit as in other simulation-based frameworks, we adopt the notion of secure realization.
A protocol π is compared to a simplified protocol ρ and is shown to be at least as secure: π securely
realizes ρ, if every attack against π is also possible against ρ. 7 More formally we require that the
output distribution of the execution running the protocol π, an adversary A and an environment Env is
indistinguishable from the output distribution of the execution running the simplified protocol ρ with a
simulator S and the same environment Env. We define the indistinguishability of different execution as
follows. This definition is a reformulation of the indistinguishability of binary random variable ensembles
in [11].

Definition 24 (Indistinguishability). Two ensembles (EXECη(Π,A,Env))η∈N and (EXECη(Π′,A′,Env′))η∈N
are indistinguishable, denoted

EXEC(Π,A,Env) ≈ EXEC(Π′,A′,Env′),

if for every c ∈ N there is a η0 ∈ N such that for all security parameters η > η0 we have that

|Pr[EXECη(Π,A,Env) = 1]

−Pr[EXECη(Π′,A′,Env′) = 1]| < η−c

Using this definition, we can now formalize secure realization.

Definition 25. A protocol π securely realizes another protocol ρ, written π ≥t ρ, if for all PPT adver-
saries A there is a PPT simulator S such that for all PPT environments Env

EXEC(π,A,Env) ≈ EXEC(ρ,S,Env)

6Formally, we actually require that the states of the Turing machine of the central ideal functionality are the cartesian
product Sk of the states S of the Turing machine of the distributed ideal functionality, where k is the number of parties.
Otherwise, moving the reading head of the program tape does not take the same amount of steps for the central ideal
functionality.

7Recall that the speed of a protocol party (along with the local time function) is determined by the protocol, more
specifically the speed (and the local time function) distribution.
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As the notion of secure realization is based on the notion of indistinguishability, we get as a direct
consequence the transitivity and reflexivity of ≥t.

Corollary 7.
Π ≥t Π and Π1 ≥t Π2 ∧Π2 ≥t Π3 =⇒ Π1 ≥t Π3

Proof. The theorem follows directly from the transitivity and reflexivity of ≈, on which we based
our definition of ≥t: Due to Π1 ≥t Π2, there is a simulator S1 such that EXEC(Π1,Ad,Env) ≈
EXEC(Π2,S1,Env). But since Π2 ≥t Π3, there exists a simulator S2 for S1 such that EXEC(Π2,S1,Env) ≈
EXEC(Π3,S2,Env) holds. Due to the transitivity of ≈ we therefore get as required

∀Env : EXEC(Π1,Ad,Env) ≈ EXEC(Π3,S2,Env).

Reflexivity can be shown similarly.

4.2 Properties of Secure Realization

In order to simplify the analysis of complex protocols, traditional composability frameworks depend on
central properties of secure realization in their frameworks. We show that these properties hold in our
model as well. In particular, we can view these properties as sanity checks, which attest that, with the
notion of time we introduced earlier, we still get a well-formed model that allows for proving security
guarantees for complex protocols.

The most important design decisions with regard to shoving these properties include making Env and
A timeless (see Section 3)as well as having machines run with polynomially bounded speed coefficients
(see Section 3.1.3). The proofs for the following results are slightly adjusted compared to their counter-
parts in classic composability frameworks, such as presented in [28], in order to account for timing.

4.2.1 Completeness of the Dummy Adversary

The definition of secure realization quantifies over all possible adversaries for the realizing protocol. In
order to simplify this, we show that it is enough to only consider the dummy adversary Ad, which just
forwards all messages (with timing information) between environment and network parties. Furthermore,
whenever Ad is activated without a message, it turns into the (listen,∞) state and waits until it receives
a message.

While the central construction for the proof are the same as in classic proofs, where the original
adversary A is coupled with the dummy adversary Ad before they are split, we need to be careful with
the additional delay δ the dummy adversary Ad induces whenever it forwards a message. We deal with
this delay δ by setting it to be exponentially small, and using the fact that polynomially bounded speed
coefficients of regular protocol machines also induce an at least polynomially large gap between two
activations of protocol machines: This creates a tunnel in which Ad can delay messages without affecting
the rest of the network. The rest of the Lemma then follows from Corollary 5.

Before we can show the completeness of the dummy adversary however, we require the following
insight, which shows that in a network of machines with polynomial speed coefficient (i.e. make at most
a polynomial number of steps per second), there is always an at least polynomial gap time-gap between
two activations of machines.

Corollary 8. Given two polynomials A,B ∈ N[X], there exists a polynomial p ∈ N[X] such that,
∀k, l ∈ N.∃n0.∀η ∈ N, η > n0. if

k

A(η)
− l

B(η)
> 0

then
k

A(η)
− l

B(η)
≥ 1

p(η)

Proof.

k

A(η)
− l

B(η)
≥ 1

p(η)

⇔ p(η) ≥ A(η)B(η)

kB(η)− lA(η)
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Since both A(η) and B(η) are natural valued, we know that for all η > n0 we have 1 ≤ kB(η)− lA(η).
Thus, for all η > n0

A(η)B(η)

1
≥ A(η)B(η)

kB(η)− lA(η)

Choosing p(η) := A(η)B(η) proves the claim.

Given Corollary 8 we can now proof the completeness of the dummy adversary.

Construction of the dummy adversary. The dummy adversary merely forwards messages from the
protocol to the adversary and vice versa.

Ad: upon a message m from a protocol Π

request time from EXEC; wait for result tAd

send m to Env at time t+ 1/2η

listen until activated

Ad: upon a message (m,P, t) from the environment Env

send m to P at time t
listen until activated

Lemma 3 (Completeness of the dummy adversary). If there exists an adversary S for a protocol Π such
that for all environments Env,

EXEC(Π′,Ad,Env) ≈ EXEC(Π,S,Env)

then Π′ ≥t Π.

Proof. Take any adversary A for Π. We substitute A with the dummy adversary Ad, and put A together
with Env into the new environment Env′, which emulates the execution for Env and A.

The internal simulation of Env and A works as in the proof of the internal simulation lemma
(Lemma 2). Since Env′ is timeless, it has to decide how to proceed in time. The timer of Env′ al-
ways matches the minimum of the timers of Env and A, and Env′ is in the listen state if the machine
with the lowest timer is in the listen state as well. Whenever Env′ is activated without a message,
Env internally activates the machine with the lowest timer (independent of state) and then continues
to activate the machine with the lowest timer until this machine is in the listen state at time T . During
this process, Env′ adds the factor δ to TA whenever it evaluates which timer is lower, where δ = 1/2η

is the time the dummy adversary progresses in time on each activation, e.g., whenever Env′ decides in
which . This off-set is necessary in order to correctly synchronize the dummy adversary and A. As a
consequence, whenever Env’ returns control to EXEC, we have that TEnv′ = min{TEnv, TA + δ}.

Whenever A in Env′ sends a message m to a protocol party P at time t, Env′ instructs the dummy
adversary Ad to send the message at time t′ := max{T ′Env + δ, t− δ} (with the message (m,P, t′)).

It remains to show that this scenario is indistinguishable for the original network adversary A, the
original environment Env, and the protocol Π.

Claim 1. Let EXECA,η be defined as EXECη except that it outputs the sequence of internal states (i.e.,
the contents of all tapes of all machines) of A during the execution. Then, EXECA,η(Π,A,Env) is
indistinguishable from EXECA,η(Π,Ad,Env′).

Proof. Recall that the dummy adversary is activated at time T when a message arrives from the protocol
Π. Thus, the environment Env′ receives the message at time T + δ. Since Env′ keeps in its internal
simulation a δ-gap to the timer of A and then directly forwards the messages to A, A thinks it receives
the messages at time T .

Claim 2. Let EXECEnv,η be defined as EXECη except that it outputs the sequence of internal states (i.e.,
the contents of all tapes) of Env during the execution. Then, EXECEnv,η(Π,A,Env) is indistinguishable
from EXECEnv,η(Π,Ad,Env′).

Proof. Messages from subroutine ports of regular machines are forwarded to Env with the current time
of Env’ as (the internally simulated) time-stamp. Since TEnv ≥ TEnv′ , these messages timely arrive at
Env.
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Claim 3. Let EXECΠ,η be defined as EXECη except that it outputs the sequence of internal states (i.e.,
the contents of all tapes of all machines) of Π during the execution. Then, EXECΠ,η(Π,A,Env) is
indistinguishable from EXECΠ,η(Π,Ad,Env′).

Proof. It suffices to show the following two properties: (i) messages from the environment are indistin-
guishable; (ii) messages from the network are indistinguishable.

By the same arguments as in the proof of Lemma 2, messages from the environment are indistin-
guishable since Env′ perfectly simulates Env.

Next, we show that all messages from the dummy adversary Ad arrive at a time T ′ that is indistin-
guishable from the time T at which the network adversary A sends the messages. Recall that the time
gap of that the dummy adversary for sending a message is δ = 1/2η.

We show by induction the ith message m̃ received by the dummy adversary Ad that Ad forwards a
message from the adversary A either

1.) at the time TA = TAd
or

2.) at a time TAd
such that Tπ + k/2η ≥ TAd

≥ TA = Tπ + δ′ where δ′ is some time induced by A, k is
polynomially bounded, and Tπ is a protocol time, i.e., a time in which some protocol party can be.

In the base case, Ad is by construction in time 0 and listens until it receives a message. Observe
that the dummy adversary only receives messages from the adversary A and not from Env. Thus, the
environment Env′ sends the message from the A at time max{δ, TA − δ}. Since the speed coefficient of
regular machines are polynomials (see Section 3.1.3), we know by Corollary 8 that the gap between two
protocol times is at least 1/p(η), for some polynomial p. Hence, any protocol machine that is in a listen
state will receive messages up to a time ≥ 1/p(η) > max{δ, TA − δ}.

In the case that the dummy adversary Ad already received previous messages, we distinguish two
cases. First, the last message m that Ad received came from the protocol Π. Second, the last message
m that Ad received came from A (via Env′).

In the first case, let T̃Ad
be the time at which Ad received the message m from the protocol. By

construction, Ad immediately forwarded the message, hence sent it to A (via Env′) at time Tπ + δ =
Tπ + 1/2η. By construction of Env′, Ad receives the response m̃ of A at time T̃Ad

+ δ and sends it at
time T̃Ad

+ 2 · δ.
Assume we have by induction hypothesis that for the last message m′ (at some time before m) from

A we have Tπ + k/2η ≥ T ′Ad
≥ T ′A = Tπ + δ′ where Tπ is some protocol time and δ′ is some gap that

is induced by A. Hence, Ad was able to receive the message m from the protocol at a time T̃Ad
= TAd

such that Tπ + k/2η ≥ T ′Ad
≥ TA = Tπ + δ′. Thus, we get that Ad forwards the response m̃ of A at time

Tπ + k + 2 · δ = Tπ + k + 2/2η.
If we have by induction hypothesis that T ′A = T ′Ad

, then the message is sent at time T ′Ad
+ 2 · δ =

TAd
+ 2 · δ, which satisfies the statement.

