
A Note on the Impossibility of Obfuscation with Auxiliary Inputs

Shafi Goldwasser∗ Yael Tauman Kalai†

October 17, 2013

Abstract

In this note we revisit the problem of obfuscation with auxiliary inputs. We show that the ex-
istence of indistinguishablity obfuscation (iO) implies that all functions with sufficient “pseudo-
entropy” cannot be obfuscated with respect to a virtual box definition (VBB) in the presence of
(dependent) auxiliary input. Namely, we show that for any candidate obfuscation O and for any
function family F = {fs} with sufficient pseudo-entropy, there exists an (efficiently computable)
auxiliary input aux, that demonstrates the insecurity of O. This is true in a strong sense: given
O(fs) and aux one can efficiently recover the seed s, whereas given aux and oracle access to fs it is
computationally hard to recover s.

A similar observation was pointed out in a recent work of Goldwasser et. al. (Crypto 2013),
assuming extractable witness encryption. In this note we show that the extractability property of the
witness encryption is not needed to get our negative result, and all that is needed is the existence of
witness encryption, which in turn can be constructed from iO obfuscation.

∗MIT and the Weizmann Institute.
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1 Introduction

The study of Program Obfuscation — a method that transforms a program (say described as a Boolean
circuit) into a form that is executable, but otherwise completely unintelligible — has been a longstanding
research direction in cryptography. It was formalized by Barak et. al. [BGI+01], who showed that
there exist (contrived) function families which are not obfuscatable under a very natural definition of
obfuscation (VBB) and various relaxations. The virtual-black-box (VBB) definition essentially requires
that anything that can be efficiently computable given an obfuscation of a program, could be efficiently
computable from black box access to the program.

Following this work, much effort has been devoted to show the existence of obfuscators for natural
classes of programs. However until the recent proposed construction result of Garg et. al. [GGH+13], all
known obfuscation candidates were for very simple classes of functions, such as point functions [Can97],
hyper-planes [CRV10], conjunctions [BR13b], and d-CNFs [BR13a]. The recent breakthrough work of
Garg et. al. gave the first candidate for general-purpose obfuscation, and conjectured that it is a best
possible [GR07] or indistinguishability obfuscator (iO-obf). Namely, given any two circuits C1, C2 of
the same size for a functionality f , no polynomial time adversary can distinguish between the obfusca-
tion of C1 and the obfuscation of C2. Followup works [BR13c, BGK+13] proved security of (variants)
of their scheme in the generic multi-linear group model. Subsequent to Garge’s work, a flood of results
have appeared showing that the existence of iO-obf suffices for many applications, previously consid-
ered outcome of VBB applications, such as the constructions of public-key encryption from private-key
encryption, the existence of deniable encryption, and much more.

In this note, in contrast, we show that the existence of iO-obf shows, in a somewhat strange twist,
limitations on the possibility of VBB obfuscation. In particular, on the possibility of VBB obfusca-
tion with auxiliary input. The latter is a strengthening of VBB obfuscation, introduced by Goldwasser
and Kalai [GK05], which corresponds to the setting where the adversary, which is given the obfuscated
circuit, may have some additional a priori information. This is essentially the case of interest in any
cryptographic usage of obfuscation imaginable. Goldwasser and Kalai prove the existence of many
“natural” classes of functions that are not obfuscatable w.r.t. (contrived) auxiliary input. In particular,
two types of auxiliary inputs were considered in [GK05]: dependent auxiliary inputs, where the aux-
iliary input may depend on the function being obfuscated, and independent auxiliary inputs, which is
independent of the function being obfuscated. For the case of dependent auxiliary inputs, they proved
that every function family with super-polynomial “pseudo-entropy” cannot be obfuscated w.r.t. auxiliary
inputs, assuming the class of point-filer functions are obfuscatable w.r.t. auxiliary inputs.1 Thus, their
result is a conditional one.

Recently, the notion of witness encryption was put forth by Garg et. al. [GGSW13]. It was ob-
served by Goldwasser et. al. [GKP+13] that an extractable version of witness encryption can be used
to obfuscate the class of point-filer functions w.r.t. auxiliary inputs. Thus, together with [GK05], this
implies that the existence of an extractable witness encryption scheme implies that any function with
super-polynomial pseudo-entropy cannot be obfuscated w.r.t. auxiliary inputs.

Here we show that the proof of [GK05] actually implies that witness encryption without the ex-
tractability property, suffices in order to prove that all functions with super-polynomial pseudo-entropy
are not obfuscatable w.r.t. auxiliary inputs. We note that the (general-purpose) iO-obf, of Garg et. al. [GGH+13],
implies the existence of witness encryption. Thus, our observation implies that iO-obf implies that all
functions with super-polynomial pseudo-entropy are not obfuscatable w.r.t. auxiliary inputs.

