## Automatic Security Evaluation for Bit-oriented Block Ciphers in Related-key Model: Application to PRESENT-80, LBlock and Others\*

Siwei Sun, Lei Hu, Peng Wang

State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

Abstract. Since AES and PRESENT are two international standard block ciphers representing the most elegant design strategies for byteoriented and bit-oriented designs respectively, we regard AES and PRES-ENT the two most significant candidates to scrutinize with respect to related-key differential attack. In EUROCRYPT 2010 and CRYPTO 2013, the security of AES with respect to related-key differential attack has been completely analyzed by Alex Biryukov et al and Pierre-Alain Fouque et al with automatic related-key differential characteristic searching tools. In this paper, we propose two methods to describe the differential behaviour of an S-box with linear inequalities based on logical condition modelling and computational geometry. In one method, inequalities are generated according to some conditional differential properties of the S-box; in the other method, inequalities are extracted from the H-representation of the convex hull of all possible differential patterns of the S-box. For the second method, we develop a greedy algorithm for selecting a given number of inequalities from the convex hull. Using these inequalities combined with Mixed-Integer Linear Programming (MILP) technique, we successfully prove that the full-round PRESENT-80 is secure against standard related-key differential attack, which solves an open problem of the symmetric-key cryptography community. This proof is accomplished automatically on a workstation with 8 CPU cores in a time within 16 days. In a similar way, we also prove that the probability of the best related-key differential characteristic of full LBlock is upper bounded by  $2^{-56}$ , which is the first result concerning the security of full LBlock with respect to related-key differential attack. The methodology presented in this paper is generic, automatic and applicable to lightweight constructions with small block size, small S-boxes, and bitoriented operations, including but not limited to PRESENT, EPCBC, LBlock, etc, which opens a new interesting direction of research for bitoriented ciphers and for the application of MILP technique in cryptography.

<sup>\*</sup> All source code for generating valid cutting-off inequalities and MILP instances will be made freely available online after publication of the paper.

**Keywords:** Related-key differential attack, Active S-box, Mixed-integer Linear Programming, Logical condition modelling, Convex hull

#### 1 Introduction

Contrary to the single-key model, where methodologies for constructing block ciphers provably resistant to differential attack are readily available, the understanding of the security of block ciphers with regard to related-key differential attack is very limited. This situation can be seen from the fact that even internationally standardized block ciphers such as AES and PRESENT enjoy no security proof at all for related-key differential attack at the time of their publication. This poor understanding of the security concerning related-key differential attack has been greatly improved in recent years for AES-like byte- or word-oriented SPN block ciphers. Along this line of research, two representative papers [9, 18] were published in Eurocrypt 2010 and Crypto 2013. In the former paper [9], an efficient search tool for finding differential characteristics both in the state and in the key was presented, and the best differential characteristics were obtained for some byte-oriented block ciphers such as AES, byte-Camellia, and Khazad. In the latter paper [18], Pierre-Alain Fouque et al showed that the full-round AES-128 can not be proven secure against related-key differential attack unless the exact coefficients of the MDS matrix and the S-Box differential properties are taken into account. Moreover, a variant of Dijkstra's shortest path algorithm to efficiently find the most efficient related-key attacks on SPN ciphers was developed in [18].

However, no substantial progress is achieved until now in evaluating the security of bit-oriented block ciphers such as PRESENT against related-key differential attack. Specifically, there is no proof up to now showing that the PRESENT-80 block cipher with 80-bit secret key is secure against related-key differential attack<sup>1</sup>, i.e., the probability of the best related-key differential characteristic for PRESENT-80 is upper bounded by  $2^{-80}$ . So far, the best results were obtained in [17] and [30] using different methods, showing that no related-key differential characteristic exists with probability higher than  $2^{-64}$  and  $2^{-72}$  respectively. Whether the full-round PRESENT-80 with 80-bit key and 64-bit block size is secure against related-key differential attack is still an open problem. Note that we regard any attack with time complexity  $2^l$  (l is smaller than the key size) an valid attack, even when l is greater than the block size of the block cipher under consideration. This convention has been adopted in many other papers, such as [8].

Due to the fact that the PRESENT block cipher is an international standard for light-weight cryptography and is a representative bit-oriented design, we think it is important to scrutinize its security against related-key differential attack. In this paper, we completely solve this problem by Mixed Integer Linear

<sup>&</sup>lt;sup>1</sup> In this paper we only consider attacks based on differential characteristic (rather than differential), in a same way as in [18, 21].

Programming technique.

Mixed-Integer Linear Programming (MILP). The problem of Mixed Integer Linear Programming (MILP) is a class of optimization problems derived from Linear Programming in which the aim is to optimize an objective function under certain constraints. The field of MILP has received extensive study and achieved great success in both academic and industrial worlds. A Mixed Integer Linear Programming problem can be formally described as follows.

**MILP:** Find a vector  $x \in \mathbb{Z}^k \times \mathbb{R}^{n-k} \subseteq \mathbb{R}^n$  with  $Ax \leq b$ , such that the linear function  $c_1x_1 + c_2x_2 + \cdots + c_nx_n$  is minimized (or maximized), where  $(c_1, \ldots, c_n) \in \mathbb{R}^n$ ,  $A \in \mathbb{R}^{m \times n}$ , and  $b \in \mathbb{R}^m$ .

Despite its intimate relationship with discrete optimization problems, such as the set covering problem, 0-1 knapsack problem, and travelling salesman problem, it is only in recent years that MILP has been explicitly applied in cryptographic research.

In [33], Michael Walter et al modelled the problem of finding a set of variables involved in a system of polynomial equations over  $\mathbb{F}_2$ , such that when assigned to fixed values, the number of known variables in the system can be maximized as an MILP problem. They have applied this idea in guess-and-determine algebraic attack on the EPCBC block cipher [39], and experimental results showed that this strategy resulted in a faster key recovery attack compared to random assignment. In [13], Julia Borghoff employed two methods, standard conversion [4] and adapted standard conversion [22], to convert the problem of solving a system of polynomial equations into an MILP problem. Martin Albrecht et al [2] treated the problem of recovering cryptographic key material from decayed DRAM as a Partial Weighted Max-Polynomial System Solving Problem which can be solved with MILP techniques. Bulygin et al studied the invariant coset attack on PRINTcipher by establishing a one-to-one correspondence between defining sets of the invariant projected subsets of PRINTcipher and all feasible solutions of a specific 0-1 integer programming problem [14]. Moreover, MILP was employed in error-tolerant side channel algebraic attacks [25].

In this paper, we are mainly concerned with the application of MILP method in evaluating the security of block ciphers against related-key differential cryptanalysis. Roughly speaking, differential attack [6] is a cryptanalysis technique used to discover non-random behaviour of a cipher by analyzing the input and output difference of a cipher. A practical approach to evaluate the security of a cipher against differential attack is to determine the lower bound of the number of active S-boxes throughout the cipher. This strategy has been employed in many designs [3, 7, 12, 11, 16]. MILP was applied in automatically determining the lower bounds of the numbers of active S-boxes for some word-oriented symmetric-key ciphers, and therefore used to prove their security against differential cryptanalysis [10, 23, 36]. Sun at el [30] extended this method by making it applicable to ciphers involving bit-oriented operations.

Our Contributions. We find that a main imperfection of [30] is as follows which prevents researchers from obtaining tighter security bounds for round-reduced variants of PRESENT-80 and proving the security of full-round PRESENT-80 with regard to related-key differential cryptanalysis.

The constraints presented in [30] is too coarse (and some of these constraints are redundant in some specific case) to accurately describe the differential properties of a specific cipher, since there are a large number of invalid differential patterns of the cipher satisfying all these constraints, which yields a feasible region of the MILP problem much larger than the set of all valid differential characteristics.

In this paper, we propose two methods to tighten the feasible region by cutting off some impossible differential patterns of a specific S-box with linear inequalities: one method is based on logical condition modelling, and the other is a more general approach based on convex hull computation — a fundamental algorithmic problem in computational geometry. In the first method, typically less than 15 inequalities are generated according to some conditional differential properties of the S-box; while in the second method, several hundreds of inequalities are extracted from the H-representation of the convex hull of all possible differential patterns of the S-box.

However, the second approach produces too many inequalities so that adding all of them to an MILP problem will make the solving process impractical. Therefore, we develop a greedy algorithm for selecting a given number of linear inequalities from the convex hull.

By adding all or a part of the constraints generated by these methods, we automatically prove that the probability of the best related-key differential characteristic of full-round PRESENT-80, a bit-oriented SPN block cipher, is upper bounded by  $2^{-80}$ , which solves an open problem of the symmetric-key cryptography community. Also, we apply the method to LBlock [38] — a bit-oriented Feistel block cipher, and prove that the probability of the best related-key differential characteristic for full-round LBlock is at most  $2^{-56}$ . This is the first theoretic result concerning full LBlock's security against differential attack in the related-key model. Moreover, the methodology presented in this paper is generic, automatic, and applicable to other lightweight ciphers with bit-oriented operations such as EPCBC [39], LBlock [38], and MIBS [20].

Organization of the paper. In Section 2, we introduce Mouha et al's framework and its extension for counting the number of active S-boxes of PRESENT-like ciphers automatically with MILP technique. In Sections 3, 4 and 5 we introduce the concept of valid cutting-off inequalities for tightening the feasible region of an MILP problem, and explore how to generate and select valid cutting-off inequalities. We add these inequalities to the overall constraints of the MILP problems describing the differential behaviour of the block ciphers PRESENT-80 and LBlock in Section 6, which enables us to prove the security of the full PRESENT-80 against related-key differential attack. Finally, in Section 7 we conclude the paper and propose some research directions for bit-oriented ciphers

and the application of MILP technique in cryptography.

#### 2 Mouha et al's Framework and Its Extension

In this section, we present Mouha et al's framework and its extension for counting the number of differentially active S-boxes for word-oriented and bit-oriented block ciphers respectively.

#### 2.1 Mouha et al's Framework for Word-oriented Block Ciphers

Assume a cipher is composed of the following three word-oriented operations, where m is the word size:

- XOR,  $\oplus : \mathbb{F}_2^{\omega} \times \mathbb{F}_2^{\omega} \to \mathbb{F}_2^{\omega}$  Linear transformation  $L : \mathbb{F}_{2^{\omega}}^m \to \mathbb{F}_{2^{\omega}}^m$  with branch number

$$\mathcal{B}_L = \min_{a \neq 0} \{ \operatorname{WT}(a | | L(a)) : a \in \mathbb{F}_{2^{\omega}}^m \},$$

where WT(a||L(a)) is the number of non-zero entries of the 2m-dimensional vector a||L(a) over the finite field  $\mathbb{F}_{2^{\omega}}$ 

- S-box,  $\mathcal{S}: \mathbb{F}_2^{\omega} \to \mathbb{F}_2^{\omega}$ 

Mouha et al's framework uses 0-1 variables, which are subjected to certain constraints imposed by the above operations, to denote the word level differences propagating through the cipher (1 for nonzero difference and 0 for otherwise).