In the second case, let T̃Ad
be the time at which Ad received m. Let m′ be the i− 1th message and

T ′Ad
be the time-stamp of Ad for sending m′ and T ′A be the time-stamp of A for sending m′. If we have

by induction hypothesis that T ′A = T ′Ad
for the time-stamp of m′, we again distinguish two cases: first,

A sent the message m̃ at a time T such that T ≥ T̃A + δ; second, A sent the message m̃ at a time T
such that T < T̃A + δ. In the first case, Ad sends m̃ at time T and we have TA = TAd

. In the second
case, Ad sends m̃ at time T and we have TA = TAd

.
If we have by induction hypothesis that for m′ we have Tπ + k/2η ≥ T ′Ad

≥ T ′A = Tπ + δ′ where
Tπ is some protocol time, then by the same argumentation as before we get two cases: (i) if A sent the
message m̃ at a time T such that T ≥ T̃A+ k · δ = T̃A+ k+ 1/2η, then TA = TAd

; if A sent the message
m̃ at a time T such that T < T̃A + δ, then Tπ + k + 1/2η ≥ T ′Ad

≥ T ′A = Tπ + δ′ holds. �
By the statement above, we know that either Ad sends the messages at the same time as A, or

Tπ + k/2η ≥ TAd
≥ TA = Tπ + δ′ for some polynomially bounded k. In the second case, we use

Corollary 8 implies that for any pair of protocol times Tp and T ′p the probability that |Tπ −T ′π| > 1/p(η)
for any polynomial is negligible in η. Hence, upon a listen command, any machine in the protocol Π
receives the same messages in EXECΠ,η(Π,A,Env) and EXECΠ,η(Π,Ad,Env′).

As Env’ generates the same output as Env and does not generate any additional delays, both
situations with Env’ and Env generate the same behavior.

Finally, we are in a situation with the environment Env′, the dummy adversary Ad and the protocol
Π. By assumption we can replace Π with Π′ and Ad with S and remain indistinguishable.
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Reverting Env′ to Env and A′ and combining S with A′ to a new simulator S ′ then gives us the
theorem. Note that in this step we can again remove all methods in Env′ we used to remove the time
gap between the dummy adversary Ad and the regular adversary A since both S and A now reside in
the same machine.S ′ therefore only has to translate all messages from S to the environment to network
messages to A.

4.2.2 Composition Theorem

The central building block of simulation-based security is the notion of composability : the composition
of secure protocols is secure as well. The construction in the proof is exemplified in Figure 9.

Theorem 2. Let Π be a protocol and Π′ = Π|x a sub-protocol of Π rooted at x. Suppose that Π′1 is a
protocol rooted at x such that Π′1 ≥t Π′. Then

Π[Π′ \Π′1] ≥t Π.

Proof. We construct a simulator S for Π, which tries to simulate the interaction between Π1 and Ad.
By the completeness of the dummy adversary, this is enough to show realization.
Game 1: Original network consisting of parties running protocol Π, environment Env and the dummy
adversary Ad.
Game 2: We split the sub-protocol Π′ from the protocol Π and the dummy-sub-adversary Ad that
belongs to Π′ from Ad. We do not create separate entities, but just see that these are different machines
with the following property: All intercepted messages from Π′ go directly to A′d.

As the network is otherwise the same as in Game 1, Game 2 and Game 1 are both indistinguishable.
Game 3: We define a new environment Env′ which internally simulates Env, all protocol parties not
running Π′, which we denote as Π \ Π′, and part of the dummy adversary that does not communicate
with Π′, which we denote with Ad \ A′d.

By Lemma: 2, Env′ can simulate the interaction between Env, Π \Π′ and Ad \ A′d as in the regular
network, without introducing additional delays.
Game 4: In Game 3 we have the situation where parties running protocol Π′ communicate with the
corresponding dummy adversary A′d and the environment Env′. Using our assumption, we can now
replace Π′ with Π′1 and A′d with the simulator S ′ which is constructed in the realization proof of Π′ being
realized by Π′1, while remaining indistinguishable from Game 3.
Game 5: We now split Env′ and recombine Π \ Π′ with Π′1 to get Π1 and Ad \ A′d with S ′ to get the
simulator S. Due to what Env′ simulated, Game 5 is indistinguishable from Game 4.

Using the transitivity of the indistinguishability, we get the claim.

4.2.3 Joint State Theorem

A Joint State Theorem [13, 28] simplifies the analysis of a multi-session protocol Π which uses several
instances of a single-session protocol π with a joint state between the multiple instances. For example,
consider the situation where you give several sub-processes on your machine access to a key exchange
process which always uses the same private-/public-key-pair. Here, the Joint State Theorem allows for
the reduction of the security analysis of Π to the analysis of a single session ideal functionality F which
is realized by π.

The Joint State Theorem also holds in our time-sensitive communication model. While the proof is
along the lines of the proof in [28, Section 9], we have to carefully consider the timing information the
adversary has access to in our communication model (as for the composition theorem).

Multi-session functionality. In order to analyze multi-session protocols with a joint-state, we need
to combine several instances of a single session functionality F into a single instance. The multi-session
functionality F̂ collects instances of F in the protocol tree of a single party and combines them with
a single interface to their callers. This interface filters and distributes incoming messages to the single
instances of F based on virtual session IDs called vsid.

To this end, F̂ requires messages to be of the form (m, vsid). The message m is then forwarded to
the instance F of F with session id vsid. Any message m′ going out from an instance F ′ of F is again
brought into the form (m′, vsid′), where vsid′ is the corresponding session id of F ′.

In the regular network model without time, F̂ can be realized by a single machine which internally
simulates the instances of F , as done in GNUC [28]. Consistency enforcing scheduling (Section 3.1.5)
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〈env〉

〈pid, ((P0, sp))〉
Π0

〈pid, ((P0, sp), (P1, sp
′))〉
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〈pid, ((P0, sp), (P1, sp
′), (P2, sp

′′))〉
Π2
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F ))〉

F
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(a) Ordinary Protocol

〈env〉

〈pid, ((P0, sp))〉

〈pid, ((P0, sp), (P1, sp
′))〉

〈pid, ((P0, sp), (P1, sp
′), (P2, sp

′′))〉

[Π]F

〈pid, ((P0, sp), (F , sp′
F ))〉

〈pid, ((P0, sp), (P1, sp
′), (F , sp′′

F ))〉

〈pid, ((P0, sp), (P1, sp
′), (P2, sp

′′), (F , sp′′′
F ))〉

F̂

(b) Boxed Protocol

Figure 10: Boxed Protocol [Π]F and Multi-Session Functionality F̂

allows us to also do this in our time-sensitive communication model as well (see Lemma 2). Thus we can
adopt a similar construction, only amending the speed coefficient of the multi-session machine to also
account for session ID translation.

Boxed protocols. Unfortunately we get following problem as soon as we introduce multi-session
protocols and functionalities: As these can be used by many different nodes in the protocol tree of a
single party, above construction is not compatible with our construction for a multi-session machine
developed in Section 3.2.2, which only allows for a single environmental port. Furthermore, the single
caller rule that we adopt from GNUC [28] is no longer enforced. As this rule is essential for the notion of
composition and the universal composition theorem, we need to circumvent this problem by introducing
so-called boxed protocols, as introduced in [28]: the protocol tree outside of the instances of F is boxed
inside a single TM M , which simulates every node in the tree. Additionally, all messages sent to a multi-
session protocol or functionality are modified to come from M . Messages received from the multi-session
instance are distributed to the nodes in the tree by M based in the session ids used in the messages:
a message m incoming on input port pid.sid1.sid2 is then forwarded as (m, sid2) to the interface of F̂ ,
which receives this message on its environmental port. On the other hand, a message (m, sid) received
from F̂ is forwarded as message m through the unique output port pid.sid1.sid2, where sid2 = sid.
From now on, we denote with [Π]F the boxed protocol which consists of the F-hybrid protocol Π, which
is virtually boxed by the TM M as described above and interacts with the multi-session variant F̂
of F . Using the boxing technique described above gives multi-session functionalities and protocols an
interface through which they communicate with only a single caller, allowing us to keep the tree-like
structure of parties in the network and use the same notions of composition we also use for single session
functionalities and protocols. Figure 10 exemplifies the construction for the boxed protocol [Π]F together
with a multi-session functionality F̂ .

In contrast to classic constructions, our boxing technique allows us to keep the time-independence of
each single session instance of a multi-session protocol. This can be used to more accurately model real
world multi-session protocols, where for example different session are executed on different machines.

The classic construction would imply that all sessions are parallelized on the same machine and
progress through time at the same pace. This can still be captured in our model by requiring that a set
of sessions run on the same machine in F̂ . This requires a small modification in the proof below, where
set of instances F of F that are on the same machine in F̂ are delayed by the simulator by the same
amount whenever a single instance Fi ∈ F is activated.

With this construction we can now formulate the Joint State Composition Theorem.

Theorem 3. Let F be a poly-time ideal functionality and Π be a poly-time, F-hybrid protocol. Then
[Π]F ≥t F .
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Proof. We need to construct a simulator S such that following holds:

EXEC(Π,S,Env) ≈ EXEC([Π]F ,Ad,Env)

As shown in Lemma 2, both machines, the multi-sessions functionality F̂ and the boxed protocol [Π]F
simulate their internal machines as in the regular network. We only have to add additional computation
time for the translation to and from virtual sessions IDs between [Π]F and F̂ . Since this translation is
possible in polynomial time we can achieve this by simply accelerating the simulating machines by the
appropriate factor.

The only exception that remains is S having to handle irregular virtual session IDs which could be
sent to F̂ through a corrupted [Π]F : Π-impossible virtual session IDs have a basename which specify an
instance of F , but have a session ID prefix which is invalid with regard to Π. F̂ cannot distinguish such
session IDs from regular ones, hence S needs to catch them and return an error to Env. S cannot do
so directly however, but needs to simulate a run with a message from Env to the network containing
such a Π-impossible sessions ID in order to find the right time to send the response to Env. But as S is
timeless and the simulation of the network is possible in poly-time, S can do so without a problem.

This concludes the introduction of secure realization in TUC and the presentation of its properties.
The next sections show how to formalize the onion routing protocol that underlies Tor [53] in TUC and
how to prove this formalization secure in TUC.

5 Time Sensitive Analysis of the Onion Routing Protocol

In this section we take the framework we presented in Sections 3 and 4 and exemplify its use in the
time-sensitive analysis of the anonymous communication protocol Tor [53]. Anonymous communication
protocols as provided by the Tor network are an increasingly popular way for users to protect their
privacy by hiding the user’s location. The Tor network is currently used by hundreds of thousands of
users around the world [52].

Section 5.1 defines the onion routing (OR) protocol as a protocol Πor in the TUC framework. Sec-
tion 5.2 presents our abstraction of the OR protocol by defining the ideal functionality For. Finally,
Section 5.3 shows that Πor securely realizes For, i.e., we show that the abstraction For is sound in the
sense that every attack against Πor can also be mounted against For.

Considering a time-sensitive adversary imposes new challenges on the analysis of complex, crypto-
graphic communication protocols. As in previous work [2], we required cryptographic properties from
the onion algorithms and the key exchange that ensure authenticity, integrity, secrecy and unlinkability.
Against an adversary that can measure the time of a computation, however, we have to additionally
require that the computation time of an encryption does not leak anything about the plaintext message,
and we have to require that the DDH exponentiation does not leak anything about the exponents. We
rigorously formalize these requirements in Section 5.3.1.

