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Abstract. The MMB block cipher (Modular Multiplication-based Block
cipher) is an iterative block cipher designed by Daemen, Govaerts, and
Vandewalle in 1993 as an improvement of the PES and IPES ciphers.
In this paper we present several new related-key differential characteris-
tics of MMB. These characteristics can be used to form several related-
key boomerangs to attack the full MMB. Using 220 adaptive chosen plain-
texts and ciphertexts we recover all key bits in 235 time for the full MMB.
Our attack was experimentally verified, and it takes less than 15 minutes
on a standard Intel i5 machine to recover the full MMB key.
After showing this practical attack on the full key of the full MMB, we
present partial attacks on extended versions of MMB with up to 9 rounds
(which is three more rounds than in the full MMB). We recover 62 out of
the 128-bit key in time of 229.2 for 7-round MMB, using 220 adaptive cho-
sen plaintexts and ciphertexts encrypted under 4 related-keys, and time
of 229 for 8-round MMB using 220 adaptive chosen plaintexts and cipher-
texts, encrypted under 6 related-keys. We show how an adversary can
recover 31 out of the 128-bit key for the 9-round MMB in time of 227.8 us-
ing 219 adaptive chosen plaintexts and ciphertexts, encrypted under only
2 related-keys. We also show how the time complexity of all attacks can
be reduced by partially precomputing the difference distribution table of
MMB’s components.

Key words: MMB, Differential Cryptanalysis, Related-Key Boomerang
Attack.

1 Introduction

The MMB block cipher (Modular Multiplication-based Block cipher) is an it-
erative block cipher designed by Daemen, Govaerts, and Vandewalle [5] as an
improvement of the PES and IPES ciphers [10,11]. The cipher works with blocks
of 128 bits and an equal key length. The cipher’s non-linearity comes from multi-
plication mod 232 −1 (hence the cipher’s name). The cipher consists of 6 rounds
without any initialization or finalization steps.



Previously published work on MMB includes two papers in the single-key
model [7, 13]. Both papers were able to recover the full key of the full MMB.
In [13] Wang et al. use a 5-round differential in a 1R attack in 295.91 time, 2118

chosen plaintexts, and 265 32-bit memory words to break the full MMB. In [7] Jia
et al. present several attacks, the best of which is a sandwich attack using 213.4

time, 240 adaptive chosen plaintexts and ciphertexts, and 220.6 32-bit memory
words. We summarize these results in Table 2.

In this paper we present a related-key attack that allows an adversary to
recover all key bits in time of 235 using 220 adaptive chosen plaintexts and
ciphertexts encrypted under 4 related-keys. We first present two related-key
differential characteristics of two and three rounds, respectively, and use them
to construct two boomerangs covering 5 rounds of MMB. We then use these 5-
round boomerangs to attack the full (6 rounds) MMB. Each of the boomerangs
can be used to recover 31 bits of the key. The 62 recovered bits are then further
used to recover another 31 bits of the key using a 1R related-key differential
attack. The remaining 32 bits are then found by a simple exhaustive search.

To verify our results experimentally, we implemented the attack on the full
(6-round) MMB using a C program. The program generates the required data,
encrypts and decrypts it through the presented related-key boomerangs, identi-
fies the right quartets, and recovers the key bits in about 15 minutes on a home
PC.

After presenting our results, we show that even if MMB was extended to 7 or
8 rounds, it would still be insecure. To prove this claim, we extend the first phase
of our attack to extended 7-round and 8-round variants of MMB with similar
complexity. In other words, we show that using 220 adaptive chosen plaintexts
and ciphertexts, encrypted under 4 related keys for the 7-round variant, and
6 related keys for the 8-round variant, in time of about 229 encryptions, an
adversary can recover 62 bits out of the 128-bit key.

This paper is organized as follows: In Section 2 we give a brief description
of the MMB block cipher; Section 3 describes some of the previous work done
to analyze MMB; in Section 4 we describe the cryptanalytic techniques we use
in the paper. In Section 5 we describe the related-key differential characteristics
we use and how we use them to create the related-key boomerangs; Section 6
explains how to use the related-key boomerangs to recover the entire key of the
full MMB; Section 7 discusses an extended variants of MMB with 7 and 8 rounds
and how to attack them, and Section 8 concludes the paper.

2 A Brief Description of MMB and Our Notations

As mentioned before, MMB is an iterative block cipher with a 128-bit block
and a 128-bit key. The message and key are each divided into four 32-bit words
x0, x1, x2, x3, and k0, k1, k2, k3, respectively. In each round, four operations, σ[kj ], γ, η,
and θ are performed over the state words. Three of the four operations, namely,
σ[kj ], η, and θ are involutions (i.e., they are their own inverse).
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The key injection operation, σ[kj ], XORs the subkey into the message such
that σ[kj ](x0, x1, x2, x3) = (x0 ⊕ k

j
0, x1 ⊕ k

j
1, x2 ⊕ k

j
2, x3 ⊕ k

j
3) where ⊕ denotes

the exclusive-or operation and j denotes the round number. The key injection
operation is done 7 times, once at the beginning of the each round and once
more after the last round.

The modular multiplication operation, γ, is the only non-linear operation in
the cipher. In each encryption round, each of the 32-bit words is multiplied by
a fixed constant such that the result yi is

yi =

{

xi if xi = 232 − 1
xi ⊗ Gi if xi 6= 232 − 1

Where the operator ⊗ is the modular multiplication operator (i.e., a ⊗ b =
(a∗ b) mod (232−1)) and G0 = 025F1CDBx, G1 = 2⊗G0 = 04BE39B6x, G2 =
8 ⊗ G0 = 12F8E6D8x, and G3 = 128 ⊗ G0 = 2F8E6D81x. The result of the γ

operation is therefore (y0, y1, y2, y3) = γ(x0, x1, x2, x3).
Inverting γ is done by multiplying the ciphertext with G−1

i such that

xi =

{

yi if yi = 232 − 1
yi ⊗ G−1

i if yi 6= 232 − 1

where G−1
0 = 0DAD4694x, G−1

1 = 06D6A34Ax, G−1
2 = 81B5A8D2x and G−1

3 =
281B5A8Dx.

For every word entering γ, the trivial differential transition 0 → 0 holds with
probability 1. Another interesting property that was mentioned in [5] is that the
differential transition FFFFFFFFx → FFFFFFFFx through γ also holds
with probability 1. The use of these transitions is described in Section 5.

The η operation is a data-dependent operation on the leftmost and rightmost
words of the state. If the LSB of the word is 1 it XORs a predefined constant
δ into the word, otherwise it does nothing. Namely, η(x0, x1, x2, x3) = (x0 ⊕
(lsb(x0) · δ), x1, x2, x3 ⊕ (lsb(x3) · δ)) where δ = 2AAAAAAAx.