Detailed MILP model building process for determining a lower bound of the number of active S-boxes is described as follows. Firstly, we should include the constraints imposed by the operations of the cipher.

### Constraints Imposed by XOR Operations:

Suppose  $a \oplus b = c$ , where  $a, b, c \in \mathbb{F}_2^{\omega}$  are the input and output differences of the XOR operation, the following constraints will make sure that when a, b, and c are not all zero, then there are at least two of them are nonzero:

$$\begin{cases} a+b+c \ge 2d_{\oplus} \\ d_{\oplus} \ge a \\ d_{\oplus} \ge b \\ d_{\oplus} \ge c \end{cases}$$
 (1)

where  $d_{\oplus}$  is a dummy variable taking values from  $\{0, 1\}$ .

#### Constraints Imposed by Linear Transformation:

Let  $x_{i_k}$  and  $y_{j_k}, k \in \{0, 1, \dots, m-1\}$ , be 0-1 variables denoting the word-level input and output differences of the linear transformation L respectively. Since for nonzero input differences, there are totally at least  $\mathcal{B}_L$  nonzero m-bit words in the input and output differences, we include the following constraints:

$$\begin{cases}
\sum_{k=0}^{m-1} (x_{i_k} + y_{j_k}) \ge \mathcal{B}_L d_L \\
d_L \ge x_{i_k}, & k \in \{0, \dots, m-1\} \\
d_L \ge y_{j_k}, & k \in \{0, \dots, m-1\}
\end{cases}$$
(2)

where  $d_L$  is a dummy variable taking values in  $\{0,1\}$  and  $\mathcal{B}_L$  is the branch number of the linear transformation.

Then, we set up the **objective function** to be the sum of all variables representing the input words of the S-boxes. Obviously, this objective function corresponds to the number of active S-boxes, and can be minimized to determine its lower bound.

Following this approach, the minimum numbers of active S-boxes were obtained in [23] for the r-round ( $r \leq 96$ ) Enocoro-128V2 and full AES ciphers under both single-key and related-key models. We refer the reader to [23] for more information.

#### 2.2 Extension of Mouha's Framework for PRESENT-like Ciphers

For PRESENT-like ciphers, bit-level representations and additional constraints are needed [30]. For every input and output bit-level difference, a new 0-1 variable  $x_i$  is introduced obeying the following rule of variable assignment

$$x_i = \begin{cases} 1, & \text{for nonzero difference at this bit,} \\ 0, & \text{otherwise.} \end{cases}$$

For every S-box in the schematic diagram, including the encryption process and the key schedule algorithm, we introduce a new 0-1 variable  $A_j$  such that

$$A_i = \begin{cases} 1, & \text{if the input word of the Sbox is nonzero,} \\ 0, & \text{otherwise.} \end{cases}$$

At this point, it is nature to choose the objective function f, which will be minimized, as  $\sum A_j$  for the goal of determining a lower bound of the number of active S-boxes.

For PRESENT-like ciphers, we need to include two sets of constraints. The first one is the set of constraints imposed by XOR operations, and the other is due to the S-box operation. After changing the representations to bit-level, the set of constraints imposed by XOR operations for PRESENT-like ciphers are the same as that presented in (1). The S-box operation is more tricky.

### Constraints Describing the S-box Operation:

Suppose  $(x_{i_0}, \ldots, x_{i_{\omega-1}})$  and  $(y_{j_0}, \ldots, y_{j_{\omega-1}})$  are the input and output bitlevel differences of an S-box marked by  $A_t$ . Firstly, to ensure that  $A_t = 1$  holds

if and only if  $x_{i_0}, \ldots, x_{i_{\omega-1}}$  are not all zero, we require that:

$$\begin{cases}
A_t - x_{i_k} \ge 0, & k \in \{0, \dots, \omega - 1\} \\
x_{i_0} + x_{i_1} + \dots + x_{i_{\omega - 1}} - A_t \ge 0
\end{cases}$$
(3)

Also, nonzero input difference must result in nonzero output difference and vice versa:

$$\begin{cases} \omega y_{j_0} + \omega y_{j_1} + \dots + \omega y_{j_{\omega-1}} - (x_{i_0} + x_{i_1} + \dots + x_{i_{\omega-1}}) \ge 0\\ \omega x_{i_0} + \omega x_{i_1} + \dots + \omega x_{i_{\omega-1}} - (y_{j_0} + y_{j_1} + \dots + y_{j_{\omega-1}}) \ge 0 \end{cases}$$
(4)

Finally, the Hamming weight of the  $2\omega$ -bit word  $x_{i_0} \cdots x_{i_{\omega-1}} y_{j_0} \cdots y_{j_{\omega-1}}$  is lower bounded by the branch number  $\mathcal{B}_{\mathcal{S}}$  of the S-box for nonzero input difference  $x_{i_0} \cdots x_{i_{\omega-1}}$ , where  $d_{\mathcal{S}}$  is a dummy variable:

$$\begin{cases}
\sum_{k=0}^{\omega-1} (x_{i_k} + x_{j_k}) \ge \mathcal{B}_{\mathcal{S}} d_{\mathcal{S}} \\
d_{\mathcal{S}} \ge x_{i_k}, \quad k \in \{0, \dots, \omega - 1\} \\
d_{\mathcal{S}} \ge y_{j_k}, \quad k \in \{0, \dots, \omega - 1\}
\end{cases} \tag{5}$$

where the branch number of an S-box  $\mathcal{S}$ ,  $\mathcal{B}_{\mathcal{S}}$ , is defined as

$$\mathcal{B}_{\mathcal{S}} = \min_{a \neq b} \{ \operatorname{wt}((a \oplus b) || (\mathcal{S}(a) \oplus \mathcal{S}(b)) : a, b \in \mathbb{F}_2^{\omega} \}$$

and wt(·) is the standard Hamming weight of a  $2\omega$ -bit word. We point out that constraint (5) is redundant for an invertible S-box with branch number  $\mathcal{B}_{\mathcal{S}} = 2$ , since in this particular case, all differential patterns not satisfying (5) violate (4).

#### 0-1 Variables:

The MILP model proposed above is indeed a Pure Integer Programming Problem since all variables appearing are 0-1 variables. However, in practice we only need to explicitly restrict variables representing the differences of plaintexts, master keys and all dummy variables to be 0-1, while all other variables can be allowed to be any real numbers, which leads to a Mixed-integer Linear Programming problem. Following this approach, the MILP solving process may be accelerated as suggested in [13].

### 3 Tighten the Feasible Region with Valid Cutting-off Inequalities

The feasible region of an MILP problem is defined as the set of all variable assignments satisfying all constraints in the MILP problem. The modelling process presented in the previous sections indicates that every differential path corresponds to a solution in the feasible region of the MILP problem. However, a feasible solution of the MILP model is not guaranteed to be a valid differential path, since our constraints are far from perfect to rule out all invalid differential patterns. For instance, assume  $x_i$  and  $y_i$  ( $0 \le i \le 3$ ) are the bit-level

input and output differences of the PRESENT-80 S-box (see Table 1). According to Section 2.2,  $x_i$ ,  $y_i$  are subjected to the constraints of (3), (4) and (5). Obviously,  $(x_0 \cdots, x_3, y_0, \cdots, y_3) = (1, 0, 0, 1, 1, 1, 0, 1)$  satisfies the above constraints, whereas  $0x9 = 1001 \rightarrow 0xB = 1101$  (the left most bit is the least significant bit in our representation) is not a valid difference propagation pattern for the PRESENT S-box, which can be seen from the differential distribution table presented in Table 2. Hence, we are actually trying to minimize the number of active S-boxes over a larger region as illustrated in Fig. 1, and the optimum value obtained in this setting must be smaller than or equal to the actual minimum number of active S-boxes. Although the above fact will not invalidate the lower bound we obtained from our MILP model, this prevents the designers from obtaining tighter security bounds and therefore making better security and efficiency trade-offs.

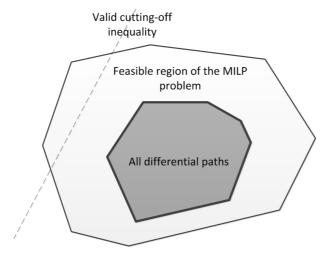



Fig. 1: The relationship between the set of all differential paths and the feasible region of the MILP problem, and the effect of cutting-off inequality

The situation would be even worse when modelling an invertible S-box with branch number  $\mathcal{B}_{\mathcal{S}} = 2$ , which is the minimal value of the branch number for an invertible S-box. In the case of invertible S-box with  $\mathcal{B}_{\mathcal{S}} = 2$ , the constraints of (3), (4) are enough, and (5) is redundant. In this situation, all differential patterns with nonzero input and output differences satisfy the constraints presented in the previous sections, which is obviously too coarse to describe a specific S-box. For instance, all 10 S-boxes of LBlock [38] are invertible and their branch numbers are all 2.

Therefore, we are motivated to look for linear inequalities which can cut off some part of the feasible region of the MILP model while leaving the region of valid differential paths intact as illustrated in Fig. 1. For the convenience of discussion, we give the following definition.

**Definition 1.** A linear inequality satisfied by all possible valid differential patterns is called a valid cutting-off inequality if it is violated by at least one feasible solution corresponding to an impossible differential pattern in the feasible region of the original MILP problem.

### 4 Methods for Generating Valid Cutting-off Inequalities

In this section, we present two methods for generating valid cutting-off inequalities by analyzing the differential behaviour of the underlying S-box.

Table 1: The S-box of PRESENT-80  $\mathbf{F}$ Α В С  $\mathbf{D}$  $\mathbf{E}$ xS[x] $\mathbf{C}$ В Α D  $\mathbf{E}$ F  $^{2}$ 

 $0_x$  $1_x$  $2_x$  $3_x$  $5_x$  $6_x$  $7_x$  $8_x$  $9_x$  $A_x$  $B_x$  $C_x$  $D_x$  $E_x$  $F_x$  $0_x$  $1_x$  $2_x$  $3_x$  $4_x$  $5_x$  $6_x$  $7_x$  $8_x$  $9_x$  $A_x$  $B_x$  $C_x$  $D_x$  $E_x$  $F_x$ 

Table 2: The Differential Distribution Table of the PRESENT S-box

## 4.1 Modelling Conditional Differential Behaviour with Linear Inequalities

In building integer programming models in practice, sometimes it is possible to model certain logical constraints as linear inequalities. For example, assume x is

a continuous variable such that  $0 \le x \le M$ , and we know that  $\delta$  is a 0-1 variable taking value 1 when x > 0, that is

$$x > 0 \Rightarrow \delta = 1.$$

It is easy to verify that the above logical condition can be achieved by imposing the following constraint

$$x - M\delta < 0$$
.

In fact, there is a surprisingly large number of different types of logical conditions can be imposed in a similar way, and we refer the reader to [34, 35] for many other examples.