5.1 The Onion Routing Protocol

The core idea behind Tor is that, instead of directly communicating with the target, the user reroutes
his traffic over a sequence of three onion routers. Smart use of cryptography then ensures that each
participant in this chain only knows about his predecessor and successor, thus enabling anonymous
communication.

Tor centrally organizes and validates available OR nodes and distributes their public keys to users.
After the initial set up in which public keys of the onion routers (OR) are distributed, Tor works in
two phases: In the first phase, the user establishes temporary symmetric keys with each of the three
chosen onion routers, using the public keys of the ORs in a one-way authenticated key-exchange (1W-
AKE) [24].8 The sequence of ORs together with these symmetric keys is called a circuit. The exchanged
keys are only used for one session, which typically lasts 10 minutes; then, fresh keys are established and
the old keys are securely erased.9

8Tor is currently migrating to a more efficient and more secure 1W-AKE scheme (the ntor protocol). Recent work (the
Ace scheme [5]) further improves on ntor.

9Temporary keys enable immediate forward secrecy: after a session is dead (and its temporary key and its communication
transcripts is securely erased) even compromised parties do not leak anything about previous communications.
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upon (setup) from the parent node:

1: Generate an asymmetric key pair
(skP , pkP )← G(1η).

2: send a cell (register, P, pk) to the FNreg function-
ality

3: wait for a cell (registered, 〈Pj , pk j〉nj=1) from

FNreg
4: output (ready,N = 〈Pj〉nj=1)

upon (createcircuit,P = 〈P, 〈Pj〉`j=1〉) from the par-
ent node:

1: set Start to the current time
2: store P and C ← 〈P 〉; call ExtendCircuit(P, C)

upon (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉,m) from
the parent node:

1: if current time− Start(cid1) ≤ ttlC then
2: look up the keys (〈kj〉`j=1) for cid1

3: O ←WrOn(m, (kj)
`
j=1)

4: send a cell (cid1, relay, O) to P1 over Fscs

5: else
6: call DestroyCircuit(C, cid1)
7: output (destroyed, C,m)

upon receiving a cell (cid , relay, O) from P ′ over
Fscs:

1: if (P, cid , relay, (data,m)) = lookup(h)
and P is the OP for cid then

2: if prev(cid) = ⊥ then

3: if getkey(cid) = (kj)
`′
j=1 then

4: O ← UnwrOn(O, (kj)
`′
j=1)

5: if O = (data,m) then
6: output (received, cid ,m)

Figure 11: Πor: Client Protocol for Machine P

In the second phase, the user performs a layered encryption of each message block, and sends the
ciphertext, called onion, through the established circuit, where each OR decrypts one layer of encryption
to learn where the onion should be sent next.

Using the same TCP stream that the last onion router in the circuit opened, the recipient can respond:
in this case, each onion router adds a layer of encryption and the user removes all layers.

As presented in [2], the onion routing protocol used in Tor can be formalized by the protocol Πor

presented in Figures 11, 13 and 12. Πor closely follows the Tor specification [17] and (for simplicity
reason) assumes a fixed number N of protocol participants. We further assume that every party can be
both user as well as onion router. We denote the subprotocol of the user as client protocol.

In contrast to the presentation in [2], we do not need to approximate the time-to-live (denoted as
ttlC ) of a circuit C as the number of messages a user can send through C: since the network model we
introduce further down includes the notion of time, ttlC can directly give the time for which a circuit
can live before it is torn down (e.g. 10 minutes).

The protocol Πor uses several cryptographic algorithms in order to realize its different tasks: For
the 1W-AKE, Πor uses the three algorithms Initiate, Respond and ComputeKey , which we introduce
further below.10 For adding and removing encryption layers to the payload (plaintext or onion), i.e. as
principal onion algorithms, Πor uses the two algorithms WrOn and UnwrOn. WrOn creates a layered
encryption of the payload, given an ordered list of ` session keys for ` ≥ 1. UnwrOn removes ` layers of
encryptions from an onion to output the payload, given an input onion and an ordered list of ` session
keys for ` ≥ 1.

We consider two kinds of messages in the description of Πor: network messages and user inputs.
Network messages are used by the protocol to exchange cells between the parties. These are used for
protocol level interactions such as creating a circuit or relaying a message. Input messages are sent by a
user to his onion proxy in order to initiate a circuit construction or the sending of a message.

Circuits in Πor. A circuit C is represented in Πor by a sequence of circuit ids (cid ∈ {0, 1}∗), each
of which is know only to two consecutive nodes in the circuit C. At a node Pi we denote an established

circuit using the terminology C = Pi−1
cidi,ki⇐⇒ Pi

cidi+1⇐⇒ Pi+1. Here, Pi−1 and Pi+1 are the predecessor and
successor of Pi in the circuit C and ki is the session key established between Pi and the OP (who initiated
this circuit). The absence of ki+1 indicates that the session key between Pi+1 and the OP is not known
to Pi. The functions prev and next on cid correspondingly give information about the predecessor or
successor of the current node with respect to cid ; e.g., next(cid i) returns (Pi+1, cid i+1) and next(cid i+1)
returns ⊥.

10Tor currently uses the TAP protocol and is going to switch to the more efficient and secure ntor protocol. [24]
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ExtendCircuit(P = 〈Pj〉`j=1, C = 〈P cid1,k1⇐⇒ P1
k2⇐⇒

· · ·P`′〉):
1: determine the next node P`′+1 from P and C
2: if P`′+1 = ⊥ then

3: output (created, 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`′〉)
4: else
5: X ← Initiate(pkP`′+1

, P`′+1)

6: if P`′+1 = P1 then
7: cid1←{0, 1}κ
8: send a cell (cid1, create, X) to P1 over Fscs

9: else
10: O ←WrOn({extend, P`′+1, X}, (kj)`

′
j=1)

11: send a cell (cid1, relay, O) to P1 over Fscs

DestroyCircuit(C, cid):

1: if next(cid) = (Pnext , cidnext) then
2: send a cell (cidnext , destroy) to Pnext over Fscs

3: else if prev(cid) = (Pprev , cidprev ) then
4: send a cell (cidprev , destroy) to Pprev over Fscs

5: discard C and all streams

Figure 12: Subroutines of Πor for Party P

In the next section we go into detail about the different messages exchanged in Πor.

5.1.1 User inputs

In this section, we present the commands that a user can send: a initialization command (setup), a
command for circuit creation (createcircuit), and a command for sending message (send).

Key registration. Upon an input (setup), an OR node computes its long-term keys (sk , pk) and
registers these keys.

In Πor the key registration and distribution is modeled as an ideal functionality FNreg, which is defined
as in [11] with the exception that FNreg rejects all parties not in N and only distributes the public keys
after all parties in N have registered with FNreg. As soon as all parties have registered, each of them
receives the message (registered, 〈Pj , pk j〉nj=1), which contains a list of all valid OR nodes, together with
their public keys.

Circuit creation. Upon an input createcircuit (see Figure 11), the OP starts the circuit creation
process, which consists of the 1W-AKE for establishing the session key, and the actual circuit creation:
The OP, as the initiator, runs the Initiate algorithm to draw new key-exchange information and sends
this to the first node of the circuit inside a create cell (see Figure 12). The first node then runs the
Respond algorithm and responds with a created cell. After receiving this response, the OP runs the
ComputeKey algorithm to compute the session key.

For extending a circuit past the first node, the OP runs the Initiate algorithm and sends an extend
relay cell, which causes the currently last node of the circuit to send a create cell to the next node and
so on.

Sending messages. Communication in the forward direction is initiated by a send message from the
user to his OP, while communication in the backward direction is initiated by a network message to the
exit node (from the recipient).

5.1.2 Network Messages

In Tor, each pair of onion routers establishes a TLS connection for ensuring the integrity of onions and
for hiding the circuit identifiers from a network observer. In Πor, we abstract such a TLS connection by
a functionality Fscs as proposed by Canetti [11].11

Communication between servers (outside of the Tor network) and exit nodes (i.e., the last OR in the
circuit) is synchronized using TCP streams. Πor abstracts from these streams by introducing a session
identifier sid.

11The leakage function l for Fscs we use here is l(m) := |m|.
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upon receiving an input (exit, sid,m) from the par-
ent

1: obtain C = 〈P ′ cid,k⇐⇒ P 〉 for sid
2: O ←WrOn(m, k)
3: send a cell (cidrelay, O) to P ′ over Fscs

upon receiving a cell (cid , create, X) from P ′ over
Fscs:

1: 〈Y, knew〉 ← Respond(pkP , skP , X)

2: store C ← 〈P ′ cid,knew⇐⇒ P 〉
3: send a cell (cid , created, Y, t) to P ′ over Fscs

upon receiving a cell (cid , created, Y, t) from P ′ over
Fscs:

1: if prev(cid) = (P ′, cid ′, k′) then
2: O ←WrOn(〈extended, Y, t〉, k′)
3: send a cell (cid ′, relay, O) to P ′ over Fscs

4: else if prev(cid) = ⊥ then
5: knew ← ComputeKey(pk i, Y, t)
6: update C with knew; call ExtendCircuit(P, C)

upon receiving a cell (cid ,destroy) from P ′ over Fscs:

1: call DestroyCircuit(C, cid)

upon receiving a cell (cid , relay, O) from P ′ over
Fscs:

1: if prev(cid) = ⊥ then

2: if getkey(cid) = (kj)
`′
j=1 then

3: O ← UnwrOn(O, (kj)
`′
j=1)

4: if (type,m) 6= O then abort

5: else if prev(cid) = (P ′′, cid ′, k′) then
6: /* a backward onion */
7: O ←WrOn(O, k′); type← default
8: switch (type)
9: case extend:

10: (Pnext , X)← m; cidnext←{0, 1}κ

11: update C ← 〈P ′ cid,k⇐⇒ P
cidnext⇐⇒ Pnext〉

12: send a cell (cidnext , create, X) to Pnext over Fscs

13: case extended:
14: get 〈Y, t〉 from m
15: let Pex be the first party in P without a key in
C

16: kex ← ComputeKey(pk ex, Y, t)
17: update C with (kex); call ExtendCircuit(P, C)
18: case data:
19: if P is the OP for cid then output

(received, cid ,m)
20: else if m = (P ′′,m′)
21: // P is the exit node for cid
22: generate or lookup the unique sid for cid
23: output (exit, (P ′′, (sid,m′))) to parent
24: case corrupted : /*corrupted onion*/
25: call DestroyCircuit(C, cid)
26: case default: /*encrypted forward/backward

onion*/
27: if prev(cid) = ⊥ then (P ′′, cid ′) = next(cid)

28: send a cell (cid ′, relay, O) to P ′′ over Fscs

Figure 13: Πor for Machine P : Network Messages for an Onion Router.

Relay cells. relay cells are used for tunneling commands such as data, extend and extended through an
established (part of a) circuit. Communication between the OP and the exit node in the forward direction
is implemented via a WrOn call with with all session keys exchanged during the circuit creation, and a
series of UnwrOn calls at each of the ORs in the circuit with the individual session keys they know. In
contraset to previous work, an exit node does not send the message over the network but rather outputs
the message to the environment with a exit string as prefix to mark the message as an exit message. This
exit messages are important for being able to apply the countermeasure.

In the backward direction communication is implemented using a series of WrOn calls by the ORs
in the network with the individual session keys, and finally a UnwrOn call at the OP.

