
Automatic Security Evaluation and (Related-key) Differential
Characteristic Search: Application to SIMON, PRESENT,

LBlock, DES(L) and Other Bit-oriented Block Ciphers?

Siwei Sun1,2, Lei Hu1,2, Peng Wang1,2, Kexin Qiao1,2, Xiaoshuang Ma1,2, Ling Song1,2

1State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
2Data Assurance and Communication Security Research Center, Chinese Academy of Sciences,

Beijing 100093, China
{sunsiwei,hulei,wpeng,qiaokexin,maxiaoshuang,songling}@iie.ac.cn

Abstract. We propose two systematic methods to describe the differential property of an S-box with
linear inequalities based on logical condition modelling and computational geometry respectively. In one
method, inequalities are generated according to some conditional differential properties of the S-box; in
the other method, inequalities are extracted from the H-representation of the convex hull of all possible
differential patterns of the S-box. For the second method, we develop a greedy algorithm for selecting
a given number of inequalities from the convex hull. Using these inequalities combined with Mixed-
Integer Linear Programming (MILP) technique, we propose an automatic method for evaluating the
security of bit-oriented block ciphers against the (related-key) differential attack, and several techniques
for obtaining tighter security bounds. We successfully prove that the 24-round PRESENT-80 is secure
enough to resist against standard related-key differential attacks, and the probability of the best related-
key differential characteristic of full LBlock is upper bounded by 2−60. These are the tightest security
bounds with respect to the related-key differential attack published so far for PRESENT-80 and LBlock.

Moreover, we present a new tool for finding (related-key) differential characteristics automatically
for bit-oriented block ciphers. Using this tool, we obtain new single-key or related-key differential char-
acteristics for SIMON48, LBlock, DESL and PRESENT-128, which cover larger number of rounds or
have larger probability than all previously known results. The methodology presented in this paper is
generic, automatic and applicable to many bit-oriented block ciphers.

Keywords: Automatic cryptanalysis, Related-key differential attack, Mixed-integer Linear Program-
ming, Convex hull

1 Introduction

Differential cryptanalysis is one of the most well-known attacks on modern block ciphers, based on which
a whole bunch of cryptanalytic techniques has been developed, such as truncated differential attack [39],
impossible differential attack [10], and boomerang attack [64]. Providing a security evaluation with respect
to the differential attack has become a basic requirement for a newly designed practical block cipher to be
accepted by the cryptographic community.

Contrary to the single-key model, where methodologies for constructing block ciphers provably resistant
to differential attacks are readily available, the understanding of the security of block ciphers with regard
to related-key differential attacks is relatively limited. This situation can be seen from the fact that even
internationally standardized block ciphers such as AES and PRESENT enjoy no security proof at all for
related-key differential attacks at the time of their publication. This limited understanding of the security
concerning related-key differential attacks has been greatly improved in recent years for AES-like byte- or
word-oriented SPN block ciphers. Along this line of research, two representative papers [11, 27] were published
in Eurocrypt 2010 and Crypto 2013. In the former paper [11], an efficient search tool for finding differen-
tial characteristics both in the state and in the key was presented, and the best differential characteristics
were obtained for some byte-oriented block ciphers such as AES, byte-Camellia, and Khazad. In the latter
paper [27], Pierre-Alain Fouque et al. showed that the full-round AES-128 can not be proven secure against
differential attacks in the related-key model unless the exact coefficients of the MDS matrix and the S-Box

? The source code for generating valid cutting-off inequalities and MILP instances will be made freely available online
after publication of the paper.

2

differential properties are taken into account. Moreover, a variant of Dijkstra’s shortest path algorithm to
find the most efficient related-key attacks on SPN ciphers was developed in [27]. In [51], Nikolic presented
a tweak for the key schedule of AES and the new cipher called xAES is resistant against the related-key
differential attacks found in AES.

For bit-oriented block ciphers such as PRESENT-80 and DES, Sareh Emami et al. proved that no related-
key differential characteristic exists with probability higher than 2−64 for the full-round PRESENT-80, and
therefore argue that PRESENT-80 is secure against basic related-key differential attacks [24]. In [59], Sun
et al. obtained tighter security bounds for PRESENT-80 with respect to the related-key differential attacks
using the MILP technique. In [12], Alex Biryukov and Ivica Nikolić proposed two methods [12] based on
Matsui’s tool [48] for finding related-key differential characteristics for DES-like ciphers. For their methods,
they stated that

“... our approaches can be used as well to search for high probability related-key differential charac-
teristics in any bit-oriented ciphers with linear key schedule.”

Sareh Emami et al. and Sun et al.’s method [24, 59] can not be used to search for actual (related-key)
differential characteristics, and Alex Biryukov et al.’s method [12] is only applicable to ciphers with linear
key schedule.

In this paper, we provide a method based on Mixed-Integer Linear Programming which can not only
evaluate the security (obtain security bound) of a block cipher with respect to the (related-key) differential
attacks, but is also able to search for actual (related-key) differential characteristics even if the key schedule
algorithm of the block cipher is nonlinear.

Mixed-Integer Linear Programming (MILP). The problem of Mixed Integer Linear Programming
(MILP) is a class of optimization problems derived from Linear Programming in which the aim is to optimize
an objective function under certain constraints. The field of MILP has received extensive study and achieved
great success in both academic and industrial worlds. A Mixed Integer Linear Programming problem can be
formally described as follows.

MILP: Find a vector x ∈ Zk × Rn−k ⊆ Rn with Ax ≤ b, such that the linear function c1x1 + c2x2 +
· · ·+ cnxn is minimized (or maximized), where (c1, . . . , cn) ∈ Rn, A ∈ Rm×n, and b ∈ Rm.

Despite its intimate relationship with discrete optimization problems, such as the set covering problem, 0-
1 knapsack problem, and traveling salesman problem, it is only in recent years that MILP has been explicitly
applied in cryptographic research.

In [65], Michael Walter et al. modelled the problem of finding a set of variables involved in a system
of polynomial equations over F2, such that when assigned to fixed values, the number of known variables
in the system can be maximized as an MILP problem. They have applied this idea in guess-and-determine
algebraic attack on the EPCBC block cipher [72], and experimental results showed that this strategy resulted
in a faster key recovery attack compared to random assignment. In [18], Julia Borghoff et al. employed two
methods, standard conversion [6] and adapted standard conversion [41], to convert the problem of solving
a system of polynomial equations into an MILP problem. Martin Albrecht et al. [1] treated the problem of
recovering cryptographic key material from decayed DRAM as a Partial Weighted Max-Polynomial System
Solving Problem which can be solved with the MILP techniques. Bulygin et al. studied the invariant coset
attack on PRINTcipher by establishing a one-to-one correspondence between defining sets of the invariant
projected subsets of PRINTcipher and all feasible solutions of a specific 0-1 integer programming problem
[19]. Moreover, MILP was employed in error-tolerant side channel algebraic attacks [53].

In this paper, we are mainly concerned with the application of MILP method in the (related-key) differ-
ential cryptanalysis. Roughly speaking, differential attack [8] is a cryptanalysis technique used to discover
non-random behavior of a cipher by analyzing the input and output difference of the cipher. A practical
approach to evaluate the security of a cipher against differential attack is to determine the lower bound
of the number of active S-boxes throughout the cipher. This strategy has been employed in many designs
[4, 9, 17, 16, 21]. MILP was applied in automatically determining the lower bounds of the numbers of active
S-boxes for some word-oriented symmetric-key ciphers, and therefore used to prove their security against
differential cryptanalysis [15, 50, 69] . Laura Winnen and Sun et al. [59, 68] extended this method by making
it applicable to ciphers involving bit-oriented operations. We notice that such MILP tools [15, 50, 69, 59] for
counting the minimum number of active S-boxes are also applied or mentioned in the design and analysis of
some authenticated encryption schemes [70, 73, 22, 23, 34–36, 9].

Our Contributions. We find that the constraints presented in [59] are too coarse (and some of these
constraints are redundant in some specific case) to accurately describe the differential properties of a specific
cipher, since there are a large number of invalid differential patterns of the cipher satisfying all these con-

3

straints, which yields a feasible region of the MILP problem much larger than the set of all valid differential
characteristics.

In this paper, we propose two methods to tighten the feasible region by cutting off some impossible
differential patterns of a specific S-box with linear inequalities: one method is based on logical condition
modeling, and the other is a more general approach based on convex hull computation — a fundamental
algorithmic problem in computational geometry. In the first method, typically less than 15 inequalities are
generated according to some conditional differential properties of the S-box; while in the second method,
several hundreds of inequalities are extracted from the H-representation of the convex hull of all possible
differential patterns of the S-box.

However, the second approach produces too many inequalities so that adding all of them to an MILP
problem will make the solving process impractical. Therefore, we develop a greedy algorithm for selecting a
given number of linear inequalities from the convex hull.

By adding all or a part of the constraints generated by these methods, we provide MILP based methods
for evaluating the security of a block cipher with respect to the (related-key) differential attack, and searching
for actual (related-key) differential characteristics. Using these methods, we obtain the following results.

1. The probability of the best related-key differential characteristic of the 24-round PRESENT-80, a bit-
oriented SPN block cipher, is upper bounded by 2−64, which is the tightest security bound obtained so
far for PRESENT-80.

2. The probability of the best related-key differential characteristic for the full-round LBlock is at most
2−60. This is the first theoretic result concerning the full LBlock’s security against differential attack in
the related-key model.

3. We obtain a single-key differential characteristic and a single-key differential for the 15-round SIMON48
(a lightweight block cipher designed by the U.S. National Security Agency) with probability 2−46 and
2−41.96 respectively, which are the best results published so far for SIMON48.

4. We obtain a 14-round related-key differential characteristic of LBlock with only 20 active Sboxes and
probability 2−49 in no more than 4 hours on a PC. Note that the probabilities of the best previous-
ly published related-key characteristics covering the 13- and 14-round LBlock are 2−53 and 2−65 [71],
respectively.

5. We obtain an 8-round related-key differential characteristic of DESL with probability 2−34.78 in several
minutes on a PC. To the best of our knowledge, there is no related-key differential characteristic covering
more than 7 rounds of DESL have been published before.

6. We obtain a 7-round related-key characteristic for PRESENT-128 with probability 2−11 and 0 active S-
box in its key schedule algorithm, based on which an improved related-key boomerang distinguisher for the
14-round PRESENT-128 and a key-recovery attack on the 17-round PRESENT-128 can be constructed
by using exactly the same method presented in [55].

Note that the above specific results are not the focus of this paper. Instead, the focus is the new method
presented in the paper, which is generic, automatic, and applicable to other lightweight ciphers with bit-
oriented operations such as EPCBC [72], and MIBS [32].1

Organization of the paper. In Sect. 2, we introduce Mouha et al.’s framework and its extension for
counting the number of active S-boxes of bit-oriented ciphers automatically with the MILP technique. In
Sect. 3, we introduce the concept of valid cutting-off inequalities for tightening the feasible region of an
MILP problem, and explore how to generate and select valid cutting-off inequalities.We present the methods
for automatic security evaluation with respect to the (related-key) differential attack, and searching for
(related-key) differential characteristics in Sect. 4 and Sect. 5. In Sect. 6 we conclude the paper and propose
some research directions for bit-oriented ciphers and the application of the MILP technique in cryptography.
The application of the methods presented in this paper to PRESENT80/128, LBlock, SIMON, DES(L) is
given in Appendices.

2 Mouha et al.’s Framework and Its Extension

In this section, we present Mouha et al.’s framework and its extension for counting the number of differentially
active S-boxes for word-oriented and bit-oriented block ciphers respectively. We refer the reader to [50, 59]
for more information.

1 We would like to remove some specific results in the Appendices if the paper is too long to be accepted.

4

2.1 Mouha et al.’s Framework for Word-oriented Block Ciphers

Assume a cipher is composed of the following three word-oriented operations, where ω is the word size:

- XOR, ⊕ : Fω2 × Fω2 → Fω2 ;
- Linear transformation L : Fm2ω → Fm2ω with branch number BL;
- S-box, S : Fω2 → Fω2 .

Mouha et al.’s framework uses 0-1 variables, which are subjected to certain constraints imposed by the above
operations, to denote the word level differences propagating through the cipher (1 for nonzero difference and
0 for otherwise).

Detailed MILP model building process for determining a lower bound of the number of active S-boxes is
described as follows. Firstly, we should include the constraints imposed by the operations of the cipher.

Constraints Imposed by XOR Operations. Suppose a ⊕ b = c, where a, b, c ∈ Fω2 are the input and
output differences of the XOR operation, the following constraints will make sure that when a, b, and c are
not all zero, then there are at least two of them are nonzero:{

a+ b+ c ≥ 2d⊕
d⊕ ≥ a, d⊕ ≥ b, d⊕ ≥ c

(1)

where d⊕ is a dummy variable taking values from {0, 1}. If each one of a, b, and c represents one bit, we
should also add the inequality a+ b+ c ≤ 2.

Constraints Imposed by Linear Transformation. Let xik and yjk , k ∈ {0, 1, . . . ,m−1}, be 0-1 variables
denoting the word-level input and output differences of the linear transformation L respectively. Since for
nonzero input differences, there are totally at least BL nonzero ω-bit words in the input and output differences,
we include the following constraints:

m−1∑
k=0

(xik + yjk) ≥ BLdL
dL ≥ xik , k ∈ {0, . . . ,m− 1}
dL ≥ yjk , k ∈ {0, . . . ,m− 1}

(2)

where dL is a dummy variable taking values in {0, 1} and BL is the branch number of the linear transformation.
Then, we set up the objective function to be the sum of all variables representing the input words

of the S-boxes. Obviously, this objective function corresponds to the number of active S-boxes, and can be
minimized to determine its lower bound.

2.2 Extension of Mouha et al.’s Framework for Bit-oriented Ciphers

For bit-oriented ciphers, bit-level representations and additional constraints are needed [59]. For every input
and output bit-level difference, a new 0-1 variable xi is introduced such that xi = 1 if and only if the difference
at this bit is nonzero.

For every S-box in the schematic diagram, including the encryption process and the key schedule algorithm,
we introduce a new 0-1 variable Aj such that

Aj =

{
1, if the input word of the Sbox is nonzero,
0, otherwise.