In this subsection, we take the advantage of this technique to describe the differential behaviour of the PRESENT S-box, which is referred to as undisturbed bits in [31]:

**Theorem 1.** The S-box of PRESENT-80 has the following properties:

- (i) If the input difference of the S-box is 0x9 = 1001, then the least significant bit of the output difference must be 0;
- (ii) If the input difference of the S-box is 0x1 = 1000 or 0x8 = 0001, then the least significant bit of the output difference must be 1;
- (iii) If the output difference of the S-box is 0x1 = 1000 or 0x4 = 0010, then the least significant bit of the input difference must be 1; and
- (iv) If the output difference of the S-box is 0x5 = 1010, then the least significant bit of the input difference must be 0.

**Theorem 2.** Let 0-1 variables  $x_i$  and  $y_i$   $(0 \le i \le 3)$  represent the input and output bit-level differences of the S-box respectively. Then the logical conditions in Theorem 1 can be described by the following linear inequalities:

$$x_0 + x_3 - x_1 - x_2 + y_0 \le 2 \tag{6}$$

$$\begin{cases} x_0 - x_1 - x_2 - x_3 - y_0 \le 0 \\ x_3 - x_0 - x_1 - x_2 - y_0 \le 0 \end{cases}$$
 (7)

$$\begin{cases} y_0 - y_1 - y_2 - y_3 - x_0 \le 0\\ y_2 - y_0 - y_1 - y_3 - x_0 \le 0 \end{cases}$$
 (8)

$$y_0 + y_2 - y_1 - y_3 + x_0 \le 2 \tag{9}$$

For example, the linear inequality (6) removes all differential patterns of the form  $(x_0, x_1, x_2, x_3, y_0, y_1, y_2, y_3) = (1, 0, 0, 1, 1, *, *, *)$ , where  $(x_0, \ldots, x_3)$  and  $(y_0, \ldots, y_3)$  are the input and output differences of the PRESENT S-box respectively. We call this group of constraints presented in (6), (7), (8), and (9) the constraints of conditional differential propagation (CDP constraints for short). The CDP constraints obtained from Theorem 1 and the differential patterns removed by these CDP constraints are given in Table 3.

However, there are cases where no such conditional differential property exists. For example, two out of the eight S-boxes of Serpent [5] exhibit no such

Table 3: Impossible differential patterns removed by the CDP constraints generated according to the differential properties of the PRESENT S-box. Here, a 9-dimensional vector  $(\lambda_0, \ldots, \lambda_3, \gamma_0, \ldots, \gamma_3, \theta)$  in the left column denotes a linear inequality  $\lambda_0 x_0 + \cdots + \lambda_3 x_3 + \gamma_0 y_0 + \cdots + \gamma_3 y_3 + \theta \geq 0$ , and an 8-dimensional vector in the right column denotes a difference propagation pattern, e.g., (1,0,0,1,1,1,1,0) denotes  $0x9 = 1001 \rightarrow 0x7 = 1110$ .

| Constraints obtained by      | Impossible differential patterns removed                                                |
|------------------------------|-----------------------------------------------------------------------------------------|
| logical condition modelling  |                                                                                         |
| (-1,1,1,-1,-1,0,0,0,2)       | (1, 0, 0, 1, 1, 1, 1, 0) (1, 0, 0, 1, 1, 0, 0, 1) (1, 0, 0, 1, 1, 0, 0, 0) (1, 0, 0,    |
|                              | 1, 1, 1, 0, 0) (1, 0, 0, 1, 1, 1, 0, 1) (1, 0, 0, 1, 1, 0, 1, 0) (1, 0, 0, 1, 1, 0, 1,  |
|                              | 1) (1, 0, 0, 1, 1, 1, 1, 1)                                                             |
| (-1, 1, 1, 1, 1, 0, 0, 0, 0) | (1, 0, 0, 0, 0, 1, 1, 1) (1, 0, 0, 0, 0, 1, 1, 0) (1, 0, 0, 0, 0, 0, 0, 1) (1, 0, 0, 0, |
|                              | 0, 1, 0, 0) (1, 0, 0, 0, 0, 1, 0, 1) (1, 0, 0, 0, 0, 1, 0) (1, 0, 0, 0, 0, 1, 1)        |
| (1,1,1,-1,1,0,0,0,0)         | (0, 0, 0, 1, 0, 1, 1, 1) (0, 0, 0, 1, 0, 1, 1, 0) (0, 0, 0, 1, 0, 0, 0, 1) (0, 0, 0, 1, |
|                              | 0, 1, 0, 0) (0, 0, 0, 1, 0, 1, 0, 1) (0, 0, 0, 1, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 1, 1)  |
| (-1,0,0,0,-1,1,-1,1,2)       | (1, 1, 1, 0, 1, 0, 1, 0) (1, 0, 1, 1, 1, 0, 1, 0) (1, 1, 0, 1, 1, 0, 1, 0) (1, 1, 1, 1, |
|                              | 1, 0, 1, 0) (1, 0, 1, 0, 1, 0, 1, 0) (1, 0, 0, 0, 1, 0, 1, 0) (1, 1, 0, 0, 1, 0, 1, 0)  |
| (1,0,0,0,-1,1,1,1,0)         | (0, 0, 0, 1, 1, 0, 0, 0) (0, 1, 0, 0, 1, 0, 0, 0) (0, 1, 0, 1, 1, 0, 0, 0) (0, 0, 1, 0, |
|                              | 1, 0, 0, 0) (0, 0, 1, 1, 1, 0, 0, 0) (0, 1, 1, 1, 1, 0, 0, 0) (0, 1, 1, 0, 1, 0, 0, 0)  |
| (1,0,0,0,1,1,-1,1,0)         | (0, 0, 1, 1, 0, 0, 1, 0) (0, 1, 0, 0, 0, 0, 1, 0) (0, 1, 1, 0, 0, 0, 1, 0) (0, 0, 1,    |
|                              | 0, 0, 0, 1, 0) (0, 1, 1, 1, 0, 0, 1, 0) (0, 1, 0, 1, 0, 0, 1, 0)                        |

property. Even when the S-box under consideration can be described with this logical condition modelling technique, the inequalities generated may be not enough to produce a satisfied result. The number of valid cutting-off inequalities can be obtained in this way is given in Table 4 for typical  $4 \times 4$  S-boxes.

In the next subsection, a more general approach for generating valid cuttingoff inequalities is proposed.

#### 4.2 Convex Hull of All Possible Differentials for an S-box

The convex hull of a set Q of discrete points in  $\mathbb{R}^n$  is the smallest convex set that contains Q. A convex hull in  $\mathbb{R}^n$  can be described as the common solutions of a set of finitely many linear equations and inequalities as follows:

$$\begin{cases} \lambda_{0,0}x_0 + \dots + \lambda_{0,n-1}x_{n-1} + \lambda_{0,n} \ge 0 \\ \dots \\ \gamma_{0,0}x_0 + \dots + \gamma_{0,n-1}x_{n-1} + \gamma_{0,n} = 0 \\ \dots \end{cases}$$
(10)

This is called the H-Representation of a convex hull. Computing the H-representation of the convex hull of a set of finitely many points is a fundamental algorithm in computation geometry with many applications [19, 28, 26]. Here, we treat a possible differential of the PRESENT S-box as a point in  $\mathbb{R}^8$ . For example, the difference propagation pattern  $0x9 = 1001 \rightarrow 0x7 = 1110$  is identified with (1,0,0,1,1,1,1,0).

Table 4: Number of valid cutting-off inequalities obtained using different methods. Notations: the "# CDP" columns record the number of constraints obtained using logical condition modelling approach, and the "#CH" columns record the number of constraints in the H-representation of the convex hull.

| S-box       | #CDP | #CH | S-box      | #CDP | #СН |
|-------------|------|-----|------------|------|-----|
| Klein       | 0    | 312 | LBlock S6  | 12   | 205 |
| Piccolo     | 12   | 202 | LBlock S7  | 12   | 205 |
| TWINE       | 0    | 324 | LBlock S8  | 12   | 205 |
| PRINCE      | 0    | 300 | LBlock S9  | 12   | 205 |
| MIBS        | 0    | 378 | Serpent S0 | 6    | 327 |
| PRESENT/LED | 6    | 327 | Serpent S1 | 6    | 327 |
| LBlock S0   | 12   | 205 | Serpent S2 | 6    | 325 |
| LBlock S1   | 12   | 205 | Serpent S3 | 0    | 368 |
| LBlock S2   | 12   | 205 | Serpent S4 | 3    | 321 |
| LBlock S3   | 12   | 205 | Serpent S5 | 3    | 321 |
| LBlock S4   | 12   | 205 | Serpent S6 | 3    | 327 |
| LBlock S5   | 12   | 205 | Serpent S7 | 6    | 368 |

We now define the convex hull of a specific  $\omega \times \omega$  S-box to be the set of all linear inequalities in the H-Representation of the convex hull  $\mathcal{V}_{\mathcal{S}} \subseteq \mathbb{R}^{2\omega}$  of all possible differential patterns of the S-box. For instance, the Convex Hull of PRESENT S-box can be found in Appendix B. This result is obtained by using the inequality\_generator() function in the sage.geometry.polyhedron class of the SAGE computer algebra system [29]. The convex hull of the PRESENT S-box contains 327 linear inequalities. Any one of these inequalities can be taken as a valid cutting-off inequality. The numbers of linear inequalities in the convex hulls of typical  $4 \times 4$  S-boxes are given in Table 4.

# 5 Selecting Valid Cutting-off Inequalities from the Convex Hull: A Greedy Approach

It is well known that the number of equations and inequalities in the H-Representation of a convex hull computed from a set of discrete points in n dimensional space is exponential in n. For instance, the convex hull  $\mathcal{V}_{\mathcal{S}} \subseteq \mathbb{R}^8$  of a  $4 \times 4$  S-box typically involves several hundreds of linear inequalities. Adding all of them to an MILP problem for counting the number of active S-boxes will quickly make the MILP problem insolvable in practical time. Hence, it is necessary to select a small number, say n, of "best" inequalities from the convex hull. Here by "best" we mean that, among all possible selections of n inequalities, the selected ones maximize the number of removed impossible differentials. Obviously, this is a hard combinatorial optimization problem. Therefore, we design a greedy algorithm, listed in Algorithm 1, to approximate the optimum selection.