Tearing down a circuit. To tear down a circuit (e.g. if a session expires after ttlC time), an OR or
OP sends the destroy cell to the neighboring nodes in the circuit along with the corresponding cid (see
Figure 12). Upon receiving a destroy cell, the node frees resources associated with the corresponding
circuit. Once the destroy cell has been processed, the node ignores all future cells from the corresponding
circuit.

A destroy cell is also in that situation sent through the circuit if an integrity check fails during an
UnwrOn call. A failed integrity check means that the adversary somehow tinkered with the onion that
was being processed, and Πor counters this by dropping the affected circuit and creating a new one.

This concludes the presentation of the onion routing protocol. We will use it in Section 5.3, where
we show secure realization of our time-sensitive abstraction of Tor we present in the next section.

5.2 Time-sensitive Abstraction of OR

Tor is a low latency communication protocol and hence is prone to all kinds of traffic pattern analyses,
such as traffic confirmation attacks or website fingerprinting attacks. As in previous work, we want
to accurately model all weaknesses of the OR protocol. As a consequence, our anonymous channel
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upon input (setup):

1: draw a fresh handle h; set registered flag← true

2: store lookup(h)← (dir, registered,N )
3: lookup the current time t; let t′ ← v[1]
4: send (h, register, P ) to the network at time t+ t′

5: wait for a msg (dir, registered,N ) via a handle
6: lookup the current time t
7: let t′ ← v[2]
8: output (ready, (Pj)

n
j=1) = (ready,N ) at time t+t′

upon input (createcircuit,P = 〈P, P1, . . . , P`〉)
1: set Start to the current time
2: store P and C ← 〈P 〉
3: let t← v[3]
4: ExtendCircuit(P, C, t)

upon receiving a handle (P ′, P, h) from the net-
work

1: if (P, cid , relay, (data,m)) = lookup(h)
and P is the OP for cid then

2: lookup the current t; let t′ ← v[6]
3: if prev(cid) = ⊥ then
4: output (received, cid ,m) at time t+ t′

upon input (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉,m)

1: if current time− Start(cid1) ≤ ttlC then
2: let t← v[4]
3: SendMessage(P1, cid1, relay, (data,m), t)
4: else
5: DestroyCircuit(C, cid1)
6: lookup the current time t
7: let t′ ← v[5]
8: output (destroyed, C,m) at time t+ t′

Figure 14: The ideal functionality FNor (short For) for Machine P : Client

functionality has to leak all these communication patterns, while still abstracting from all cryptographic
operations, thereby allowing to accurately capture the leakage of the OR protocol and the capabilities
of a time-sensitive adversary.

Our abstraction goes along the lines of previous work [2]. However we additionally have to compensate
for computation time differences that appear in the ideal functionality: the ideal functionality does not
perform any cryptographic operations and therefore often has less computation steps to perform than
the real protocol. In the functionality we use the delayed sending commands presented in Figure 3 to
compensate for these differences.

5.2.1 Review of For

The ideal functionality For, as presented in Figure 14, 15, and 16, is close to the OR protocol Πor

presented in Section 5.1. Due to the similarities of Πor and For, we concentrate on highlighting the
differences between them.

The major difference between Πor and For is that For does not use any cryptography: the ses-
sion keys, the onion methods WrOn and UnwrOn, and 1W-AKE methods Initiate, Respond , and
ComputeKey are absent in For.

In fact, For does not need any cryptography: Instead of relying on the security of onion algorithms,
messages are exchanged via shared memory: shared memory is an additional abstraction added to For,
which allows all parties running For to exchange messages “off-band”.

Now if party P wants to send a message m to party Pnext , P creates a fresh handle h, saves m in the
shared memory under this handle and sends 〈P, Pnext , h〉 over the network.
For also does not require FNreg for the initial distribution of public keys (it does not really need any

public keys at all): instead, on input (setup), the party P notes its registration in the shared memory, and,
as soon as all other parties in the network also noted their registration, outputs a successful registration
to the caller.

Compromising parties. A party running For cannot be compromised: instead, upon receiving a
compromise message from the adversary, the respective party sets its compromised variable to true.
Then, all input or network messages that are visible to the compromised entity are forwarded to the
adversary. In principle, the adversary runs that entity and can send messages from that entity.

Explicit leakage: visible subpaths. For proving secure realization for For, we require a special
behavior by compromised parties. In case the adversary manages to compromise an entire subpath S
of a circuit, the first node in S needs to leak all information that would have been leaked by each node
in S individually in the real world: the simulator constructed for the realization proof in [2] does not
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upon receiving (compromise) from A:

1: set compromised ← true; delete local informa-
tion

upon receiving ( , P, h, [corrupt, T (·)]) from the net-
work:

1: msg ← lookup(h)
2: if corrupt = true then
3: msg ← T (msg)
4: set corrupted(msg)← true
5: lookup the current time t; let t′ ← v[11]
6: proceed with msg at time t+ t′

upon receiving an input (response, sid,m) from the
parent

1: obtain C = 〈P ′ cid⇐⇒ P 〉 for sid
2: lookup the current time t; let t′ ← v[15]
3: SendMessage(P ′, cid , relay, (data,m), t+ t′)

upon receiving a handle ( , P, h) from the network:

1: lookup the current time t; let t′ ← v[6]
2: proceed with msg ← lookup(h) at time t+ t′

upon receiving a msg (P ′, cid , create) through a han-
dle:

1: store C ← 〈P ′ cid⇐⇒ P 〉
2: let t← v[7]
3: SendMessage(P ′, cid , created, t)

upon receiving (P ′, cid , created) through a handle:

1: if prev(cid) = (P ′′, cid ′) then
2: let t← v[8]
3: SendMessage(P ′′, cid ′, relay, extended, t)
4: else if prev(cid) = ⊥ then
5: let t← v[9]
6: ExtendCircuit(P, C, t)

upon receiving (P ′, cid , destroy) through a handle:

1: let t← v[14]; DestroyCircuit(C, cid , t)
upon receiving (P ′, cid , relay, O) through a handle:

1: if prev(cid) = ⊥ then (type,m)← O
2: else (P ′′, cid ′)← prev(cid); type← default
3: switch (type)
4: case extend:
5: Pnext ← m; cidnext←{0, 1}κ

6: update C ← 〈P ′ cid⇐⇒ P
cidnext⇐⇒ Pnext〉

7: let t← v[10]
8: SendMessage(Pnext , cidnext , create, t)
9: case extended:

10: update C with Pex

11: ExtendCircuit(P, C)
12: case data:
13: if (P = OP) then output (received, cid ,m)
14: else if m = (P ′′,m′)
15: generate or lookup the unique sid for cid
16: output (exit, (P ′′, (sid,m′))) to parent
17: case corrupt: /*corrupted onion*/
18: let t← v[12]
19: DestroyCircuit(C, cid , t)
20: case default: /*encrypted forward/backward

onion*/
21: if prev(cid) = ⊥ then (P ′′, cid ′) = next(cid)

22: let t← v[13]
23: SendMessage(P ′′, cid ′, relay, O, t)

Figure 15: The ideal functionality FNor (short For) for Machine P : Network messages for an onion router

learn about circuits constructed in the network and neither about the messages transmitted through the
network. But the simulator would need this information for correctly simulating the behavior of the real
parties (running Πor), if it only had the individual leakage of the parties in the compromised subpath.

We therefore have the visible subpath computation in the SendMessage function in Figure 16. Parties
running For share their compromised -status over the shared memory and based on this leak the required
information to the adversary.

Messages through a handle. Figure 15 considers messages m that are retrieved through a handle.
As described above, For uses shared memory in order to transmit messages through the network. A
party P receives a message through a handle h if P found this message after looking up h in the shared
memory.

Corrupted messages. While the adversary might corrupt or replay messages in Πor, these active
attacks will be detected by the recipient due to the presence of a secure and authenticated channel between
any two communicating parties. The interesting case is when the adversary manages to compromise an
onion router in the circuit: the adversary can then propagate corrupted messages, which in Πor are only
detected during UnwrOn calls at the OP or the exit node.

This fact is captured in For by using corrupted flags for each message sent through the network. If
the adversary wants to modify a message, this flag is set to true and propagated until it reaches the last
node Plast in the circuit.

The adversary also provides a message transformation function T (·), which is applied to the message
in the shared memory in order to change it.
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ExtendCircuit(P = (Pj)
`
j=1, C = 〈P cid1⇐⇒ P1 ⇐⇒

· · ·P`′〉[, time]):

1: determine the next node P`′+1 from P and C
2: if P`′+1 = ⊥ then
3: output (created, C)
4: else
5: if P`′+1 = P1 then
6: cid1←{0, 1}κ
7: SendMessage(P1, cid1, create[, time])
8: else
9: SendMessage(P1, cid1, relay, (extend, P`′+1)[, time])

DestroyCircuit(C, cid [, time]):

1: if next(cid) = (Pnext , cidnext) then
2: SendMessage(Pnext , cidnext , destroy[, time])
3: else if prev(cid) = (Pprev , cidprev ) then
4: SendMessage(Pprev , cidprev , destroy[, time])
5: discard C and all streams

SendMessage(Pnext , cidnext , cmd[, relay-type][, data]
[, time]):

1: draw a fresh handle h
2: set lookup(h) ← (Pnext , cid , cmd[, relay-

type][, data])
3: if compromised = true then
4: let Plast be the last node in the complete con-

tiguous visible subpath path starting Pnext

5: if (Plast = OP ) or Plast is the exit node and
data 6= ⊥ then

6: msg ′ ← lookup(h′)
7: lookup the current time t; send the entire

message 〈P, Pnext , . . . , Plast , cidnext , cmd, data〉
to A at time t[+time]

8: else send 〈P, Pnext , . . . , Plast , cidnext , cmd, h〉
to A

9: else send 〈P, Pnext , h〉 to the network

Figure 16: Subroutines of For for Party P

5.2.2 Our Modifications to For

In order to correctly capture the notion of time in our abstraction, we modify some aspects of For which
did not allow for a direct translation into a time-sensitive abstraction.

Similar to the adjusted OR protocol Πor, we change the time-to-live (ttlC ) of a circuit to an actual
time-interval (e.g., 10 minutes) instead of a bounding the number of messages that can be transmitted
through the same circuit.

A major problem we face after introducing time is that Πor and For take a different number of steps
for executing specific commands (due to the differences in their code). This results in parties in different
worlds (real and ideal) advancing in time with different paces. In order to still be able to show secure
realization for our abstraction, we therefore need to adjust the pace in which parties running For advance
in time.

We achieve this by introducing a delay vector v = (d1, . . . , d15) with which we parameterize For. Each
entry of v is a delay-distribution, which is inserted at specific points in the code of For (see Figure 14).
For then draws the number of steps it should delay at these specific points whenever this piece of code
is executed.

With this, we make sure that in the abstraction For as well as in the protocol Πor the parties progress
in time at roughly the same rate.

Special care has to be taken whenever we add delay for a function with a run-time which is not
constant, e.g. if we add delay for the various encryption and decryptions methods from Πor. The delay
can then depend on input provided by For. We explain this in more detail in Section 5.3.