At this point, it is natural to choose the objective function f , which will be minimized, as
∑
Aj for the

goal of determining a lower bound of the number of active S-boxes.
For bit-oriented ciphers, we need to include two sets of constraints. The first one is the set of constraints

imposed by XOR operations, and the other is due to the S-box operation. After changing the representations
to bit-level, the set of constraints imposed by XOR operations for bit-oriented ciphers are the same as that
presented in (1). The S-box operation is more tricky.

Constraints Describing the S-box Operation. Suppose (xi0 , . . . , xiω−1) and (yj0 , . . . , yjν−1) are the input
and output bit-level differences of an ω × ν S-box marked by At. Firstly, to ensure that At = 1 holds if and
only if xi0 , . . . , xiω−1

are not all zero, we require that:{
At − xik ≥ 0, k ∈ {0, . . . , ω − 1}
xi0 + xi1 + · · ·+ xiω−1

−At ≥ 0
(3)

5

For bijective S-boxes, nonzero input difference must result in nonzero output difference and vice versa:{
ωyj0 + ωyj1 + · · ·+ ωyjω−1

− (xi0 + xi1 + · · ·+ xiω−1
) ≥ 0

νxi0 + νxi1 + · · ·+ νxiω−1
− (yj0 + yj1 + · · ·+ yjν−1

) ≥ 0
(4)

Note that the above constraints should not be used for non-bijective S-box such as the S-box of DES(L).
Finally, the Hamming weight of the (ω + ν)-bit word xi0 · · ·xiω−1

yj0 · · · yjν−1
is lower bounded by the

branch number BS of the S-box for nonzero input difference xi0 · · ·xiω−1
, where dS is a dummy variable:

ω−1∑
k=0

xik +
ν−1∑
k=0

yjk ≥ BSdS
dS ≥ xik , k ∈ {0, . . . , ω − 1}
dS ≥ yjk , k ∈ {0, . . . , ω − 1}

(5)

where the branch number BS of an S-box S, is defined as

BS = min
a 6=b
{wt((a⊕ b)||(S(a)⊕ S(b)) : a, b ∈ Fω2 }

and wt(·) is the standard Hamming weight of an (ω+ ν)-bit word. We point out that constraint (5) is redun-
dant for an invertible S-box with branch number BS = 2, since in this particular case, all differential patterns
not satisfying (5) violate (4).

0-1 Variables. The MILP model proposed above is indeed a Pure Integer Programming Problem since all
variables appearing are 0-1 variables. However, in practice we only need to explicitly restrict a part of all
variables to be 0-1, while all other variables can be allowed to be any real numbers, which leads to a Mixed-
integer Linear Programming problem. Following this approach, the MILP solving process may be accelerated
as suggested in [18].

3 Tighten the Feasible Region with Valid Cutting-off Inequalities

The feasible region of an MILP problem is defined as the set of all variable assignments satisfying all con-
straints in the MILP problem. The modelling process presented in the previous sections indicates that every
differential path corresponds to a solution in the feasible region of the MILP problem. However, a feasible
solution of the MILP model is not guaranteed to be a valid differential path, since our constraints are far
from perfect to rule out all invalid differential patterns. For instance, assume xi and yi (0 ≤ i ≤ 3) are the
bit-level input and output differences of the PRESENT-80 S-box (see Table 4 in Appendix A). According
to Sect. 2.2, xi, yi are subjected to the constraints of (3), (4) and (5). Obviously, (x0 · · · , x3, y0, · · · , y3) =
(1, 0, 0, 1, 1, 0, 1, 1) satisfies the above constraints, whereas 0x9 = 1001→ 0xB = 1011 is not a valid difference
propagation pattern for the PRESENT S-box, which can be seen from the differential distribution table pre-
sented in Appendix A, Table 5. Hence, we are actually trying to minimize the number of the active S-boxes
over a larger region as illustrated in Fig. 1, and the optimum value obtained in this setting must be smaller
than or equal to the actual minimum number of active S-boxes. Although the above fact will not invalidate
the lower bound we obtained from our MILP model, this prevents the designers or analysts from obtaining
tighter security bounds and (related-key) differential characteristics from the feasible region.

The situation would be even worse when modelling an invertible S-box with branch number BS = 2,
which is the minimal value of the branch number for an invertible S-box. In the case of invertible S-box with
BS = 2, the constraints of (3), (4) are enough, and (5) is redundant. In this situation, all differential patterns
with nonzero input and output differences satisfy the constraints presented in the previous sections, which
is obviously too coarse to describe a specific S-box. For instance, all 10 S-boxes of LBlock [71] are invertible
and their branch numbers are all 2.

Therefore, we are motivated to look for linear inequalities which can cut off some part of the feasible
region of the MILP model while leaving the region of valid differential characteristics intact as illustrated in
Fig. 1. For the convenience of discussion, we give the following definition.

Definition 1. A valid cutting-off inequality is a linear inequality which is satisfied by all possible valid dif-
ferential patterns, but is violated by at least one feasible solution corresponding to an impossible differential
pattern in the feasible region of the original MILP problem.

6

Fig. 1: The relationship between the set of all differential paths and the feasible region of the MILP problem,
and the effect of cutting-off inequality

3.1 Methods for Generating Valid Cutting-off Inequalities

In this section, we present two methods for generating valid cutting-off inequalities by analyzing the differ-
ential behavior of the underlying S-box.

Modelling Conditional Differential Behaviour with Linear Inequalities
In building integer programming models in practice, sometimes it is possible to model certain logical con-
straints as linear inequalities. For example, assume x is a continuous variable such that 0 ≤ x ≤ M , where
M is a fixed integer, and we know that δ is a 0-1 variable taking value 1 when x > 0, that is

x > 0 ⇒ δ = 1.

It is easy to verify that the above logical condition can be achieved by imposing the following constraint

x−Mδ ≤ 0.

In fact, there is a surprisingly large number of different types of logical conditions can be imposed in a
similar way, and we refer the reader to [66, 67] for many other examples. We now give a theorem which will
be used in the following.

Theorem 1. If we assume that all variables are 0-1 variables, then the logical condition that (x0, . . . , xm−1) =
(δ0, . . . , δm−1) ∈ {0, 1}m ⊆ Zm implies y = δ ∈ {0, 1} ⊆ Z can be described by the following linear inequality

m−1∑
i=0

(−1)δixi + (−1)δ+1y − δ +

m−1∑
i=0

δi ≥ 0, (6)

where δi, δ are fixed constants and Z is the set of all integers.

Proof. We only prove the Theorem for the case δ = 0. For δ = 1, it can be proved in a similar way. We
assume

(δ0, . . . , δm−1) = (δ0, . . . , δs1−1; δs1 , . . . , δm−1) = (1, 1, . . . , 1; 0, 0, . . . , 0) = ∆∗.

For other 0-1 patterns, it can be permuted into such a form and this will not affect our proof.
Firstly, (∆∗, 0) is satisfied by (6), which can be verified directly.
Secondly, we prove that all vectors (x0, . . . , xm−1, y) ∈ {0, 1}m+1 such that (x0, . . . , xm−1) 6= ∆∗ are

satisfied by (6). In such cases, we have

m−1∑
i=0

(−1)δixi + (−1)δ+1y − δ +

m−1∑
i=0

δi = −
s1−1∑
i=0

xi +

m∑
i=s1

xi − y − 0 + s1 ≥ −s1 + 1− y + s1 = 1− y ≥ 0,

for y = 0 or y = 1.

7

Finally we prove that the vector (x0, . . . , xm−1, y) = (∆∗, 1) is not satisfied by the linear inequality. In
such case, we have

m−1∑
i=0

(−1)δixi + (−1)δ+1y − δ +

m−1∑
i=0

δi = −
s1−1∑
i=0

xi +

m∑
i=s1

xi − 1− 0 + s1 = −s1 − 1 + s1 = −1 < 0.

The proof is completed.

For example, the PRESENT S-box has the following conditional differential properties, which are referred
to as undisturbed bits in [62].

Fact 1 The S-box of PRESENT-80 has the following properties:
(i) 1001→***0: If the input difference of the S-box is 0x9 = 1001, then the least significant bit of the

output difference must be 0;
(ii) 0001→***1 and 1000→***1: If the input difference of the S-box is 0x1 = 0001 or 0x8 = 1000, then

the least significant bit of the output difference must be 1;
(iii) ***1→0001 and ***1→0100: If the output difference of the S-box is 0x1 = 0001 or 0x4 = 0100, then

the least significant bit of the input difference must be 1; and
(iv) ***0→0101: If the output difference of the S-box is 0x5 = 0101, then the least significant bit of the

input difference must be 0.

From Theorem 1, we have the following fact. Note that similar conditional differential behaviors of other
ciphers were also used by other researchers in different context [28, 37, 43, 38, 19].

Fact 2 Let 0-1 variables (x0, x1, x2, x3) and (y0, y1, y2, y3) represent the input and output bit-level differences
of the S-box respectively, where x3 and y3 are the least significant bit. Then the logical conditions in Theorem
1 can be described by the following linear inequalities:

−x0 + x1 + x2 − x3 − y3 + 2 ≥ 0 (7){
x0 + x1 + x2 − x3 + y3 ≥ 0
−x0 + x1 + x2 + x3 + y3 ≥ 0

(8){
x3 + y0 + y1 + y2 − y3 ≥ 0
x3 + y0 − y1 + y2 + y3 ≥ 0

(9)

−x3 + y0 − y1 + y2 − y3 + 2 ≥ 0 (10)

For example, the linear inequality (7) removes all differential patterns of the form (x0, . . . , x3, y0, . . . , y3) =
(1, 0, 0, 1, ∗, ∗, ∗, 1), where (x0, . . . , x3) and (y0, . . . , y3) are the input and output differences of the PRESENT
S-box respectively. We call this group of constraints presented in (7), (8), (9), and (10) the constraints of
conditional differential propagation (CDP constraints for short). The CDP constraints obtained from Fact 1
and the differential patterns removed by these CDP constraints are given in Table 1.

However, there are cases where no such conditional differential property exists. For example, two out of
the eight S-boxes of Serpent [7] exhibit no such property. Even when the S-box under consideration can be
described with this logical condition modelling technique, the inequalities generated may be not enough to
produce a satisfied result. The number of valid cutting-off inequalities can be obtained in this way is given
in Table 2 for typical 4× 4 S-boxes.

In the following, a more general approach for generating valid cutting-off inequalities is proposed.

Convex Hull of All Possible Differentials for an S-box
The convex hull of a set Q of discrete points in Rn is the smallest convex set that contains Q. A convex hull
in Rn can be described as the common solutions of a set of finitely many linear equations and inequalities as
follows:

λ0,0x0 + · · ·+ λ0,n−1xn−1 + λ0,n ≥ 0
· · ·

γ0,0x0 + · · ·+ γ0,n−1xn−1 + γ0,n = 0
· · ·

(11)

This is called the H-Representation of a convex hull. Computing the H-representation of the convex hull
of a set of finitely many points is a fundamental algorithm in computation geometry with many applications
[30, 57, 54].

8

Table 1: Impossible differential patterns removed by the CDP constraints generated according to the d-
ifferential properties of the PRESENT S-box. Here, a 9-dimensional vector (λ0, . . . , λ3, γ0, . . . , γ3, θ) in
the left column denotes a linear inequality λ0x0 + · · · + λ3x3 + γ0y0 + · · · + γ3y3 + θ ≥ 0, and an 8-
dimensional vector in the right column denotes a difference propagation pattern, e.g., (1, 0, 0, 1, 0, 1, 1, 1)
denotes 0x9 = 1001→ 0x7 = 0111.

Constraints obtained by log-
ical condition modelling

Impossible differential patterns removed

(−1, 1, 1,−1, 0, 0, 0,−1, 2) (1, 0, 0, 1, 0, 0, 0, 1), (1, 0, 0, 1, 0, 0, 1, 1), (1, 0, 0, 1, 0, 1, 0, 1), (1, 0, 0, 1, 0, 1, 1, 1),

(1, 0, 0, 1, 1, 0, 0, 1), (1, 0, 0, 1, 1, 0, 1, 1), (1, 0, 0, 1, 1, 1, 0, 1), (1, 0, 0, 1, 1, 1, 1, 1)

(1, 1, 1,−1, 0, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 1, 0), (0, 0, 0, 1, 0, 1, 0, 0), (0, 0, 0, 1, 0, 1, 1, 0),

(0, 0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 0, 1, 0), (0, 0, 0, 1, 1, 1, 0, 0), (0, 0, 0, 1, 1, 1, 1, 0)

(−1, 1, 1, 1, 0, 0, 0, 1, 0) (1, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1, 0, 0), (1, 0, 0, 0, 0, 1, 1, 0),

(1, 0, 0, 0, 1, 0, 0, 0), (1, 0, 0, 0, 1, 0, 1, 0), (1, 0, 0, 0, 1, 1, 0, 0), (1, 0, 0, 0, 1, 1, 1, 0)

(0, 0, 0, 1, 1, 1, 1,−1, 0) (0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 0, 1), (0, 1, 1, 0, 0, 0, 0, 1),

(1, 0, 0, 0, 0, 0, 0, 1), (1, 0, 1, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0, 0, 1), (1, 1, 1, 0, 0, 0, 0, 1)

(0, 0, 0, 1, 1,−1, 1, 1, 0) (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 0, 1, 0, 0), (0, 1, 1, 0, 0, 1, 0, 0),

(1, 0, 0, 0, 0, 1, 0, 0), (1, 0, 1, 0, 0, 1, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0), (1, 1, 1, 0, 0, 1, 0, 0)

(0, 0, 0,−1, 1,−1, 1,−1, 2) (0, 0, 0, 1, 0, 1, 0, 1), (0, 0, 1, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (0, 1, 1, 1, 0, 1, 0, 1),

(1, 0, 0, 1, 0, 1, 0, 1), (1, 0, 1, 1, 0, 1, 0, 1), (1, 1, 0, 1, 0, 1, 0, 1), (1, 1, 1, 1, 0, 1, 0, 1)

Table 2: The Numbers of valid cutting-off inequalities obtained using different methods. Notations: the “#
CDP” columns record the numbers of constraints obtained using logical condition modelling approach, and
the “#CH” columns record the numbers of constraints in the H-representation of the convex hulls.