**Algorithm 1:** Selecting n inequalities from the convex hull  $\mathcal{H}$  of an S-box

#### Input:

11 return  $\mathcal{O}$ 

 $\mathcal{H}$ : the set of all inequalities in the H-representation of the convex hull of an S-box;

 $\mathcal{X}$ : the set of all possible differential patterns of an S-box; n: a positive integer.

```
Output: \mathcal{O}: a set of n inequalities selected from \mathcal{H}

1 l^* := \mathsf{None};

2 \mathcal{X}^* := \mathcal{X};

3 \mathcal{H}^* := \mathcal{H};

4 \mathcal{O} := \emptyset;

5 for i \in \{0, \dots, n-1\} do

6 l^* := \mathsf{The} inequality in \mathcal{H}^* which maximizes the number of removed impossible differential patterns from \mathcal{X}^*;

7 \mathcal{X}^* := \mathcal{X}^* - \{\mathsf{removed impossible differential patterns by } l^*\};

8 \mathcal{H}^* := \mathcal{H}^* - \{l^*\};

9 \mathcal{O} := \mathcal{O} \cup \{l^*\};

10 end
```

The algorithm builds up a set of valid cutting-off inequalities by selecting at each step an inequality from the convex hull which maximizes the number of removed impossible differential patterns from the current feasible region.

We select 6 valid cutting-off inequalities from the convex hull of the PRESENT S-box using Algorithm 1. These inequalities and the impossible differential patterns removed are listed in Table 5. Compared with the 6 valid cutting-off inequalities obtained in Theorem 1 (see Table 3), they cut off 66 - 42 = 24 more impossible differential patterns, which leads to a relatively tighter feasible region.

## 6 Application to PRESENT-80 and LBlock

In this section, we apply our method to two block ciphers with different structures. One is the bit-oriented SPN block cipher PRESENT-80, and the other is the bit-oriented Feistel block cipher LBlock.

## 6.1 The 28-round Reduced PRESENT-80 is Secure Against Related-key Differential Attack

We have applied the method presented in previous sections to the block cipher PRESENT-80 to determine its security bound with respect to related-key differential attack. A Python module [32] is developed to generate the MILP instances in "lp" format [15]. In each of these MILP models, we include one more constraint to ensure that the difference of the initial key register is nonzero, since the case where the difference of the initial key register is zero can by analyzed in

Table 5: Impossible differential patterns removed by the constraints selected from the convex hull of the PRESENT S-box

| Constraints selected from the     | Impossible differential patterns re-                                           |
|-----------------------------------|--------------------------------------------------------------------------------|
| convex hull by the greedy algo-   | moved                                                                          |
| rithm                             |                                                                                |
| (-2,1,1,3,1,-1,1,2,0)             | (1, 0, 1, 0, 0, 1, 0, 0) (1, 0, 0, 0, 1, 1, 0, 0) (1, 0, 0, 0, 1, 0, 0, 0) (1, |
|                                   | 0, 1, 0, 0, 1, 1, 0) (1, 0, 0, 0, 1, 1, 1, 0) (1, 1, 0, 0, 0, 1, 0, 0) (1, 1,  |
|                                   | 0, 0, 0, 1, 1, 0) (1, 0, 0, 0, 0, 1, 1, 0) (1, 0, 1, 0, 1, 1, 0, 0) (1, 0, 0,  |
|                                   | 0, 0, 1, 0, 0) (1, 0, 0, 0, 1, 0, 1) (1, 0, 0, 0, 0, 0, 1, 0) (1, 1, 0, 0,     |
|                                   | 1, 1, 0, 0) (1, 1, 1, 0, 0, 1, 0, 0)                                           |
| (1, -2, -3, -2, 1, -4, 3, -3, 10) | (0, 1, 1, 0, 1, 1, 0, 1) (1, 1, 1, 0, 0, 1, 0, 1) (0, 1, 1, 1, 0, 1, 1, 1) (1, |
|                                   | 0, 1, 1, 0, 1, 0, 1) (0, 1, 1, 0, 0, 1, 0, 1) (0, 1, 1, 1, 0, 1, 0, 0) (0, 1,  |
|                                   | 1, 1, 0, 1, 0, 1) (1, 1, 1, 1, 1, 1, 0, 1) (0, 0, 1, 1, 0, 1, 0, 1) (0, 1, 1,  |
|                                   | 1, 1, 1, 0, 1) (1, 1, 1, 1, 0, 1, 0, 1) (0, 1, 0, 1, 0, 1, 0, 1) (0, 0, 1, 1,  |
|                                   | 1, 1, 0, 1)                                                                    |
| (2, -2, 3, -4, -1, -4, -4, 1, 11) | (0, 1, 0, 1, 0, 1, 1, 0) (1, 1, 0, 1, 0, 1, 1, 0) (0, 0, 0, 1, 1, 1, 1, 0) (0, |
|                                   | 1, 0, 1, 0, 1, 1, 1) (0, 0, 0, 1, 1, 1, 1, 1) (0, 1, 0, 1, 1, 1, 1, 1) (0, 1,  |
|                                   | 0, 1, 1, 1, 1, 0) (0, 0, 0, 1, 0, 1, 1, 0) (1, 1, 0, 1, 1, 1, 1, 0) (0, 1, 1,  |
|                                   | 1, 1, 1, 1, 0) (1, 1, 0, 1, 1, 1, 1, 1)                                        |
| (-1, -2, -2, -1, -1, 2, -1, 0, 6) | (1, 1, 1, 0, 1, 0, 1, 1) (1, 1, 1, 0, 1, 0, 1, 0) (1, 1, 1, 1, 1, 0, 0, 1) (1, |
|                                   | 1, 1, 1, 1, 0, 0, 0) (0, 1, 1, 1, 1, 0, 1, 1) (1, 1, 1, 1, 1, 0, 1, 0) (0, 1,  |
|                                   | 1, 1, 1, 0, 1, 0) (1, 1, 1, 1, 0, 0, 1, 1) (1, 1, 1, 1, 1, 0, 1, 1) (1, 1, 1,  |
|                                   | 1, 0, 0, 1, 0)                                                                 |
| (-2, 1, -2, -1, 1, -1, -2, 0, 6)  | (1, 1, 1, 1, 0, 1, 1, 0) (1, 1, 1, 1, 0, 1, 1, 1) (1, 0, 1, 1, 0, 0, 1, 0) (1, |
|                                   | 0, 1, 0, 0, 1, 1, 1) (1, 0, 1, 1, 0, 0, 1, 1) (1, 0, 1, 1, 1, 1, 1, 0) (1, 0,  |
|                                   | 1, 1, 1, 1, 1, 1) (1, 0, 1, 1, 0, 1, 1, 1) (1, 0, 1, 1, 0, 1, 1, 0)            |
| (2,1,1,-3,1,2,1,2,0)              | (0, 0, 0, 1, 1, 0, 0, 0) (0, 0, 1, 1, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 0, 1) (0, |
|                                   | 1, 0, 1, 1, 0, 0, 0) (0, 0, 0, 1, 0, 1, 0, 0) (0, 0, 0, 1, 0, 0, 1, 0) (0, 0,  |
|                                   | 1, 1, 1, 0, 0, 0) (0, 1, 0, 1, 0, 0, 1, 0) (0, 0, 0, 1, 1, 0, 1, 0)            |

a single-key model. Then we employ the Gurobi 5.5 optimizer [24] to solve the MILP instances.

By default the computations are performed on a PC using 4 threads with Intel(R) Core(TM) Quad CPU (2.83GHz, 3.25GB RAM, Windows XP), and a star "\*" is appended on a timing data to mark that the corresponding computation is taken on a workstation equipped with two Intel(R) Xeon(R) E5620 CPU(2.4GHz, 8GB RAM, totally 8 cores). Despite there are only 2 CPUs and totally 8 physical cores on the workstation, we fire up 16 threads in Gurobi5.5 to solve the corresponding MILP instances to exploit Intel's Hyper-Threading Technology, where for each physical core, the operating system simulates two virtual or logical cores, and shares the workload between them.

We have computed the number of active S-boxes for PRESENT-80 in the related-key model up to 14 rounds, and the results are summarized in Table 6 and Table 7, where the "#Constraints" columns record the number of constraints imposed and the "#Variables" columns show the number of 0-1 variables and continuous variables in the underlying MILP instance. For example, according to the first row of Table 6, there are 97 0-1 variables and 277 continuous variables in the MILP instance corresponding to 1-round PRESENT-80, and the Gurobi optimizer find the minimum number of active S-boxes is 0 in no more than 1 second.

Rounds #Variables #Constraints #Active S-boxes Time (in seconds) 97 + 277130 + 474163 + 671196 + 868229 + 1065262 + 1262295 + 1459328 + 1656361 + 1853394 + 2050427 + 2247460 + 2444493 + 2641137160\* 526 + 28381316808\* 559 + 3035> 20 days

Table 6: MILP models with CDP constraints added

Note that there are  $(17 \times 6)r$  more constraints of the rth row(corresponding to r rounds) of Table 6 than that of Table 7. This is due to the fact that for every S-box there are 6 more constraints (see Theorem 1) in the MILP instance with CDP constraints included, and for every round there are 17 S-boxes: 16 in

| Rounds | #Variables | #Constraints | #Active S-boxes | Time (in seconds) |
|--------|------------|--------------|-----------------|-------------------|
| 1      | 97 + 277   | 530          | 0               | 1                 |
| 2      | 130 + 474  | 1058         | 0               | 1                 |
| 3      | 163 + 671  | 1586         | 1               | 1                 |
| 4      | 196 + 868  | 2114         | 2               | 1                 |
| 5      | 229 + 1065 | 2642         | 3               | 3                 |
| 6      | 262 + 1262 | 3170         | 4               | 10                |
| 7      | 295 + 1459 | 3698         | 6               | 26                |
| 8      | 328 + 1656 | 4226         | 8               | 111               |
| 9      | 361 + 1853 | 4754         | 9               | 171               |
| 10     | 394 + 2050 | 5282         | 12              | 1540              |
| 11     | 427 + 2247 | 5810         | 13              | 8136              |
| 12     | 460 + 2444 | 6338         | 15              | 18102             |
| 13     | 493 + 2641 | 6866         | 17              | 49537*            |
| 14     | 526 + 2838 | 7394         | 18              | 685372*           |
| 15     | 559 + 3035 | 7922         | _               | > 20days          |

Table 7: MILP models without CDP constraints

the encryption process (Appendix A, Fig. 2) and 1 in the key schedule algorithm (Appendix A, Fig. 3).

These results clearly demonstrate that the MILP models with CDP constraints lead to tighter security bounds. In particular, we have proved that there are at least 20 active S-boxes in the best related-key differential characteristic for any consecutive 14-rounds of PRESENT-80. Therefore, the probability of the best related-key differential characteristic of 28-round PRESENT-80 is  $(2^{-2})^{20} \times (2^{-2})^{20} = 2^{-80}$ , leading to the result that the 28-round PRESENT-80 is resistant to related-key differential attack.

For round reduced variants of PRESENT-80 with round  $r \geq 15$ , we are unable to accomplish the computation within 20 days.

It is possible to get tighter security bounds by adding more constraints: experimental result shows that, by adding 6 more valid cutting-off inequalities listed in Table 5 to the MILP problems for each S-box appearing in the schematic representation of PRESENT-80, we are able to prove that the guaranteed number of active S-boxes in related-key model for 7-round PRESENT-80 is at least 8, which is the tightest bound obtained so far (see Table 6 and Table 7 for comparison).