In Section 3.1.3 we described how the speed coefficients for newly created machines in the network
are determined (i.e. by drawing the speed coefficient from a distribution specific to the protocol role of
the new machine). We have to account for these variable speeds by suitably varying the delay vector:
the initial delay vectors are defined for fixed speed coefficient for ideal (ci) and real (cr) machines. After
drawing the coefficient c for the newly crated machine, all delay vector entries are stretched by the factor
cr
c , then multiplied by a factor b which makes all entries integer, and increased by the factor ( crbc − 1)si,

where si is the number of steps the ideal machine does on the activation until this specific delay vector
entry kicks in. The new base speed coefficient for the ideal machine will be ci · b and uses the previously
computed delay vector.

We also need to adjust the visible subpath computation in the SendMessage function: in the original
For functionality the visible subpath was leaked before the message arrived the observed part of the
network. We adjusted SendMessage() such that messages are only leaked after the compromised of the
network is actually reached.

We stress that For basically resembles the protocol except for the cryptographic operations. Instead
of ciphertexts and group elements, the For merely sends freshly drawn handles over the network. The

33



predecessor of this For has been used for analyzing the anonymity guarantees of the OR protocol, since
all cryptographic operations are abstract away in a provably secure way [3].

5.3 Abstracting Tor in TUC

We show that For is indeed an accurate abstraction of the onion routing protocol Πor: we show that
Πor securely realizes For in TUC, which was already shown by Backes et al. [2] for the standard UC-
framework. This gives us the secure realization for the abstraction.

5.3.1 Assumptions

In order to prove the following theorems, we need to make certain assumptions about the cryptographic
primitives used in Πor. These assumptions were already presented in [2], but we require them to also
hold against an adversary with timing information. We present these assumptions here and use them
later in the proofs.

1W-AKE. We assume that the key exchange that happens whenever a new circuit is created uses a
1W-AKE-protocol as introduced in [24]. From these we need the property of key secrecy : for an adver-
sary, which observes the public parts of the key exchange, the generated key is indistinguishable from a
randomly chosen one.

We assume that the encryption and decryption algorithms used in the onion routing protocol Πor to be
secure, i.e. they satisfy following four properties, as presented in [2]. As we consider a time sensitive
network model, we assume that these assumptions also hold against time sensitive adversaries:

Onion correctness. The first property of secure onion algorithms is onion correctness. It states
that honest wrapping and unwrapping results in the same message. Moreover, the correctness states
that whenever the unwrapping algorithm has a fake flag, it does not care about integrity, because for
m ∈ M(η) the integrity measure is always added, as required by the end-to-end integrity. But for
m 6∈ M(η) but of the right length, the wrapping is performed without an integrity measure. The fake
flag then causes the unwrapping to ignore the missing integrity measure. Then, we also require that the
state transition is independent from the message or the key.

Definition 26 (Onion correctness). Let M(η) be the message space for the security parameter η. Let
〈ki〉`i=1 be a sequence of randomly chosen bitstrings of length η.

Forward: Ωf (m)

O1 ←WrOn(m, 〈ki〉`i=1)
for i = 1 to ` do
Oi+1 ← UnwrOn(Oi, ki)

x← O`+1

Backward: Ωb(m)

O` ←WrOn(m, k`)
for i = `− 1 to 1 do
Oi ←WrOn(Oi+1, ki)

x← UnwrOn(O1, 〈ki〉`i=1)

Let Ω′f be the defined as Ωf except that UnwrOn additionally uses the fake flag. Analogously, Ω′b is
defined. We say that a pair of onion algorithms (WrOn,UnwrOn) is correct if the following three
conditions hold:

(i) Pr[x← Ωd(m) : x = m] = 1 for d ∈ {f, b} and m ∈M(η).
(ii) Pr[x← Ω′d(m) : x = m] = 1 for d ∈ {f, b} and all m ∈M ′(η) := {m′|∃m′′ ∈M(η).|m′| = |m′′|}.

(iii) For all m ∈ M ′(η), k, k′ ∈ {0, 1}η and c, s ∈ {0, 1}∗ such that c is a valid onion and s is a valid
state

Pr[(c′, s′)←WrOn(m, k, s),

(m′, s′′)← UnwrOn(c, k′, s) : s′ = s′′] = 1

(iv) WrOn and UnwrOn are polynomial-time computable and randomized algorithms.
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(setup, `′)

if initiated = false then
for i = 1 to `′ do
ki←{0, 1}η; cid i←{0, 1}η

initiated ← true; store `′

send cid

(compromise, i)

initiated ← false; erase the circuit
compromised(i)← true; run setup;
for j with compromised(j) = true do

send (cid j , kj) for all

(send,m)

O ←WrOn(m, 〈ki〉`
′
i=1)

send O

(unwrap, O, cid)

look up the key k for cid
O′ ← UnwrOn(O, k)
send O′

(respond,m)

O ←WrOn(m, k`′)
send O

(wrap, O, cid)

look up the key k for cid
O′ ←WrOn(O, k)
send O′

(destruct, O)

m← UnwrOn(O, 〈ki〉`
′
i=1)

send m

Figure 17: The Honest Onion Secrecy Challenger OS-Ch0: OS-Ch0 only answers for honest parties

Synchronicity. The second property is synchronicity. In order to achieve replay resistance, we have
to require that once the wrapping and unwrapping do not have synchronized states anymore, the output
of the wrapping and unwrapping algorithms is indistinguishable from randomness. For the following

definition we use the modified challenger OS-Ch0′, which results from modifying OS-Ch0 such that along
with the output of the adversary also the state of the challenger is output. The resulting challenger

OS-Ch0′ can, moreover, optionally get a state s as input.

Definition 27 (End-to-end integrity). Let S(O, cid) be the machine that sends a (destruct, O) query to
the challenger and outputs the response. Let Q′(s) be the set of answers to construct queries from the
challenger to the adversary. Let the last onion O`′ of an onion O1 be defined as follows:

Last(O1):

for i = 1 to `′ − 1 do
Oi+1 ← UnwrOn(Oi)

Let Q(s) := {Last(O1) | O1 ∈ Q′(s)} be the set of last onions answers to the challenger. We say a set of
onion algorithms has end-to-end integrity if for all PPT adversaries A the following is negligible in the
security parameter η

Pr[(O, s)← A(1η)OS-Ch0′
, (m, s′)← S(O, cid)OS-Ch0′(s)

: m ∈M(η) ∧ P`′ is honest ∧O 6∈ Q(s′)].

End-to-end integrity. The third property that we require is end-to-end integrity, i.e., the adversary
is not able to produce an onion that successfully unwraps unless it compromises the exit node. For the
following definition, we modify OS-Ch0 such that, along with the output of the adversary, also the state

of the challenger is output. In turn, the resulting challenger OS-Ch0′ can optionally get a state s as
input. In particular, (a, s)← AB denotes in the following definition the pair of the outputs of A and B.

Definition 28 (Synchronicity). For a machine A, let Ωl,A and Ωr,A be defined as follows:

Left: Ωl,A(η)

(m1,m2, st)← A(1η)
k, s, s′←{0, 1}η
O ←WrOn(m1, k, s)
O′ ← UnwrOn(O, k, s′)
b← A(O′, st)

Right: Ωr,A(η)

(m1,m2, st)← A(1η)
k, s, s′←{0, 1}η
O ←WrOn(m2, k, s)
O′ ← UnwrOn(O, k, s′)
b← A(O′, st)

For all PPT machines A the following is negligible in η:

|Pr[b← Ωl,A(η) : b = 1]− Pr[b← Ωr,A(η) : b = 1]|
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(setup, `′)

do the same as OS-Ch0

additionally kS ← {0, 1}η

(compromise, i)

do the same as OS-Ch0

(send,m)

q(st1f )← m

look up the first visible subpath (cid1, 〈ki〉ji=1)
if j = `′ then m′ ← q(st1f )

else kj+1 ← kS ; j ← j + 1; m′ ← 0|q(st
1
f )|

((Oi)
j
i=0, s

′)←WrOnj(m, 〈ki〉ji=1, st
1
f )

update st1f ← s′

store onions(cidj)← O1; send Oj

(unwrap, O, cid i)

look up the forward v.s. 〈ki〉ji=u for cid i
O′ ← onions(cid i)
T ← M(O,O′); q(stif )← T (q(stif ))
if j = `′ then m← q(stif )

else kj+1 ← kS ; j ← j + 1; m← 0|q(st
i
f )|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
i
f )

update stif ← s′

store onions(cidj)← Ou; send Oj

(respond,m)

q(st`
′
b )← m

look up the last visible subpath 〈ki〉`
′
i=u

if u = 1 then m← q(st`
′
b )

else ku−1 ← kS ; u← u− 1; m← 0|q(st
`′
b )|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
`′
b )

update st`
′
b ← s′

store onions(cidu)← Ou; send Oj

(wrap, O, cid i)

look up the backward v.s. 〈ki〉ji=u for cid i
O′ ← onions(cid i); T ← M(O,O′)
q(stib)← T (q(stib))
get 〈ki〉ji=u for cid
if u = 1 then m← q(stib)

else ku−1 ← kS ; u← u− 1; m← 0|q(st
i
b)|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
i
b)

update stib ← s′

store onions(cidu)← Ou; send Oj

(destruct, O, cid)

m← UnwrOn(, k1, st
1
b)

O′ ← onions(cid1); T ← M(O,O′)
q(st1b)← T (q(st1b))
if m 6= ⊥ then

send q(st1b)

Figure 18: The Faking Onion Secrecy Challenger OS-Ch1: OS-Ch1 only answers for honest par-
ties. stif , st

i
b is the current forward, respectively backward, state of party i. ((Oi)

j
i=u−1, s

′) ←
WrOnj−u+1(m, 〈ki〉ji=u, st) is defined as Ou−1 ← m; for i = u to j do (Oi, s

′)←WrOn(Oi−1, kj+u−i, st)

Predictably malleable onion secrecy. The fourth property that we require is predictably malleable
onion secrecy, i.e. for every modification to a ciphertext the challenger is able to compute the resulting
changes for the plaintext. This even has to hold for faked plaintexts. Note that this property is a stateful
and weaker variant of what was introduced as Homomorphic-CCA-Security in [50].

In detail, we define a challenger OS-Ch0 that provides, a wrapping, a unwrapping and a send and a
destruct oracle. In other words, the challenger provides the same oracles as in the onion routing protocol
except that the challenger only provides one single session. We additionally define a faking challenger
OS-Ch1 that provides the same oracles but fakes all onions for which the adversary does not control the
final node.

For OS-Ch1, we define the maximal paths that the adversary knows from the circuit. A visible subpath
of a circuit (Pi, ki, cid i)

`
i=1 from an honest onion proxy is a minimal subsequence of corrupted parties

(Pi)
s
i=u of (Pi)

`
i=1 such that Pi−1 is honest and either s = ` or Ps+1 is honest as well. The parties Pi−1

and, if existent, Ps+1 are called the guards of the visible subpath (Pi)
s
i=u. We store visible subpaths by

the first cid = cidu.
Figure 17 and 18 presents OS-Ch0, and OS-Ch1, respectively. 12

Definition 29 (Predictably malleable onion secrecy). Let onionAlg be a pair of algorithms WrOn and
UnwrOn. We say that the algorithms onionAlg satisfy predictably malleable onion secrecy if there is a
negligible function µ such that there is a efficiently computable function M such that for all PPT machines
A and sufficiently large η

Pr[b←{0, 1}, b′ ← A(1η)OS-Chb : b = b′] ≤ 1/2 + µ(η)

Timed standard assumptions. The assumptions above also require standard cryptographic assump-
tions such as CCA, CPA or the Decisional–Diffie–Hellman (DDH) assumption to hold when the adversary

12We stress that in Figure 18 the onion Ou denotes the onion from party Pj to party Pj+1.
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has access to timing information about e.g. how long it took to choose the exponents for the Diffie–
Hellman key–exchange. We assume that these assumptions also hold in the timed setting.