S-box #CDP #CH S-box #CDP #CH

Klein [29] 0 312 LBlock S6 12 205

Piccolo [58] 12 202 LBlock S7 12 205

TWINE [61] 0 324 LBlock S8 12 205

PRINCE [17] 0 300 LBlock S9 12 205

MIBS 0 378 Serpent S0 6 327

PRESENT/LED [31] 6 327 Serpent S1 6 327

LBlock S0 12 205 Serpent S2 6 325

LBlock S1 12 205 Serpent S3 0 368

LBlock S2 12 205 Serpent S4 3 321

LBlock S3 12 205 Serpent S5 3 321

LBlock S4 12 205 Serpent S6 3 327

LBlock S5 12 205 Serpent S7 6 368

9

If we treat a possible differential of an ω × ν S-box as a point in Rω+ν , then we can obtain a set of
finitely many discrete points which includes all possible differential patterns of this S-box . For example,
one possible differential pattern of PRESENT S-box is 0x9 = 1001 → 0xE = 1110 which is identified with
(1, 0, 0, 1, 1, 1, 1, 0), and one possible differential pattern of the DESL S-box is 0x3E = 111110→ 0xB = 1011
which is identified with (1, 1, 1, 1, 1, 0, 1, 0, 1, 1). The set of all possible differential patterns for the S-boxes of
PRESENT and DESL are given at http://paste.ubuntu.com/7123001/ and http://paste.ubuntu.com/

7123005/ respectively. These are essentially sets of finitely many discrete points in high dimensional space,
hence we can compute their convex hulls by standard method in computational geometry.

We now define the convex hull of a specific ω × ν S-box to be the set of all linear inequalities in the H-
Representation of the convex hull VS ⊆ Rω+ν of all possible differential patterns of the S-box. For instance,
the Convex Hull of the PRESENT S-box can be found in Appendix D. This result is obtained by using the
inequality generator() function in the sage.geometry.polyhedron class of the SAGE computer algebra system
[60]. The convex hull of the PRESENT S-box contains 327 linear inequalities. Any one of these inequalities
can be taken as a valid cutting-off inequality. The numbers of linear inequalities in the convex hulls of typical
4× 4 S-boxes are given in Table 2.

3.2 Selecting Valid Cutting-off Inequalities from the Convex Hull: A Greedy Approach

The number of equations and inequalities in the H-Representation of a convex hull computed from a set of
discrete points in n dimensional space is very large in general. For instance, the convex hull VS ⊆ R8 of a 4×4
S-box typically involves several hundreds of linear inequalities. Adding all of them to an MILP problem will
quickly make the MILP problem insolvable in practical time. Hence, it is necessary to select a small number,
say n, of “best” inequalities from the convex hull. Here by “best” we mean that, among all possible selections
of n inequalities, the selected ones maximize the number of removed impossible differentials. Obviously, this
is a hard combinatorial optimization problem. Therefore, we design a greedy algorithm, listed in Algorithm
1, to approximate the optimum selection.

Algorithm 1: Selecting n inequalities from the convex hull H of an S-box

Input:
H: the set of all inequalities in the H-representation of the convex hull of an S-box;
X : the set of all impossible differential patterns of an S-box;
n: a positive integer.
Output: O: a set of n inequalities selected from H

1 l∗ := None;
2 X ∗ := X ;
3 H∗ := H;
4 O := ∅;
5 for i ∈ {0, . . . , n− 1} do
6 l∗ := The inequality in H∗ which maximizes the number of removed impossible differential

patterns from X ∗ ;
7 X ∗ := X ∗ − {removed impossible differential patterns by l∗};
8 H∗ := H∗ − {l∗};
9 O := O ∪ {l∗};

10 end
11 return O

The algorithm builds up a set of valid cutting-off inequalities by selecting at each step an inequality from
the convex hull which maximizes the number of removed impossible differential patterns from the current
feasible region.

For instance, We select 6 valid cutting-off inequalities from the convex hull of the PRESENT S-box
using Algorithm 1. These inequalities and the impossible differential patterns removed are listed in Table
3. Compared with the 6 valid cutting-off inequalities obtained by Theorem 1 (see Table 1), they cut off
66− 42 = 24 more impossible differential patterns, which leads to a relatively tighter feasible region.

4 Automatic Security Evaluation

To evaluate the security (obtain the security bound) of a block cipher with respect to related-key differential
attack, we can build an MILP model according to Sect. 2 with the constraints introduced in Sect. 3.1 and

10

Table 3: Impossible differential patterns removed by the constraints selected from the convex hull of the
PRESENT S-box

Constraints selected from the
convex hull by the greedy algo-
rithm

Impossible differential patterns removed

(−2, 1, 1, 3, 1,−1, 1, 2, 0) (1, 0, 1, 0, 0, 1, 0, 0) (1, 0, 0, 0, 1, 1, 0, 0) (1, 0, 0, 0, 1, 0, 0, 0) (1, 0, 1, 0, 0, 1, 1, 0) (1, 0, 0, 0, 1, 1, 1, 0) (1, 1, 0, 0, 0, 1,

0, 0) (1, 1, 0, 0, 0, 1, 1, 0) (1, 0, 0, 0, 0, 1, 1, 0) (1, 0, 1, 0, 1, 1, 0, 0) (1, 0, 0, 0, 0, 1, 0, 0) (1, 0, 0, 0, 0, 1, 0, 1) (1, 0, 0, 0,

0, 0, 1, 0) (1, 1, 0, 0, 1, 1, 0, 0) (1, 1, 1, 0, 0, 1, 0, 0)

(1,−2,−3,−2, 1,−4, 3,−3, 10) (0, 1, 1, 0, 1, 1, 0, 1) (1, 1, 1, 0, 0, 1, 0, 1) (0, 1, 1, 1, 0, 1, 1, 1) (1, 0, 1, 1, 0, 1, 0, 1) (0, 1, 1, 0, 0, 1, 0, 1) (0, 1, 1, 1, 0, 1,

0, 0) (0, 1, 1, 1, 0, 1, 0, 1) (1, 1, 1, 1, 1, 1, 0, 1) (0, 0, 1, 1, 0, 1, 0, 1) (0, 1, 1, 1, 1, 1, 0, 1) (1, 1, 1, 1, 0, 1, 0, 1) (0, 1, 0, 1,

0, 1, 0, 1) (0, 0, 1, 1, 1, 1, 0, 1)

(2,−2, 3,−4,−1,−4,−4, 1, 11) (0, 1, 0, 1, 0, 1, 1, 0) (1, 1, 0, 1, 0, 1, 1, 0) (0, 0, 0, 1, 1, 1, 1, 0) (0, 1, 0, 1, 0, 1, 1, 1) (0, 0, 0, 1, 1, 1, 1, 1) (0, 1, 0, 1, 1, 1,

1, 1) (0, 1, 0, 1, 1, 1, 1, 0) (0, 0, 0, 1, 0, 1, 1, 0) (1, 1, 0, 1, 1, 1, 1, 0) (0, 1, 1, 1, 1, 1, 1, 0) (1, 1, 0, 1, 1, 1, 1, 1)

(−1,−2,−2,−1,−1, 2,−1, 0, 6) (1, 1, 1, 0, 1, 0, 1, 1) (1, 1, 1, 0, 1, 0, 1, 0) (1, 1, 1, 1, 1, 0, 0, 1) (1, 1, 1, 1, 1, 0, 0, 0) (0, 1, 1, 1, 1, 0, 1, 1) (1, 1, 1, 1, 1, 0,

1, 0) (0, 1, 1, 1, 1, 0, 1, 0) (1, 1, 1, 1, 0, 0, 1, 1) (1, 1, 1, 1, 1, 0, 1, 1) (1, 1, 1, 1, 0, 0, 1, 0)

(-2, 1, -2, -1, 1, -1, -2, 0, 6) (1, 1, 1, 1, 0, 1, 1, 0) (1, 1, 1, 1, 0, 1, 1, 1) (1, 0, 1, 1, 0, 0, 1, 0) (1, 0, 1, 0, 0, 1, 1, 1) (1, 0, 1, 1, 0, 0, 1, 1) (1, 0, 1, 1, 1, 1,

1, 0) (1, 0, 1, 1, 1, 1, 1, 1) (1, 0, 1, 1, 0, 1, 1, 1) (1, 0, 1, 1, 0, 1, 1, 0)

(2, 1, 1,−3, 1, 2, 1, 2, 0) (0, 0, 0, 1, 1, 0, 0, 0) (0, 0, 1, 1, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 0, 1) (0, 1, 0, 1, 1, 0, 0, 0) (0, 0, 0, 1, 0, 1, 0, 0) (0, 0, 0, 1, 0, 0,

1, 0) (0, 0, 1, 1, 1, 0, 0, 0) (0, 1, 0, 1, 0, 0, 1, 0) (0, 0, 0, 1, 1, 0, 1, 0)

Sect. 3.2 included. Then we solve the MILP model using any MILP optimizer, and the optimized solution,
say N , is the minimum number of the active S-boxes from which we can deduce that the probability of the
best differential characteristic is upper bounded by εN , where ε is the best differential probability less than
1 of a single S-box.

However, it is computationally infeasible to solve an MILP model generated by an r-round block cipher
with reasonably large r. In such case, we can turn to the so called simple split approach. We split the r-round
block cipher into two parts with consecutive r1 rounds and r2 rounds such that r1 + r2 = r. Then we apply
our method to these two parts. Assuming that there are at least Nr1 and Nr2 active S-boxes in the first
and second part respectively, we can deduced that the probability of the best differential characteristic for
this r-round cipher is upper bounded by ε(Nr1+Nr2). If r1 and r2 are still too large, they can be divided into
smaller parts further.

Note that our method is applicable to both the single-key and related-key models. In single-key model, we
only include the variables and constraints in the encryption process. While in related-key model, we include
the variables and constraints introduced by both the encryption process, key schedule algorithm and key
addition operations.

4.1 Techniques for Getting Tighter Security Bounds

Technique 1. In the above analysis, we pessimistically (in the sense that we want to prove the security
of a cipher) assume that all the active S-boxes take the maximum differential probability ε. However, this
is unlikely to happen in practice, especially in the case that the number of active S-boxes is minimized.
Therefore, we have the following strategy for obtaining tighter security bound for a t-round characteristic.

Firstly, compute the set E of all the differential patterns of an S-box with probabilities greater or equal
to the S-box’s maximum differential probability ε.

Secondly, compute the H-representation HE of the convex hull of E , and then use the inequalities selected
from HE by Algorithm 1 to generate a t-round model according to Sect. 2 and Sect. 3. Note that the feasible
region of this model is smaller than that of a t-round model generated in standard way, since the differential
patterns allowed to take in this model is more restrictive. Hence, we hope to get a larger objective value than
Nt, which is the result obtained by using the standard t-round model.

Finally, solve the model using a software optimizer. If the objective value is greater than Nt, we know
that there is no differential characteristic with only Nt active S-boxes such that all these S-boxes take d-
ifferential patterns with probability ε. And hence, we can conclude that there is at least one active S-box
taking a differential pattern with probability less than ε in a t-round characteristic with onlyNt active S-boxes.

Technique 2. Yet another technique for obtaining tighter security bound is inspired by Alex Biryukov and
Sareh Emami et al.’s (extended) split approach [12, 24]. In Sun et al.’s work [59], the strategy for proving
the security of an n-round iterative cipher against the related-key differential attacks is to use the simple

11

split approach. By employing the MILP technique, compute the minimum number Nt of differentially active
S-boxes for any consecutive t-round (1 ≤ t ≤ n) related-key differential characteristic. Then the lower bound
of the number of active S-boxes for the full cipher (n-round) can be obtained by computing∑

j∈I⊆{1,2,... }

Ntj , where
∑
j∈I

tj = n.

Note that the computational cost is too high to compute Nn directly.
We point out that this simple “split strategy” can be improved to obtain tighter security bound by

exploiting more information of a differential characteristic. The main idea is that the characteristic covering
round 1 to round m and the characteristic covering round m + 1 to round 2m should not be treated equal
although they have the same number of rounds, since the starting difference of a characteristic of round
m+ 1 to 2m is not as free as that of a characteristic of round 1 to round m. Therefore, we have the following
strategy.

Firstly, split an r-round into two parts: round 1 to round r1, and round r1 + 1 to round r = r1 + r2.
Secondly, construct an MILP model covering round 1 to round r. Change the objective function to be

the sum of all S-boxes covering round r1 + 1 to round r. Add some additional constraints on the number
of active S-boxes covering round 1 to round r1 (One way to obtain such constraints is to solve the model
covering round 1 to round r1).

Finally, solve the model using any software optimizer, and the result is the lower bound of the number
of active S-boxes of round r1 + 1 to round r (r2 rounds in total) for any characteristic covering round 1 to
round r.

We have applied the methods presented in this section to PRESENT-80 and LBlock, and the results
are given in Appendix B. For PRESENT-80, we prove that the probability of any related-key differential
characteristic covering round 1 to round 24 is upper bounded by 2−64. For LBlock, we prove that the
probability of any related-key differential characteristic of full-round LBlock is upper bounded by 2−60. These
are the tightest security bounds for PRESENT-80 and LBlock with respect to the related-key differential
attack published so far.

5 A Heuristic Method for Finding (Related-key) Differential Characteristics
Automatically

To find a (related-key) differential characteristic with relatively high probability covering r rounds of a cipher
is the most important step in (related-key) differential cryptanalysis. Most of the tools for searching differential
characteristics are essentially based on Matsui’s algorithm [48]. In this section, we propose an MILP based
heuristic method for finding (related-key) differential characteristics. Compared to other methods, our method
is easier to implement, and more flexible.

Thanks to the valid cutting-off inequalities which can describe the property of an S-box according to its
differential distribution table, our method can output a good (related-key) differential characteristic directly
by employing the MILP technique. The procedure of our method is outlined as follows.

Step 1. For every S-box S, select n inequalities from the convex hull of the set of all possible differential
patterns of S using Algorithm 1, and generate an r-round MILP model in which we require that all variables
involved are 0-1.

Step 2. Extract a feasible solution of the MILP model by using the Gurobi [52] optimizer. 2

Step 3. Check whether the feasible solution is a valid (related-key) differential characteristic. If it is a valid
characteristic, the procedure terminates. Otherwise, go to step 1, increase the number of selected inequalities
from the convex hulls, and repeat the whole process.

We have developed a software by employing the python interface provided by the Gurobi optimizer, which
automates the whole process of the above method.

To demonstrate the practicability of our method, we have applied the methods presented in this section
to SIMON, PRESENT-128, LBlock and DES(L) [42], and the results are given in Appendix C. For all these
ciphers, we obtain better (related-key) differential characteristics than all previous published results.