#### 6.2 Results on LBlock

Up to now, there is no concrete result concerning the security of full-round LBlock [38] against differential attack in the related-key model due to a lack of proper tools for bit-oriented designs.

Since the encryption process of LBlock is nibble-oriented, the security of LBlock against single-key differential attack can be evaluated by those word-oriented techniques. However, the " $\ll$  29" operations in the key schedule algorithm of LBlock destroy its overall nibble-oriented structure, and make those

word-oriented approaches infeasible in evaluating the security of LBlock against related-key differential attack.

In this subsection, we apply the method proposed in this paper to LBlock, some results concerning its security against related-key differential attack are obtained. The valid cutting-off inequalities used to obtain these results are listed in Appendix C. Note that the type of constraints given in (5) are removed in our MILP models for LBlock according to the explanations presented in previous sections.

From Table 8, we can deduce that the probability of the best differential characteristic for full LBlock (totally 32 = 11 + 11 + 10 rounds) is upper bounded by  $(2^{-2})^{10} \times (2^{-2})^{10} \times (2^{-2})^{8} = 2^{-56}$ , where  $2^{-2}$  is the best differential probability for a single S-box of LBlock. To the best of our knowledge, this is the first result concerning the security of the full-round LBlock against related-key differential attack.

| Table 6. Results for related key |            |              | differential allalysis on Eblock |                   |  |
|----------------------------------|------------|--------------|----------------------------------|-------------------|--|
| Rounds                           | #Variables | #Constraints | #Active S-boxes                  | Time (in seconds) |  |
| 1                                | 218+104    | 660          | 0                                | 1                 |  |
| 2                                | 292+208    | 1319         | 0                                | 1                 |  |
| 3                                | 366+312    | 1978         | 0                                | 1                 |  |
| 4                                | 440+416    | 2637         | 0                                | 1                 |  |
| 5                                | 514 + 520  | 3296         | 1                                | 2                 |  |
| 6                                | 588 + 624  | 3955         | 2                                | 12                |  |
| 7                                | 662+728    | 4614         | 3                                | 38                |  |
| 8                                | 736+832    | 5273         | 5                                | 128               |  |
| 9                                | 810+936    | 5932         | 6                                | 386               |  |
| 10                               | 884+1040   | 6591         | 8                                | 19932             |  |
| 11                               | 958+1144   | 7250         | 10                               | 43793             |  |

Table 8: Results for related-key differential analysis on LBlock

#### 7 Conclusion and Directions for Future Work

In this paper, we bring new constraints into Mohua et al's framework to describe the differential properties of a specific S-box, and therefore obtain a more accurate mixed integer programming model for the differential behaviour of a block cipher. Following this methodology, we prove that the full PRESENT-80 is secure against related-key differential attack, which answers an open problem of the symmetric-key cryptography community. Moreover, our method is automatic, generic, and applicable to bit-oriented ciphers such as PRESENT, LBlock, and EPCBC. In fact, the technique presented in this paper can be integrated into the MILP technique to automatically discover impossible differential characteristics [37], search actual differential paths, and determine the positions and patterns of fault injections in the context of differential fault analysis by

enumerating the feasible solutions (the optimizers SCIP [1] and CPLEX [15] has this functionality), which is a topic deserving further investigation.

At this point, several open problems emerged. Firstly, we have observed that the MILP instances derived from such cryptographic problems are very hard to solve compared with general MILP problems with the same scale with respect to the numbers of variables and constraints. Hence, it is interesting to develop specific methods to accelerate the solving process of such problems and therefore increase the number of rounds of the cipher under consideration can be dealt with. Secondly, the method presented in this paper is very general, is it possible to develop a compiler which can convert a standard description, say a description using hardware description language [27], of a cipher into an MILP instance to automate the entire security evaluation cycle with respect to (related-key) differential attack?

#### References

- Achterberg, T.: SCIP-a framework to integrate constraint and mixed integer programming, report 04-19, zuse institute berlin, 2004
- 2. Albrecht, M., Cid, C.: Cold boot key recovery by solving polynomial systems with noise. In: Applied Cryptography and Network Security. pp. 57–72. Springer (2011)
- 3. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-bit block cipher suitable for multiple platformsdesign and analysis. In: Selected Areas in Cryptography. pp. 39–56. Springer (2001)
- 4. Beigel, R.: The polynomial method in circuit complexity. In: Structure in Complexity Theory Conference, 1993., Proceedings of the Eighth Annual. pp. 82–95. IEEE (1993)
- 5. Biham, E., Anderson, R., Knudsen, L.: Serpent: A new block cipher proposal. In: Fast Software Encryption. pp. 222–238. Springer (1998)
- Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. Journal of CRYPTOLOGY 4(1), 3–72 (1991)
- Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: Lightweight authenticated cipher with side-channel resistance for constrained hardware. In: Cryptographic Hardware and Embedded Systems-CHES 2013, pp. 142–158. Springer (2013)
- 8. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full aes-256. In: Advances in Cryptology-CRYPTO 2009, pp. 231–249. Springer (2009)
- Biryukov, A., Nikolić, I.: Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to AES, Camellia, Khazad and others. In: Advances in Cryptology–EUROCRYPT 2010, pp. 322–344. Springer (2010)
- Bogdanov, A.: On unbalanced feistel networks with contracting mds diffusion. Designs, Codes and Cryptography 59(1-3), 35–58 (2011)
- Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Cryptographic Hardware and Embedded Systems-CHES 2007, pp. 450–466. Springer (2007)

- 12. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., et al.: Prince-a low-latency block cipher for pervasive computing applications. In: Advances in Cryptology-ASIACRYPT 2012, pp. 208–225. Springer (2012)
- 13. Borghoff, J., Knudsen, L.R., Stolpe, M.: Bivium as a mixed-integer linear programming problem. In: Cryptography and Coding, pp. 133–152. Springer (2009)
- Bulygin, S., Walter, M.: Study of the invariant coset attack on printcipher: more weak keys with practical key recovery. Tech. rep., Cryptology eprint Archive, Report 2012/85 (2012)
- 15. CPLEX, I.I.: Ibm software group. User-Manual CPLEX 12 (2011)
- Daemen, J., Rijmen, V., Proposal, A.: Rijndael. In: Proceedings from the First Advanced Encryption Standard Candidate Conference, National Institute of Standards and Technology (NIST) (1998)
- 17. Emami, S., Ling, S., Nikolic, I., Pieprzyk, J., Wang, H.: The resistance of PRESENT-80 against related-key differential attacks. Cryptology ePrint Archive, Report 2013/522 (2013), http://eprint.iacr.org/
- Fouque, P.A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosenkey distinguisher of 9-round aes-128. In: Canetti, R., Garay, J. (eds.) Advances in Cryptology CRYPTO 2013, Lecture Notes in Computer Science, vol. 8042, pp. 183-203. Springer Berlin Heidelberg (2013), http://dx.doi.org/10.1007/ 978-3-642-40041-4\_11
- 19. Goodman, J.E., O'Rourke, J.: Handbook of discrete and computational geometry. CRC press (2010)
- Izadi, M., Sadeghiyan, B., Sadeghian, S.S., Khanooki, H.A.: Mibs: a new lightweight block cipher. In: Cryptology and Network Security, pp. 334–348. Springer (2009)
- 21. Kantorovich, L.V.: A new method of solving some classes of extremal problems. In: Doklady Akad Sci USSR. vol. 28, pp. 211–214 (1940)
- 22. Lamberger, M., Nad, T., Rijmen, V.: Numerical solvers and cryptanalysis. Journal of mathematical cryptology 3(3), 249–263 (2009)
- 23. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Information Security and Cryptology. pp. 57–76. Springer (2012)
- 24. Optimization, G.: Gurobi optimizer reference manual. URL: http://www.gurobi.com (2013)
- Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis in the presence of errors. In: Cryptographic Hardware and Embedded Systems, CHES 2010, pp. 428–442. Springer (2010)
- 26. o'Rourke, J.: Computational geometry in C. Cambridge university press (1998)
- 27. Pedroni, V.A.: Circuit design with VHDL. The MIT Press (2004)
- 28. Preparata, F.P., Shamos, M.I.: Computational geometry: An introduction (monographs in computer science). Monographs in Computer Science (Springer-Verlag, New York, 1985), ISBN 3540961313 (1993)
- 29. Stein, W., et al.: Sage: Open source mathematical software (2008)
- 30. Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic security evaluation of block ciphers with s-bp structures against related-key differential attacks. Cryptology ePrint Archive, Report 2013/547 (2013), http://eprint.iacr.org/
- 31. Tezcan, C.: Improbable differential attack on present using undisturbed bits. In: International Conference on Applied and Computational Mathematics (2012)
- 32. Van Rossum, G., et al.: Python programming language. In: USENIX Annual Technical Conference (2007)

- 33. Walter, M., Bulygin, S., Buchmann, J.: Optimizing guessing strategies for algebraic cryptanalysis with applications to EPCBC. In: The 8th China International Conference on Information Security and Cryptology (Inscrypt 2012). Springer (2012)
- 34. Williams, H.P.: Logical problems and integer programming. Bulletin of the Institute of Mathematics and its Applications 13, 18–20 (1977)
- 35. Williams, H.P.: Model building in mathematical programming (1999)
- Wu, S., Wang, M.: Security evaluation against differential cryptanalysis for block cipher structures. Tech. rep., Cryptology ePrint Archive, Report 2011/551 (2011)
- Wu, S., Wang, M.: Automatic search of truncated impossible differentials for wordoriented block ciphers. In: Progress in Cryptology-INDOCRYPT 2012, pp. 283– 302. Springer (2012)
- 38. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Applied Cryptography and Network Security. pp. 327–344. Springer (2011)
- 39. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC-a block cipher suitable for electronic product code encryption. In: Cryptology and Network Security, pp. 76–97. Springer (2011)

### A The PRESENT-80 Lightweight Block Cipher

PRESENT-80 is a 31-round SPN block cipher with 64-bit block size and 80-bit secret key. The substitution and diffusion layers of PRESENT-80 are constructed with  $4 \times 4$  S-boxes and bit-wise permutation to make its hardware implementation suitable for extremely constrained devices.

The schematic description of PRESENT-80's encryption process and key schedule algorithm are given in Fig.2 and Fig.3. These two schematic descriptions are enough to understand the contents of the following sections, and for more information on PRESENT, we refer the reader to [11].