Encryption time. There is another important aspect we need to consider when handling timing
information: the running time of encryption and decryption functions depend on the message to be
encrypted and the key used to encrypt the message. While the different running times alone are reason
enough to include this aspect into the delay-vectors, previous work [36] has shown that this information
can leak information about the key and/or the message. Thus we need to accurately capture these small
delays in our delay vectors.

We require the following: Let f(x,m) denote the encryption (decryption) time needed to encrypt
(decrypt) message m with the key x. Then the encryption (and decryption) times are indistinguishable
with regards to the message, i.e. given following two events

M1 : b = b∗; (m0,m1)← A, x← KeyGen(1η),

t← f(x,mb), b
∗ ← A(t)

M2 : b 6= b∗; (m0,m1)← A, x← KeyGen(1η),

t← f(x,mb), b
∗ ← A(t)

we have that
|Pr[M1]− Pr[M2]| < negl(η)

Note that this requirement is automatically fulfilled as soon as we assume the timed variant of the CPA
assumption, as we could otherwise directly construct an adversary which breaks timed CPA from an
adversary which distinguishes plain-texts from encryption times.

We give the above defined function f to the functionality in its delay-vector. The party P running
For gives f a key and a message, and f returns the number of steps P should idle in order to mimic
the correct encryption/decryption time (this in particular also takes into account the number of steps
required to compute f).13

Unfortunately, during the proofs presented below, we get the situation where the simulator uses a
different key to do encryptions than were used in computing the delay. We therefore also have to make
the assumption that the encryption (decryption) times are also indistinguishable with regards to the key,
i.e. given the two events

K1 : b = b∗; (x0, x1,m)← A, t← f(xb,m), b∗ ← A(t)

K2 : b 6= b∗; (x0, x1,m)← A, t← f(xb,m), b∗ ← A(t)

we again have that
|Pr[K1]− Pr[K2]| < negl(η).

5.3.2 Secure Realization

The proof of secure realization that we present here is very close to the proof presented by Backes et
al. [2] for the realization of For by Πor in the standard UC-framework. But we have to make some
alteration to take timing properties into account. The main challenge was to avoid time drifting too far
apart in the scenario with For compared to the scenario in which Πor is used.

Theorem 4. Πor securely realizes For in the Fscs,FNreg− hybrid model for some delay vector v.

Proof. We adopt the proof of secure UC-realization from [2]. That is, we define a sequence of games, for
which we show that these are indistinguishable.

Game 1: This is the initial game in which Πor interacts with the adversary Ad and the environment
Env. Here, being in the Fscs,FNreg - hybrid model means that each party consists of a root node
running the Πor code and two children nodes, each running the code for Fscs and FNreg respectively.

Game 2: In this game we replace the dummy adversary with a simulator S1. S1 consists of a root
node, which is the main simulator simulating the dummy adversary, and two children nodes, each
of which simulate the functionalities Fscs and FNreg. That is, we move all the children nodes

13We feel that this assumption is only necessary due to proof we present below. It would be interesting to improve the
proof such that this assumption is no longer necessary.
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from compromised parties in the network to the simulator and simulate them inside S1 (this also
includes rewiring of all relevant ports, e.g. from the root node of a party to the Fscs- children
node). Remember that S1 is timeless, while the simulated nodes are all time-ful. Thus we need to
be careful with our simulation, making sure that messages going out of the functionalities, back to
the parties in the network or the environment, are forwarded at the right time. In order to achieve
this, S1 uses internal queues for all out-ports, marking each outgoing message with a time-stamp.
These messages will then be sent out as soon as the timer of S1 has the correct value. Note that
it is enough to internally simulate the Fscs and FNreg nodes of compromised nodes, as Env does
not learn about uncompromised nodes and their behavior. Hence, Game 2 and Game 1 are
indistinguishable.

Game 3: In this game, session keys are no longer generated by a key exchange protocol, but are just
chosen randomly and saved in a common shared memory. In order to make sure that the timing
remains correct, we first double the speed coefficient of each party in order to accommodate the
additional computation (randomly choosing the key and saving it in the shared memory) and
introduce idle commands in the code of Πor, making sure that all messages are still sent out at the
same times as in Game 2. Due to the security of the 1W-AKE, no ppt machine can distinguish
the randomly chosen key from the key generated by 1W-AKE, hence this game is indistinguishable
from Game 2.

Game 4: In Game4, we adopt the visible subpath computations from [2]. The onions do not contain the
real messages anymore but only the constant zero bitstring. Π4 maintains a shared datastructure
q in which the real messages are stored.

Recall that a visible subpath of a circuit (Pi, ki, cid i)
`
i=1 from an honest onion proxy is a minimal

subsequence of corrupted parties (Pi)
s
i=u of (Pi)

`
i=1 such that Pi−1 is honest and either s = ` or

Ps+1 is honest as well. The parties Pi−1 and, if existent, Ps+1 are called the guards of the visible
subpath (Pi)

s
i=u. In particular, the onion proxy is also a guard. Every circuit can be split into a

sequence of visible subpaths and guards. Π4 stores for every circuit (Pi, ki, cid i)
`
i=1 such a splitting

into visible subpaths and guards. These splittings are updated upon each compromise command.

Upon receiving a send input or a response from a network, Π4 stores an input message m in a
shared datastructure q as follows. For a guards P , let cidP be the circuit id for which P knows the
key. Let s the state of the wrapping algorithms of the sender before computing the onion. Then,
we store q(cidP , s)← m for each P .

The adversary might be able to corrupt onions such that the contained plaintext is changed. Π4,
however, does not rely on the content of the onions anymore but rather looks up the message
in the shared memory. Therefore, Π4 needs a way to derive the changes to the plaintext due to
possible modifications of the ciphertexts. At this point our predictable malleability applies, and we
use the algorithm D from the onion secrecy definition for computing the changes in the plaintext.
However, for computing the changes in the plaintext, we need to store the onions that the receiving
guard has to expect. Hence, Π4 maintains a shared datastructure onions indexed by the cid of the
receiving guard that stores the expected onions.

Π4 initially draws some distinguished random key kS , which is later used for a distinguished last
wrapping-layer of the constant zero bitstring. Whenever in Π3 a guard P that is neither the exit
node nor the onion proxy would unwrap an onion O with key k and circuit id cid , P looks up
O′ = pending(cid). Then, it runs T ← S(O,O′) and replaces the real message m ← q(cid , st)
in the shared memory with T (m), where st is the state of the onion algorithms in the forward
direction. Then, P unwraps O with the fake flag, i.e., (O′′, st′)← UnwrOn(O, kS , fake, st) instead
of UnwrOn(O, k, st). We set the fake flag, because the unwrapping has to skip the integrity check;
otherwise a corrupted onion would already in the middle of the circuit be stopped in Π4. However,
instead of forwarding O′′, P constructs a new onion either for the adversary or for the next guard
as follows. P looks up the adjacent visible subpath (Pi)

s
i=u in forward direction. If s = `, then P

constructs the onion for the adversary. P reads the real message m ← q(cid , st) from the shared
memory and sends a forward onion Oj for the subcircuit (Pi, ki, cid i)

`
i=u that contains the message

m and is constructed as follows:

Ou−1 ← m
for i = u to ` do (Oi, st

′)←WrOn(Oi−1, kj+u−i, st)
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Only then, P updates the forward state st← st′. Thereafter, P stores q(cidPj+1
, st′)← Ou, where

cidPj+1
is the circuit id of the guard Pj+1.

If s < `, P sends a forward onion for the subcircuit (Pi, ki, cid i)
s+1
i=u that contains 0|m| instead of m,

where we replace for the last layer ks+1 by the distinguished key kS . Again only then, P updates
the forward state st← st′. Analogously, guards that are onion proxies, i.e., construct an onion in
forward direction, also only construct an onion for the adversary or the next guard.

Similar to the forward direction, guards that receive an onion O in backward direction do not
wrap it further as in Π3 but first unwrap O with the fake flag and the distinguished key kS , i.e.,
O′ ← UnwrOn(O, kS , fake). Instead of wrapping O as in Π3, the guard constructs an onion for
the adjacent subpath in backward direction as follows. Since P is a guard for the circuit, also the
onion proxy is honest, thus u > 1. P looks up the adjacent visible subpath (Pi)

s
i=u in backward

direction. Let m← q(cid , st) be the real message stored in the shared memory, cid be the circuit
id for which P knows the key and s be the state of the onion algorithms in the backward direction.
Then, P sends an onion (O, st′) ← UnwrOn(0|m|, 〈ki〉si=u−1, st), where ku−1 := kS . Thereafter,
update the backward state st← st′.

It might happen that the adversary compromised a node in the middle of the circuit and the exit
node. Then the adversary sends a random message to an honest node P . In this case, P would
honestly unwrap the message. Since the adversary controls the exit node the broken integrity is
not realized. But from that point on the guard P is out of sync, i.e., P has a different unwrapping
state than the predecessor guards. Consequently, by the synchronicity of the onion algorithms all
future messages that are sent from the onion proxy will be garbage. For guards that are out of
sync, we only send randomly chosen messages of appropriate length.

Then, by a hybrid argument it follows that any adversary distinguishing Game3 from Game4 can
be used for breaking onion secrecy or synchronicity, where the hybrids are indexed by the circuits
of honest onion proxies in the order in which the circuits are initiated. Hence, Game3 and Game4

are indistinguishable.

While this visible subpath computation only changes the messages, but not the amount of messages
sent through the network, our main concern is the additional computation done by each party. In
order to accommodate this, we again accelerate the party machines, introducing the new code for
the visible-subpath computations and additional idle commands, making sure that messages are
sent out at the same time as in Game 3. We make use of shared memory in order to enable parties
to compute the visible sub paths: compromised parties indicate in the shared memory that they
are compromised, and parties doing the visible subpath computation get all necessary information
from the shared memory. This work around is necessary as in the original model [2], there is only a
single protocol machine P which internally simulates all participating parties, and does the visible
subpath computations. This approach is not feasible in our model, as this would require P to live
in several points in time simultaneously.

Due to onion secrecy and synchronicity of the used onion encryption algorithms, and as we make
sure that the time stamps remain the same, no ppt adversary can distinguish between Game 3
and Game 4.

Game 5: In this games, each party internally simulates For for doing the visible-subpath computations.
That is, every input from the environment is directly forwarded to For, which in turn returns the
computed visible subpaths and messages to be sent through the network.

A major difference to Πor here is in the key registration. Upon input (Register, P ), S1 internally
simulates the interaction with the key registration functionality and makes sure that all required
network messages are sent to Env.

Other small differences are discussed in [2] and will be skipped here. Our main concern will be
making sure that the time stamps of each message remain correct, and also that time variables of
each party progress at the same rate as in Game 4. While compared to Game 4, we save code for
the parties (from outsourcing the visible subpath computation), we still have to accommodate the
simulation of For in our time budget. Again we accelerate our parties and introduce idle commands
as required in order to make sure that messages are sent into the network at the right time.