The diffusion between words comes from the θ operation that mixes the
round’s words such that every change in any word affects three words in the
output. Namely, θ(x0, x1, x2, x3) = (x0 ⊕x1⊕x3, x0 ⊕x1 ⊕x2, x1 ⊕x2⊕x3, x0 ⊕
x2 ⊕ x3).

The jth round of MMB over the block X = (x0, x1, x2, x3) is: ρ[kj](X) =
θ(η(γ(σ[kj ](X)))). A full description of MMB with plaintext P is:

σ[k6](ρ[k5](ρ[k4](ρ[k3](ρ[k2](ρ[k1](ρ[k0](P )))))))

A schematic view of MMB’s round function can be found on Figure 1.

2.1 Key Schedule

The original version of MMB used a simple key schedule algorithm that rotates
the key words one position to the left (e.g. the key for round 0 is (k0, k1, k2, k3),
the key for round 1 is (k1, k2, k3, k0) etc.). The key schedule is cyclic and repeats
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Fig. 1. MMB’s Round Function in Round j.
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every 4 rounds [5]. To avoid exploitable symmetry properties a new version of
MMB was published where in each round, in addition to the position change,
each key word is XORed with a round-dependent constant. Therefore, the key
word i for round j is k

j
i = ki+j mod 4 ⊕ (2j · B) with B = DAEx [4].1

2.2 Notations

The notations used throughout the paper are described in Table 1 for the readers’
convenience.

3 Previous Attacks on MMB

Wang et al. identified for MMB a 2-round differential characteristic with prob-
ability 1 [13]. This 2-round differential characteristic, described in Equation (1)
was extended into a 5-round differential characteristic with probability of 2−110.
This 5-round differential characteristic can be used in an attack that recovers

1We note that the change in the key schedule algorithm does not affect our attack
which is differential in nature. In other words, all the attacks reported in this paper
work for both key schedules, i.e., the original one and the tweaked one.
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Symbol Meaning/Value

⊕ Exclusive-or
⊗ Multiplication modulo 232

− 1
X → Y Differential transition from X to Y

0 00000000x

0̄ FFFFFFFFx

δ 2AAAAAAAx

δ̄ δ ⊕ FFFFFFFFx

G0 025F1CDBx

G1 04BE39B6x

G2 12F8E6D8x

G3 2F8E6D81x

Table 1. Notations Used Throughout this Paper

all of MMB’s key bits with data complexity of 2118 chosen plaintexts, time com-
plexity of 295.91 encryptions, and memory requirements of 265 32-bit blocks. We
note that the time complexity described in [13] does not take into account the
fact that the time required to encrypt 2118 plaintexts cannot be less than 2118.

(0, 0̄, 0̄, 0)
σ[k0]
−−−→ (0, 0̄, 0̄, 0)

γ
−→ (0, 0̄, 0̄, 0)

η
−→ (0, 0̄, 0̄, 0)

θ
−→ (0̄, 0, 0, 0̄) (1)

σ[k1]
−−−→ (0̄, 0, 0, 0̄)

γ
−→ (0̄, 0, 0, 0̄)

η
−→ (δ̄, 0, 0, δ̄)

θ
−→ (0, δ̄, δ̄, 0)

Jia et al. [7] improved Wang’s analysis to build a 5-round sandwich distin-
guisher (an extension of the boomerang distinguisher) with probability 1. This
attack exploits the 2-round differential characteristic identified in [13] to con-
struct a 5-round sandwich that is then used to recover the full key of the full
MMB with 240 adaptive plaintexts and ciphertexts, 213.4 time, and 216 mem-
ory bytes. They also showed how to transform their attack into a rectangle-like
sandwich that can recover the full key of MMB in 264 time, 266.5 memory, and
270.5 chosen plaintexts.

Table 2 summarizes all previous results on MMB and compares them with
ours. Table 3 compares the amount of work it takes to recover the first 31 key
bits for all the attacks presented in this paper.

4 Cryptanalytic Techniques for Block Ciphers Used in

This Paper

4.1 Differential Cryptanalysis

One of the most notable techniques in cryptanalysis is differential cryptanal-
ysis. Developed by Biham and Shamir [3], differential cryptanalysis examines
the evolution of differences between two inputs. An input difference is the dif-
ference between two inputs entering a cryptosystem, usually with respect to
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Rounds Attack Time∗ Data Memory Number of Source
(bytes) Keys Recovered Bits

6 Differential Cryptanalysis 295.9 2118 CP∗∗ 266 1 128 [13]
6 Rectangle-like sandwich 264 266.5 CP 272.5 1 128 [7]
6 Sandwich attack 213.4 240 ACPC∗∗∗ 218 1 128 [7]

6 Related-key boomerang 229.4 220 ACPC 221.3 4 62 Section 6
7 Related-key boomerang 229.2 220 ACPC 221.3 4 62 Section 7
8 Related-key boomerang 229 220 ACPC 221.3 6 62 Section 7

6 Related-key boomerang 235 220 ACPC 221.3 4 128 Section 6
∗ The reported time is the analysis time (not including the time needed for data generation).

∗∗ Chosen plaintexts.

∗∗∗ Adaptive chosen plaintexts and ciphertexts.

Table 2. Summary of the Attacks on MMB

Rounds Time Data Memory Keys

6 228.4 219 221.3 4
7 228.2 219 221.3 4
8 228 219 221.3 4
9 227.8 219 221.3 2

Table 3. Comparison of our Attacks for Recovering the First 31 Bits.

the exclusive-or operation. The output difference is the difference between the
outputs of two such inputs. We say that an input difference ∆ can cause an
output difference ∆∗ under the function f with probability p if a portion p of
the possible pairs of messages having a difference ∆ result in outputs having a

difference ∆∗ after applying f . If these conditions hold we write that ∆
f
−→ ∆∗

with probability p.

A differential characteristic that describes a single encryption round is called
a 1-round differential characteristic. Biham and Shamir showed that two or more
differential characteristics can be concatenated to form a longer differential char-
acteristics if the output difference of one differential characteristic is the input
difference of the other differential characteristic.

Once a good long differential characteristic is identified, the adversary tries
to find a pair of messages that satisfies it. By examining many plaintext pairs,
the adversary tries to distinguish the wrong pairs (i.e., those pairs which do
not satisfy the differential characteristic) from the right pairs (i.e., those pairs
which satisfy the differential characteristic). The amount of data needed to find
a right pair is proportional to the inverse of the probability of the differential
characteristic used and can be somewhat reduced by various techniques. Once a
right pair is found, it can be used to recover the keys used in the cryptosystem
by examining which keys cause the messages to satisfy the required differences.
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4.2 Related-Key Differential Attack

Since its publication in 1990, differential cryptanalysis received a great deal of
attention in the cryptographic community. Several researchers published exten-
sions for the core technique. One of these extensions is the related-key differential
attack published by Kelsey et al. in 1997 [8]. In a related-key differential attack
the adversary is allowed, in addition to examining the evolution of differences
between inputs, to introduce differences to the key. Namely, in the attack, two
plaintexts are encrypted using two keys that have some difference chosen by the
adversary. This difference is injected into the intermediate encryption values by
the key injection operation and sometimes cancel previous differences. Modulo
some small technical issues, the remainder of the attack is the same as in regular
differential attacks.