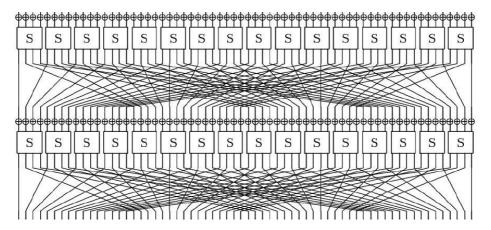



Fig. 2: Two consecutive rounds of PRESENT-80 encryption process

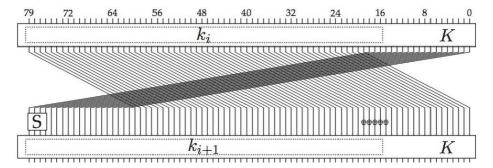



Fig. 3: The key schedule algorithm of PRESENT-80: for each round the most significant 64 bits of the 80-bit key register K are extracted as the subkey  $k_i$ 

## B The Convex Hull of the PRESENT S-box

| $ \begin{array}{c} (0,\ 2,\ -2,\ 1,\ -1,\ -1,\ -2,\ -2,\ (1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ -1,\ 0,\ (1,\ -1,\ -1,\ 0,\ 0,\ -1,\ 1,\ -1,\ (2,\ 1,\ 2,\ 2,\ 0,\ 1,\ -1,\ -1,\ (0,\ 0,\ -1,\ -1,\ -1,\ 1,\ 1,\ 2,\ 2,\ -1,\ -2,\ -2,\ -2,\ -2,\ -2,\ -2,\ -2,\ -2$                                           | $\begin{array}{c} 0) (\ 0,\ 1,\ 1,\ 1,\ -1,\ 0,\ 0,\ 1,\ 0,\ 0) (-1,\ 0,\ -1,\ -1,\ 1,\ 0,\ -1,\ 0,\ 0) \\ 0) (-1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,\ -1,\ 0,\ 0) \\ 0) (-1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,\ 0) (-1,\ 0,\ 0,\ -1,\ -2,\ -1,\ -2,\ -1,\ 3,\ 2,\ -1,\ 0) (\ 1,\ -1,\ -1,\ 1,\ 1,\ 0,\ 0,\ -1,\ 4) (-1,\ 1,\ -2,\ -1,\ -2,\ -2,\ -2,\ -2,\ 3) (\ 0,\ 1,\ -1,\ 1,\ 0,\ 0,\ -1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0)(-1, -1, \ 0, \ 1, -1, \ 0, -1, \ -1, \ 3)\\ 3)(0, \ 1, \ 1, \ 0, -1, \ 1, -1, \ 1, \ 1, \ 1, \ 0)(-1, \ 0, \ 0, \ 1, \ 1, \ 0, \ 1, \ 1, \ $ | $\begin{array}{c} 0)(\ 0,\ 1,\ 1,\ -1,\ -1,\ 1,\ -1,\ 0,\ 2)\\ 3)(\ 0,\ 0,\ -1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0)\\ 0)(\ 0,\ 1,\ -1,\ 2,\ 1,\ 2,\ 2,\ -1,\ 0)\\ 0)(\ 2,\ 1,\ -1,\ 2,\ 1,\ 2,\ 2,\ -1,\ 0)\\ 0)(\ 2,\ 1,\ 1,\ 2,\ 1,\ 0,\ 1,\ 1,\ 0)\\ 0)(\ 2,\ 1,\ 1,\ 2,\ 1,\ 0,\ -1,\ 0,\ -1,\ 0)\\ 0)(\ 0,\ -1,\ 1,\ -1,\ 1,\ 0,\ 0,\ -2,\ 1,\ 0)\\ 0)(\ 0,\ -1,\ 1,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} (\ 1,\ 2,\ -1,\ -2,\ -2,\ -2,\ -1,\ 0,\ \\ (\ 0,\ -1,\ -1,\ -1,\ 1,\ -2,\ 1,\ -2,\ 1,\ -2,\ \\ (\ 1,\ -2,\ 1,\ 0,\ 1,\ 2,\ 1,\ 2,\ 1,\ -2,\ 1,\ -2,\ 1,\ -2,\ 1,\ -2,\ 1,\ -2,\ 1,\ -2,\ 1,\ -2,\ 1,\ -2,\ 1,\ -2,\ 1,\ -2,\ 1,\ -2,\ -2,\ 1,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1,$ | $\begin{array}{c} 6)(-1,\ 1,\ 1,\ 2,\ 0,\ -1,\ 1,\ 2,\ 0) \\ (1,\ 3,\ -2,\ -2,\ 3,\ 4,\ 14,\ 2,\ 0) \\ (1,\ -1,\ -2,\ -2,\ 1,\ -3,\ 2,\ -2,\ 0)(-1,\ 0,\ 1,\ 1,\ 0,\ -1,\ 1,\ 1,\ 0,\ 0) \\ (1,\ -1,\ -2,\ -2,\ 1,\ -3,\ 2,\ -2,\ 0)(-1,\ 0,\ 1,\ 1,\ 0,\ -1,\ -1,\ 1,\ 1,\ 0,\ 0) \\ (1,\ 1,\ 0,\ -1,\ -1,\ -1,\ -1,\ 1,\ 0,\ 0) \\ (1,\ 1,\ 0,\ -1,\ -1,\ -1,\ -1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 0,\ -1,\ -1,\ 1,\ -1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,\ -1,\ 1,\ 0,\ -1,\ 1,\ 1,\ 1,\ 1,\ 0,\ -1,\ 1,\ 0,\ -1,\ 1,\ 1,\ 1,\ 1,\ 0,\ -1,\ 1,\ 1,\ 1,\ 1,\ 0,\ -1,\ 1,\ 1,\ 1,\ 0,\ -1,\ 1,\ 1,\ 1,\ 0,\ -1,\ 1,\ 1,\ 1,\ 0,\ -1,\ 1,\ 1,\ 1,\ 0,\ -1,\ 1,\ 1,\ 1,\ 0,\ -1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 2,\ 1,\ -1,\ 1,\ 2,\ 1,\ -1,\ 1,\ 1,\ 0,\ 1,\ 2,\ 1,\ -1,\ 1,\ 2,\ 1,\ -1,\ 1,\ 1,\ 0,\ 1,\ 2,\ 1,\ -1,\ 1,\ 2,\ 3,\ 3,\ 3,\ 1,\ -2,\ 1,\ -3,\ 1,\ -3,\ 3,\ 2,\ -1,\ -3,\ 3,\ 1,\ -2,\ 1,\ -3,\ 1,\ -3,\ 3,\ 1,\ -2,\ 1,\ -3,\ 1,\ -3,\ 3,\ 1,\ -2,\ 1,\ -3,\ 1,\ -3,\ 3,\ 1,\ -2,\ 1,\ -3,\ 1,\ -3,\ 3,\ 1,\ -2,\ 1,\ -3,\ 1,\ -3,\ 1,\ -3,\ -3,\ -2,\ -2,\ 0)\ (1,\ 1,\ 2,\ 2,\ 1,\ -1,\ 1,\ 2,\ 1,\ -1,\ 1,\ 1,\ 1,\ 0,\ 0,\ -1,\ 1,\ -1,\ 1,\ 1,\ 0,\ 0,\ -1,\ 1,\ -1,\ 1,\ 0)\ (1,\ 1,\ 2,\ 2,\ 0,\ 1,\ 2,\ 1,\ -1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ 2,\ 1,\ $ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                              | $\begin{array}{c} 0)(1,-1,1,1,1,1,1,2,0,0,0)\\ 0)(2,0,0,2,-2,-1,-1,1,-2,6)\\ 0)(0,0,0,0,-1,1,-1,1,-2,6)\\ 0)(1,2,-1,-2,-2,-2,0,1,5)\\ 0)(2,1,-2,-2,-1,-1,1,-1,-1,5)\\ 0)(0,0,0,0,0,-1,0,0,0,0,1)\\ 1)(-1,1,0,1,0,-1,1,1,1,1)\\ 1)(1,1,1,0,1,0,-1,1,1,1,1)\\ 1)(1,1,1,-2,1,1,1,1,1,0,0)\\ 0)(-2,-1,-1,2,-2,0,-2,-1,7)\\ 2)(3,1,1,-2,-2,-2,-2,-1,5)\\ 4)(1,0,1,0,-1,-1,1,0,-1,-1,0,2)\\ 3)(1,-2,3,-2,1,4,3,4,0)\\ 0)(0,-1,1,1,-1,0,-1,-1,3)\\ 0)(1,0,1,1,1,-1,0,-1,-1,3)\\ 0)(1,0,1,1,-1,-1,1,0,-1,-1,3)\\ 0)(1,0,1,1,1,-1,0,-1,-1,0,3)\\ 2)(1,0,0,2,-1,-2,-2,-2,-1,6)\\ 3)(0,-1,0,1,1,-1,1,0,-1,-1,3)\\ 0)(1,0,1,0,1,1,1,0,1,1,0,3)\\ 2)(1,0,2,-1,-2,-2,-2,-2,-1,6)\\ 3)(0,-1,0,1,1,1,0,1,1,0,0,0,1,0)\\ 1)(2,-1,-3,-1,-3,1,2,-3,8)\\ 0)(1,1,0,0,-1,1,1,0,0,0,1,0)\\ 1)(2,-1,-3,-1,-3,1,2,-3,8)\\ 0)(1,1,1,0,0,1,1,0,0,1,0)\\ 0)(1,1,0,0,-1,1,1,1,1,0)\\ 0)(1,1,0,0,-1,1,1,1,1,0)\\ 0)(1,1,0,0,-1,1,1,1,1,0)\\ 0)(1,1,1,0,0,-1,1,1,1,1,0)\\ 0)(1,1,1,0,0,-1,1,1,1,1,0)\\ 0)(1,1,1,0,0,-1,1,1,1,1,0)\\ 0)(1,1,1,0,1,1,0,1,1,0,3)\\ 1)(0,-1,-1,-1,0,-1,1,1,1,4)\\ 0)(0,1,1,0,1,1,0,1,1,0,3)\\ 1)(0,-1,-1,-1,0,1,1,1,0,3)\\ 0)(1,2,-1,-1,-2,-2,-2,-1,7)\\ 0)(-1,2,1,1,1,1,1,1,0,1,1,0,1)\\ 1)(-2,2,-1,-1,1,2,2,2,2,0)\\ 0)(1,1,1,1,1,1,1,1,0,1,1,0,1)\\ 1)(-2,2,-1,-1,1,2,2,2,2,1,1,0,0)\\ 0)(1,1,1,1,1,0,0,0,1,1,0,0,1)\\ 1)(-2,2,1,1,1,1,1,1,1,0,0,0,1,1,0,1)\\ 1)(-2,2,1,1,1,1,1,1,1,0,0,0,1,1,0,1)\\ 1)(-2,2,1,1,1,1,1,1,1,0,0,0,1,1,0,0)\\ 0)(-1,1,1,1,1,0,1,1,0,0,0,1,1,0,0)\\ 0)(-1,1,1,1,1,0,1,1,0,0,0,1,1,0,0)\\ 0)(-1,1,1,1,1,0,1,1,0,1,0,0)\\ 0)(-1,1,1,1,1,0,1,1,0,1,0,0)\\ 0)(-1,1,1,1,1,0,1,1,0,1,0,0)\\ 0)(-1,1,1,1,1,0,1,1,0,1,0,0)\\ 0)(-1,1,1,1,1,0,1,1,0,1,1,0,0)\\ 0)(-1,1,1,1,1,0,1,1,0,1,1,0,0)\\ 0)(-1,1,1,1,1,0,1,1,0,1,0,0)\\ 0)(-1,1,1,1,1,0,1,1,0,1,1,0,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,0,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,0,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,0,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,1,0,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,1,1,0,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,1,1,0,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,1,1,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,1,1,1,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,1,1,1,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,1,1,1,0)\\ 0)(-1,1,1,1,1,1,1,1,1,1,1,1,1,0)\\ 0)$ |