2 In this step, we can extract a feasible solution after or before the Gurobi optimizer converges to its optimum
solution. In our experiments, we just wait till the output of the Gurobi interactive shell reports that a solution with
a reasonably small objective value (the number of active S-boxes) has been discovered.

12

On the Quality of the Characteristics. The characteristics found by this method are not guaranteed to
be the best. However, if you would like to wait until the optimizer outputs optimum solution, the characteristic
found by this method is guaranteed to have the minimum number of active S-boxes. Experimental results show
that we get reasonably good solutions. Moreover, the differential probabilities the active S-boxes take largely
obey the differential distribution table. For example, for the S-box of PRESENT-128, there are 96 possible
nonzero differential patterns in total: 24 of them are of probability 2−2, and 72 of them are of probability
2−3. In the 7-round PRESENT-128 related-key characteristic we found, there are 4 active S-boxes. One of
them are of probability 2−3, and all other active S-boxes takes the probability of 2−2.

On the Flexibility of the Searching Algorithm. By adding a small number of additional constraints,
our method can be used to search characteristics with specific properties:

1. By setting some given variables marking the activity of some S-boxes to 1, we can search for characteristics
with active S-boxes of predefined positions, which may be used in leaked-state forgery attacks [70].

2. By requiring the output and input variables to be the same, we can search for iterative characteristics.
3. By setting all the variables marking the activity of all the S-boxes in the key schedule algorithm to be

0, we can search for characteristics with 0 active S-boxes in its key schedule algorithm, which may be
preferred in the related-key differential attack.

6 Conclusion and Directions for Future Work

In this paper, we bring new constraints into Mouha et al.’s framework to describe the differential properties of
a specific S-box, and therefore obtain a more accurate mixed integer programming model for the differential
behavior of a block cipher.

Based on these constraints, we propose an automatic method for evaluating the security of bit-oriented
block ciphers with respect to (related-key) differential attack. We also present a new tool for finding (related-
key) characteristics automatically. By using these methods, we obtain tighter security bounds for some
bit-oriented block ciphers, and related-key characteristics which cover larger number of rounds or have larger
probabilities than all previously known results.

At this point, several open problems emerge. Firstly, we have observed that the MILP instances derived
from such cryptographic problems are very hard to solve compared with general MILP problems with the
same scale with respect to the numbers of variables and constraints. Hence, it is interesting to develop specific
methods to accelerate the solving process of such problems and therefore increase the number of rounds of the
cipher under consideration can be dealt with. Secondly, the method presented in this paper is very general. Is
it possible to develop a compiler which can convert a standard description, say a description using hardware
description language [56], of a cipher into an MILP instance to automate the entire security evaluation cycle
with respect to (related-key) differential attack?

Finally, the methodology presented in this paper has some limitations which we would like to make clear,
and trying to overcome these limitations is a topic deserving further investigation.

1. This methodology is only suitable to evaluate the security of constructions with S-boxes, XOR operations
and bit permutations, and can not be applied to block cipher like SPECK [5], which involve modulo
addition and no S-boxes at all. For tools which can be applied to ARX constructions, we refer the reader
to [13, 49, 44–46].

2. As in almost all practical security evaluations of block ciphers with respect to (related-key) differential
attack, we assume that the expected differential probability (EDP) π of a characteristic over all keys
is (almost) the same as the fixed-key differential probability (DP) πK for almost all keys (the common
hypothesis of stochastic equivalence presented in Lai et al.’s work on Markov Ciphers [40]), and that if the
lower bound of the EDP for any characteristic of a block cipher is less than 2−s, where s is bigger than the
block size or key size of the cipher, then the block cipher is secure against the (related-key) differential
attack, which is a common assumption in almost all works on practical analysis of block ciphers. For
more in-depth discussion of the essential gap between EDP π and DP πK , and what the bounds on EDP
actually mean for the security of a block cipher once a key is fixed, we refer the reader to [14] for more
information.

13

References

1. Albrecht, M., Cid, C.: Cold boot key recovery by solving polynomial systems with noise. In: Applied Cryptography
and Network Security. pp. 57–72. Springer (2011)

2. Alex Biryukov, Arnab Roy, Vesselin Velichkov: Differential analysis of block ciphers SIMON and SPECK. In: Fast
Software Encryption (2014)

3. Alkhzaimi, H.A., Lauridsen, M.M.: Cryptanalysis of the SIMON family of block ciphers. Tech. rep., Cryptology
ePrint Archive, Report 2013/543, 2013. http://eprint. iacr. org

4. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-bit block
cipher suitable for multiple platformsdesign andanalysis. In: Selected Areas in Cryptography. pp. 39–56. Springer
(2001)

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families
of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404 (2013), http://eprint.iacr.org/2013/
404

6. Beigel, R.: The polynomial method in circuit complexity. In: Structure in Complexity Theory Conference, 1993.,
Proceedings of the Eighth Annual. pp. 82–95. IEEE (1993)

7. Biham, E., Anderson, R., Knudsen, L.: Serpent: A new block cipher proposal. In: Fast Software Encryption. pp.
222–238. Springer (1998)

8. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4(1), 3–72
(1991)

9. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: FIDES: Lightweight authenticated cipher with
side-channel resistance for constrained hardware. In: Cryptographic Hardware and Embedded Systems–CHES
2013, pp. 142–158. Springer (2013)

10. Biryukov, A.: Impossible differential attack. In: Encyclopedia of Cryptography and Security, pp. 597–597. Springer
(2011)

11. Biryukov, A., Nikolić, I.: Automatic search for related-key differential characteristics in byte-oriented block ciphers:
Application to AES, Camellia, Khazad and others. In: Advances in Cryptology–EUROCRYPT 2010, pp. 322–344.
Springer (2010)

12. Biryukov, A., Nikolić, I.: Search for related-key differential characteristics in DES-like ciphers. In: Fast Software
Encryption. pp. 18–34. Springer (2011)

13. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers. In: Topics in Cryptology–
CT-RSA 2014, pp. 227–250. Springer (2014)

14. Blondeau, C., Bogdanov, A., Leander, G.: Bounds in shallows and in miseries. In: Advances in Cryptology–
CRYPTO 2013, pp. 204–221. Springer (2013)

15. Bogdanov, A.: On unbalanced feistel networks with contracting MDS diffusion. Designs, Codes and Cryptography
59(1-3), 35–58 (2011)

16. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin, Y., Vikkelsoe, C.:
PRESENT: An ultra-lightweight block cipher. In: Cryptographic Hardware and Embedded Systems–CHES 2007,
pp. 450–466. Springer (2007)

17. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar,
C., Rechberger, C., et al.: Prince–a low-latency block cipher for pervasive computing applications. In: Advances
in Cryptology–ASIACRYPT 2012, pp. 208–225. Springer (2012)

18. Borghoff, J., Knudsen, L.R., Stolpe, M.: Bivium as a mixed-integer linear programming problem. In: Cryptography
and Coding, pp. 133–152. Springer (2009)

19. Bulygin, S., Walter, M.: Study of the invariant coset attack on PRINTCipher: more weak keys with practical key
recovery. Tech. rep., Cryptology ePrint Archive, Report 2012/85 (2012)

20. CPLEX, IBM ILOG: IBM software group. User-Manual CPLEX 12 (2011)
21. Daemen, J., Rijmen, V., Proposal, A.: Rijndael. In: Proceedings from the First Advanced Encryption Standard

Candidate Conference, National Institute of Standards and Technology (NIST) (1998)
22. Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel, Bart Mennink, Nicky Mouha,

Qingju Wang, Kan Yasuda: PRIMATEs v1. CAESAR submission (2014), http://competitions.cr.yp.to/

round1/primatesv1.pdf

23. Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger, Peter Schwabe, Tolga Yalcin:
Pr∅st v1. CAESAR submission (2014), http://competitions.cr.yp.to/round1/proestv1.pdf

24. Emami, S., Ling, S., Nikolic, I., Pieprzyk, J., Wang, H.: The resistance of PRESENT-80 against related-key
differential attacks. Cryptology ePrint Archive, Report 2013/522 (2013), http://eprint.iacr.org/

25. Farzaneh Abed, Eik List, Jakob Wenzel, Stefan Lucks: Differential cryptanalysis of round-reduced SIMON and
SPECK. In: Fast Software Encryption (2014)

26. Farzaneh Abed, Eik List, Stefan Lucks, Jakob Wenzel: Differential and linear cryptanalysis of reduced-round
SIMON. Cryptology ePrint Archive, Report 2013/526 (2013), http://eprint.iacr.org/526/

27. Fouque, P.A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128.
In: Canetti, R., Garay, J. (eds.) Advances in Cryptology–CRYPTO 2013, Lecture Notes in Computer Science,
vol. 8042, pp. 183–203. Springer Berlin Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-40041-4_11

14

28. Fuhr, T.: Finding second preimages of short messages for Hamsi-256. In: Advances in Cryptology-ASIACRYPT
2010, pp. 20–37. Springer (2010)

29. Gong, Z., Nikova, S., Law, Y.W.: Klein: a new family of lightweight block ciphers. In: RFID. Security and Privacy,
pp. 1–18. Springer (2012)

30. Goodman, J.E., O’Rourke, J.: Handbook of discrete and computational geometry. CRC press (2010)
31. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Cryptographic Hardware and

Embedded Systems–CHES 2011, pp. 326–341. Springer (2011)
32. Izadi, M., Sadeghiyan, B., Sadeghian, S.S., Khanooki, H.A.: MIBS: a new lightweight block cipher. In: Cryptology

and Network Security, pp. 334–348. Springer (2009)
33. Javad Alizadeh, Nasour Bagheri, Praveen Gauravaram, Abhishek Kumar, and Somitra Kumar Sanadhya: Linear

cryptanalysis of round reduced SIMON. Cryptology ePrint Archive, Report 2013/663 (2013), http://eprint.
iacr.org/

34. Jérémy Jean, Ivica Nikolić, Thomas Peyrin: Deoxys v1. CAESAR submission (2014), http://competitions.cr.
yp.to/round1/deoxysv1.pdf

35. Jérémy Jean, Ivica Nikolić, Thomas Peyrin: Joltik v1. CAESAR submission (2014), http://competitions.cr.
yp.to/round1/joltikv1.pdf

36. Jérémy Jean, Ivica Nikolić, Thomas Peyrin: Kiasu v1. CAESAR submission (2014), http://competitions.cr.
yp.to/round1/kiasuv1.pdf

37. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis of NLFSR-based cryptosys-
tems. In: Advances in Cryptology-ASIACRYPT 2010, pp. 130–145. Springer (2010)

38. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis of Trivium and KATAN. In:
Selected Areas in Cryptography. pp. 200–212. Springer (2012)

39. Knudsen, L.R.: Truncated and higher order differentials. In: Fast Software Encryption. pp. 196–211. Springer
(1995)

40. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Advances in Cryptology–
EUROCRYPT91. pp. 17–38. Springer (1991)

41. Lamberger, M., Nad, T., Rijmen, V.: Numerical solvers and cryptanalysis. Journal of mathematical cryptology
3(3), 249–263 (2009)

42. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES variants. In: Fast Software Encryption.
pp. 196–210. Springer (2007)

43. Lehmann, M., Meier, W.: Conditional differential cryptanalysis of Grain-128a. In: Cryptology and Network Secu-
rity, pp. 1–11. Springer (2012)

44. Leurent, G.: Construction of differential characteristics in ARX designs application to Skein. In: Advances in
Cryptology–CRYPTO 2013, pp. 241–258. Springer (2013)

45. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of addition. In: Fast Software
Encryption. pp. 336–350. Springer (2002)

46. Lipmaa, H., Wallén, J., Dumas, P.: On the additive differential probability of exclusive-or. In: Fast Software
Encryption. pp. 317–331. Springer (2004)

47. Marr, D.T., Binns, F., Hill, D.L., Hinton, G., Koufaty, D.A., Miller, J.A., Upton, M.: Hyper-threading technology
architecture and microarchitecture. Intel Technology Journal 6(1) (2002)

48. Matsui, M.: On correlation between the order of S-boxes and the strength of DES. In: Advances in Cryptology–
EUROCRYPT’94. pp. 366–375. Springer (1995)

49. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for ARX: Application to Salsa20.
Cryptology ePrint Archive, Report 2013/328 (2013), http://eprint.iacr.org/2013/328

50. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear pro-
gramming. In: Information Security and Cryptology. pp. 57–76. Springer (2012)

51. Nikolic, I.: Tweaking AES. In: Selected Areas in Cryptography. pp. 198–210. Springer (2010)
52. Optimization, Gurobi: Gurobi optimizer reference manual. URL: http://www. gurobi. com (2013)
53. Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis in the presence of errors. In:

Cryptographic Hardware and Embedded Systems–CHES 2010, pp. 428–442. Springer (2010)
54. O’Rourke, J.: Computational geometry in C. Cambridge university press (1998)
55. Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight block ciphers revisited: Cryptanalysis of reduced round

PRESENT and HIGHT. In: Information Security and Privacy. pp. 90–107. Springer (2009)
56. Pedroni, V.A.: Circuit design with VHDL. The MIT Press (2004)
57. Preparata, F.P., Shamos, M.I.: Computational geometry: An introduction (monographs in computer science).

Monographs in Computer Science (Springer-Verlag, New York, 1985), ISBN 3540961313 (1993)
58. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: an ultra-lightweight block-

cipher. In: Cryptographic Hardware and Embedded Systems–CHES 2011, pp. 342–357. Springer (2011)
59. Siwei Sun and Lei Hu and Ling Song and Yonghong Xie and Peng Wang: Automatic security evaluation of block

ciphers with s-bp structures against related-key differential attacks. In: Inscrypt 2013 (2013)
60. Stein, W., et al.: Sage: Open source mathematical software (2008)
61. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: Twine: A lightweight, versatile block cipher. In: ECRYPT

Workshop on Lightweight Cryptography. pp. 146–169 (2011)

15

62. Tezcan, C.: Improbable differential attack on PRESENT using undisturbed bits. In: International Conference on
Applied and Computational Mathematics (2013)

63. Van Rossum, G., et al.: Python programming language. In: USENIX Annual Technical Conference (2007)
64. Wagner, D.: The boomerang attack. In: Fast Software Encryption. pp. 156–170. Springer (1999)
65. Walter, M., Bulygin, S., Buchmann, J.: Optimizing guessing strategies for algebraic cryptanalysis with applications

to EPCBC. In: The 8th China International Conference on Information Security and Cryptology (Inscrypt 2012).
Springer (2012)

66. Williams, H.P.: Logical problems and integer programming. Bulletin of the Institute of Mathematics and its
Applications 13, 18–20 (1977)

67. Williams, H.P.: Model building in mathematical programming. Wiley (1999)
68. Winnen, L.: Sage S-box MILP toolkit, http://www.ecrypt.eu.org/tools/sage-s-box-milp-toolkit
69. Wu, S., Wang, M.: Security evaluation against differential cryptanalysis for block cipher structures. Tech. rep.,

Cryptology ePrint Archive, Report 2011/551 (2011)
70. Wu, S., Wu, H., Huang, T., Wang, M., Wu, W.: Leaked-state-forgery attack against the authenticated encryption

algorithm ALE. In: Advances in Cryptology-ASIACRYPT 2013, pp. 377–404. Springer (2013)
71. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Applied Cryptography and Network Security. pp.

327–344. Springer (2011)
72. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC-a block cipher suitable for electronic product code

encryption. In: Cryptology and Network Security, pp. 76–97. Springer (2011)
73. Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara, Yumiko Murakami, Mitsuru

Matsui, Shoichi Hirose: Minalpher v1. CAESAR submission (2014), http://competitions.cr.yp.to/round1/

minalpherv1.pdf

16

A The S-box of PRESENT-128 and Its Differential Distribution Table

Table 4: The S-box of PRESENT-80
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 5: The Differential Distribution Table of the PRESENT S-box
0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1x 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0

2x 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0

3x 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0

4x 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0

5x 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0

6x 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4

7x 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4

8x 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4

9x 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0

Ax 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0

Bx 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0

Cx 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0

Dx 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0

Ex 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0

Fx 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

B On the Security of PRESENT-80, and LBlock with respect to the
Related-key Differential Attack

In this section, we apply our method to two block ciphers with different structures. One is the bit-oriented
SPN block cipher PRESENT-80, and the other is the bit-oriented Feistel block cipher LBlock.

B.1 The 24-round Reduced PRESENT-80 is Secure Against Basic Related-key Differential
Attack

We have applied the logical condition modelling method presented in Sect. 3.1 to the block cipher PRESENT-
80 to determine its security bound with respect to the related-key differential attack. A Python module [63]
is developed to generate the MILP instances in “lp” format [20]. In each of these MILP models, we include
one more constraint to ensure that the difference of the initial key register is nonzero, since the case where
the difference of the initial key register is zero can by analyzed in the single-key model. Then we employ the
Gurobi 5.5 optimizer [52] to solve the MILP instances.

By default the computations are performed on a PC using 4 threads with Intel(R) Core(TM) Quad CPU
(2.83GHz, 3.25GB RAM, Windows XP), and a star “*” is appended on a timing data to mark that the cor-
responding computation is taken on a workstation equipped with two Intel(R) Xeon(R) E5620 CPU(2.4GHz,
8GB RAM, 8 cores). Despite there are only 2 CPUs and 8 physical cores in total on the workstation, we fire
up 16 threads in Gurobi5.5 to solve the corresponding MILP instances to exploit Intel’s Hyper-Threading
Technology [47], where for each physical core, the operating system simulates two virtual or logical cores,
and shares the workload between them.

We have computed the number of active S-boxes for PRESENT-80 in the related-key model up to 14
rounds, and the results and a comparison with previous results without using CDP constraints are summarized
in Table 6. For example, according to the 6th row of Table 6, the Gurobi optimizer finds that the minimum

17

number of active S-boxes for 6-round PRESENT-80 is at least 5 in no more than 16 seconds by solving the
MILP model with CDP constraints.

Table 6: Results obtained from MILP models for PRESENT-80 with and without CDP constraints

Rounds
With CDP Constraints Without CDP Constraints

Active S-boxes # Time(in seconds) # Active S-boxes # Time(in seconds)

1 0 1 0 1

2 0 1 0 1

3 1 1 1 1

4 2 1 2 1

5 3 5 3 3

6 5 16 4 10

7 7 107 6 26

8 9 254 8 111

9 10 522 9 171

10 13 4158 12 1540

11 15 18124 13 8136

12 16 50017 15 18102

13 18 137160* 17 49537*

14 20 1316808* 18 685372*

15 − > 20days − > 20days

These results clearly demonstrate that the MILP models with CDP constraints lead to tighter security
bounds. In particular, we have proved that there are at least 16 active S-boxes in the best related-key
differential characteristic for any consecutive 12-rounds of PRESENT-80. Therefore, the probability of the
best related-key differential characteristic of 24-round PRESENT-80 is (2−2)16 × (2−2)16 = 2−64, leading
to the result that the 24-round PRESENT-80 is resistant to basic related-key differential attack based on
related-key differential characteristic (rather than differential). For round reduced variants of PRESENT-80
with round r ≥ 15, we are unable to accomplish the computation within 20 days.

It is possible to get tighter security bounds by adding more constraints: experimental result shows that, by
adding 6 more valid cutting-off inequalities listed in Table 3 to the MILP problems for each S-box appearing
in the schematic representation of PRESENT-80, we are able to prove that the guaranteed number of active
S-boxes in related-key model for 7-round PRESENT-80 is at least 8, which is the tightest bound obtained so
far (see Table 6 for comparison).

B.2 Results on LBlock

Up to now, there is no concrete result concerning the security of full-round LBlock [71] against differential
attack in the related-key model due to a lack of proper tools for bit-oriented designs.

Since the encryption process of LBlock is nibble-oriented, the security of LBlock against single-key dif-
ferential attack can be evaluated by those word-oriented techniques. However, the “≪ 29” operations in the
key schedule algorithm of LBlock destroy its overall nibble-oriented structure, and make those word-oriented
approaches infeasible in evaluating the security of LBlock against the related-key differential attack.

In this subsection, we apply the method proposed in this paper to LBlock, and some results concerning
its security against related-key differential attacks are obtained. The valid cutting-off inequalities used to
obtain these results are listed in Appendix E. Note that the type of constraints given in (5) are removed in
our MILP models for LBlock according to the explanations presented in previous sections.

From Table 7, we can deduce that the probability of the best differential characteristic for full LBlock
(totally 32 = 11 + 11 + 10 rounds) is upper bounded by (2−2)10 × (2−2)10 × (2−2)8 = 2−56 (This result will
be improved in the following), where 2−2 is the best differential probability for a single S-box of LBlock.

In fact, here we have an implicit trade-off between the number of constraints we use and the number of
rounds we analyze. For example, we can use less constraints for every S-box and try to analyze more rounds,
or we can use more constraints and focus on less rounds (but stronger bounds). However, it is not a simple
task to find the best trade-off due to our limited computational power. We do try to analyze more rounds
by using only one inequality selected from the convex hull for every S-box. The largest number of rounds
we are able to analyze is 13, and we have prove that there are at least 13 active S-boxes in any related-key

18

Table 7: Results for related-key differential analysis on LBlock (The #Variables column records the sum of
the number of the 0-1 variables and continuous variables in the MILP model).

Rounds #Variables #Constraints #Active S-boxes Time (in seconds)

1 218+104 = 322 660 0 1

2 292+208 = 500 1319 0 1

3 366+312 = 678 1978 0 1

4 440+416 = 856 2637 0 1

5 514+520 = 1034 3296 1 2

6 588+624 = 1212 3955 2 12

7 662+728 = 1390 4614 3 38

8 736+832 = 1568 5273 5 128

9 810+936 = 1746 5932 6 386

10 884+1040 = 1924 6591 8 19932

11 958+1144 = 2102 7250 10 43793

characteristic for 13-round LBlock on a PC with Intel(R) Core(TM) i7-3370 CPU (3.40GHz, 8GBRAM,
Window7, 8 cores in total) in roughly 49 days.

Then, we try to improve the above result with the two techniques presented in Sect. 4.1. By using the
first technique, we are managed to prove the following results.

Fact 3 There are at least 13 active S-boxes in a 13-round related-key differential characteristic of LBlock,
and there is at least one active S-box taking a differential pattern with probability 2−3 in any 13-round related-
key differential characteristic of LBlock with only 13 active S-boxes. Therefore, the probability of a 13-round
related-key differential characteristic of LBlock is upper bounded by (2−2)12 × (2−3) = 2−27.

We now turn to the second technique presented in Sect. 4.1. By adding the constraint that the number
of active S-boxes of any characteristic covering round 22 to round 26 (5 rounds in total) has at least 1 active
S-box (see table 7), and at most 12 active S-boxes to a 11-round (round 22 to round 32) MILP model (If this
is not the case, it will enable us to get better bounds than the result presented here), we can show that there
are at least 3 active S-boxes in a characteristic covering round 27 to round 32 (6 rounds in total). Combined
with Fact 3, we have that the probability of the best related-key differential characteristic for full LBlock is
upper bounded by 2−27 × 2−27 × (2−2)3 = 2−60.

C Search for Related-key Characteristics

C.1 Results on SIMON

SIMON [5] is a family of lightweight block ciphers designed by the U.S National Security Agency (NSA),
which offers excellent performance on both hardware and software platforms. The design of SIMONnb/nK
is a Feistel scheme with a block size of nb bits and key size of nK bits. The bitwise AND operation is the
only nonlinear operation of SIMONnb/nK . For a detailed description of SIMON and existing attacks on it,
we refer the reader to [5, 2, 3, 33, 26, 25].

By treating the AND (F2 × F2 → F2) operation as a 2× 1 S-box, we apply our method to SIMON in the
single-key model. We produce similar results as that presented in [2] for SIMON32/nK and SIMON64/nK .
For SIMON48 we obtain a 15-round differential characteristic with probability 2−46 (see Table 8), which is the
best 15-round differential characteristic for 15-round SIMON48 published so far. If we fix the input and output
differences to be the differences suggested by the characteristic we found, we can compute the probability of
this differential by searching all characteristics with probability greater than 2−54 in this differential, and the
result is 2−41.96 which is also the best result published so far.

We would like to emphasize that in our MILP models we treat the input bits of the AND operation
as independent input bits, and the dependencies of the input bits to the AND operation are not considered.
Therefore, the characteristic obtained by our method is not guaranteed to be valid. Hence, every time after the
Gurobi optimizer outputs a good solution (characteristic), we check its validity and compute its probability
by the method presented in [2].

19

Table 8: Single-key Differential Characteristic of 15-round SIMON48
SIMON48

Rounds Left Right

0 000000001000000000000000 000000100010001000000000
1 000000000010001000000000 000000001000000000000000
2 000000000000100000000000 000000000010001000000000
3 000000000000001000000000 000000000000100000000000
4 000000000000000000000000 000000000000001000000000
5 000000000000001000000000 000000000000000000000000
6 000000100000100000000000 000000000000001000000000
7 000000000010001000000010 000000100000100000000000
8 001000001000001000001000 000000000010001000000010
9 000000000010001000000010 001000001000001000001000
10 000000100000100000000000 000000000010001000000010
11 000000000000001000000000 000000100000100000000000
12 000000000000000000000000 000000000000001000000000
13 000000000000001000000000 000000000000000000000000
14 000000000000100000000000 000000000000001000000000
15 000000000010001000000000 000000000000100000000000

C.2 Results on PRESENT-128

By adding a constraint that there is no active S-box in the key schedule algorithm, we obtain a 7-round
related-key differential characteristic for PRESENT-128 with probability 2−11 and 0 active S-box in its key
schedule algorithm (see Table 10 and Table 11). This characteristic is better than the 7-round characteristic
presented in [55], and based on this characteristic and the characteristic presented in [55], an improved
related-key boomerang attack on 17-round PRESENT-128 which is better than that presented in [55] can be
constructed.

Table 9: A 7-round Related-key Characteristic for PRESENT-128 (Characteristic in the Encryption Process)
The input and output differences of the S-box layer

Rounds In Out

1 101000 010100
2 00 00
3 0000000000000000000000000001000000000000000000000000000000000000 0000000000000000000000001101000000000000000000000000000000000000
4 0000001000 0000001100
5 000100000000000000 000101000000000000
6 00 00
7 0000000000000000000000000000000000000001000000000000000000000000 0000000000000000000000000000000000000111000000000000000000000000

Table 10: A 7-round Related-key Characteristic for PRESENT-128 (Characteristic in the Key Schedule
Algorithm)
Rounds The Differences in the Key Register

0 000000000000000000000100 0000000000000100000000000000000000000000000001000000000000000000
1 0000000000000000100000000000000000000000000000001000000000000000 0000000000000000000000001000000000000000000000000000000000000000
2 0000000000000000000000000001000000000000000000000000000000000000 0000000000000000000100000000000000000000000000000001000000000000
3 0000000000000000000000100000000000000000000000000000001000000000 0000000000000000000000000000001000000000000000000000000000000000
4 0000000000000000000000000000000001000000000000000000000000000000 0000000000000000000000000100000000000000000000000000000001000000
5 0000000000000000000000000000100000000000000000000000000000001000 0000000000000000000000000000000000001000000000000000000000000000
6 0000000000000000000000000000000000000001000000000000000000000000 0000000000000000000000000000000100000000000000000000000000000001
7 0000000000000000000000000000000000100000000000000000000000000000 0010000000000000000000000000000000000000001000000000000000000000
8 0000010100000000000000000000000000000000000001000000000000000000 0000000000000000000000000000000000000100000000000000000000000000

C.3 Results on LBlock

We obtain a 14-round related-key differential characteristic of LBlock with only 20 active Sboxes and prob-
ability 2−49 in no more than 4 hours on a PC, and the characteristic is given in Fig. 2 and Fig. 3. Note
that the probabilities of the best previously published related-key characteristics covering 13- and 14-round
LBlock is 2−53 and 2−65 [71], respectively.

20

S S

<<<29

S S

<<<29

S S

<<<29

S S

<<<29

S S

<<<29

S S

<<<29

S S

<<<29

S S

<<<29

S S

<<<29

S S

<<<29

S S

<<<29

S S

<<<29

S S

<<<29

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

K14

Fig. 2: A 14-round Related-key Differential Characteristic of LBlock (Characteristic in the Key Schedule
Algorithm); a black square represents 1, and a white square represents 0.

C.4 Results on DES(L)

For DES, we do not get better results compared to [12]. For DESL, we obtain an 8-round related-key d-
ifferential characteristic of DESL with probability 2−34.78 in no more than 10 minutes on a PC, and the
characteristic is given in Table 12 and Table 13. To the best of our knowledge, there is no related-key
differential characteristic covering more than 7 rounds of DESL have been published before.

Note that, like DES, there are related-key differential characteristics of DESL that hold with probability
1 and activate no S-box at all. In our searching algorithm we do not interest in such characteristics, and we
remove such characteristic from the feasible region of our MILP model by dictating that there are at least
one active S-box. In fact, if we do not add this constraint, our method can discover such characteristic (with
probability 1) automatically in no more than 5 seconds, which surprised us a lot.

Table 11: An 8-round Related-key Differential Characteristic for DESL (Characteristic in the Encryption
Process)

DESL
Rounds Left Right

0 00010000000000000000000000000010 00000000000000000000010000000000
1 00000000000000000000010000000000 00000000000000000000000000000010
2 00000000000000000000000000000010 00000000000000000000110000000000
3 00000000000000000000110000000000 00000000000000000000000000001010
4 00000000000000000000000000001010 00000000000000000000010000000000
5 00000000000000000000010000000000 00000000000000000000000000001010
6 00000000000000000000000000001010 00000000000000000000110000000000
7 00000000000000000000110000000000 00000000000000000000000000000010
8 00000000000000000000000000000010 00000000001000000010010000101000

21

<<<8

<<<8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

d

0

0

0

0

0

d

0

0

0

0

0

0

0

0

3

c

0

0

0

0

0

0

4

6

0

0

0

0

0

6

0

4

0

0

0

0

<<<8

<<<8

0

7

9

a

0

0

0

0

0

3

a

e

0

0

0

0

3

e

0

a

0

0

0

0

0

0

0

a

0

0

0

0

0

0

0

7

0

0

0

0

0

7

0

0

0

0

0

0

<<<8

0

3

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

<<<8

<<<8

<<<8

<<<8

<<<8
0

0

0

0

0

0

0

a

0

0

0

0

0

0

0

6

0

0

0

0

0

6

0

0

0

0

0

0

0

0

0

3

0

0

0

0

0

0

0

2

0

0

0

0

0

2

0

0

0

0

0

0

0

0

7

2

0

0

0

0

0

0

4

3

0

0

0

0

0

3

0

4

0

0

0

0

0

4

0

4

0

0

0

0

0

1

0

4

0

0

0

0

1

4

0

0

<<<8

<<<8

0

0

0

0

0

e

0

0

0

0

0

0

3

0

0

0

0

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

<<<8

0

0

0

c

0

0

0

0

0

0

0

8

0

0

0

0

0

8

0

0

0

0

0

0

<<<8

S7

S0

S7

S0

S7

S0

S7

S0

S7

S0

S7

S0

S7

S0

S7

S0

0
S7

S0

S7

S0

S7

S0

S7

S0

S7

S0

00000000

000d3c00

00000000

003c0000

06040000

020a0000

03000006

1a000002

1a000002

00000003

0000001a

00000004

00000e00

00003400

000e0000

08340000

00000d3c

00000000

000d3c00

00000000

003c0000

06040000

020a0000

03000006

03000006

1a000002

00000003

0000001a

00000004

00000e00

00003400

000e0000

00000000

000d3c00

00040000

00000000

019e0000

02000000

00000006

1a000008

00000000

00000068

00000400

00000000

00003400

00020000

<<<8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

S7

S0

0

0

0

0

Fig. 3: A 14-round Related-key Differential Characteristic of LBlock (Characteristic in the Encryption Pro-
cess)

22

Table 12: An 8-round Related-key Differential Characteristic for DESL (Characteristic in the Key Schedule
Algorithm)

Rounds Differences in the Key Register

1 000000000000000000000000000000100000000000000000
2 0010
3 000000000000000000000000000001000000000000000000
4 0001000000
5 000000000000000000000000000000001000000000000000
6 000000000000000000000000000000000000010000000000
7 000000000000000000000000000010000000000000000000
8 000000000000000000000000000000000100000000000000

D The Convex Hull of the PRESENT S-box

(0, 2, -2, 1, -1, -1, -2, -2, 6)(0, -2, 2, 1, -2, -1, -1, -2, 6)(0, 1, -1, 1, 0, -1, -1, -1, 3)(-1, 0, 1, -1, -1, -1, 0, -1, 4)

(1, 0, 1, 1, 1, 1, -1, 0, 0)(0, 1, 1, 1, -1, 0, 0, 1, 0)(-1, -1, 0, 1, -1, 0, -1, -1, 4)(1, 0, -1, 2, 1, 2, 2, -1, 0)

(1, -1, -1, 0, 0, -1, 1, -1, 3)(-1, 0, -1, -1, 1, 0, -1, 0, 3)(0, 1, 1, 0, -1, 1, -1, 1, 1)(1, 1, 1, 0, 0, 0, -1, 1, 0)

(2, 1, 2, 2, 0, 1, -1, -1, 0)(-1, 0, 0, 1, 1, 1, 1, 0, 0)(-1, 0, 0, 1, 1, 0, 1, 1, 0)(0, 1, 1, -1, -1, 1, -1, 0, 2)

(0, 0, -1, 0, 0, 0, 0, 0, 1)(1, 2, 0, -1, -2, -2, -2, -1, 6)(0, 1, -1, -1, -1, -1, 0, 1, 3)(0, 0, -1, 0, 1, 1, 1, 1, 0)

(0, 1, 1, -2, -2, -1, -2, -2, 7)(2, 2, -1, 2, -1, 3, 2, -1, 0)(1, 0, 1, -1, 0, 1, 1, 1, 0)(0, 1, -1, 2, 1, 2, 2, -1, 0)

(-2, 1, 1, 3, 1, -1, 1, 2, 0)(1, -1, -1, 1, 1, 0, 0, -1, 2)(0, 1, 1, -1, 1, 1, 1, 0, 0)(-2, 1, 1, 2, 1, 0, 1, 1, 0)

(0, -1, -1, -1, -1, 1, 0, -1, 4)(-1, 1, -2, -1, -2, -2, 1, 2, 6)(2, -2, 3, -4, -1, -4, -4, 1, 11)(1, -1, 1, 2, 2, 2, 0, -1, 0)

(0, -1, 1, -1, 0, -1, -1, 1, 3)(0, 1, -1, 1, 0, 1, 1, -1, 1)(1, -1, 2, -1, 0, 2, 2, 2, 0)(-1, 0, -1, 1, -1, 0, -1, -1, 4)

(0, -1, -1, 0, -1, 1, -1, 1, 3)(2, 1, 1, 0, -2, -1, -2, -1, 4)(1, 0, -1, 1, 0, 1, 1, -1, 1)(1, 2, 2, 1, 0, 0, -2, 1, 0)

(0, 0, 0, 0, 0, -1, 0, 0, 1)(1, 1, 1, 1, 1, 1, 1, -2, 0)(1, 0, 1, -1, 1, 1, 0, 1, 0)(0, -1, 1, -1, -1, -1, -1, 0, 4)

(2, 1, 1, -2, 1, 1, 0, 2, 0)(-2, 1, -1, -1, 1, -1, -1, -1, 5)(1, -1, 0, 2, 2, 2, 1, -1, 0)(3, 2, 2, -1, -4, -2, -4, -1, 8)

(0, 0, 0, 1, 1, -1, 1, 1, 0)(0, -1, -1, -1, 1, 0, -1, -1, 4)(2, 2, 1, 2, -1, 1, 0, -1, 0)(1, -1, -1, 0, 1, -1, 0, -1, 3)

(1, -1, -1, 0, -1, 0, 1, -1, 3)(-2, 0, 0, 1, 2, 1, 2, 1, 0)(1, -1, 1, 2, -2, -2, 1, -2, 5)(1, -1, 0, 0, 1, 1, -1, -1, 2)

(3, 2, 3, 3, -1, -1, 0, -1, 0)(1, 1, -1, 1, -1, 2, 1, -1, 1)(1, -1, -1, 1, 2, 0, 2, 1, 0)(1, -1, -1, 1, 0, 0, 1, -1, 2)

(1, 1, 1, 1, 1, 1, -2, 1, 0)(2, 1, 2, -1, 1, 0, -1, 2, 0)(0, -1, -1, -1, -1, 0, 1, -1, 4)(-2, 1, -2, -1, 1, -1, -2, 0, 6)

(0, -1, 2, -1, -2, -2, -2, -1, 7)(-1, 0, -1, -1, 1, -1, 0, -1, 4)(3, -3, -2, 1, -1, -1, 3, -3, 7)(1, 1, -1, 1, 0, 1, 1, 0, 0)

(1, 1, -1, -1, -1, -1, 0, 0, 3)(1, -2, -2, 0, 1, -2, 1, -1, 5)(-1, -1, -1, -1, 3, 4, 3, 4, 0)(2, 2, 2, 0, -1, 0, -1, 1, 0)

(2, 0, 2, -1, 2, 1, -1, 2, 0)(1, -1, -2, -1, -2, 0, 2, -2, 6)(1, -1, 0, -1, 1, 0, -1, -1, 3)(1, 0, -1, -1, 0, -1, 1, -1, 3)

(1, 1, 1, 1, 0, 0, -1, 0, 0)(1, 0, 1, 1, 1, 1, 0, -1, 0)(0, 0, 0, -1, 0, 0, 0, 0, 1)(1, -2, -2, -1, 2, -3, 1, -2, 7)

(1, 0, 1, 0, -1, 1, 1, 1, 0)(-1, 1, 1, -2, -1, -1, -1, -2, 6)(1, 2, -1, -2, -2, -1, 1, 1, 4)(2, 2, -1, 1, -1, 2, 2, 0, 0)

(1, 1, 0, 1, -1, 1, 0, -1, 1)(0, 0, 0, -1, 1, 1, 1, 1, 0)(1, 1, -1, 0, 0, 1, 1, 1, 0)(1, -1, 2, -2, 1, -1, -2, 1, 4)

(1, 1, -1, 0, -1, 1, 1, 0, 1)(-3, 2, -2, -1, 1, -2, -2, -1, 8)(0, 0, 1, -1, -1, -1, -1, -1, 4)(0, 0, 0, 1, 0, 0, 0, 0, 0)

(-1, 0, -1, -1, 3, 3, 2, 3, 0)(0, 1, -1, -1, -1, -1, -1, 0, 4)(-1, 0, -1, -1, -1, -1, 1, 1, 4)(-1, 1, -1, 0, -1, -1, 1, 1, 3)

(1, -1, 1, 0, 0, 1, 1, 1, 0)(1, -1, 1, 0, 1, 1, -1, 0, 1)(-4, 1, 1, 2, 3, 2, 3, 1, 0)(2, 1, 1, -3, 1, 2, 1, 2, 0)

(0, 0, -1, 1, 1, 1, 1, 0, 0)(-1, 0, -1, -1, 1, 1, 0, 1, 2)(0, 0, -1, 1, 1, 0, 1, 1, 0)(0, 1, -1, 1, -1, 0, -1, -1, 3)

(1, -1, 0, -1, 1, -1, 0, -1, 3)(-1, 1, 0, -1, 0, -1, -1, -1, 4)(0, -1, 0, 0, 0, 0, 0, 0, 1)(0, -1, -1, -1, -1, 1, -1, 0, 4)

(1, 1, -1, 2, 1, -2, -2, -2, 5)(1, 1, -1, -1, -1, 0, 1, 0, 2)(-1, 1, 0, -1, 1, -1, 0, -1, 3)(0, -1, 0, 0, 1, 1, 1, 1, 0)

(0, 1, 1, -1, -1, 0, -1, -1, 3)(0, 1, -1, 0, -1, -1, -1, -1, 4)(2, -3, -1, -1, 2, 1, -3, -3, 8)(0, 0, 0, 0, 0, 0, 0, -1, 1)

(1, 2, -1, -2, -2, -2, -1, 0, 6)(-1, 1, 1, 2, 0, -1, 1, 2, 0)(1, 1, -2, 1, 1, 1, 1, 1, 0)(1, -1, 1, 1, 1, 1, 0, 0, 0)

(0, -1, -1, -1, 1, -2, 1, -2, 5)(1, 3, -2, -2, 3, 4, 1, 4, 0)(-1, -1, -1, -1, 0, 1, 0, 1, 3)(-2, 0, 2, -2, -1, -1, 1, -2, 6)

(1, -2, 1, 0, 1, 2, 1, 2, 0)(1, -1, -2, -2, 1, -3, 2, -2, 7)(0, -2, -2, 3, 4, 1, 4, 1, 0)(0, 0, 0, -1, 1, -1, 1, -1, 2)

(-1, 1, 1, 1, 0, 0, 0, 1, 0)(-1, 0, 1, 1, 0, -1, 1, 1, 1)(0, 2, 2, 1, -1, 1, -1, 2, 0)(1, 2, -1, -2, -2, -2, 0, 1, 5)

(-1, 1, 1, -1, 1, -1, 1, -2, 3)(1, 1, 0, 1, -1, 1, 1, 0, 0)(2, 2, 0, -1, -1, 1, 2, 2, 0)(2, 1, -2, -2, -1, -1, 1, -1, 5)

(4, 1, 3, -2, 3, 1, -2, 4, 0)(1, 0, 0, -1, -1, -1, -1, 1, 3)(0, 0, -2, 1, 2, 1, 2, 1, 0)(0, 0, 0, 0, -1, 0, 0, 0, 1)

(2, 2, 2, 1, 1, -3, 1, 1, 0)(1, 1, 0, -2, 1, 2, 1, 2, 0)(0, -1, 1, 1, 1, 1, 0, -1, 1)(-1, 1, 0, 1, 0, -1, 1, 1, 1)

(1, -1, 1, -1, 1, 0, -1, 0, 2)(1, -2, -1, -2, 2, -3, 1, -2, 7)(1, 1, 0, -1, -1, 0, 1, 1, 1)(1, 1, 1, -2, 1, 1, 1, 1, 0)

(-1, -1, 1, 0, 1, -1, -1, 1, 3)(1, 1, 1, -1, 1, 0, 1, 0, 0)(1, 1, 0, -1, 0, 1, 1, 1, 0)(-2, -1, -1, 2, -2, 0, -2, -1, 7)

(1, 1, 0, -1, -1, -1, -1, 0, 3)(1, -1, -1, 0, 1, 0, 1, 1, 1)(0, -1, 1, 1, 0, 1, -1, -1, 2)(3, 1, 1, -2, -2, -2, -2, 1, 5)

(-2, -1, 2, -1, -2, -2, 0, -1, 7)(1, 1, 1, 0, -1, 0, -1, 0, 1)(2, 0, 2, 1, -2, -1, -1, -2, 4)(1, 0, 1, 0, -1, -1, -1, -1, 3)

(-2, 2, 1, 4, 1, -2, 2, 3, 0)(-1, -1, 1, 0, -1, -1, 0, -1, 4)(1, 1, 0, 1, 0, -1, -1, -1, 2)(1, -1, -1, 0, 1, -1, 1, 0, 2)

(0, -1, -1, 1, 1, 0, 1, 0, 1)(-1, -1, -1, -1, -1, 1, 0, 0, 4)(1, 0, -1, -1, -1, 0, 1, -1, 3)(1, -2, 3, -2, 1, 4, 3, 4, 0)

(1, 1, 0, -1, 1, 1, 0, 1, 0)(1, 4, -1, -2, -4, -4, -3, -2, 12)(0, 0, 0, 0, 0, 0, 0, 1, 0)(0, -1, 1, 1, -1, 0, -1, -1, 3)

(0, 1, 0, 0, 0, 0, 0, 0, 0)(3, -1, 3, -1, 3, 2, -1, 2, 0)(1, 1, 1, 1, -2, 1, 1, 1, 0)(1, 0, 1, 1, -1, -1, 0, -1, 2)

(0, -1, -1, -1, 1, -1, 0, -1, 4)(2, -2, 1, -2, 1, -1, -1, -1, 5)(1, -1, 3, -1, -2, -3, -3, -2, 9)(1, 0, 1, -1, -1, -1, -1, 0, 3)

(0, -1, -1, 1, -1, 0, -1, 1, 3)(-1, 0, 1, 2, 1, -1, 1, 2, 0)(1, 0, 1, -1, 0, -1, -1, 1, 2)(1, 0, 2, -1, -2, -2, -2, -1, 6)

(1, 0, 1, -2, 1, 2, 1, 2, 0)(0, -1, 0, 1, 1, 1, 1, 0, 0)(1, -1, -1, 0, 1, 0, -1, -1, 3)(0, -1, 0, 1, 1, 0, 1, 1, 0)

(-1, 1, -1, -1, 0, -1, -1, 0, 4)(-1, 0, 1, -1, 0, -1, 1, -1, 3)(2, 1, 1, -1, -2, -1, -2, 0, 4)(2, -1, 2, 1, 2, 2, -1, 0, 0)

(1, 2, 2, 1, 0, -2, 0, 1, 0)(1, 0, 0, 0, 0, 0, 0, 0, 0)(1, 0, 1, 1, 0, 1, -1, -1, 1)(2, -1, -3, -1, -3, 1, 2, -3, 8)

(1, -1, 2, -2, 0, -2, -2, 1, 5)(-1, -1, 0, -1, 2, 3, 3, 3, 0)(0, 1, 1, 1, 0, -1, 0, 1, 0)(1, 1, 1, 0, -1, 0, 0, 1, 0)

(1, 0, 1, -1, 1, 0, -1, 1, 1)(-2, 1, 2, 4, 1, -2, 2, 3, 0)(1, -1, 4, -2, -3, -4, -4, -2, 12)(1, 1, 0, 0, 1, 1, -1, 1, 0)

(-1, -1, -1, 0, -1, 1, -1, 0, 4)(-1, -3, 2, 1, -3, -2, -1, -3, 10)(3, 3, 2, 3, 0, -1, -1, -1, 0)(1, 1, 0, 0, -1, 1, 1, 1, 0)

(0, 0, 0, 0, 0, 1, 0, 0, 0)(0, -1, -1, 2, 2, 1, 2, 0, 0)(4, 3, 1, -2, -2, 1, 3, 4, 0)(0, 2, -1, -1, -2, -2, -2, -1, 7)

(0, 1, 1, 2, 1, -2, 1, 1, 0)(1, 1, 1, 1, 0, -1, 0, 0, 0)(0, -1, -1, 2, 2, 0, 2, 1, 0)(-1, -1, 0, -1, -1, 0, 1, 0, 3)

(1, 1, -1, 2, 0, 2, 2, -1, 0)(1, 3, -1, -1, -3, -3, -2, -2, 9)(1, -1, -1, 2, 1, 1, 1, -1, 1)(0, -1, -1, -1, 0, -1, 1, -1, 4)

(2, 2, 1, -1, -1, 0, 1, 2, 0)(1, -2, 2, -3, -1, -3, -3, 1, 9)(3, 4, 4, 1, -2, 0, -2, 1, 0)(0, 1, 1, 0, 1, 0, 1, -1, 0)

(2, 1, 1, 0, -2, 1, 1, 2, 0)(0, -2, 0, 1, 2, 1, 2, 1, 0)(1, -2, -1, -1, 2, -2, 0, -2, 6)(-2, 2, 0, -2, 1, -1, -1, -2, 6)

(0, -1, -1, -1, 0, 1, -1, -1, 4)(-2, -1, -1, 1, -2, 1, -2, -1, 7)(-1, 2, -3, 1, -1, -2, -3, -3, 10)(1, 2, -1, -1, 2, 2, 0, 2, 0)

(-3, -2, 2, -1, -2, -2, 1, -1, 8)(0, -1, 1, 0, -1, -1, -1, -1, 4)(1, -1, -1, 3, 2, 2, 2, -1, 0)(1, -1, 0, 1, 1, 1, 0, -1, 1)

(2, 3, -2, -4, -4, -4, -1, 1, 11)(2, 0, 1, -2, -1, -2, -2, 1, 5)(-1, 1, -1, 0, 1, -1, -1, 0, 3)(2, 3, 3, 2, 1, -4, 1, 1, 0)

(-1, 1, 0, -1, 1, 0, -1, -1, 3)(-1, 1, 1, 3, 1, -2, 1, 2, 0)(0, 0, 0, 0, 0, 0, -1, 0, 1)(-2, 2, -1, -1, 0, -2, -2, -1, 7)

(1, 1, 1, 0, 0, -1, 0, 1, 0)(1, 1, 0, 0, -1, -1, -1, -1, 3)(1, 2, -2, -3, -3, -3, -1, 1, 9)(1, -2, 1, 1, 1, 1, 1, 1, 0)

(-3, 1, 1, 1, 2, 2, 2, 1, 0)(1, 2, 2, 0, -1, 1, -1, 1, 0)(1, -2, -3, -2, 1, -4, 3, -3, 10)(-1, 0, 1, -1, -1, 0, 1, -1, 3)

(0, -1, 1, 2, 2, 2, 1, -1, 0)(0, 1, 1, 1, 0, 0, -1, 1, 0)(3, 2, 2, 2, -1, 0, -1, -1, 0)(-1, -1, -1, -1, 0, 1, -1, 0, 4)

(2, 2, 2, -1, 3, -1, 3, -1, 0)(-1, 1, -1, 0, 0, -1, -1, -1, 4)(2, 1, 1, 1, -1, 0, -1, -1, 1)(2, 2, 0, 1, -1, -1, -2, -2, 4)

(0, 0, 0, 1, 1, 1, 1, -1, 0)(-1, 0, 0, 0, 0, 0, 0, 0, 1)(1, -1, 1, 1, 1, 2, -1, -1, 1)(0, 0, 0, 0, 0, 0, 1, 0, 0)

(-1, -2, -2, -1, -1, 2, -1, 0, 6)(1, 0, -1, 0, -1, 1, 1, -1, 2)(0, -1, 1, -1, 0, 1, 1, 1, 1)(0, -1, 1, -1, 1, 2, 2, 2, 0)

(4, 3, 3, -1, -1, -1, -1, 3, 0)(-1, -1, -1, 1, -1, 0, -1, 0, 4)(1, 1, -1, 0, 1, 1, 0, 1, 0)(1, 1, 1, 1, 0, 0, 0, -1, 0)

(-1, -1, 0, -1, 0, 1, 1, 1, 2)(1, 1, 0, -1, -1, -1, 0, 1, 2)(-2, 1, 2, 4, 2, -2, 1, 3, 0)(-2, -2, 1, -1, -2, -1, 1, 0, 6)

(0, -1, 1, 1, -1, -1, 0, -1, 3)(1, 1, 1, -1, 0, 0, 0, 1, 0)(1, 2, 2, 1, -2, 0, 0, 1, 0)(-1, -1, 1, 0, -1, -1, 1, 0, 3)

(3, 3, 2, -1, -1, -1, 0, 3, 0)(-1, 0, 0, 0, 1, 1, 1, 1, 0)(3, 3, -1, -1, -1, 2, 3, 2, 0)(2, -1, 2, 0, 2, 2, -1, 1, 0)

(-1, -1, 0, -1, 0, -1, 1, -1, 4)(-2, -1, 1, -1, -1, -1, 1, -1, 5)(1, 1, -2, 0, 1, 2, 1, 2, 0)(1, -1, -1, 0, -1, 0, -1, 1, 3)

(0, 1, 0, -1, -1, -1, -1, -1, 4)(2, 1, 1, 0, 1, 1, -2, 2, 0)(-2, 2, 1, 4, 2, -2, 1, 3, 0)(1, -2, -2, -1, 1, -3, 2, -2, 7)

(1, 0, 1, 0, 1, 1, -1, 1, 0)(1, -2, -1, -1, 2, 0, -2, -2, 6)(-1, 0, 1, 1, 1, -1, 0, 1, 1)(2, 1, 0, -2, -2, -2, -1, 1, 5)

(1, -1, -2, -1, 0, -2, 2, -2, 6)(-1, 1, 1, -1, 0, 0, 0, -1, 2)(1, 1, 1, 1, -1, 0, 0, 0, 0)(1, -1, -1, -1, 1, -2, 1, -1, 4)

(2, 1, 1, -2, 0, 1, 1, 2, 0)(-1, -1, 1, -1, -1, -1, 0, 0, 4)(3, 2, 3, -1, 0, -1, -1, 3, 0)(1, -1, 1, 0, 1, 1, 0, 1, 0)

(1, -2, -2, 2, 1, 0, 1, -1, 3)(1, -1, 0, 1, -1, -1, 1, -1, 3)(-1, 3, 3, -1, 2, 2, 2, -1, 0)(-1, 1, 0, 1, 1, -1, 0, 1, 1)

(-1, -2, 1, -1, 1, -2, -2, 2, 6)(0, 1, -1, 1, -1, 1, 0, -1, 2)(0, 1, -1, -1, 2, 2, 1, 2, 0)(-1, -1, 0, -1, 1, -1, -1, 1, 4)

(0, 0, 0, 0, 1, 0, 0, 0, 0)(1, -3, -2, -2, 3, -4, 1, -3, 10)(2, 2, -1, 0, -1, 2, 2, 1, 0)(1, -1, 2, -2, -1, -2, -2, 0, 6)

(2, -1, 2, 2, 2, 3, -1, -1, 0)(0, -2, -2, -2, -1, 2, -1, -1, 7)(3, -2, -3, 1, 3, -1, -1, -3, 7)(-1, 1, 0, 2, 1, -1, 1, 2, 0)

(0, 1, -1, -1, 1, 1, 0, 1, 1)(1, 1, 0, 1, 0, 1, 1, -1, 0)(1, -1, 1, -1, 0, -1, -1, 0, 3)(1, -1, -1, 0, 2, 1, 2, 2, 0)

(0, 0, 1, 0, 0, 0, 0, 0, 0)(1, 0, -1, 1, 1, -1, -1, -1, 3)(-1, 1, 1, 2, 1, -1, 0, 2, 0)

23

E Valid Cutting-off Inequalities Used in Analyzing LBlock

S-box Valid cutting-off inequalities

S0 (-1, 2, -2, -1, 0, 0, -2, -1, 5), (0, 1, 0, 0, 1, -1, 1, 0, 0), (-1, -1, 1, -3, 3, -1, -2, 2, 5), (3, -1, -1, -1, 0, 3, 2, 1, 0), (-1, 1, 2, 0,
-1, -1, 2, -2, 3), (0, -1, 0, 1, -1, 0, -1, 1, 2), (0, -1, 0, 0, 1, 1, 1, 0, 0), (-1, -1, -1, 0, -1, -1, 0, -1, 5), (1, 2, -2, 1, 0, 0, 1, 2, 0),
(1, 2, 3, -2, 1, 0, -1, 3, 0), (-1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0, -1, -1, -2, 6), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (1, 0, 1, 1, 0,
-1, -1, -1, 2), (1, -1, 1, -1, 2, 2, 0, 1, 0), (-1, 2, 2, 1, 0, 0, 2, -1, 0), (0, -1, -1, 1, 1, 1, 0, -1, 2), (-1, 1, 0, 0, -1, 1, 1, -1, 2), (2,
3, 1, 1, 0, -3, 1, 1, 0), (1, -1, -1, 0, 1, -1, -1, 1, 3), (2, -1, -1, 0, -1, 1, 1, 1, 1), (3, 1, 2, 1, -3, -1, 1, 3, 0), (2, -1, -1, 1, -2, 1,
0, 1, 2), (1, -1, 1, -1, 0, 1, 0, -1, 2), (1, 1, 2, 2, 0, 1, 1, -2, 0), (-1, -1, -1, -2, 2, 1, 0, 1, 3)

S1 (2, 1, 1, 1, -3, 0, 2, 1, 0), (-1, 2, -2, -1, 0, 0, -1, -2, 5), (0, 1, 0, 0, 1, -1, 0, 1, 0), (-1, -1, 1, -3, 3, -1, 2, -2, 5), (3, -1, -1, -1, 0,
3, 1, 2, 0), (-1, 4, 5, 3, -1, -1, -2, 5, 0), (0, -1, 0, 1, -1, 0, 1, -1, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (1, 2, -2, 1, 0, 0, 2, 1, 0), (-1,
-1, -1, 0, -1, -1, -1, 0, 5), (0, 1, 2, -2, 1, 0, 2, -1, 1), (-1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0, -1, -2, -1, 6), (2, 0, 1, 1, -2, -1,
1, -1, 2), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (-1, 1, -1, 0, -1, 1, -1, 0, 3), (1, -1, 1, -1, 0, 1, -1, 0, 2), (-1, -1, -1, 0, 1, 1, -1, 0, 3),
(0, -1, 1, 1, 1, -1, -1, -1, 3), (1, -1, -1, 1, 0, 1, -1, 0, 2), (2, 3, 1, 1, 0, -3, 1, 1, 0), (2, -1, 2, 3, -1, 2, 3, -1, 0), (-1, 1, 1, -1, 2,
0, 1, 1, 0), (-1, -1, 0, 0, -1, -1, -1, 1, 4), (1, -1, 0, 0, 0, 1, 0, 1, 0), (3, -1, -1, 0, -1, 2, 2, 2, 0), (1, 0, -1, 1, 0, -1, 1, -1, 2)

S2 (2, 1, 1, 1, 1, -3, 2, 0, 0), (-1, 2, -2, -1, -2, 0, -1, 0, 5), (0, 1, 0, 0, 1, 1, 0, -1, 0), (-1, -1, 1, -3, -2, 3, 2, -1, 5), (3, -1, -1, -1,
2, 0, 1, 3, 0), (-1, 4, 5, 3, 5, -1, -2, -1, 0), (0, -1, 0, 1, -1, -1, 1, 0, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (-1, -1, -1, 0, 0, -1, -1, -1, 5),
(1, 2, -2, 1, 1, 0, 2, 0, 0), (1, -2, 1, -2, 1, 3, 2, 4, 0), (1, 1, -2, -2, -1, 0, -2, -1, 6), (-1, 0, 0, 0, 1, 1, 1, 0, 0), (2, 0, 1, 1, -1, -2,
1, -1, 2), (0, -1, 1, 1, -1, 1, -1, -1, 3), (0, 1, 1, -1, -1, 0, 1, 0, 1), (-1, -1, -1, 0, 0, 1, -1, 1, 3), (0, -1, 1, -1, -1, -1, -1, 1, 4), (1,
-1, -1, 1, 0, 0, -1, 1, 2), (-1, 1, 0, 0, 1, -1, -1, 1, 2), (3, 2, -1, 3, -1, 0, 3, -1, 0), (1, 2, 1, 1, 1, 0, 0, -2, 0), (-1, 2, 1, -2, 1, 3, 2,
0, 0), (-1, 1, 2, 0, 2, -1, -2, -1, 3), (3, 1, 2, 2, 1, -4, 2, 1, 0), (-1, -1, 1, 1, -1, -1, 0, 1, 3), (3, -1, -1, 0, 2, -1, 2, 2, 0)

S3 (2, 1, 1, 1, 0, 1, -3, 2, 0), (-1, 2, -2, -1, 0, -2, 0, -1, 5), (0, 1, 0, 0, -1, 1, 1, 0, 0), (-1, -1, 1, -3, -1, -2, 3, 2, 5), (3, -1, -1, -1,
3, 2, 0, 1, 0), (-1, 1, 2, 0, -1, 2, -1, -2, 3), (0, -1, 0, 1, 0, -1, -1, 1, 2), (0, -1, 0, 0, 1, 1, 1, 0, 0), (-1, -1, -1, 0, -1, 0, -1, -1, 5),
(1, 2, -2, 1, 0, 1, 0, 2, 0), (1, 2, 2, -1, 0, -1, 0, 2, 0), (1, 1, -2, -2, -1, -1, 0, -2, 6), (-1, 0, 0, 0, 0, 1, 1, 1, 0), (1, 0, 1, 1, -1, -1,
0, -1, 2), (1, -1, -1, 1, 1, 0, 0, -1, 2), (1, -1, 1, -1, 2, 0, 2, 1, 0), (-1, 0, 1, 0, 1, 1, 1, 0, 0), (-1, 0, -1, 0, 1, -1, 1, -1, 3), (-1, 1,
-1, 0, 1, 0, -1, -1, 3), (0, -1, 1, -1, 1, -1, -1, -1, 4), (3, 2, -1, 3, -1, -1, 0, 3, 0), (1, 2, -1, 1, -1, 1, 0, 1, 0), (3, 1, 2, 0, -1, 1, -2,
2, 0), (-1, -1, 1, 1, 1, -1, -1, 0, 3), (1, 1, 2, 2, 1, 1, 0, -2, 0), (2, -1, -1, 0, 1, 1, -1, 1, 1), (0, -1, 1, 1, -1, -1, 1, -1, 3)

S4 (2, 1, 1, 1, 1, -3, 0, 2, 0), (-1, 2, -2, -1, -2, 0, 0, -1, 5), (0, 1, 0, 0, 1, 1, -1, 0, 0), (-1, -1, 1, -3, -2, 3, -1, 2, 5), (3, -1, -1, -1,
2, 0, 3, 1, 0), (-1, 4, 5, 3, 5, -1, -1, -2, 0), (0, -1, 0, 1, -1, -1, 0, 1, 2), (0, -1, 0, 0, 1, 1, 1, 0, 0), (-1, -1, -1, 0, 0, -1, -1, -1, 5),
(1, 2, -2, 1, 1, 0, 0, 2, 0), (1, -1, 1, -1, -1, 2, 1, 1, 1), (1, 1, -2, -2, -1, 0, -1, -2, 6), (-1, 0, 0, 0, 1, 1, 0, 1, 0), (-1, -1, -1, 0, 0,
1, 1, -1, 3), (1, 0, 1, 1, -1, 0, -1, -1, 2), (1, -1, -1, 1, 0, 0, 1, -1, 2), (-1, 1, 0, 0, 1, -1, 1, -1, 2), (2, 2, 3, -1, -1, 0, -1, 3, 0),
(-1, -1, 1, 0, -1, -1, 1, -1, 4), (3, -1, -1, 0, 2, -1, 2, 2, 0), (-1, 1, 1, -1, 1, 2, 0, 1, 0), (1, -1, 0, 0, 1, 0, 1, 0, 0), (1, -1, 1, -1, 0,
0, 1, -1, 2), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (2, 3, 1, 1, 1, 0, -3, 1, 0), (1, 0, -1, 1, -1, 0, -1, 1, 2), (0, 1, 2, -2, -1, 1, 0, 2, 1)

S5 (2, 1, 1, 1, -3, 1, 0, 2, 0), (-1, 2, -2, -1, 0, -2, 0, -1, 5), (0, 1, 0, 0, 1, 1, -1, 0, 0), (-1, -1, 1, -3, 3, -2, -1, 2, 5), (3, -1, -1, -1,
0, 2, 3, 1, 0), (-1, 1, 2, 0, -1, 2, -1, -2, 3), (0, -1, 0, 1, -1, -1, 0, 1, 2), (0, -1, 0, 0, 1, 1, 1, 0, 0), (-1, -1, -1, 0, -1, 0, -1, -1, 5),
(1, 2, -2, 1, 0, 1, 0, 2, 0), (1, -1, 1, -1, 2, -1, 1, 1, 1), (-1, 0, 0, 0, 1, 1, 0, 1, 0), (1, 1, -2, -2, 0, -1, -1, -2, 6), (0, 1, 1, -1, 0,
-1, 0, 1, 1), (-1, 0, 1, 0, 1, 1, 1, 0, 0), (1, 0, 1, 1, 0, -1, -1, -1, 2), (1, -1, -1, 1, 0, 0, 1, -1, 2), (-1, 1, -1, 0, -1, 0, 1, -1, 3), (0,
-1, 1, -1, -1, -1, 1, -1, 4), (-1, -1, -1, 0, 1, 0, 1, -1, 3), (2, -1, -1, 0, -1, 1, 1, 1, 1), (1, -1, -1, 0, 1, -1, -1, 1, 3), (1, 1, 0, 0, 0,
1, -1, 0, 0), (5, 2, 4, 1, -4, 1, -2, 4, 0), (1, 1, 2, 2, 0, 1, 1, -2, 0), (-1, -1, 1, 1, -1, -1, 1, 0, 3), (0, -1, 1, 1, 1, -1, -1, -1, 3)

S6 (2, 1, 1, 1, -3, 0, 2, 1, 0), (-1, 2, -2, -1, 0, 0, -1, -2, 5), (0, 1, 0, 0, 1, -1, 0, 1, 0), (-1, -1, 1, -3, 3, -1, 2, -2, 5), (3, -1, -1, -1, 0,
3, 1, 2, 0), (-1, 4, 5, 3, -1, -1, -2, 5, 0), (0, -1, 0, 1, -1, 0, 1, -1, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (1, 2, -2, 1, 0, 0, 2, 1, 0), (-1,
-1, -1, 0, -1, -1, -1, 0, 5), (0, 1, 2, -2, 1, 0, 2, -1, 1), (-1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0, -1, -2, -1, 6), (2, 0, 1, 1, -2, -1,
1, -1, 2), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (-1, 1, -1, 0, -1, 1, -1, 0, 3), (1, -1, 1, -1, 0, 1, -1, 0, 2), (-1, -1, -1, 0, 1, 1, -1, 0, 3),
(0, -1, 1, 1, 1, -1, -1, -1, 3), (1, -1, -1, 1, 0, 1, -1, 0, 2), (2, 3, 1, 1, 0, -3, 1, 1, 0), (2, -1, 2, 3, -1, 2, 3, -1, 0), (-1, 1, 1, -1, 2,
0, 1, 1, 0), (-1, -1, 0, 0, -1, -1, -1, 1, 4), (1, -1, 0, 0, 0, 1, 0, 1, 0), (3, -1, -1, 0, -1, 2, 2, 2, 0), (1, 0, -1, 1, 0, -1, 1, -1, 2)

S7 (2, 1, 1, 1, -3, 0, 2, 1, 0), (-1, 2, -2, -1, 0, 0, -1, -2, 5), (0, 1, 0, 0, 1, -1, 0, 1, 0), (-1, -1, 1, -3, 3, -1, 2, -2, 5), (3, -1, -1, -1, 0,
3, 1, 2, 0), (-1, 4, 5, 3, -1, -1, -2, 5, 0), (0, -1, 0, 1, -1, 0, 1, -1, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (1, 2, -2, 1, 0, 0, 2, 1, 0), (-1,
-1, -1, 0, -1, -1, -1, 0, 5), (0, 1, 2, -2, 1, 0, 2, -1, 1), (-1, 0, 0, 0, 1, 0, 1, 1, 0), (1, 1, -2, -2, 0, -1, -2, -1, 6), (2, 0, 1, 1, -2, -1,
1, -1, 2), (-1, -1, 1, 0, -1, 1, -1, -1, 4), (-1, 1, -1, 0, -1, 1, -1, 0, 3), (1, -1, 1, -1, 0, 1, -1, 0, 2), (-1, -1, -1, 0, 1, 1, -1, 0, 3),
(0, -1, 1, 1, 1, -1, -1, -1, 3), (1, -1, -1, 1, 0, 1, -1, 0, 2), (2, 3, 1, 1, 0, -3, 1, 1, 0), (2, -1, 2, 3, -1, 2, 3, -1, 0), (-1, 1, 1, -1, 2,
0, 1, 1, 0), (-1, -1, 0, 0, -1, -1, -1, 1, 4), (1, -1, 0, 0, 0, 1, 0, 1, 0), (3, -1, -1, 0, -1, 2, 2, 2, 0), (1, 0, -1, 1, 0, -1, 1, -1, 2)

S8 (2, 1, 1, 1, 0, -3, 2, 1, 0), (-1, 2, -2, -1, 0, 0, -1, -2, 5), (0, 1, 0, 0, -1, 1, 0, 1, 0), (-1, -1, 1, -3, -1, 3, 2, -2, 5), (3, -1, -1, -1, 3,
0, 1, 2, 0), (-1, 4, 5, 3, -1, -1, -2, 5, 0), (0, -1, 0, 1, 0, -1, 1, -1, 2), (0, -1, 0, 0, 1, 1, 0, 1, 0), (1, 2, -2, 1, 0, 0, 2, 1, 0), (-1,
-1, -1, 0, -1, -1, -1, 0, 5), (1, 1, 2, -1, -1, 0, 2, -1, 1), (1, 1, -2, -2, -1, 0, -2, -1, 6), (-1, 0, 0, 0, 0, 1, 1, 1, 0), (3, 2, 3, 3, -1, 0,
-1, -1, 0), (1, -1, -1, 1, 1, 0, -1, 0, 2), (1, -1, 1, -1, 1, 2, 1, -1, 1), (-1, -1, -1, 0, 1, 1, -1, 0, 3), (-1, 1, 0, 0, 1, -1, -1, 1, 2), (0,
-1, 1, -1, 1, -1, -1, -1, 4), (-1, 2, 1, -2, 0, 3, 2, 1, 0), (3, 2, -1, 3, -1, 0, 3, -1, 0), (-1, -1, 0, 0, -1, -1, -1, 1, 4), (-1, -1, 1, 0, -1,
1, -1, -1, 4), (2, 3, 1, 1, -3, 0, 1, 1, 0), (3, 1, 2, 2, 1, -4, 2, 1, 0), (-1, -1, 1, 1, 1, -1, 0, -1, 3), (-1, 1, 0, -1, 0, 0, 1, -1, 2)

S9 (2, 1, 1, 1, 1, 2, 0, -3, 0), (-1, 2, -2, -1, -2, -1, 0, 0, 5), (0, 1, 0, 0, 1, 0, -1, 1, 0), (-1, -1, 1, -3, -2, 2, -1, 3, 5), (3, -1, -1, -1,
2, 1, 3, 0, 0), (-1, 4, 5, 3, 5, -2, -1, -1, 0), (0, -1, 0, 1, -1, 1, 0, -1, 2), (0, -1, 0, 0, 1, 0, 1, 1, 0), (-1, -1, -1, 0, 0, -1, -1, -1, 5),
(1, 2, -2, 1, 1, 2, 0, 0, 0), (1, -1, 1, -1, -1, 1, 1, 2, 1), (1, 1, -2, -2, -1, -2, -1, 0, 6), (-1, 0, 0, 0, 1, 1, 0, 1, 0), (-1, -1, -1, 0, 0,
-1, 1, 1, 3), (-1, 1, 0, 0, 1, -1, 1, -1, 2), (1, -1, -1, 1, 0, -1, 1, 0, 2), (-1, 1, 0, -1, -1, 1, 0, 0, 2), (6, 2, 3, 3, -1, 3, -1, -4, 0), (0,
-1, 1, 1, -1, -1, -1, 1, 3), (0, -1, 1, -1, -1, -1, 1, -1, 4), (1, -1, 0, 0, 1, 0, 1, 0, 0), (2, 3, 1, 1, 1, 1, -3, 0, 0), (1, 0, -1, 1, -1, 1,
-1, 0, 2), (3, -1, -1, -1, 2, 1, 2, -1, 1), (-1, 0, 1, -1, 1, 1, 1, 2, 0), (-1, 1, 2, 0, 2, -2, -1, -1, 3), (-1, -1, 1, 1, -1, 0, 1, -1, 3)