4.3 The Boomerang Attack

Another extension to differential cryptanalysis is the boomerang attack sug-
gested by Wagner in 1999 [12]. A boomerang attack uses two differential charac-
teristics of relatively small number of rounds n and m with probabilities p and
q, respectively, to construct a distinguisher for m + n rounds.

A boomerang is composed of two differential characteristics △ → △∗ for
n rounds and ▽∗ → ▽ for m rounds with probabilities p and q, respectively.
The adversary chooses two plaintexts P1 and P2 such that P1 ⊕ P2 = △ and
asks for their respective values C1 and C2 after m + n encryption rounds. The
adversary then XORs these ciphertexts with ▽ to obtain the ciphertexts C3 and
C4, respectively, and asks for their decrypted values P3 and P4. The boomerang
suggests that P1 ⊕ P2 = P3 ⊕ P4 = △ with probability p2 · q2.

4.4 Related-Key Boomerang Attack

The related-key boomerang attack is an extension of the boomerang attack first
suggested in 2004 by Kim et al. [2,6,9]. The idea of a related-key boomerang is to
use two related-key differentials to construct the boomerang. After constructing
this boomerang, the attack is then carried in the same way as with regular
boomerangs (again, modulo a few small differences).

5 A Related-Key Boomerang attack for the Full MMB

Before we describe the related-key differential characteristics used to construct
the boomerangs we observe that for any plaintext, and any operation, the triv-
ial differential transition 0 → 0 holds with probability 1. Another interesting
property which is described in [5] is that an input difference FFFFFFFFx be-
tween two input words to ⊗ cause an output difference of FFFFFFFFx with
probability 1 (independent of Gi).

Another point worth mentioning is that if the difference between the left-
most or the rightmost words entering η is 0̄, the output difference must be
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δ ⊕ FFFFFFFFx. The η operation XORs the constant δ = 2AAAAAAAx to
the leftmost and rightmost words if their least significant bit is 1. In the event
that the difference between two input words is FFFFFFFFx, one of them must
have 1 as its least significant bit while the other must have 0, thus, δ is XORed
only to one of them, causing the transition.

We present three related-key differentials: The 3-round related key differential
△ → △∗ with input difference (0, 0, 0̄, 0̄) and key difference (0, 0, 0̄, 0̄). This
differential is an extension of Equation (1) where we use the key difference to
control the propagation of the difference. The related-key differential

△ = (0, 0, 0̄, 0̄)
σ[k1]

−−−−−→
(0,0,0̄,0̄)

(0, 0, 0, 0)
γ
−→ (0, 0, 0, 0)

η
−→ (0, 0, 0, 0)

θ
−→ (0, 0, 0, 0)

σ[k2]
−−−−−→
(0,0̄,0̄,0)

(0, 0̄, 0̄, 0)
γ
−→ (0, 0̄, 0̄, 0)

η
−→ (0, 0̄, 0̄, 0)

θ
−→ (0̄, 0, 0, 0̄)

σ[k3]
−−−−−→
(0̄,0̄,0,0)

(0, 0̄, 0, 0̄)
γ
−→ (0, 0̄, 0, 0̄)

η
−→ (0, 0̄, 0, δ̄)

θ
−→ (δ, 0̄, δ, δ̄) = △∗

holds with probability 1. We can extend this related-key differential by prepend-
ing an additional round

(X̄, 0̄, 0, 0̄)
σ[k0]

−−−−−→
(0̄,0,0,0̄)

(X, 0̄, 0, 0)
γ
−→ (δ̄, 0̄, 0, 0)

η
−→ (0̄, 0̄, 0, 0)

θ
−→ (0, 0, 0̄, 0̄) = △,

(2)

where X̄ is some undetermined difference satisfying X̄
⊕k0

0−−→ X and X
⊗G0−−−→ δ̄.

The second related-key differential we use is a 4-round related-key differential
▽∗ → ▽ with input difference (0, 0, 0̄, 0) and key difference (0, 0, 0̄, 0)

▽∗ = (0, 0, 0̄, 0)
σ[k1]

−−−−−→
(0,0,0̄,0)

(0, 0, 0, 0)
γ
−→ (0, 0, 0, 0)

η
−→ (0, 0, 0, 0)

θ
−→ (0, 0, 0, 0)

σ[k2]
−−−−−→
(0,0̄,0,0)

(0, 0̄, 0, 0)
γ
−→ (0, 0̄, 0, 0)

η
−→ (0, 0̄, 0, 0)

θ
−→ (0̄, 0̄, 0̄, 0)

σ[k3]
−−−−−→
(0̄,0,0,0)

(0, 0̄, 0̄, 0)
γ
−→ (0, 0̄, 0̄, 0)

η
−→ (0, 0̄, 0̄, 0)

θ
−→ (0̄, 0, 0, 0̄)

σ[k4]
−−−−−→
(0,0,0,0̄)

(0̄, 0, 0, 0)
γ
−→ (0̄, 0, 0, 0)

η
−→ (δ̄, 0, 0, 0)

θ
−→ (δ̄, δ̄, 0, δ̄) = ▽

that also holds with probability 1. This differential can also be extended by
prepending an additional round:

(0, 0̄, 0̄, Ȳ )
σ[k0]

−−−−−→
(0,0,0,0̄)

(0, 0̄, 0̄, Y )
γ
−→ (0, 0̄, 0̄, δ̄)

η
−→ (0, 0̄, 0̄, 0̄)

θ
−→ (0, 0, 0̄, 0) = ▽∗,

(3)
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where like in the case of X̄ , Ȳ is an undetermined difference satisfying Ȳ
⊕k0

3−−→ Y

and Y
⊗G3−−−→ δ̄. We list the most probable values of Y’s and X’s (with their

probability) in Appendix A. In Section 6 we show how to use the birthday
paradox to construct pairs which satisfy these differences regardless of the exact
probabilities.

The third related-key differential we use is a 2-round related-key differential
τ → τ∗ with input difference (0, 0, 0, 0̄) and key difference (0, 0, 0, 0̄) that holds
with probability2 1:

τ = (0, 0, 0, 0̄)
σ[k4]

−−−−−→
(0,0,0,0̄)

(0, 0, 0, 0)
γ
−→ (0, 0, 0, 0)

η
−→ (0, 0, 0, 0)

θ
−→ (0, 0, 0, 0)

σ[k5]
−−−−−→
(0,0,0̄,0)

γ
−→ (0, 0, 0̄, 0)

η
−→ (0, 0, 0̄, 0)

θ
−→ (0, 0̄, 0̄, 0̄) = τ∗

We construct two boomerangs. The first 5-round related-key boomerang is
the concatenation of τ → τ after △ → △∗ without the additional round pre-
sented in Equation (2). This boomerang has probability 1 and can only be used
as a distinguisher. Prepending one more round (as specified in Equation (2))
to △ → △∗ forms a 6-round related-key boomerang we denote by B0. This
boomerang is depicted in Figure 2.

The second boomerang, which we denote by B1 is constructed by concate-
nating the first round of △ → △∗ after ▽∗ → ▽ to form a 5-round boomerang
with probability 1. We then prepend one more round (as specified in Equation
(3)) to ▽ → ▽∗ to form a 6-round boomerang that can be used in a 1R attack.
The second boomerang is depicted in Figure 3.

6 Description of the Key Recovery Attack

In this section we describe our related-key boomerang attack on MMB and the
key recovery phase that is used to recover 62 bits out of the 128-bit key. We then
show how to efficiently recover the remaining 66 key bits given the knowledge of
the previous 62, for the full MMB. We conclude the section with a description
of our experimental verification of this attack.

6.1 Related-Key Boomerang Attack

We recall that the 128-bit key is composed of four 32-bit key words (k0, k1, k2, k3).
We recover each of these words separately. The first 31 key bits (those of k0)
are recovered using the boomerang B0 and the last 31 key bits (those of k3) are
recovered using the boomerang B1.

In order to use B0 we need 4 related-keys. Two of them, namely

K1 = (k0, k1, k2, k3); K
2 = K1 ⊕ (0̄, 0, 0, 0̄)

2Note that the key difference for the differential for ▽
∗
→ ▽ is the same as for the

differential τ → τ∗
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P1 P2

(X̄, 0̄, 0, 0̄)
1R

i1 i2

3R

(δ, 0̄, δ, δ̄)

C1 C2

2R

C3 C4

(0,
0, 0̄

, 0̄)

i3 i4

2R
(0,

0, 0
, 0̄)

(δ, 0̄, δ, δ̄)

P3 P4

4R

K1 K2

K4K3

(X̄ ′, 0̄, 0, 0̄)

(0̄, 0, 0, 0̄)

(0̄, 0, 0, 0̄)

(0,
0, 0

, 0̄)

(0,
0, 0

, 0̄)

Differences

Key values

Boomerang’s flow direction

Key differences

Fig. 2. The Description of B0.

are used for encryption and the other two, namely

K3 = K1 ⊕ (0, 0, 0, 0̄); K4 = K2 ⊕ (0, 0, 0, 0̄) = K1 ⊕ (0̄, 0, 0, 0),

are used for decryption.

We pick a set of 217 random plaintexts P1 = {P 1
0 , ..., P 1

217−1} all having the
same value in bits 32–127 and different values in bits 0–31. Then, we generate
another set of 217 plaintexts P2 = {P 2

0 , ..., P 2
217−1} where P 2

i = P 1
i ⊕ (0, 0̄, 0, 0̄).

We then ask for the encryption of all the values in P1 under K1 to obtain the
set of respective ciphertexts, C1 = {C1

0 , ..., C1
217−1}, and ask for the encryption

of all values in P2 under K2 to obtain the respective set of ciphertexts C2 =
{C2

0 , ..., C2
217−1}.

We XOR all values of C1 and C2 with (0, 0, 0̄, 0̄) to obtain C3 = C1 ⊕
(0, 0, 0̄, 0̄) = {C3

0 , ..., C3
217−1} and C4 = C2⊕(0, 0, 0̄, 0̄) = {C4

0 , ..., C4
217−1}. We ask

for the decryption of the ciphertexts in C3 under K3 to obtain a set of plaintexts
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Q1 Q2

(0, 0̄, 0̄, Ȳ )
1R

j1 j2

4R

(δ̄, δ̄, 0, δ̄)

D1 D2
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D3 D4

(0,
0̄, 0̄
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j3 j4

(0,
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, 0̄)
(δ̄, δ̄, 0, δ̄)

Q3 Q4

K1 K3

K4K2

(0, 0, 0, 0̄)

(0, 0, 0, 0̄)

(̄0,
0, 0

, 0̄)

(̄0,
0, 0

, 0̄)(0, 0̄, 0̄, Ȳ ′)

Differences

Key values

Boomerang’s flow direction

Key differences

Fig. 3. The Description of B1

P3 = {P 3
0 , ..., P 3

217−1}, and the decryption of the ciphertexts in C4 under K4 to

obtain a set of plaintexts P4 = {P 4
0 , ..., P 4

217−1}.

We expect, due to the birthday paradox, that two plaintexts P 1
i and P 2

j ,

taken from P1 and P2, respectively, will collide (i.e., have a zero difference) in
bits 0–31 after a single round of σ[k0], γ, and η with a non-negligible probability.3

Such two colliding plaintexts form a pair with input difference △ as required by
the differential characteristic △ → △∗ (the difference in the remaining words is
set with probability 1). Since both differentials used in the boomerang hold with
probability 1, the encryption, XOR by (0, 0, 0̄, 0̄) and 5-round decryption of it
will inevitably result with a difference of ∆ causing its respective P 3

i and P 4
j to

also have a difference of the form (X̄ ′, 0̄, 0, 0̄) after the decryption.

3As we discuss later, we actually expect four such pairs. Given that the actual
number of such pairs follows a Poisson distribution with a mean value of 4, we expect
at least one such pair to exist with probability of 98.2%.
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Analyzing the expected number of right pairs is straightforward using the
birthday paradox framework. The values of P1 occupy 217 bins out of the 232

possible bins. Therefore, each of the 217 possible values of P2 has a chance of
217

232 = 2−15 to collide with a value from P1. Hence, the expected number of right

pairs (which lead to right quartets with probability 1) is 217 · 217

232 = 4. In Section
6.4 we test this prediction empirically.

We store all values of P3 in a hash table using bits 32–127 as the hash
key. Then, once obtaining the values of P4 we search for “collisions” in these
bits (taking into account the expected difference between them) to identify a
candidate pair (and thus, a candidate quartet). The probability that among all
the possible 234 pairs, two plaintexts form a wrong pair (i.e., agreeing on bits 32–
127 without following the boomerang) is 234 · 2−96 = 2−62. Thus, we can safely
assume that all candidate quartets are right quartets. Note that we do not need
to store the plaintexts with their respective ciphertexts, hence, reducing the
memory complexity.

Once we identify the four plaintexts forming a right quartet, ((P 1
i ,P 2

j ), (P 3
i , P 4

j )),

we try all the 232 possible values for k1
0 = k3

0 and k2
0 = k4

0 = k1
0 ⊕ 0̄ (the first

32 bits of K1, K2, K3, and K4) to see which of them causes both pairs to have
a zero difference in the first word after one round. These 232 trials suggest two
possible values as the key word, either k1

0 or k̄1
0 (corresponding to 31-bit of key

material). Note that usually in related-key attacks we expect one solution for
these cases. However, in the specific case of ⊗, complementing the entire input
necessarily complements the entire output. Hence, if the two inputs to ⊗ are x

and x′, and a 32-bit key word k satisfies ((x⊕ k)⊗G0)⊕ (x′⊕ k̄)⊗G0 = 0̄, then
k̄ also satisfies this relation, as both results are complemented when the value
of k0 is complemented. For this reason, it is enough to try only 231 values for
each key word, and for every value that satisfies the requirements, also add its
complement value to the set of possible key words. At the last part of the attack,
we encrypt a plaintext using all key combinations to determine which value is
the right key and which value is its complementary.

To recover bits 96–127 of the key we use the same method. We pick 217

random plaintexts Q1 = {Q1
0, ..., Q

1
217−1} all having the same value in bits 0–95

and different values in bits 96–127. Then, we generate another 217 plaintexts
Q2 = {Q2

0, ..., Q
2
217−1}, where Q2

i = Q1
i ⊕ (0, 0̄, 0̄, 0) and use the same algorithm

to encrypt the plaintexts under K1 and K3, XOR the ciphertexts with △∗ and
decrypt them under K2 and K4, respectively. The key word k3 is then recovered
by 231 trials in a similar way to the one described for recovering k0.

6.2 Recovering the Remaining Key Bits

Recovering Bits 32–63 of the Key Once we obtained key bits 0–31 and
96–127, we use an extension of the related-key differential ▽∗ → ▽ to recover
key bits 32–63 with a simple 1R attack. The 4-round related-key differential
characteristic

12



▽∗ = (0, 0, 0̄, 0)
σ[k1]

−−−−−→
(0,0,0̄,0)

(0, 0, 0, 0)
γ
−→ (0, 0, 0, 0)

η
−→ (0, 0, 0, 0)

θ
−→ (0, 0, 0, 0)

σ[k2]
−−−−−→
(0,0̄,0,0)

(0, 0̄, 0, 0)
γ
−→ (0, 0̄, 0, 0)

η
−→ (0, 0̄, 0, 0)

θ
−→ (0̄, 0̄, 0̄, 0)

σ[k3]
−−−−−→
(0̄,0,0,0)

(0, 0̄, 0̄, 0)
γ
−→ (0, 0̄, 0̄, 0)

η
−→ (0, 0̄, 0̄, 0)

θ
−→ (0̄, 0, 0, 0̄)

σ[k4]
−−−−−→
(0,0,0,0̄)

(0̄, 0, 0, 0)
γ
−→ (0̄, 0, 0, 0)

η
−→ (δ̄, 0, 0, 0)

θ
−→ (δ̄, δ̄, 0, δ̄) = ▽

holds with probability 1. With the extension in Equation (3) it forms a 5-round
related-key differential characteristic for MMB. i.e., once we know a quartet of
values which satisfy Equation (3) (for example, as part of a right quartet in
B1) we can use it as two right pairs with respect to this 5-round related-key
differential characteristic.

Let Q1
i ∈ Q1 and Q2

j ∈ Q2 be two plaintexts forming a right pair, and let

D1
i = (w6 ⊕ k6

0 , x6 ⊕ k6
1 , y6 ⊕ k6

2 , z6 ⊕ k6
3) and D2

j = (w∗
6 ⊕ k6

0 , x
∗
6 ⊕ k6

1 , y
∗
6 ⊕

k̄6
2 , z

∗
6 ⊕ k6

3) be their respective ciphertexts. We observe that each of the words
w, x, y, z, w∗, x∗, y∗, and z∗ is the result of the θ operation which XORs three
intermediate values. We denote these intermediate values as a, b, c, d, a∗, b∗, c∗,
and d∗, i.e.,

w6 = a6 ⊕ b6 ⊕ d6; w
∗

6 = a∗

6 ⊕ b∗6 ⊕ d∗6

x6 = a6 ⊕ b6 ⊕ c6; x
∗

6 = a∗

6 ⊕ b∗6 ⊕ c∗6

y6 = b6 ⊕ c6 ⊕ d6; y
∗

6 = b∗6 ⊕ c∗6 ⊕ d∗6

z6 = a6 ⊕ c6 ⊕ d6; z
∗

6 = a∗

6 ⊕ c∗6 ⊕ d∗6.

To recover k2 we simply XOR the first three words of each ciphertext

w6⊕k6
0⊕x6⊕k6

1⊕y6⊕k6
2 = a6⊕b6⊕d6⊕k6

0⊕a6⊕b6⊕c6⊕k6
1⊕b6⊕c6⊕d6⊕k6

2 = b6⊕k6
0⊕k6

1⊕k6
2

and

w∗

6⊕k6
0⊕x∗

6⊕k6
1⊕y∗

6⊕k̄6
2 = a∗

6⊕b∗6⊕d∗6⊕k6
0⊕a∗

6⊕b∗6⊕c∗6⊕k6
1⊕b∗6⊕c∗6⊕d∗6⊕k̄6

2 = b∗6⊕k6
0⊕k6

1⊕k̄6
2

where the values of k6
0 and k6

1 are the 64 key bits previously recovered.4 The
adversary then searches for the values of k6

2 and k̄6
2 that satisfy the equation

((b∗ ⊕ k̄6
2 ⊕ k6

0 ⊕ k6
1)⊗G−1

2 )⊕ ((b⊕ k6
2 ⊕ k6

0 ⊕ k6
1)⊗G−1

2 ) = δ̄. Taking the second
pair of a right boomerang quartet allows discarding a few more of the remaining
wrong options.

4Recall that only 62 bits of key material were recovered. However, for the execution
of this phase, any of the 4 possibilities for the suggested key suffices.
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Recovering Bits 64–95 of the Key After recovering k0, k2, and k3, the
remaining k1 (32 bits) is recovered by exhaustive search (i.e., brute force) which
is repeated 8 times to recover the missing key bit for each of k0, k2, and k3.

Analysis of the Full Attack The first part of the attack requires encryp-
tions/decryptions of 219 plaintexts for each boomerang, then a single round
encryption/decryption for each of the 231 possible keys, per message. There-
fore, the time complexity it takes to recover 62 key bits in the first phase is:
2 · (4 · 217 + 1

6 · 231) = 229.4 (two boomerangs, 4 · 217 messages are encrypted
and decrypted for each of them, then, each message is passed through 1

6 of the
full encryption for each of the 231 possible key words). The memory complexity
is 221.3 bytes,5 and the data complexity is 220 adaptive chosen plaintexts and
ciphertexts, using 4 related keys. The second part of the attack requires running
231 round operations (which are about 1

6 ·2
31=229.4 full MMB encryptions) with

no additional memory and data requirements to recover another 31 bits of key
material. The third part of the attack requires running 8 · 232 =235 full MMB
encryptions, again, with no additional memory and data requirements. Thus,
the overall complexity of this attack is 235 time, 221.3 memory, and 220 adaptive
chosen plaintexts and ciphertexts encrypted under 4 related-keys.

6.3 Experimental Verification

The low time, data, and memory complexities of the attack allow verifying it
experimentally. The implementation of the attack uses two programming lan-
guages: C and Python. The C program was used to implement the cryptographic
parts of the attack (i.e. the boomerangs and the key search). Python was used
to invoke different modules of the attack and collect data for statistical analysis.

The C program was compiled and ran on a Debian Linux machine using GCC
4.4.5 with the -O3 optimization flag. The program starts by generating a random
128-bit plaintext and a random 128-bit key. It then forks into two processes, one
implementing B0 and the other implementing B1. The first process generates a
second plaintext and a second key with the appropriate differences and replaces
the first word of both plaintexts with a random one. It then saves the two
plaintexts and encrypts them under the related-keys to obtain their respective
ciphertexts. The ciphertexts and the keys are then XORed with the appropriate
values and decrypted to obtain new plaintexts. For each such new plaintext, the
program stores it for later use. Once all plaintexts are decrypted, the program

5We alert the reader that in each boomerang we need to store 217 128-bit plaintexts
from P 3, and 217 32-bit representations of the plaintexts from P 1. The ciphertexts
themselves are not used in the key recovery part, and thus are not stored. The plaintexts
of P2 and P4 are only used online to search the hash table for collisions, and thus do
not need to be stored.
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searches for right quartets. This is done by searching for pairs in which bits
32–127 of the decrypted plaintexts have difference of (0̄, 0, 0̄).6

Once a right quartet is found, the key recovery is done by trying all possible
values as the key for the first plaintext word in both pairs and checking which
value leads to a zero difference after a single round of σ[k0], γ, and η. All such
values are written into the output file as possible keys. This process is repeated
for all quartets satisfying the conditions (i.e., the candidate quartets). The second
process does the same with the minor change that it searches for decrypted pairs
in which bits 0–95 has difference of (0, 0̄, 0̄) and searches for the forth key word
instead of the first.

The Python program was written in Python 2.6.6 over GCC 4.4.5. Once the
C program finishes its execution the Python program reads the two output files
and invokes another C program that uses the results of the previous phase to
recover key bits 32–63 by iterating over all possible key values which satisfy the
conditions in Subsection 6.2. The python program then runs another C program
that exhaustively searches for the last key word. The program tries in parallel all
8 possible key words combinations with all 232 possible values for the remaining
key word. Once the full key is identified in one of the subprograms, the program
outputs it and terminates.

6.4 Results of the Experimental Verification

Our experiment included running the program 100 times. Out of these 100 trials,
recovering k0 was successful 98 times (98%), Recovering k3 was successful 98
times (98%). In 98 of the trials (98%), both k0 and k3 were recovered successfully.
The key word k2 was recovered successfully 98 times (98%), i.e., whenever k0 and
k3 were both recovered, so was k2. We consider the experiment to be successful
in recovering a key word when the Python program returns exactly 2 possible
values for that word: the correct one and its complement.

We also tested the actual amount of quartets. Out of the 100 trials, the
program found on average 4.06 candidate quartets for B0 and 4.01 candidate
quartets for B1. This result is perfectly aligned with the calculation we presented
in Section 6.1.

The average running time of the program on an i5 personal computer with 4
GBs RAM, running Debian Linux is 196.56 seconds for the first phase and 106.38
seconds for the second phase with standard deviations of 61.47 seconds and
52.19 seconds, respectively. Executing 232 encryptions of the full MMB requires
341.57 seconds. When parallelized over an i5 CPU with 4 cores and terminated
on key detection, the average running time of this stage is 504.40 seconds with
a standard deviation of 329.01 seconds. Hence, the average total time required
for the recovery of the full key is 13.5 minutes with a standard deviation of 4.19
minutes.

6Although an implementation using a hash-table is faster in theory, we found out
that in practice, the required bookkeeping induces higher overhead than a simple list
of values.
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Our implementation of the attack presented in Section 5 is available upon
request from the authors (via the program chairs, to maintain anonymity). [1]

7 Attacking More Rounds of MMB

In this section we expand our attack to show that even if MMB was extended to
7 or 8 rounds our attack could still be used to recover 62 bits of the key, namely,
k0 and k3. We first show how to extend the existing boomerangs to cover 6
rounds of MMB, and recover 62 key bits of the 7-round variant. Then, we use
the same related-key differentials in different settings to construct related-key
boomerangs for the 8-round variant of MMB. Both attacks have been verified
experimentally, and can recover the key bits in only a few minutes using a home
PC.

7.1 Attacking 7 Rounds of MMB

We start by showing that the related-key differential characteristic τ → τ∗ can
be extended by one more round and thus, B0 can be extended to cover 7 rounds
of MMB. This extended boomerang can be used to recover k0 as before.

To attack the 7-round variant of MMB we reuse the previously used differ-
ential △ → △∗

△ = (0, 0, 0̄, 0̄)
σ[k1]

−−−−−→
(0,0,0̄,0̄)

(0, 0, 0, 0)
γ
−→ (0, 0, 0, 0)

η
−→ (0, 0, 0, 0)

θ
−→ (0, 0, 0, 0)

σ[k2]
−−−−−→
(0,0̄,0̄,0)

(0, 0̄, 0̄, 0)
γ
−→ (0, 0̄, 0̄, 0)

η
−→ (0, 0̄, 0̄, 0)

θ
−→ (0̄, 0, 0, 0̄)

σ[k3]
−−−−−→
(0̄,0̄,0,0)

(0, 0̄, 0, 0̄)
γ
−→ (0, 0̄, 0, 0̄)

η
−→ (0, 0̄, 0, δ̄)

θ
−→ (δ, 0̄, δ, δ̄) = △∗

which holds with probability 1 by

(X̄, 0̄, 0, 0̄)
σ[k0]

−−−−−→
(0̄,0,0,0̄)

(X, 0̄, 0, 0)
γ
−→ (δ̄, 0̄, 0, 0)

η
−→ (0̄, 0̄, 0, 0)

θ
−→ (0, 0, 0̄, 0̄) = △

to form a 4-round related-key differential which is used as the basis of the
boomerang. We also append one more round to the related-key differential char-
acteristic τ → τ∗ presented in Section 5 to form a 3-round related-key differential
characteristic τ → τ∗

e with probability 1:

τ = (0, 0, 0, 0̄)
σ[k4]

−−−−−→
(0,0,0,0̄)

(0, 0, 0, 0)
γ
−→ (0, 0, 0, 0)

η
−→ (0, 0, 0, 0)

θ
−→ (0, 0, 0, 0)

σ[k5]
−−−−−→
(0,0,0̄,0)

(0, 0, 0̄, 0)
γ
−→ (0, 0, 0̄, 0)

η
−→ (0, 0, 0̄, 0)

θ
−→ (0, 0̄, 0̄, 0̄)

σ[k6]
−−−−−→
(0,0̄,0,0)

(0, 0, 0̄, 0̄)
γ
−→ (0, 0, 0̄, 0̄)

η
−→ (0, 0, 0̄, δ̄)

θ
−→ (δ̄, 0̄, δ, δ) = τ∗

e .
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Using this extended differential, the extended B0 (namely Be
0) is constructed

by appending the 3 rounds of τ → τ∗
e after the 3 rounds of △ → △∗ and prepend-

ing the additional input rounds of Equation (2) to form a 7-round boomerang
with keys K1 = (k0, k1, k2, k3) and K2 = K1 ⊕ (0̄, 0, 0, 0̄), which are used for en-
cryption, and K3 = K1⊕ (0, 0, 0, 0̄) and K4 = K2⊕ (0, 0, 0, 0̄) = K3⊕ (0̄, 0, 0, 0̄)
which are used for decryption.

The extended B1 is constructed by appending the first 2 rounds of △ → △∗

after the 4 rounds of ▽∗ → ▽

▽∗ = (0, 0, 0̄, 0)
σ[k1]

−−−−−→
(0,0,0̄,0)

(0, 0, 0, 0)
γ
−→ (0, 0, 0, 0)

η
−→ (0, 0, 0, 0)

θ
−→ (0, 0, 0, 0)

σ[k2]
−−−−−→
(0,0̄,0,0)

(0, 0̄, 0, 0)
γ
−→ (0, 0̄, 0, 0)

η
−→ (0, 0̄, 0, 0)

θ
−→ (0̄, 0̄, 0̄, 0)

σ[k3]
−−−−−→
(0̄,0,0,0)

(0, 0̄, 0̄, 0)
γ
−→ (0, 0̄, 0̄, 0)

η
−→ (0, 0̄, 0̄, 0)

θ
−→ (0̄, 0, 0, 0̄)

σ[k4]
−−−−−→
(0,0,0,0̄)

(0̄, 0, 0, 0)
γ
−→ (0̄, 0, 0, 0)

η
−→ (δ̄, 0, 0, 0)

θ
−→ (δ̄, δ̄, 0, δ̄) = ▽

and prepending the additional input round

(0, 0̄, 0̄, Ȳ )
σ[k0]

−−−−−→
(0,0,0,0̄)

(0, 0̄, 0̄, Y )
γ
−→ (0, 0̄, 0̄, δ̄)

η
−→ (0, 0̄, 0̄, 0̄)

θ
−→ (0, 0, 0̄, 0) = ▽∗,

thus, forming the 7-round boomerang Be
1 which uses K1 and K3 for encryption,

and K2 and K4 for decryption.

We use the same method as in Section 6 to generate two sets of plaintexts
of size 217 each, that differ only in bits 0–31, and another two sets of plaintexts
of size 217 each, that differ only in bits 96–127. Then, we encrypt the plaintexts
under the appropriate related-keys, XOR them with the required differences and
decrypt under the appropriate keys to find right quartets with respect to Be

0 and
Be

1 . As in Section 6 we expect two plaintexts, one of each set to collide with non-
negligible probability, thus, satisfying the required input differences for △ → △∗

and ▽∗ → ▽. Two possible values for k0 (corresponding to 31-bit key material)
are then recovered by 231 trials and another 31 bits for k3 are recovered by
another 231 trials.

This attack uses an overall time of 229.2, 221.3 memory, and 220 adaptive
chosen plaintexts and ciphertexts encrypted under four related-keys.

7.2 Attacking 8 Rounds of MMB

To attack the 8-round variant of MMB we use the related-key differentials in
a different setting. We build another boomerang, B2, which is constructed by
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appending the 4 rounds of ▽∗ → ▽

▽∗ = (0, 0, 0̄, 0)
σ[k1]

−−−−−→
(0,0,0̄,0)

(0, 0, 0, 0)
γ
−→ (0, 0, 0, 0)

η
−→ (0, 0, 0, 0)

θ
−→ (0, 0, 0, 0)

σ[k2]
−−−−−→
(0,0̄,0,0)

(0, 0̄, 0, 0)
γ
−→ (0, 0̄, 0, 0)

η
−→ (0, 0̄, 0, 0)

θ
−→ (0̄, 0̄, 0̄, 0)

σ[k3]
−−−−−→
(0̄,0,0,0)

(0, 0̄, 0̄, 0)
γ
−→ (0, 0̄, 0̄, 0)

η
−→ (0, 0̄, 0̄, 0)

θ
−→ (0̄, 0, 0, 0̄)

σ[k4]
−−−−−→
(0,0,0,0̄)

(0̄, 0, 0, 0)
γ
−→ (0̄, 0, 0, 0)

η
−→ (δ̄, 0, 0, 0)

θ
−→ (δ̄, δ̄, 0, δ̄) = ▽

after the 3 rounds of △ → △∗

△ = (0, 0, 0̄, 0̄)
σ[k1]

−−−−−→
(0,0,0̄,0̄)

(0, 0, 0, 0)
γ
−→ (0, 0, 0, 0)

η
−→ (0, 0, 0, 0)

θ
−→ (0, 0, 0, 0)

σ[k2]
−−−−−→
(0,0̄,0̄,0)

(0, 0̄, 0̄, 0)
γ
−→ (0, 0̄, 0̄, 0)

η
−→ (0, 0̄, 0̄, 0)

θ
−→ (0̄, 0, 0, 0̄)

σ[k3]
−−−−−→
(0̄,0̄,0,0)

(0, 0̄, 0, 0̄)
γ
−→ (0, 0̄, 0, 0̄)

η
−→ (0, 0̄, 0, δ̄)

θ
−→ (δ, 0̄, δ, δ̄) = △∗

and prepend the extra input round

(X̄, 0̄, 0, 0̄)
σ[k0]

−−−−−→
(0̄,0,0,0̄)

(X, 0̄, 0, 0)
γ
−→ (δ̄, 0̄, 0, 0)

η
−→ (0̄, 0̄, 0, 0)

θ
−→ (0, 0, 0̄, 0̄) = △.

The new boomerang, B2, uses K1 = (k0, k1, k2, k3) and K2 = K1⊕(0̄, 0, 0, 0̄), for
encryption, and K3 = K1⊕(0, 0, 0̄, 0) and K4 = K2⊕(0, 0, 0̄, 0) = K3⊕(0̄, 0, 0, 0̄)
for decryption.

The second boomerang is the extension of Be
1 (namely, Bee

1 ) where the 3
rounds of △ → △∗ are concatenated after the 4 rounds of ▽∗ → ▽, and the
additional input round

(0, 0̄, 0̄, Ȳ )
σ[k0]

−−−−−→
(0,0,0,0̄)

(0, 0̄, 0̄, Y )
γ
−→ (0, 0̄, 0̄, δ̄)

η
−→ (0, 0̄, 0̄, 0̄)

θ
−→ (0, 0, 0̄, 0) = ▽∗,

is prepended. This boomerang uses K1 and K5 = K1⊕(0, 0, 0, 0̄) for encryption,
and K2 and K6 = K5 ⊕ (0̄, 0, 0, 0̄) = K1 ⊕ (0̄, 0, 0, 0) for decryption.

The same method as before is used when we generate two sets of plaintexts
of size 217 each, that differ only in bits 0–31, and another two sets of plaintexts
of size 217 each, that differ only in bits 96–127. Then, we encrypt the plaintexts
under the appropriate related-keys, XOR them with the required differences and
decrypt under the appropriate keys to find right quartets with respect to Bee

0

and Bee
1 . As in Section 6 we expect two plaintexts, one of each set to collide

with non-negligible probability, thus, satisfying the required input differences
for △ → △∗ and ▽∗ → ▽. Two possible values for k0 (corresponding to 31-bit
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key material) are then recovered by 231 trials and another 31 bits for k3 are
recovered by another 231 trials.

This part of the attack uses an overall time of 229, 221.3 memory, and 220

adaptive chosen plaintexts and ciphertexts encrypted under six related-keys.

7.3 Attacking 9 Rounds of MMB

In order to attack a 9-round variant of MMB, we append the 4-round differential
characteristic ▽∗ → ▽ onto itself to construct an 8-round distinguisher with
probability 1 for MMB. Then, by prepending the additional input round:

(0, 0̄, 0̄, Ȳ )
σ[k0]

−−−−−→
(0,0,0,0̄)

(0, 0̄, 0̄, Y )
γ
−→ (0, 0̄, 0̄, δ̄)

η
−→ (0, 0̄, 0̄, 0̄)

θ
−→ (0, 0, 0̄, 0) = ▽∗,

at the beginning of the distinguisher, an adversary can attack a variant of MMB
with 9 rounds. This 9-round boomerang uses the same pair of related keys for
both encryption and decryption, and thus, by using the exact same algorithm
as before, the adversary can recover 31 key bits of k3 in time of 227.8, 221.3

memory, and 219 adaptive chosen plaintexts and ciphertexts encrypted under
two related-keys.

8 Conclusions

In this paper we have used various techniques from the differential cryptanalysis
family to break the MMB block cipher. By extending previous results along
with a new related-key differential we discovered, we were able to identify three
related-key differentials that allowed us to construct two 5-round related-key
distinguishers with probability 1. We then used each of these distinguishers as
the basis for a 6-round boomerang that is able to recover 31 key bits using 219

data in 228.4 time using four related keys. We then used the already recovered
key bits to recover another 31 key bits using a simple 1R attack. The last 32 bits
are recovered by exhaustive search. The suggested attack can recover all the key
bits in 235 time using 220 adaptive chosen plaintexts and ciphertexts and 221.3

memory.
We verified our results experimentally by writing a program that recovers

the required key bits in about 15 minutes on a home PC. To the best of our
knowledge, though it has been many years since MMB was presented, this is the
first practical time attack that recovers its full key.

Finally, we showed that even if MMB had been extended to include 7 or 8
rounds an adversary can still recover half of its key bits using the same tech-
niques, with similar time, data and memory complexities.
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A Probabilities for the Transitions X
⊗G0

−−→ δ̄ and

Y
⊗G3

−−→ δ̄

In this Appendix we present a list of transitions from some input differences to
δ with respect to modular multiplication by G0 and G3, and their probabilities:

Input Difference (X) Probability −log2(p)

7FBFFB64x 32768 · 2−32 17
45440164x 31872 · 2−32 17.03
7F3FFB64x 31744 · 2−32 17.04
C5440164x 28032 · 2−32 17.22
4000C164x 26912 · 2−32 17.28
C000C164x 26336 · 2−32 17.31
90440164x 26112 · 2−32 17.32
88240164x 26112 · 2−32 17.32
08240164x 26112 · 2−32 17.32
80240164x 26112 · 2−32 17.32
00240164x 26112 · 2−32 17.32
10440164x 26112 · 2−32 17.32
90C40164x 25344 · 2−32 17.37
10C40164x 25344 · 2−32 17.37
C0014404x 25024 · 2−32 17.38
C0014164x 24992 · 2−32 17.39
C00A0164x 24960 · 2−32 17.39
80012404x 24576 · 2−32 17.41
80011C04x 24576 · 2−32 17.41
00012404x 24576 · 2−32 17.41
00011C04x 24576 · 2−32 17.41
400A0164x 24192 · 2−32 17.43
40014164x 24160 · 2−32 17.43
40014404x 24128 · 2−32 17.44
D77FFB64x 23328 · 2−32 17.49

25 Most Probable Transitions for X
⊗G0
−−−→ δ̄

Input Difference (Y ) Probability −log2(p)

7FFD7FF1x 17920 · 2−32 17.87
FFF7FED1x 16640 · 2−32 17.97
7FFD7FF9x 16384 · 2−32 18
409004D1x 14848 · 2−32 18.14
C09004D1x 14336 · 2−32 18.19
7FFBF9D1x 14336 · 2−32 18.19
5FDED9D1x 12480 · 2−32 18.39
400801C9x 12304 · 2−32 18.41
7FFBFDD9x 12288 · 2−32 18.41
C00801C9x 12272 · 2−32 18.41
5FFD79D1x 12032 · 2−32 18.44
D41004D1x 11400 · 2−32 18.52
775F7FF9x 11280 · 2−32 18.53
775F7FF1x 11280 · 2−32 18.53
541004D1x 10632 · 2−32 18.62
77FDFE51x 10016 · 2−32 18.70
FFF7D9D1x 9984 · 2−32 18.71
7FDFD851x 9984 · 2−32 18.71
C30011D1x 9760 · 2−32 18.74
508011D1x 9632 · 2−32 18.76
430011D1x 9504 · 2−32 18.78
805041D1x 9472 · 2−32 18.79
005041D1x 9472 · 2−32 18.79
C41111D1x 9456 · 2−32 18.79
908011D1x 9440 · 2−32 18.79

25 Most Probable Transitions for Y
⊗G3
−−−→ δ̄

Table 4. Most Probable Transitions for Multiplications in MMB
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