# C Valid Cutting-off Inequalities Used in Analyzing LBlock

| S-box | Valid cutting-off inequalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SO    | $[(-1,\ 2,\ -2,\ -1,\ 0,\ 0,\ -2,\ -1,\ 5),\ (0,\ 1,\ 0,\ 0,\ 1,\ -1,\ 1,\ 0,\ 0),\ (-1,\ -1,\ 1,\ -3,\ 3,\ -1,\ -2,\ 2,\ 5),\ (3,\ -1,\ -1,\ -1,\ 0,\ 3,\ 2,\ 1,\ 0),\ (-1,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1,\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | $ \begin{bmatrix} 1,\ 2,\ 0,\ -1,\ -1,\ 2,\ -2,\ 3),\ (0,\ -1,\ 0,\ 1,\ -1,\ 0,\ -1,\ 1,\ 2),\ (0,\ -1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0),\ (-1,\ -1,\ -1,\ 0,\ -1,\ -1,\ 0,\ -1,\ 5),\ (1,\ 2,\ -2,\ 1,\ 0,\ 0,\ 1,\ 2,\ 0),\ (1,\ 2,\ 3,\ -2,\ 1,\ 0,\ -1,\ 3,\ 0),\ (-1,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 1,\ 0),\ (1,\ 1,\ -2,\ -2,\ 0,\ -1,\ -1,\ -2,\ 6),\ (-1,\ -1,\ 1,\ 0,\ -1,\ -1,\ 1,\ 0,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | $\{-1, 1, -1, -1, 4\}, \{1, 0, 1, 1, 0, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 0, -1, 2), (-1, 1, 0, 0, -1, 1, 1, 1, -1, 2), (2, 3, 1, 1, 0, -3, 1, 1, 0), (1, -1, -1, 0, 1, -1, -1, 1, 3), (2, -1, -1, 0, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | $ \begin{vmatrix} 1 \\ 1 \\ 2 \\ 3 \end{vmatrix}, \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}, \begin{vmatrix} 1 \\ 3 \\ 4 \end{vmatrix}, \begin{vmatrix} 1 \\ 4 \\ 4 \end{vmatrix}, \begin{vmatrix} 1 \\ 3 \\ 4 \end{vmatrix}, \begin{vmatrix} 1 \\ 4 \\ 4 \end{vmatrix},$ |
| S1    | (2, 1, 1, 1, -3, 0, 2, 1, 0), (-1, 2, -2, -1, 0, 0, -1, -2, 5), (0, 1, 0, 0, 1, -1, 0, 1, 0), (-1, -1, 1, -3, 3, -1, 2, -2, 5), (3, 1, 0, 0, 1, -1, 0, 1, 0, 1, -1, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -3, 1, -1, 1, -3, 1, -3, 1, -1, 1, -3, 1, -3, 1, -1, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | $\begin{bmatrix} -1, -1, -1, 0, 3, 1, 2, 0), (-1, 4, 5, 3, -1, -1, -2, 5, 0), (0, -1, 0, 1, -1, 0, 1, -1, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (1, 2, -2, 1, 0, 0, 2, 1, 0), (-1, -1, -1, 0, -1, -1, -1, 0, 5), (0, 1, 2, -2, 1, 0, 2, -1, 1), (-1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | [-1, -2, -1, 6], (2, 0, 1, 1, -2, -1, 1, -1, 2), (-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | $\begin{bmatrix} 1, -1, 0, 2 \end{bmatrix}$ , $(-1, -1, -1, 0, 1, 1, -1, 0, 3)$ , $(0, -1, 1, 1, 1, -1, -1, -1, 3)$ , $(1, -1, -1, 1, 0, 1, -1, 0, 2)$ , $(2, 3, 1, 1, 0, -3, 1, 1, 0, 1, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | $ \begin{vmatrix} 1, \ 0 \end{pmatrix}, \ (2, \ -1, \ 2, \ 3, \ -1, \ 2, \ 3, \ -1, \ 0), \ (-1, \ 1, \ 1, \ -1, \ 2, \ 0, \ 1, \ 1, \ 0), \ (-1, \ -1, \ 0, \ 0, \ -1, \ -1, \ -1, \ 1, \ 4), \ (1, \ -1, \ 0, \ 0, \ 1, \ 0, \ 1, \ 0), \ (3, \ -1, \ -1, \ 0, \ -1, \ 2, \ 2, \ 2, \ 0), \ (1, \ 0, \ -1, \ 1, \ 0, \ -1, \ 1, \ -1, \ 2) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| S2    | (2, 1, 1, 1, 1, -3, 2, 0, 0), (-1, 2, -2, -1, -2, 0, -1, 0, 5), (0, 1, 0, 0, 1, 1, 0, -1, 0), (-1, 1, -3, -2, 3, 2, -1, 5), (3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | $ \begin{bmatrix} -1, -1, -1, 2, 0, 1, 3, 0), (-1, 4, 5, 3, 5, -1, -2, -1, 0), (0, -1, 0, 1, -1, -1, 1, 0, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (-1, -1, -1, 0, 0, -1, -1, -1, 5), (1, 2, -2, 1, 1, 0, 2, 0, 0), (1, -2, 1, -2, 1, 3, 2, 4, 0), (1, 1, -2, -2, -1, 0, -2, -1, 6), (-1, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 1, 1, 1, 0, 0), (2, 0, 1, 1, -1, -2, 1, -1, 2), (0, -1, 1, 1, -1, 1, -1, -1, 3), (0, 1, 1, -1, -1, 0, 1, 0, 1), (-1, -1, -1, 0, 0, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | $\begin{bmatrix} -1, 1, 3), (0, -1, 1, -1, -1, -1, -1, 1, 4), (1, -1, -1, 1, 0, 0, -1, 1, 2), (-1, 1, 0, 0, 1, -1, -1, 1, 2), (3, 2, -1, 3, -1, 0, 3, -1, 0), (1, 2, 1, 1, 1, 0, 0, -2, 0), (-1, 2, 1, -2, 1, 3, 2, 0, 0), (-1, 1, 2, 0, 2, -1, -2, -1, 3), (3, 1, 2, 2, 1, -4, 2, 1, 0), (-1, 1, 2, 0, 2, -1, -2, -1, 3), (-1, 2, 1, -2, 1, 3, 2, 0, 0), (-1, 1, 2, 0, 2, -1, -2, -1, 3), (-1, 2, 1, -2, 1, 3, 2, 0, 0), (-1, 1, 2, 0, 2, -1, -2, -1, 3), (-1, 2, 1, -2, 1, -2, 1, 3, 2, 0, 0), (-1, 2, 1, 2, 0, 2, -1, -2, -1, 3), (-1, 2, 1, 2, 1, -2, 1, 3, 2, 0, 0), (-1, 2, 1, 2, 0, 2, -1, -2, -1, 3), (-1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | (-1, -1, 1, 1, -1, -1, 0, 1, 3), (3, -1, -1, 0, 2, -1, 2, 2, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| S3    | (2, 1, 1, 1, 0, 1, -3, 2, 0), (-1, 2, -2, -1, 0, -2, 0, -1, 5), (0, 1, 0, 0, -1, 1, 1, 0, 0), (-1, -1, 1, -3, -1, -2, 3, 2, 5), (3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | $\begin{bmatrix} -1, -1, -1, 3, 2, 0, 1, 0), (-1, 1, 2, 0, -1, 2, -1, -2, 3), (0, -1, 0, 1, 0, -1, -1, 1, 2), (0, -1, 0, 0, 1, 1, 1, 0, 0), (-1, -1, -1, 0, -1, 0, -1, -1, 5), (1, 2, -2, 1, 0, 1, 0, 2, 0), (1, 2, 2, -1, 0, -1, 0, 2, 0), (1, 1, -2, -2, -1, -1, 0, -2, 6), (-1, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | $\begin{bmatrix} 0, 1, 1, 1, 0, 0, (1, 0, 1, 1, -1, -1, 0, -1, 2), (1, -1, -1, 1, 1, 0, 0, -1, 2), (1, -1, 1, -1, 2, 0, 2, 1, 0), (-1, 0, 1, 0, 1, 1, 1, 1, -1, 2, 0, 2, 1, 0), (-1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | $ \begin{bmatrix} 0,0), (-1,0,-1,0,1,-1,1,-1,3), (-1,1,-1,0,1,0,-1,-1,3), (0,-1,1,-1,1,-1,-1,-1,-1,4), (3,2,-1,3,-1,-1,0,3,-1,-1,0,3,-1,-1,1,-1,1,-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.4   | [-1, -1, 0, 1, 1, -1, 1, 1), (0, -1, 1, 1, -1, -1, 1, -1, 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S4    | $ \begin{bmatrix} (2,1,1,1,1,-3,0,2,0), (-1,2,-2,-1,-2,0,0,-1,5), (0,1,0,0,1,1,-1,0,0), (-1,-1,1,-3,-2,3,-1,2,5), (3,-1,-1,-1,2,0,3,1,0), (-1,4,5,3,5,-1,-1,-2,0), (0,-1,0,1,-1,-1,0,1,2), (0,-1,0,0,1,1,1,0,0), (-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | $[-1,\ 0,\ 0,\ -1,\ -1,\ 5),\ (1,\ 2,\ -2,\ 1,\ 1,\ 0,\ 0,\ 2,\ 0),\ (1,\ -1,\ 1,\ -1,\ -1,\ 2,\ 1,\ 1,\ 1),\ (1,\ 1,\ -2,\ -2,\ -1,\ 0,\ -1,\ -2,\ 6),\ (-1,\ 0,\ 0,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | $ \begin{bmatrix} 0,\ 1,\ 1,\ 0,\ 1,\ 0),\ (-1,\ -1,\ -1,\ 0,\ 0,\ 1,\ 1,\ -1,\ 3),\ (1,\ 0,\ 1,\ 1,\ -1,\ 0,\ -1,\ -1,\ 2),\ (1,\ -1,\ -1,\ 1,\ 0,\ 0,\ 1,\ -1,\ 2),\ (-1,\ 1,\ 0,\ 0,\ 1,\ -1,\ 1,\ 1,\ -1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | $\begin{bmatrix} 0, \ 1, \ 0), \ (1, \ -1, \ 0, \ 0, \ 1, \ 0, \ 1, \ 0, \ 0), \ (1, \ -1, \ 1, \ -1, \ 0, \ 0, \ 1, \ -1, \ 2), \ (-1, \ -1, \ 1, \ 0, \ -1, \ 1, \ -1, \ -1, \ 4), \ (2, \ 3, \ 1, \ 1, \ 0, \ -3, \ 1, \ 1, \ 1, \ 1, \ 1, \ 1, \ 1, \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| S5    | 0), (1, 0, -1, 1, -1, 0, -1, 1, 2), (0, 1, 2, -2, -1, 1, 0, 2, 1)<br>(2, 1, 1, 1, -3, 1, 0, 2, 0), (-1, 2, -2, -1, 0, -2, 0, -1, 5), (0, 1, 0, 0, 1, 1, -1, 0, 0), (-1, -1, 1, -3, 