We refer the reader to Definition 2.3 for the precise definition of circuit families with super-polynomial
pseudo entropy, but note that such families include all pseudo-random function families, as well as every
semantically secure secret-key and public key encryption scheme, or any secure digital signature scheme
where randomness is generated by using a (secret) pseudo-random function.

1We refer the reader to [GK05] for the definition of a point-filter function family.
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We emphasize that in this note, we consider auxiliary inputs that may depend on the function being
obfuscated, but as in [GK05], we consider only auxiliary inputs that are efficiently computable and do
not depend on the randomness used by the obfuscator.

2 Preliminaries

Definition 2.1 (VBB Obfuscation with auxiliary inputs). Let F = {fs} be a family of poly-size
circuits. We say that O is an obfuscation of F with (dependent) auxiliary inputs if the following holds:

• Correctness: For every function fs ∈ F , and every possibly input x,

Pr[O(fs)(x) = fs(x)] = 1.

• Polynomial slowdown: There exists a polynomial p such that |O(fs)| ≤ p(|fs|).

• Security with auxiliary input: For every PPTA there exists a PPT S such that for every auxiliary
input aux = aux(s) (that is efficiently computable from s) and every predicate π

Pr[A(O(fs), aux) = π(s, aux)]− Pr[Sfs(aux(s)) = π(s, aux)] = negl(k),

where the probability is over randomly chosen s ∈R {0, 1}k.

Remark. Our impossibility result for VBB obfuscation with auxiliary inputs, holds even if we restrict
the auxiliary input to be efficiently computable given oracle access to fs.

Definition 2.2 (Witness encryption). A witness encryption scheme for an NP language L with corre-
sponding witness relationRL is a pair of PPT algorithms (Enc,Dec) such that the following holds.

• Correctness: For all (x,w) ∈ RL, for every b ∈ {0, 1},

Pr[Dec(Encx(1
k, b),w) = b] = 1− negl(k).

• Semantic Security: For every x ̸∈ L and for every PPT adversary A,

Pr[A(Encx(1k, b)) = b] ≤ 1

2
+ negl(k),

where the probability is over b ∈R {0, 1} and over the random coin tosses of Enc and A.

Definition 2.3 (Pseudo-entropy of a circuit class). Let p = p(k) be a polynomial. We say that a class of
circuits C = {Ck}k∈N has pseudo-entropy at least p = p(k), if there exists a polynomial t = t(k) and a
subset I ⊆ {0, 1}k of size t(k), and for every C ∈ Ck there exists a random variable Y C = (Y1, . . . , Yt),
such that the following holds:

1. Y C has statistical min-entropy at least p(k).

2. For every PPT oracle machine D there is a negligible function µ such that for every k ∈ N∣∣∣Pr [DC|Ī (Y C) = 1
]
− Pr

[
DC|Ī (C(I)) = 1

]∣∣∣ ≤ µ(k),

where C(I) , {C(x)}x∈I ,2 and where the circuit C|Ī agrees with C on every x ̸∈ I , and outputs ⊥
on every x ∈ I . The probability above is over C ← Ck, over the random variable Y C , and over the
randomness of the distinguisher D.

We say that C has super-polynomial pseudo-entropy if it has entropy at least p for every polynomial p.
2There is a slight abuse of notations here. We use C(I) to denote both a set and a list (or a vector).
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3 Impossibility for Obfuscation with Auxiliary Inputs

As was mentioned in the introduction, Goldwasser and Kalai [GK05] proved that either point-filter
functions are not obfuscatable with auxiliary inputs or all functions with sufficient “pseudo-entropy” are
not obfuscatable with auxiliary inputs. It was recently observed by Goldwasser et. al. [GKP+13] that
extractable witness encryption implies that point-filter functions are obfuscatable with auxiliary inputs,
and thus, that any function with sufficient “pseudo-entropy” is not obfuscatable with auxiliary inputs.
We now show that the same impossibility result (with essentially the same proof as in [GK05]) can be
obtained assuming the existence of witness encryption (without any extractability property).

Theorem 3.1. Assume the existence of a witness encryption scheme. Then any function with super-
polynomial pseudo-entropy cannot be obfuscated w.r.t. auxiliary input.

In what follows, for the sake of simplicity, let us prove Theorem 3.1 for any pseudo-random function
family. Then we show how the proof extends to any function with super-polynomial pseudo-entropy.

Proof. Assume the existence of a witness encryption scheme for some NP-complete language L. Let
F = {fs} be any family of pseudo-random functions.

Suppose for the sake of contradiction that there exists an obfuscator O for F that takes as input
s ∈ {0, 1}k and outputs an obfuscated circuit O(fs) of size t = t(k) (for some polynomial t). Let L′ be
the NP language defined as follows:

L′ = {x = (z1, . . . , z2t) : there exists a circuit C of size |C| ≤ t s.t. C(i) = zi ∀i ∈ [2t]}

Set x = (fs(1), . . . , fs(2t)) and let aux(s) = Encx(1
k, b), where b ← {0, 1} is a random bit, and

where Enc is a witness encryption for L′. Note that the fact that there is a witness encryption for an
NP-complete language implies that there is a witness encryption for any NP language, and in particular
for L′.

Given O(fs) and aux(s) = Encx(1
k, b), one can efficiently decrypt b with probability 1 − negl(k),

since O(fs) is a valid witness of x.
On the other hand, we prove the following claim, which contradicts the security of O.

Claim 3.1. For any PPT adversary S which takes as input aux(s) = Encx(1
k, b), and has black-box

access to fs,

Pr[Sfs(Encx(1
k, b)) = b] ≤ 1

2
+ negl(k).

Proof of Claim 3.1 Suppose for the sake of contradiction that there exists a PPT adversary S such that

Pr[Sfs(Encx(1
k, b)) = b] ≥ 1

2
+ ϵ(k),

for some non-negligible function ϵ, where the probability is over random (s, b) ← {0, 1}k+1 and over
the randomness of Enc.

The fact that fs is a pseudo-random function implies that

Pr[SR(Encx∗(1
k, b)) = b] ≥ 1

2
+

ϵ(k)

2
, (1)

where R is a truly random function, and x∗ = (R(1), . . . , R(2t)). This is the case, since otherwise the
PPT adversary S can be used to distinguish R from fs, contradicting the pseudo-randomness of fs.

Note that x∗ ̸∈ L′ and therefore Equation (1) contradicts the semantic security of the underlying
witness-encryption scheme.
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3.1 Extending the proof of Theorem 3.1 to any function family with super-polynomial
pseudo-entropy.

Proof. Let C be any circuit class of polynomial size with super-polynomial pseudo-entropy. Suppose
for the sake of contradiction that C has an obfuscator with auxiliary inputs, denoted by O. Let p = p(k)
be a polynomial such that for every Ck ∈ Ck, it holds that |O(Ck)| ≤ p(k).

The fact that C has super-polynomial pseudo-entropy implies that it has pseudo-entropy at least
2p(k). In particular, (recalling Definition 2.3) this implies that there exists a polynomial t = t(k) and a
subset I ⊆ {0, 1}k of size t(k) such that for every C there exists a random variable Y C = (Y1, . . . , Yt)
such that

1. Y C has statistical min-entropy at least 2p(k).

2. For every PPT oracle machine D there is a negligible function µ such that for every k ∈ N∣∣∣Pr[DC|Ī (Y C) = 1]− r[DC|Ī (C(I)) = 1]
∣∣∣ ≤ µ(k),

where C(I) , {C(x)}x∈I , and where the circuit C|Ī agrees with C on every x ̸∈ I , and outputs⊥
on every x ∈ I . The probability above is over C ← Ck, over the random variable Y C , and over
the randomness of the distinguisher D.

We define an NP language L′ similarly to above.

L′ = {(z1, . . . , zt) : there exists a circuit C of size |C| ≤ p s.t. C(i) = zi ∀i ∈ [t]}
Set x = C(I) = (C(x))x∈I and let aux(C) = Encx(1

k, b), where b ← {0, 1} is a random bit, and
where Enc is a witness encryption for the language L′.

Note that given O(C) and aux(C) = Encx(1
k, b), one can efficiently decrypt b with probability

1 − negl(k), since O(C) is a valid witness of x. It remains to prove the following claim, which is
analogous to Claim 3.1.

Claim 3.2. For any PPT adversary S which takes as input aux(s) = Encx(1
k, b), and has black-box

access to C,

Pr[SC(Encx(1
k, b)) = b] ≤ 1

2
+ negl(k).

Proof of Claim 3.2.
Suppose for the sake of contradiction that there exists a PPT adversary S such that

Pr[SC(Encx(1
k, b)) = b] ≥ 1

2
+ ϵ(k),

for some non-negligible function ϵ, where the probability is over random C ← Ck and over the random-
ness of Enc.

By the definition of x, this implies that there exists a PPT oracle machine S2 such that

Pr[S
C|Ī
2 (Encx(1

k, b)) = b] ≥ 1

2
+ ϵ(k).

The fact that C has super-polynomial pseudo-entropy (see Definition 2.3) implies that

Pr[S
C|Ī
2 (Encx∗(1

k, b)) = b] ≥ 1

2
+

ϵ(k)

2
, (2)

where x∗ = Y C .
Note however that x∗ has min-entropy 2p(k) and thus is not in L′. Thus, Equation (2) contradicts

the semantic security of the underlying witness-encryption scheme.
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