As we make sure that the timestamps of all messages remain the same, the indistinguishability of
Game 4 and Game 5 follows from the anonymity of the 1W −AKE protocol as discussed in [2].
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upon setup from parent

1: send setup to ρ; wait for (ready, 〈Pj〉nj=1)
2: store 〈Pj〉nj=1; output ready to parent

upon a message (received, (m, cid)) from ρ

1: lookup the state s of Reassemble for sid′

2: call (m′, s′)← Reassemble(m, s); store s′ for sid′

3: if ready 6= m′ then
4: send (received,m′) to parent

upon a message (exit, (m, sid)) from ρ

1: lookup the state s of Reassemble for sid′

2: call (m′, s′)← Reassemble(m, s); store s′ for sid′

3: if ready 6= m′ = (m′′, sid′′, a) and a is a server
then

4: send (exit, (m′′, sid′′, a), sid) to parent

upon input (response, (sid,m)) from parent

1: m1, . . . ,mq := Split(m) (for q = d|m|/blocklne)

2: for all i ∈ {1, . . . , q} do

3: send message (response, sid,mi) to ρ

upon input (send,m) from parent

1: P ← PathSelection(Pu)
2: if if there is no open circuit cid then
3: send message (createcircuit,P) to Pu
4: wait for response (created, C)
5: m1, . . . ,mq := Split(m) (for q = d|m|/blocklne)

6: for all i ∈ {1, . . . , q} do
7: send message (send, C,mi) to ρ

upon a message (destroyed, cid ,m) from ρ

1: mark cid as closed
2: proceed as in (send,m)

PathSelection(Pu):

1: l
R←{1, . . . , n}

2: N := {1, . . . , n}
3: for j = 1 to l do

4: ij
R←N

5: N := N \ {ij}
6: return (Pu, Pi1 , . . . , Pil)

Figure 19: Wrapper Πworρ for client Pu and a sub-protocol ρ

Game 6: Here, we replace the protocol code by the functionality For. In Game 5, Πor directly
forwarded all inputs from Env to For, hence the messages sent by For remain the same. As these
are sent to the adversary, S1 will receive them and can then compute the correct network messages
by internally simulating Πor. This will now be our final simulator S.

At this points, For will require much less time than Πor in Game 5. In order to close this gap,
we correctly set all the delay values in For’s delay vector, by adding up all the idle commands
added in the previous games, taking account of the accelerations and including the encoding-time-
distribution functions whenever encryption would happen in the real world scenario.

As the timestamps therefore remain the same as in Game 6, and as S correctly computes all
network messages as in Game 5, Game 5 and Game 6 are indistinguishable.

5.4 A User Interface: the Wrapper Πwor

We allow for the sake of modularity to let the environment, i.e., the parent node, to command the circuit
and to choose the path. In many cases, however, this additional complexity becomes inconvenient. In
this section, we present a wrapper Πwor (see Figure 19) that performs the circuit construction, and
splits messages and re-assembles the messages blocks. We present a wrapper that uses a uniform path
selection; however, by adjusting the distribution RandomParties, any path selection can be used.

We note that such a For together with such a wrapper Πwor (i.e., ΠworFor
) give rise to an anonymous

channel functionality, that is similar in spirit to the anonymous channel functionality suggested by
Canetti [11]. However, such an anonymous channel functioanlity would have as much leakage as and give
the adversary as much influence capabilities as For; thus, we refrained from presenting it in this work.

Re-assembling and splitting in Πwor. We assume a stateful routine Reassemble(m, s) which expects
as input a message block m (and a state s) and outputs together with a new state s′ either a dummy
message ready, if a complete message could not be reassembled yet, or a re-assembled message m′ 6= ready,
if m and the state s allowed re-assembling a complete message. In the description of the protocol, we
lookup the state of Reassemble and store it in the variable s. If this lookup fails, we assign to the variable
s the empty state, i.e., the empty string. Dual to the re-assembling routing, we assume a splitting routine
(m1, . . . ,md|m|/blocklne) ← Split(m) which splits the message into message blocks mi of length blockln
and pads the last block if necessary.
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6 Timing Attacks in TUC

While previous frameworks only allowed modeling time-independent traffic features such as packets-
counts or direction-changes, the communication model in TUC allows us to capture common timing
features of traffic such as inter–packet delay, throughput and round–trip–times. Subsequently, we briefly
discuss how these features are represented in TUC and how they can be exploited by the network
adversary. Our analysis is inspired by the adaptive extension of the AnoA framework [4]. Due to space
constraints, we use a simplified version of the anonymity notions presented therein.

6.1 The Set-Up

We consider the class of environments that consist of two sub-machines, an environment adversary AEnv

and the challenger Ch. The environment adversary AEnv is connected to the network adversary and the
challenger is connected to the users and defines the security game. In the following, we will use the term
adversary to denote the collaboration of the environment adversary and the network adversary. By the
completeness of the dummy adversary (Lemma 3) it suffices to consider the network dummy adversary
and the environment adversary.

Each party consists of a the Πwor protocol with the onion routing protocol as a child. By Theorem 4 ,
we directly consider the ideal functionality For instead of the onion routing protocol Πor (For is depicted
in Figure 14).

This set-up is exemplified in Figure 20. It depicts three instances of For together with the wrapper
Πwor, the shared memory mem used by For, a challenger Ch, the network adversary and the environment
adversary AEnv.

Sender anonymity challenger SACh. For illustrating attacks, we present a guessing-based sender
anonymity game via a sender anonymity challenger SACh (which instantiates Ch in Figure 20). In
this sender anonymity game the environment adversary AEnv has to determine the sender of a specific
message-stream in the presence of noise, i.e., other message-streams. AEnv has to link at least one session
to the correct sender address. Recall that AEnv can observe all compromised network links L though the
dummy adversary.

We model a scenario in which users are randomly assigned to addresses, and (in the case of the sender
anonymity game) the adversary has to guess which user sits at which address. An address in our model is
represented by a party, and a user is represented by a user model. For each server S ∈ S := {S1, . . . , Sl},
there is a user model UMS that reactively creates messages for a (potentially interactive) communication
with a server S. The user model in particular also decides, when a specific message is sent.

Technically, a user model UMS is a randomized PPT machine that upon a server message r outputs
a sequence ((msg1, t1), . . . , (msga, ta)), consisting of a client message msg i and the time ti at which msg i
shall be sent. Initially, it expects a distinguished message fresh to start a new session.

The sender anonymity challenger SACh allows the adversary to initially register a user model for
every server. Then, SACh randomly assigns parties P1, . . . , Pl (i.e., addresses) to servers S1, . . . , Sl (i.e.,
to user models) and internally runs the user models UMS . SACh forwards each message msg i from UMS

as a send-command from P to S at time ti and forwards any response r from S to P to the user model
UMS as input.

Moreover, for the analysis of sender anonymity, we can assume that all servers are compromised.
Hence, SACh forwards all messages from the servers to the environment adversary AEnv. Finally, upon
an input (guess, (P ′, S′)), SACh checks whether the user u is assigned to the user model UMS for the
server S. If so, SACh outputs 1; otherwise it outputs 0.

Onion routers Oi. In addition to the regular users, i.e., protocol parties that are controlled through
user models, we also assume protocol parties O1, . . . , Ov that run the same protocol code but only serve
as onion routers. We assume that users and onion routers are distinct, i.e., ∀i, j.Oi 6= Pj .

6.2 Mounting Attacks that use Timing Features

In TUC timing-based traffic features can be measured by the adversary. Example 4 details how timing
features can be measured in TUC. Subsequently, we discuss how timing based traffic analysis attacks
from the literature can be mounted using these features [14, 19, 43, 31, 23, 30, 41, 44, 46, 47, 55, 32].
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Figure 20: The Attack Scenario

Example 4: Observing timing features in TUC. We examine how the time at which a message is
sent from a party P correlates to P ’s speed coefficient cP . For simplicity, we assume that party P just
created a new circuit before receiving the message from SACh. We further assume that both machines
inside P have the same speed coefficient cP .

1: SACh sends (send,m) to party P at time T
2: Πwor in P receives (send,m) at T ′ = k

cP
≥ T , where T ′ is the first time after T where Πwor is in the

listen state
3: Let n be the number of steps needed to split m into q := d|m| /blocklne packets m1, . . . ,mq.

Πwor sends mi at time Ti = T ′ + n+i
cP

to For

4: Let n′ be the time that For needs to send a message and v[4] the delay for being synchronized with
Πor.
For forwards mi at time T ′ + v[4] + n+1+i·n′

cP
=: T ′ + g(cP , i), since messages m2, . . . ,mq arrive at

For before n′/cP time has passed.

The traffic pattern a user model UMS generates is the stream of message blocks that are generated if,
for the sequence of messages ((msg1, t1), . . . , (msga, ta)), the message msg i is sent at the instructed time
ti. Thus, the corresponding traffic pattern is preserved when ΠworFor

sends its message blocks.
If the network links through which the messages, or in the case of For the message handles, are sent

are compromised, the network adversary A learns the time at which the messages cross the network.
From this A can determine different timing features of the traffic, e.g, he can determine the difference
g(cP , i+ 1)− g(cP , i) between the two messages mi and mi+1, or A can learn at which time how much
throughput, i.e., how many message blocks per time, passed through the link. Thus, it learns the traffic
patterns of the message stream generated by the user model.

Similarly to the function g, which estimates the delay created by creating a stream of cells from a
message mi, we can also determine a function h for the delay created by relaying a message through a
onion router. This function h solely depends on the speed of the onion router and i.

Consider a circuit with the onion routers O1, O2, O3. The time at which a message mi is sent from
an exit link O over the network to the server is g(cP , i) + h(cO1

, i) + h(cO2
, i) + h(cO3

, i) + d + w for
some network delay d that is caused by other messages that the onion routers have to concurrently
process and, optionally, for some watermarking delay w that the adversary deliberately introduces for
recognizing traffic (as studied in previous work [19, 43, 31, 32]).

Let |L| be the number of compromised links and M be the number of total links between the protocol
parties. Then, the probability that the entry link from P to the entry node, i.e., to the first onion router,
is compromised is |L|/M . This is therefore the probability with which A observes the links that belong
to the same connection and can then try to correlate the traffic. The success of this correlation however
depends on the methods used by A.

For a passive network adversary, which does not introduce any watermarking delay, we get the
following: if the traffic patterns of all user models are sufficiently well distinguishable and the network
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delay is sufficiently small (i.e., there is not much traffic on the onion routing network), then the traffic
pattern of a user model is recognizable, i.e., the traffic can be correlated, for an adversary in TUC. For
an active adversary, which does introduce watermarking delays, it is possible to compensate the network
delay, and such an adversary can even recognize a stream if the user models produce exactly the same
traffic patterns. Thus, an active adversary can recognize a user model as soon as it controls the entry,
i.e., with more than |L|/M probability.14 �

Inter-packet delay. Inter-packet delay is the time difference in the time stamps of two consecutive
packets sent through a connection. Example 4 illustrates how the time distance ti+1 − ti between two
messages ((mi, ti), (mi+1, ti+1)) from the user model is preserved in the sequence of message blocks that
ΠworFor

produces. Moreover, it illustrates how a delay g(cP , i+1)−g(cP , i) between two message blocks
that belong to the same message is produced and that this delay depends on the speed coefficient of the
party. These delays reflect the inter-packet delays used in traffic analysis attacks from the literature. We
are aware that we abstract from the delays that, in the real world, are produced by low-level network
protocols, such as TCP and IP and from machine specific hardware delays, e.g., induced by a machine’s
network card. In principle, however, TUC and For allow for fine-grained modeling of these timing
features by introducing the respective protocols as sub-protocols of the onion routing protocol.

As discussed in Example 4, if the network delay is small and the traffic patterns of the user models
are distinguishable, the inter-packet delays in the traffic pattern of a user model can be correlated even
for a passive adversary.

Traffic watermarking attack. In a traffic watermarking attack, the adversary deliberately causes a
delay pattern, called a watermark, for a packet stream, e.g., at the entry link, and measures at the other
links, e.g., at exit links, whether it recognizes such a watermarked message stream. We illustrated in
Example 4 how such a traffic watermarking attack could be modeled in TUC.

Similar to recognizing watermarks and inter-packet delays, the adversary can measure other timing
features such as throughput and round-trip-times in the network. For round-trip times, the speed
coefficients of the onion routers potentially give a unique fingerprint if they are sufficiently different. For
simplicity, we omit network latency on links. Network latency can however be modeled by refining the
network topology NET in the execution EXEC.

The attack described above only acts passively as it collects messages sent through the network
and evaluates them. But, especially for traffic correlation, active methods such as traffic watermarking
are very popular in the literature [19, 43, 31, 32]. Here the adversary slightly modifies the traffic he
intercepts, creating watermarks that are easier to spot if the same traffic is observed at some other point
in the network. These kinds of attacks are also possible in our model, as we do allow active adversaries
(we are only restricted to static corruption).

Modeling website-fingerprinting attacks. A website fingerprinting attack assumes that the ad-
versary up-front possesses a list of fingerprints for each server, which characterizes connections to these
servers based on traffic features, e.g., direction changes in traffic, throughput, round-trip-times and inter-
packet-delays. A then only needs to listen to the entry links from users to the onion routing network
and collect the messages (together with time-stamps) that go through this entry link. After collecting
sufficiently many messages, he can then match the fingerprints he possesses to the traffic he intercepted.
In the literature [8, 48, 27] several successful website-fingerprinting attacks are known.

While previous frameworks already allowed fingerprinting websites based on time-insensitive traffic
features, such as overall size of traffic and direction changes in traffic, an adversary in TUC can utilize
timing features of traffic for website-fingerprinting as well. In turn, proving the absence of attacks in
TUC excludes the entire family of attacks that use time-sensitive traffic features, such as throughput in
time and inter-packet delay. In the next section we propose a countermeasure against the class of website
fingerprinting attacks against the onion routing protocol and prove this countermeasure to be secure.

14For simplicity, we give a very coarse approximation of the probability that the adversary control the entry link. The
adversary could additionally compromise onion routers and thereby increase its chance to control the entry point of a
circuit.
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Both: upon (setup) from the parent

1: send setup to ρ; wait for ready; send ready to par-
ent

Client: upon (req, address) from the parent

1: send (send, address) to ρ

Client: upon m from ρ

1: output m to the parent

Exit node: upon (exit, ((m′′, sid′′, a), sid′)) from ρ

1: if bunsid′′ = ⊥ ∧ a is a server then
2: lookup and store current time in reqStart(sid′)

3: store ((m′′, sid′, a), sid′) in bunsid′′

4: while ∃ request(loc, a) in bunsid′′ do
5: remove request(loc, a) from bunsid′′

6: send (loc, (a, sid′)) over the network
7: store the response res in bunsid′′

8: lookup the smallest bucket size n′ ≥ |bunsid′′ |
in pageBuck

9: pad bunsid′′ to a size of n′ and store it in m′

10: let t← tbuf + reqStart(sid′)
11: send (response, (sid′,m′)) to ρ at time t

Figure 21: The protocol wfcρ for party pid, where sid is its session ID

7 Countermeasure against Website Fingerprinting

We leverage our time-sensitive framework and our Tor abstraction to propose a countermeasure against
website fingerprinting and prove it secure. The countermeasure achieves k-recipient anonymity for web
pages without dynamic requests, such as Ajax.

The countermeasure protocol, called wfc, is plugged on top of the Tor protocol. At an exit nodes,
wfc performs all web page requests until the web page is fully loaded and returns the entire web page at
once to the user. In order to remove size features of web pages, the response packet-stream are padded
to a common denominator for all web pages. wfc additionally waits until a time buffer tbuf has passed
in order to remove traffic-related timing features.

In order to improve performance, the countermeasure uses buckets for common web page sizes and
pads the web pages up to the next larger bucket (instead of padding to a common size of all web pages).
The data structure pageBuck contains a bucket for each target web page size and upon input of a size n,
pageBuck(n) returns the list of web pages that have size n or are padded to size n. The countermeasure
protocol wfc is depicted in Figure 21.

We next describe the k-recipient anonymity challenger.

The k-recipient anonymity challenger RACh We consider following notion of recipient anonymity:
an adversary that control all entry links of a party P , e.g., an ISP-level adversary, should not be able to
determine the web pages that the party P visits. The set-up for recipient anonymity is exactly as for the
sender anonymity game (See Section 6.1) except that the challenger Ch is replaced by the following k-
recipient anonymity challenger RACh. This challenger RACh initially allows the environment adversary
to define the page-buckets used in the game, but requires that each bucket in pageBuck contains exactly
k web pages.

In contrast to the sender anonymity game, RACh does not allow the environment adversary to
control the servers. Instead, we assume that the adversary solely controls all links connected to the
parties representing users (i.e., controls entry links to the onion routing network).

In order to strengthen the adversary, we allow it to choose the time at which a user sends a web page
request to a server. Similar to the sender anonymity game the environment adversary has to guess the
correct server/request pair.

In the following, we describe the code of the web servers.

Web pages. For our purposes it suffices to represent web pages as lists of elements, which are associated
with locations on the web server and are returned upon requests for these locations. Elements are
arbitrary bit-strings m that are marked as elements; we denote them as element(m).

A page request consists of a pair of party ID a and a location loc (represented by a bit-string), which
we denote as request(loc, a). The pair (loc, a) can be understood as the url that is requested from the
user, where a denotes the domain and loc denotes the path to a specific web page on the domain a. Note
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upon (register-webpages, pageBuck) from AEnv

1: for all sizes n do
2: if |pageBuck(n)| = k then
3: for all (a, loc, pg) ∈ pageBuck(n) do
4: if (a, loc) is unregistered and loc 6=

challenge then
5: send (register, loc, pg) to Πserver at

party a
6: else
7: return error

upon (challenge, n) from AEnv

1: draw a random j ∈ {1, . . . , k}
2: let (aj , locj , pgj)← pageBuck(n)
3: (ach, locch)← (aj , locj)

upon (send, (a, loc)) from AEnv

1: in the first call: send setup to ρ; wait for ready
2: if loc = challenge then (a, loc)← (ach, locch)
3: send (a, loc) to P

upon (guess, (a, loc)) from the AEnv

1: if (a, loc) = (ach, locch) then output (guess, 1)
2: else (guess, 0)

Figure 22: k-recipient anonymity challenger: RAChk

that the countermeasure wfc only provides recipient anonymity guarantees for web pages that do not
dynamically load content upon user inputs, e.g., by using JavaScript techniques such as Ajax.

Server protocol Πserver. Web servers are modeled as a protocol Πserver, which can be thought of an
abstraction of server software, e.g., Apache HTTP Server.15

The server protocol can register several locations on the machine it runs on. Formally, upon a message
of the form (register, loc, pg) from its parent, Πserver registers a web page pg at the location loc. Upon a
network message (loc, (a, sid′)), the server then responds with the web page pg .

The k-recipient anonymity for wfc follows from the composition theorem (Theorem 2), the realization
theorem (Theorem 4), the definition of For and from the fact that all web-pages in the same bucket are
padded to the same size and that wfc removes timing features from the traffic by introducing artificial
delays.

Lemma 4. Let EXEC′ be defined as EXEC except that EXEC′ outputs the bit b from the first output of
the form (guess, b) by RACh. Let 〈RACh,AEnv〉 denote the machine that contains RACh and AEnv, as
described in Section 6.1. Let 〈wfcΠworΠor

,Πserver〉 denote the combined protocol with the countermeasure
along with the wrapper and the onion routing protocol and the server protocol.

For any PPT environment adversary AEnv and a dummy network adversary Ad that only compromises
entry links or entry nodes , for sufficiently large tbuf and η and a negligible function µ we have

Pr[EXEC′η(〈wfcΠworΠor
,Πserver〉,Ad, 〈RACh,AEnv〉) = 1] ≤ 1/k + µ(η)

Proof. By the realization theorem (Theorem 4) and the composability theorem (Theorem 2), wfcΠworΠor

securely realizes wfcΠworFor
; hence a network adversary against wfcΠworFor

(and hence also against
wfcΠworΠor

) that only compromises the entry node of one client or the link to the entry node of one
client only learns the cids and freshly drawn handles, which are both independent of the recipient. Hence,
the pattern of the response is the same for all names that the environment input.

Since we assumed that the web servers wait until a fixed time t before they response, the response
time of the web servers is always the same. We conclude that the adversary cannot learn more than
the length of the requested web page. Since RACh has output (guess, 1), the length of all possibly
requested web pages is padded to pageBuck(k). Hence, the length and the time pattern of all web pages
in pageBuck(k) is the same.

8 Conclusion and Future Work

In this work, we presented TUC, a formal framework for the analysis of complex mutil-party protocols
that includes a comprehensive notion of time, which is suitable for and tailored to the demands of an-
alyzing AC protocols. Our framework provides all properties that allow for strong compositionality: a
universal composability result, and the completeness of the dummy adversary. We apply this framework
to the widely deployed Tor network and showed that a previous abstraction of the onion routing pro-
tocol [2] can be suitably extended to account for timing and that it is realized in TUC by a similarly

15Technically, Πserver is the “server” role in the wfc protocol; otherwise they cannot be peers.
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extended onion routing protocol. We then leveraged this abstraction and our framework to formulate a
countermeasure against website fingerprinting attacks and proved this countermeasure secure.

An interesting direction for future work is the evaluation of more elaborate countermeasures against
known time-sensitive attacks, in particular traffic correlation attacks. Since our framework compre-
hensively models timing attacks, every verification of the abstraction for onion routingyields security
guarantees for the actual OR protocol.

For future work there are scenarios in which it is crucial to characterize the network topology in a
more detailed way. Possible extensions include adding the latency and the throughput of a link, allowing
not only single links between two parties but several links (a multigraph topology), and including weights
to each link to model routing preferences. Such extensions could for example be used for the analysis of
denial-of-service resistance mechanisms or for the for the analysis of more sophisticated path selection
algorithms for onion routing or analyzing denial of service attacks.

There is a line of work on automated verification techniques for timed automata. It would be in-
teresting to explore in which cases timed automata are a sound abstraction for TUC protocols. Such a
result would allow to obtain strong guarantees, i.e., against computational adversaries that can perform
time-measurements, from established automated verification tools [15, 33, 7, 40, 37, 38]. Moreover, there
is an information theoretic analysis of web traffic which uses an abstraction of web-traffic. It would be
interesting to utilize TUC to prove that their abstraction is sound, i.e., that all attacks in TUC are
reflected in their abstraction.
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