3, -2, -1, 2, 5), (3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50    | [-1, -1, -1, 0, 2, 3, 1, 0), (-1, 1, 2, 0, -1, 2, -1, -2, 3), (0, -1, 0, 1, -1, -1, 0, 1, 2), (0, -1, 0, 0, 1, 1, 1, 0, 0), (-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | $ \begin{bmatrix} -1, \ 0, \ -1, \ 0, -1, \ -1, \ 5), \ (1, \ 2, \ -2, \ 1, \ 0, \ 1, \ 0, \ 2, \ 0), \ (1, \ -1, \ 1, \ 1, \ 1, \ 1, \ 1, \ 1, \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | [0, 1, 1, 2, 0], $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 1, 0]$ , $[0, 1, 1, 1, 1, 1, 1, 1, 1]$ , $[0, 1, 1, 1, 1, 1, 1, 1]$ , $[0, 1, 1, 1, 1, 1, 1, 1]$ , $[0, 1, 1, 1, 1, 1, 1, 1]$ , $[0, 1, 1, 1, 1, 1, 1, 1]$ , $[0, 1, 1, 1, 1, 1, 1, 1]$ , $[0, 1, 1, 1, 1, 1, 1]$ , $[0, 1, 1, 1, 1, 1, 1, 1]$ , $[0, 1, 1, 1, 1, 1, 1, 1]$ , $[0, 1, 1, 1, 1, 1, 1, 1, 1]$ , $[0, 1, 1, 1, 1, 1, 1, 1]$ , $[0, 1, 1, 1, 1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | $\begin{bmatrix} 1, 1, 1), (1, -1, -1, 0, 1, -1, -1, 1, 3), (1, 1, 0, 0, 0, 1, -1, 0, 0), (5, 2, 4, 1, -4, 1, -2, 4, 0), (1, 1, 2, 2, 0, 1, 1, -2, 0), (-1, -1, 1, 1, -1, -1, 1, 0, 3), (0, -1, 1, 1, 1, -1, -1, -1, 3) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S6    | (2, 1, 1, 1, -3, 0, 2, 1, 0), (-1, 2, -2, -1, 0, 0, -1, -2, 5), (0, 1, 0, 0, 1, -1, 0, 1, 0), (-1, -1, 1, -3, 3, -1, 2, -2, 5), (3, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 0, 1, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | $\begin{bmatrix} -1, -1, -1, 0, 3, 1, 2, 0), (-1, 4, 5, 3, -1, -1, -2, 5, 0), (0, -1, 0, 1, -1, 0, 1, -1, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (1, 2, -2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | $ \begin{bmatrix} 1,0,0,2,1,0),(-1,-1,-1,0,-1,-1,-1,0,5),(0,1,2,-2,1,0,2,-1,1),(-1,0,0,0,1,0,1,1,0),(1,1,-2,-2,0,-1,-2,-1,6),(2,0,1,1,-2,-1,1,-1,2),(-1,-1,1,0,-1,1,-1,-1,4),(-1,1,-1,0,-1,1,-1,0,3),(1,-1,1,-1,0,-1,1,-1,0,3),(1,-1,1,-1,0,-1,1,-1,0,3),(1,-1,1,-1,0,-1,1,-1,0,3),(1,-1,1,-1,0,-1,1,-1,0,3),(1,-1,1,-1,0,-1,1,-1,0,3),(1,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,-1,1,-1,0,-1,1,-1,1,-1,0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | $\left[1, -1, 0, 2\right), \left(-1, -1, -1, 0, 1, 1, -1, 0, 3\right), \left(0, -1, 1, 1, 1, -1, -1, -1, 3\right), \left(1, -1, -1, 1, 0, 1, -1, 0, 2\right), \left(2, 3, 1, 1, 0, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | $ \begin{vmatrix} 1, \ 0 \end{pmatrix}, \ (2, \ -1, \ 2, \ 3, \ -1, \ 2, \ 3, \ -1, \ 0), \ (-1, \ 1, \ 1, \ -1, \ 2, \ 0, \ 1, \ 1, \ 0), \ (-1, \ -1, \ 0, \ 0, \ -1, \ -1, \ -1, \ 1, \ 4), \ (1, \ -1, \ 0, \ 0, \ 1, \ 0, \ 1, \ 0), \ (3, \ -1, \ -1, \ 0, \ -1, \ 2, \ 2, \ 2, \ 0), \ (1, \ 0, \ -1, \ 1, \ 0, \ -1, \ 1, \ -1, \ 2) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| S7    | (2, 1, 1, 1, -3, 0, 2, 1, 0), (-1, 2, -2, -1, 0, 0, -1, -2, 5), (0, 1, 0, 0, 1, -1, 0, 1, 0), (-1, -1, 1, -3, 3, -1, 2, -2, 5), (3, 1, 0, 0, 1, -1, 0, 1, 0, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, 1, -3, 1, -1, -3, 1, -1, -3, 1, -1, -3, 1, -3, 1, -1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1, -3, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | $ \begin{bmatrix} -1, -1, -1, 0, 3, 1, 2, 0), (-1, 4, 5, 3, -1, -1, -2, 5, 0), (0, -1, 0, 1, -1, 0, 1, -1, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (1, 2, -2, 1, 0, 0, 2, 1, 0), (-1, -1, -1, -1, 0, -1, -1, -1, 0, 5), (0, 1, 2, -2, 1, 0, 2, -1, 1), (-1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | $\begin{bmatrix} -1, -2, -1, 6), (2, 0, 1, 1, -2, -1, 1, -1, 2), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (-1, 1, -1, 0, -1, 1, -1, 0, 3), (1, -1, 1, -1, 0, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | $ \begin{bmatrix} 1, -1, 0, 2), (-1, -1, -1, 0, 1, 1, -1, 0, 3), (0, -1, 1, 1, 1, -1, -1, -1, 3), (1, -1, -1, 1, 0, 1, -1, 0, 2), (2, 3, 1, 1, 0, -3, 1, 1, 0), (2, -1, 2, 3, -1, 2, 3, -1, 0), (-1, 1, 1, -1, 2, 0, 1, 1, 0), (-1, -1, 0, 0, -1, -1, -1, 1, 4), (1, -1, 0, 0, 0, 1, 0, 1, 0), (-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | (3, -1, -1, 0, -1, 2, 2, 2, 0), (1, 0, -1, 1, 0, -1, 1, -1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| S8    | $ \begin{array}{l} (2,1,1,1,0,-3,2,1,0), (-1,2,-2,-1,0,0,-1,-2,5), (0,1,0,0,-1,1,0,1,0), (-1,-1,1,-3,-1,3,2,-2,5), (3,-1,-1,-1,3,0,1,2,0), (-1,4,5,3,-1,-1,-2,5,0), (0,-1,0,1,0,-1,1,-1,2), (0,-1,0,0,1,1,0,1,0), (1,2,-2,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | $\left[1,\ 0,\ 0,\ 2,\ 1,\ 0\right),\ (-1,\ -1,\ -1,\ 0,\ -1,\ -1,\ -1,\ 0,\ 5),\ (1,\ 1,\ 2,\ -1,\ -1,\ 0,\ 2,\ -1,\ 1),\ (1,\ 1,\ -2,\ -2,\ -1,\ 0,\ -2,\ -1,\ 6),\ (-1,\ 0,\ 0,\ 0,\ -1,\ 0,\ 0,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1,\ -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | $ \begin{bmatrix} 0, 1, 1, 1, 0), (3, 2, 3, 3, -1, 0, -1, -1, 0), (1, -1, -1, 1, 0, -1, 0, 2), (1, -1, 1, -1, 1, 2, 1, -1, 1), (-1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | $ \begin{bmatrix} -1, 0, 3), (-1, 1, 0, 0, 1, -1, -1, 1, 2), (0, -1, 1, -1, 1, -1, -1, -1, -1, 4), (-1, 2, 1, -2, 0, 3, 2, 1, 0), (3, 2, -1, 3, -1, 0, 3, -1, 0), (-1, -1, 0, 0, -1, -1, -1, 1, 4), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (2, 3, 1, 1, -3, 0, 1, 1, 0), (3, 1, 2, 2, 1, -4, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CO    | 0), (-1, -1, 1, 1, 1, -1, 0, -1, 3), (-1, 1, 0, -1, 0, 0, 1, -1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S9    | $ \begin{array}{l} (2,1,1,1,1,2,0,-3,0),(-1,2,-2,-1,-2,-1,0,0,5),(0,1,0,0,1,0,-1,1,0),(-1,-1,1,-3,-2,2,-1,3,5),(3,-1,-1,-1,2,1,3,0,0),(-1,4,5,3,5,-2,-1,-1,0),(0,-1,0,1,-1,1,0,-1,2),(0,-1,0,0,1,0,1,1,0),(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | $\begin{bmatrix} -1, \ 0, \ 0, \ -1, \ -1, \ 5), \ (1, \ 2, \ -2, \ 1, \ 1, \ 2, \ 0, \ 0, \ 0), \ (1, \ -1, \ 1, \ -1, \ 1, \ 1, \ 2, \ 1), \ (1, \ 1, \ -2, \ -2, \ -1, \ -2, \ -1, \ 0, \ 6), \ (-1, \ 0, \ 0, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \ -1, \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | $ \begin{bmatrix} 0, 1, 1, 0, 1, 0), (-1, -1, -1, 0, 0, -1, 1, 1, 3), (-1, 1, 0, 0, 1, -1, 1, -1, 2), (1, -1, -1, 1, 0, -1, 1, 0, 2), (-1, 1, 0, -1, -1, 1, 0, 0, 2), (6, 2, 3, 3, -1, 3, -1, -4, 0), (0, -1, 1, -1, -1, -1, 1, 3), (0, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | $\begin{bmatrix} 0, \ 0), \ (2, \ 3, \ 1, \ 1, \ 1, \ -3, \ 0, \ 0), \ (1, \ 0, \ -1, \ 1, \ -1, \ 1, \ -1, \ 0, \ 2), \ (3, \ -1, \ -1, \ -1, \ 2, \ 1, \ 2, \ -1, \ 1), \ (-1, \ 0, \ 1, \ -1, \ 1, \ 1, \ 1, \ 2, \ 0), \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | [-1, 1, 2, 0, 2, -2, -1, -1, 3), (-1, -1, 1, 1, -1, 0, 1, -1, 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |