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Abstract. In this paper, we present a heuristic algorithm for solving exact, as well as approx-
imate, SVP and CVP for lattices. This algorithm is based on a new approach which is very
different from and complementary to the sieving technique. This new approach allows us to solve
not only shortest vector problems, but also closest vector problems, in lattices of dimension n
in time 20.3774n using memory 20.2925n. Moreover, it is straightforward to parallelize on most
computer architectures. The key idea is to no longer work with a single lattice but to move the
problems around in a tower of related lattices. We initiate the algorithm by sampling very short
vectors in an overlattice of the original lattice that admits a quasi-orthonormal basis and hence
an efficient enumeration of vectors of bounded norm. Taking sums of vectors in the sample, we
construct short vectors in the next lattice of our tower. Repeating this, we climb all the way to
the top of the tower and finally obtain solution vector(s) in the initial lattice as a sum of vectors
of the overlattice just below it. The complexity analysis relies on the Gaussian heuristic. This
heuristic is backed by experiments in low and high dimensions that closely reflect these estimates
when solving hard lattice problems in the average case.

1 Introduction

Hard lattice problems, such as the shortest vector problem (SVP) and the closest vector prob-
lem (CVP), have a long standing relationship to number theory and cryptology. In number
theory, they can for example be used to find Diophantine approximations. In cryptology, for a
long time, they were used as cryptanalytic tools, first through a direct approach as in [19] and
then more indirectly using Coppersmith’s small roots algorithms [8, 9]. More recently, these
hard problems have also been used to construct cryptosystems. Lattice-based cryptography is
also a promising area due to the simple additive, parallelizable structure of a lattice. The two
basic hard problems SVP and CVP are known to be NP-hard 4 to solve exactly [1, 21] and
also NP-hard to approximate [10, 26] within at least constant factors. The time complexity
of known algorithms that find the exact solution are at least exponential in the dimension of
the lattice. These algorithms also serve as subroutines for strong polynomial time approxi-
mation algorithms. Algorithms for the exact problem hence enable us to choose appropriate
parameters.

A shortest vector can be found by enumeration [34, 20], sieving [3, 29, 28, 36] or the Voronoi-
cell algorithm [27]. Enumeration uses a negligible amount of memory and its running time is
between nO(n) and 2O(n

2) depending on the amount and quality of preprocessing. Probabilistic
sieving algorithms, as well as the deterministic Voronoi-cell algorithm are simply exponential
in time and memory. A closest vector can be found by enumeration and by the Voronoi-cell
algorithm, however, state-of-the-art sieving techniques cannot be directly applied to solve CVP

4 Under randomized reductions in the case of SVP.
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instances. Table 1 presents the complexities of currently known SVP and CVP algorithms
including our new algorithm. In particular, it shows that the asymptotic time complexity
of our new approach (slightly) outperforms the complexity of the best pre-existing sieving
algorithm and that, as a bonus, it can for the same price serve as a CVP algorithm.

A long standing open question was to find ways to decrease the complexity of enumeration-
based algorithms to a single exponential time complexity. On an LLL- or BKZ-reduced ba-
sis [23, 34] the running time of Schnorr-Euchner’s enumeration is double exponential in the
dimension. If we further reduce the basis to a HKZ-reduced basis [22], the complexity becomes
2O(n logn) [20, 18]. Enumeration would become simply exponential if a quasi-orthonormal ba-
sis, as defined in Sect. 2, could be found. Unfortunately, most lattices do not possess such a
favorable quasi-orthonormal basis. Also for random lattices the lower bound on the Rankin
invariant is of size 2Θ(n logn) and determines the minimal complexity for enumeration that
operates exclusively on the original lattice. We provide a more detailed discussion in Sect. 2.

Our approach circumvents this problem by making use of overlattices that admit a quasi-
orthonormal basis and which are found in polynomial time by a special case of structural
reduction as described in Sect. 3.3. Once we have an overlattice and its quasi-orthonormal
basis, our main task is to find a solution vector in the initial lattice given a sample of short
vectors in the overlattice. This is similar to hardness results frequently found in worst-case
to average-case proofs. Usually, a short overlattice basis is used to sample a pool of short
Gaussian overlattice vectors, which are then combined by a SIS (short integer solution) oracle
into polynomially longer vectors of the original lattice. In our setting, the overlattice basis is
quasi-orthonormal, which allows an efficient enumeration of the shortest overlattice vectors.
These vectors are then combined to the shortest vectors of the original lattice by a concrete,
albeit exponential-time, algorithm.

The new algorithm solves SVP and CVP for random lattices and follows a novel approach
to tackle them. It represents an adaptation of the representation technique that solves knap-
sack problems [4] and decoding problems [24, 5] to the domain of lattices. Due to the richer
structure of lattices, the adaptation is far from straightforward. To give a brief analogy, in-
stead of searching for a knapsack solution, assume that we want to find a short vector in
an integer lattice. An upper-bound on the Euclidean norm of the solution vector provides
a geometric constraint, which induces a very large search space. The short vector we seek
can be decomposed in many ways as the sum of two shorter vectors with integer coefficients.
Assuming that these sums provide N different representations of the same solution vector,
we can then choose any arbitrary constraint which eliminates all but a fraction ≈ 1/N of
all representations. With this additional constraint, the solution vector can still be efficiently
found, in a search space reduced by a factor N . From a broader perspective, this technique can
be used to transform a problem with a hard geometric constraint, like short lattice vectors,
into an easier subproblem, like short integer vectors (because Zn has an orthonormal basis),
together with a custom additional constraint, which is in general linear or modular, which
allow an efficient recombination of the solutions to the subproblems.
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Table 1. Complexity of currently known SVP/CVP algorithms.

Algorithm Time Memory CVP SVP

Kannan-Enumeration [18] nn/2+o(n) poly(n) X proven

nn/(2e)+o(n) poly(n) X proven
Voronoi-cell [27] 22n 2n X X proven

ListSieve-Birthday [31] 22.465n+o(n) 21.233n+o(n) × X proven

GaussSieve [28] 20.415n+o(n)? 20.2075n+o(n)? ? X heuristic

Nguyen-Vidick sieve [29] 20.415n+o(n) 20.2075n+o(n) × X heuristic

WLTB sieve [36] 20.3836n+o(n) 20.2557n+o(n) × X heuristic

Three-level sieve [37] 20.3778n+o(n) 20.2833n+o(n) × X heuristic

Our algorithm from 20.4150n 20.2075n X X heuristic
to 20.3774n 20.2925n

The biggest challenge is to bootstrap the algorithm by finding suitable and easier sub-
problems related to overlattices. We propose a generic method that achieves this thanks to a
well-chosen overlattice for which a deterministic enumeration of vectors of bounded norm is
efficient. In this way, we can compute a starting set of vectors that can be used as the starting
point of a sequence of recombinations that ends up solving the initially considered problem.

1.1 Our contribution.

We present a new heuristic algorithm for the exact SVP and CVP for n-dimensional lattices
using a tower of k overlattices Li, where L = L0 ⊆ .. ⊆ Lk. In this tower, we choose the
lattice Lk at the bottom of the tower in a way that ensures that we can efficiently compute
a sufficiently large pool of very short vectors in Lk. Starting from this pool of short vectors,
we move from each lattice of our tower to the one above using summation of vectors while
controlling the growth of norms. For random lattices and under heuristic assumptions, two
Li-vectors sum up to an Li−1-vector with probability 1

αn , where vol (Li−1) /vol (Li) = αn > 1.
We allow the norm to increase by a moderate factor α in each step, in order to preserve the
size of our pool of available vectors per lattice in our tower.

Our method can be used to find vectors of bounded norm in a lattice L or, alternatively,
in a coset x+L, x /∈ L. Thus, in contrast to classical sieving techniques, it allows us to solve
both SVP or CVP, and more generally, to enumerate all lattice points within a ball of fixed
radius. Furthermore, the time and memory complexity are no longer linked to the kissing
number. The average running time in the asymptotic case is 20.3774n, requiring a memory
of 20.2925n. It is also possible to choose different time-memory tradeoffs and devise slower
algorithms that need less memory. We report our experiments on random lattices and SVP
challenges of dimension 40 to 90, whose results confirm our theoretical analysis and show
that the algorithm works well in practice. We also study the various options to parallelize the
algorithm and show that parallelization works well on a wide range of computer architectures.

2 Background and notation

Lattices and cosets. A lattice L of dimension n is a discrete subgroup of Rm. A lattice can be
described as the set of all integer combinations {∑n

i=1 αibi |αi ∈ Z} of n linearly independent
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vectors bi of Rm. In this case the vectors b1, .., bn are called a basis of L. The volume of the
lattice L is the volume of span(L)/L, and can be easily computed as

√
det(BBt), for any

basis B. Any lattice has a shortest non-zero vector of Euclidean length λ1(L) which can be

upper bounded by Minkowski’s theorem as λ1(L) ≤ √n vol (L)1/n. We call a coset of a lattice
a translation x + L = {x + v |v ∈ L} of L by a vector x ∈ span(L).

Overlattice and index. A lattice L′ of dimension n such that L ⊆ L′ is called an overlattice of
L. The quotient group L′/L is a finite abelian group of order vol(L)/vol(L′) = [L′ : L].

Hyperballs. Let Balln(R) denote the ball of radius R in dimension n where we omit n if it is
implied from the context. The volume Vn of the n-dimensional ball of radius 1 and the radius
rn of the n-dimensional ball of volume 1 are:

Vn =
√
π
n

Γ(n2+1)
and rn = V

−1/n
n =

√
n

2πe(1 + o(1)), respectively.

Gaussian heuristic. In many cases, when we wish to estimate the number of lattice points in
a “nice enough” set S, we use the following approximation called the Gaussian heuristic:

Heuristic 2.1 ((Gaussian Heuristic)) Given a lattice L and a suitable set S, the number
of points in S ∩ L can be approximated by vol (S) /vol (L).

When S is a ball of radius at least
√
n
ε
vol(L)1/n for some fixed ε > 0, we can prove that this

estimate holds for almost all real lattices, and almost all integer lattices of large volume [2]. It
has been widely experimentally verified that for random integer cocyclic real lattices of large
volume, this estimate also holds when S is a smaller ball of radius close to

√
n vol(L)1/n. This

allows to estimate the length of the shortest vector of a random lattice as the radius of a ball of
volume vol (L): λ1(L) ≈ rn ·vol (L)1/n . It also indicates that a ball of radius β rnvol (L)1/n, for
all real β > 0, should asymptotically contain about βn lattice points. However, this heuristic
may not hold for specific lattices. For example, the number of lattice points of Zn contained
in a ball varies significantly depending on the center of the ball; it differs from the heuristic
by an exponential factor in n [25]. In general, any use of Heuristic 2.1 requires an experimen-
tal validation. We describe experiments validating the use of the Gaussian heuristic in our
algorithm in Sect. 4.

Gram-Schmidt orthogonalization (GSO). The GSO of a non-singular square matrix B is the
unique decomposition as B = µ ·B∗, where µ is a lower triangular matrix with unit diagonal
and B∗ consist of mutually orthogonal rows. For each i ∈ [1, n], we call πi the orthogonal
projection over span(b1, .., bi−1)

⊥. In particular, one has πi(bi) = b∗i , which is the i-th row of
B∗. We use the notation B[i,j] for the projected block [πi(bi), . . . , πi(bj)].

Rankin factor and quasi-orthonormal basis. Let B be an n dimensional basis of a lattice L,
and j ≤ n. We call the ratio

γn,j(B) =
vol(B[1,j])

vol(L)j/n
=

vol(L)(n−j)/n

vol(πj+1(L))

the Rankin factor of B with index j. The well known Rankin invariants of the lattice, γn,j(L),
introduced by Rankin [32] are simply the squares of the minimal Rankin factors of index j
over all bases of L. This allows to define a quasi-orthonormal basis.



5

Definition 1 (quasi-orthonormal basis). A basis B is quasi-orthonormal if and only if
its Rankin factors satisfy 1 ≤ γn,j(B) ≤ n for all j ∈ [1, n].

For example, any real triangular matrix with identical diagonal coefficients forms a quasi-
orthogonal basis. More generally, any basis whose ‖b∗i ‖ are almost equal is quasi-orthogonal.
This is a very strong notion of reduction, since average LLL-reduced or BKZ-reduced bases
only achieve a 2O(n

2) Rankin factor and HKZ-reduced bases of random lattices have a 2O(n logn)

Rankin factor. Finally, Rankin’s invariants are lower-bounded [6, 35, 13] by 2Θ(n logn) for almost
all lattices5, which means that only lattices in a tiny subclass possess a quasi-orthonormal
basis.

Schnorr-Euchner enumeration Given a basis B of an integer lattice L ⊆ Rn, Schnorr-
Euchner’s enumeration algorithm [34] allows to enumerate all vectors of Euclidean norm ≤ R
in the bounded coset C = (z+L)∩Balln(R) where z ∈ Rn. The running time of this algorithm
is

TSE =

n∑

i=1

# (πn+1−i(z + L) ∩ Balli(R)) , (1)

which is equivalent to

TSE ≈
n∑

i=1

vol(Balli(R))

vol(πn+1−i(L))
(2)

under Heuristic 2.1. The last term in the sums (1) and (2) denotes the number of solutions
#C. Thus, the complexity of enumeration is approximately TSE ≈ Õ (#C) · max

j∈[1,n]
γn,j(B).

This is why a reduced basis of smallest Rankin factor is favorable. The lower bound on
Rankin’s invariant of γn,n/2(L) = 2Θ(n logn) for most lattices therefore determines the minimal
complexity of enumeration that is achievable while working with the original lattice, provided
that one can actually compute a basis of L minimizing the Rankin factors, which is also NP-
hard. If the input basis is quasi-orthonormal, the upper-bound γn,j(B) ≤ n from Definition 1
implies that the enumeration algorithm runs in time Õ (#C), which is optimal. Without
knowledge of a good basis one can aim to decompose the problem into more favorable cases
that finally allow to apply Schnorr-Euchner’s algorithm as we describe in the following.

3 Enumeration of short vectors by intersection of hyperballs

The section presents the new algorithm that enumerates βn shortest vectors in any coset
t + L of a lattice L for a constant β ≈

√
3/2. It can be used to solve the NP-hard problems

SVP, CVP, ApproxSVPβ and ApproxCVPβ: Given a lattice L, the SVP can be reduced to
enumerating vectors of Euclidean norm O(λ1(L)) in the coset 0 + L while a CVP instance
can be solved by enumerating vectors of norm at most dist(t,L) in the coset −t + L. These
bounded cosets, (t + L) ∩ Balln(R) for suitable radius R, can be constructed in an iterative
way by use of overlattices. The searched vectors are expressed as a sum of short vectors of
suitable translated overlattices of smaller volume. The search for a unique element in a lattice
as required in the SVP or CVP is delegated to the problem of enumerating bounded cosets.

5 γ2n,n(L) ≥ (n/12)n with probability ≈ 1 on random real lattices of volume 1 drawn from the Haar distri-
bution.
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Any non-trivial element found by our algorithm is naturally a solution to the corresponding
ApproxSVPβ or ApproxCVPβ.

We present the new algorithm solving lattice problems based on intersections of hyperballs
in Sect. 3.1 and application to co-cyclic lattices and q-ary lattices as an example in Sect. 3.2.
These examples motivate the generic initialization of our algorithm as described in Sect. 3.3.

3.1 General description of the new algorithm

Assume that we are given a tower of k = O(n) lattices Li ⊂ Rn of dimension n where
Li ⊆ Li+1 and the volume of any two consecutive lattices differs by a factor αn ∈ N>1. We
also assume that the bottom lattice Lk permits an efficient enumeration of the βn shortest
vectors in any coset t + Lk for 1 < β <

√
3/2. The ultimate goal is to find the βn shortest

vectors in some coset t0 + L0 of L0. We postpone how to find suitable lattices Li, i ≥ 1, to
the following two sections.

We also assume in this section, that the Gaussian heuristic (Heuristic 1) holds. Under this
assumption, the problem of finding the βn shortest elements in some coset t + L is roughly
equivalent to enumerating all lattice vectors of L in the ball of radius β ·rn · n

√
vol (L) centered

at −t ∈ Rn.

For each i ∈ [0, k], we define a real vector ti = t0/2
i ∈ Rn, and a bounded coset Ci that

contains the βn shortest vectors of the coset ti + Li. More formally, let us define

Ri = β · rn n
√

vol(Li) and Ci = (ti + Li) ∩ Ball(0, Ri)

such that

#Ci ≈ vol(Ball(Ri))/vol(Li) = βn ,

which follows from the Heuristic 2.1. In addition, we require that

Li ⊂ Li+1 where vol(Li)/vol(Li+1) = αn .

The goal of our algorithm is to enumerate C0, and to do that, it successively enumerates
subsets Si ⊆ Ci, starting from i = k down to zero, containing a majority of all elements which
means that #Si ≈ #Ci. Figure 1 illustrates the sequence of enumerated lists.

S0 ⊆ C0

Si ⊆ Ci

Enumerate Sk = Ck

+ check (3),(4)

+ check (3),(4)

Fig. 1. Iterative creation of lists.

z
x

I

z − x

Fig. 2. Vector z ∈ Ci−1 found as sum between
x ∈ Ci and z − x ∈ Ci ⇔ I ∩ (ti + Li) 6= ∅.

During the construction of the tower of lattices, which is studied in the next sections, we
already ensure that Sk = Ck is easy to obtain. We now explain how we can compute Si−1
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from Si. To do this, we compute all sums x + y of vector pairs of Si × Si which satisfy the
conditions

x + y ∈ ti−1 + Li−1 and (3)

‖x + y‖ ≤ β · rn · n
√

vol (Li) . (4)

This means that we collect the βn shortest vectors of the coset Ci−1 = ti−1 + Li−1 by going
through the list Si of short elements belonging to Ci = ti +Li. In practice, an equivalent way
to check if condition (3) holds, is to use an efficient computation for the map ϕi−1 : Ci →
Li/Li−1, z → z − ti mod Li−1 and to verify that ϕi−1(x) + ϕi−1(y) = 0. Section 3.2 shows
concrete examples for ϕi which are easy to implement. Alg. 1 summarizes our approach.

Algorithm 1 Coset enumeration

Constants: α ≈
√

4/3, β ≈
√

3/2 Parameters: k

Input: A LLL-reduced basis B of L0 and a center t ∈ Rn
Output: Almost all the βn shortest elements of t + L0

1: Randomize the input target by sampling t0 ∈ t + L. Use for example a Discrete Gaussian Distribution of
parameter

√
n‖B∗‖. This defines all the sub-targets ti = t0/2

i

2: Compute a tower of lattices L0, ..,Lk by use of Alg. 3 such that
- L0 ⊂ L1 ⊂ ... ⊂ Lk and vol(Li)/vol(Li−1) = αn

- lattice enumeration is easy on Lk
- testing-morphisms ϕi−1 from ti + Li to Li/Li−1 are efficient to evaluate.

3: Sk ← Enumerate bottom coset Ck (Schnorr-Euchner)
4: for i = k − 1 downto 0 do
5: Si ← Merge(Si+1, ϕi, Ri = βrnvol(Li)) (Alg. 2)
6: end for
7: return S0

A naive implementation of the merge routine that creates Si−1 from Si would just run
through the β2n pairs of vectors from Si × Si, and eliminate those that do not satisfy the
constraints (3) and (4). By regrouping the elements of Si into αn buckets, according to their
value modulo Li−1, condition (3) implies that each element of Si only needs to be paired with
the elements of a single bucket, see Alg. 2. Heuristic 2.1 implies that each bucket contains
≈ (β/α)n elements, therefore the merge operation can then be performed in time

(
β2/α

)n
.

Complexity and constraints for parameters α and β. It is clear that at each level, conditions (3)
and (4) imply that Si is a subset of Ci. We now need to prove that there exist constants α and
β such that a constructed list Si contains all or at least a vast majority of Ci. If, by decreasing
induction on i, Si is close to Ci, the main requirement is that almost all points of Ci−1 can be
expressed as the sum of two points in Ci, see Fig. 2 for an illustration. This geometric constraint
can be simply rephrased as follows: a vector z ∈ Ci−1 is found if and only if there exists at
least one vector x of the coset ti+Li in the intersection of two balls of radius Ri, the first one
centered in 0, and the second one in z. It is clear that z − x ∈ Ci = ti + Li since 2 ti = ti−1
and Li−1 ⊆ Li. So if there is a point x ∈ Ci in the intersection I = Ball(0, Ri) ∩ Ball(z, Ri),
we obtain z ∈ Ci−1 as a sum between x ∈ Ci and z−x ∈ Ci. Under Heuristic 2.1, this occurs
with high probability as soon as the intersection I of the two balls has a larger volume than
Li. We thus require that vol (I) / vol (Li) ≥ K for some constant K > 1.
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Algorithm 2 Merge by collision
/∗ Efficiently find pairs of vectors of Ci+1 s.t. their sum is in Ci

∗/
/∗ Ci denotes (ti + Li) ∩ Ball(Ri)

∗/

Input: A set of vectors Si+1 ⊆ Ci+1, a testing morphism ϕi and a radius Ri
Output: A set Si of elements of Ci
1: Si ← ∅
2: Reorganize Si+1 into buckets indexed by the values of ϕi
3: for each v ∈ Si+1 do
4: for each u in the bucket of index −ϕi(v) do
5: if ‖u + v‖ ≤ Ri then
6: Si ← Si ∪ {u + v}
7: end if
8: end for
9: end for

10: return Si

From Lemma 1 and its corollary in the appendix, we derive that the intersection of
two balls of radius Ri at distance at most Ri−1 = αRi is larger than 0.692 · vol(Ball(Ri ·√

1− (α/2)2))/
√
n. A sufficient condition on α and β is then

(
β ·
√

1− (α/2)2
)n
≥ K√n or alternatively (5)

β
√

1− (α/2)2 ≥ (1 + εn) (6)

where εn = (K
√
n)1/n − 1 decreases towards 0 when n grows.

Of course, for optimization reasons, we want to minimize the size of the lists βn, and the
number of steps (β2/α)n in the merge. Therefore we want to minimize β and maximize α under
the above constraint. The total running time of Alg. 1 is given by B+ poly(n)

(
β2/α

)n
where

B represents the running time of the initial enumeration at level k (details in Sect. 3.4). For
optimal parameters, inequality (6) is in fact an equality. Asymptotically, the shortest running
time occurs for α =

√
4/3 and β =

√
3/2 for which a merge costs around (β2/α)n ≈ 20.3774n

and the size of the lists is βn ≈ 20.2925n.

Time-memory trade-off. Other choices of α and β that satisfy (6) provide a trade-off between
running time and required memory. Figure 3 shows the logarithmic size of the lists the algo-
rithm needs to store depending on the time one is willing to spend. If one has access to only
βn ≈ 20.21n in memory, the time complexity increases to (β2/α)n ≈ 20.41n. In practice, we
choose α > 1 and β > 0 satisfying (5) with the constraint that αn is integer.

3.2 Example for co-cyclic lattices or q-ary lattices.

We now give a simple intuition on how we could define the overlattice tower in the case of
random co-cyclic lattices and q-ary lattices. These examples help to understand the idea that
even for hard lattices, it is fairly easy to find quasi-orthonormal bases in overlattices. In the
next section, we will present a more general method to create randomized overlattices, which
performs well in practice for all types of lattices, including cocyclic or q-ary lattices, and
ensures the estimated complexity as denoted in Sect. 3.1 which is based on Heuristic 2.1.
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20.375n

20.38n

20.385n

20.39n

20.395n

20.4n

20.405n

20.41n

20.415n

20.2n 20.21n 20.22n 20.23n 20.24n 20.25n 20.26n 20.27n 20.28n 20.29n 20.3n

ti
m
e
=

(
β
2 α

) n

memory = βn

time vs. memory
α ≈ 1, β =

√
4
3

α =
√

4
3 , β =

√
3
2

Fig. 3. Trade-off between memory and time for varying choices of α and β.

In the following description, the tower of lattices remains implicit in the sense that we do
not need to find a basis for each of the k + 1 lattices Li. We only need a description of the
initial and the bottom lattice as we test membership to a coset by evaluating ϕi.
Let L ⊆ Zn be a co-cyclic lattice given as L = {x ∈ Zn,

∑n
i=1 aixi = 0 mod M} for large M ∈

N and random integers a1, .., an ∈ [0,M−1]. The task is to enumerate C = (t+L) ∩ Balln(R)
where R = β · rn · vol(L)1/n for a given β > 1. For k = O(n), the connection with random
subset sum instances, as well as newer adaptations of worst-case to average case proofs (see
[14]) support the claim that random instances are hard. Choose α such that M = αnk ∈ N
and define N = αn ∈ N. We can naturally define the tower consisting of lattices

Li = {y ∈ Zn,
n∑

i=1

aiyi = 0 mod Nk−i} .

At the level k, we have Lk = Zn so that we can efficiently enumerate any coset C by use
of the Schnorr-Euchner algorithm [34] in time poly(n) · |C| as we argue in Sect. 2. The coset
testing function ϕi, which represents x−ti mod Li−1, can be implemented as 〈a,x−ti〉/Nk−i

mod N .
A second example is the class of q-ary lattices. Let L be the lattice of dimension n and

volume qk such that for x ∈ Zn,

x ∈ L ⇐⇒ [(a1,1x1 + ..+ a1,nxn ≡q 0) ∧ .. ∧ (ak,1x1 + ..+ ak,nxn ≡q 0)] (7)

where ai,j are uniform in Z/qZ. For q = αn classical worst-case to average-case reductions
prove that these lattices provide difficult lattice problems on average [1]. Here, a lattice Li
could be defined as the lattice satisfying the last i equations of (7). Again, Lk is Zn , Li−1 ⊆ Li
and vol (Li−1) /vol (Li) = q. The coset testing function ϕi can be computed as 〈ai,x − ti〉
mod q.

As elegant as it may seem, these simple towers of lattices are not as efficient as one could
expect, because the top overlattice is Zn, and the Gaussian heuristic does not apply to its
bounded coset Ck = Zn ∩Balln(Rk), whose radius Rk is too close to

√
n. Indeed, the number

of points of Zn in a ball of radius Rk ≈
√
n varies by exponential factors depending on the
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center of the ball [25]. If the target is very close to 0, like in an SVP-setting, the coset Ck
contains around 20.513n vectors6, which differs considerably from βn ≈ 20.292n that we could
expect of a random lattice. The initial coset would be very costly to store already in moderate
dimensions.

Even if we store only a fraction of the bottom coset, Heuristic 2.1 would prevent the first
merge by collision from working. Indeed, it relies on the number of points in intersections of
balls of radius Rk centered in an exponential number of different points. Unfortunately, balls
of radius Rk centered in random points contain an exponentially smaller number of integer
vectors than βn, and their intersections contain in general no integer point at all. Thus the
collision by merge would fail to recover Ck−1.

This means that because of the Gaussian heuristic, the Zn lattice should never be used
as the starting point of an overlattice tower. Fortunately, random quasi-orthonormal lattices
are a valid replacement of Zn, as our experiments show. Furthermore, we can still build in
polynomial time a tower of lattices ending with a quasi-orthonormal basis.

3.3 Generic creation of the tower

Here, we present a generic method of computing the tower of Li’s that overcomes the problems
we have shown in the previous section and that works well in practice for high dimensions as
we have verified in our experiments. Algorithm 3 summarizes the following steps.

We take as input a randomized LLL-reduced or BKZ-30-reduced basisB of an n-dimensional
lattice L. We choose constants α > 1 and β > 0 satisfying equation (6) with the additional
constraint that N = αn is an integer.

The Gram Schmidt coefficients of B usually decrease geometrically, and we can safely
assume that mini ‖b∗i ‖ ≥ maxi ‖b∗i ‖/

√
4/3

n
. Otherwise, the LLL-reduced basis would imme-

diately reveal a sublattice of dimension < n containing the shortest vectors of L. This means

that there exists a smallest integer k = O(n) such that mini∈[1,n] ‖b∗i ‖ ≥
(

Nk

n vol(L)

) 1
n−1

= σ.

The integer k determines the number of levels in our tower and σ is the (n− 1)-th root of the
volume of the last overlattice Lk.

Algorithm 3 Compute the tower of overlattices
Input: B a (randomized) LLL-reduced basis of L of dimension n, and a target t ∈ span(L)
Output: Bases B(i) of a tower of overlattices L = L0 ⊂ · · · ⊂ Lk. Note that given a target ti+1, the testing

morphism ϕi from ti+1 + Li+1 to ZN is implicitely defined by ϕi
(
ti+1 +

∑n
j=1 αjb

(i+1)
j

)
= αj mod N

1: Let N = αn.
2: Let k be the smallest integer s.t. Nk ≥ n · vol(L)/mini ‖b∗i ‖n.

3: Let σ = (Nk/nvol(L))
1
n , thus σ ≤ mini ‖b∗i ‖.

4: Apply Alg. 4 on input (B, σ) to find a basis B̂ = [b̂1, b̂2 . . . , b̂n] of L.

5: B(i) ←
[

b̂1
Ni , b̂2, . . . , b̂n

]
foreach i ∈ [0, k]

6: return B(i) for all i

Finally, we use a slightly modified version, Alg. 4, of the unbalanced reduction algorithm
from [14] to compute a basis B̂ = [b̂1, b̂2, . . . , b̂n] of L such that [b̂1/N

k, b̂2, . . . , b̂n] is quasi-

6 Computation based on saddle point method as in [25] for a radius
√
β2/(2πe) · n ≈

√
0.0878 · n.
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orthogonal and provides a basis for a lattice Lk. This naturally defines the tower of k + 1

overlattices Li, where Li is generated by the corresponding basis B(i) = [ b̂1
N i , b̂2, . . . , b̂n] for

i = 0, .., k.
Alg. 4 can be viewed as a reversed LLL-reduction algorithm: in each 2 × 2 dimensional

projected block B[i,i+1], the LLL algorithm would shorten the first vector as much as possible.
The unbalanced reduction focuses on decreasing the second projection ‖b∗i+1‖ just below σ.
By conservation of the volume, it suffices to replace bi by a sufficiently large combination
bi+1 + γ bi. What is not trivial, is to prove that each block can be visited only once, and that
tight choices of the combination coefficients γ effectively lead to a quasi-orthonormal basis,
and therefore to an efficient enumeration for Lk.

Theorem 1 below states the requirements for which the unbalanced reduction, Alg. 4, is of
polynomial time. All steps that we need to take in order to compute the tower of overlattices
are hence of polynomial complexity.

Algorithm 4 Unbalanced Reduction

Input: A LLL-reduced basis B of an integer lattice L such that max b∗i /min ‖b∗i ‖ ≤
√

4/3
n
, and a target

length σ ≤ min ‖b∗i ‖
Output: A basis C of L satisfying ‖c1‖ ≤ σnvol(L)/σn, and for all i ∈ [2, n], ‖c∗i ‖ ≤ σ and σn+1−i

vol(C[i,n])
≤ n+1−i.

1: C ← B
2: Compute the Gram-Schmidt matrices µ and C∗

3: Let k be the largest index such that ‖c∗k‖ > σ
4: for i = k − 1, . . . , 1 do

5: γ ←

⌈
−µi+1,i +

‖c∗i+1‖
‖c∗i ‖

√(
‖c∗i ‖
σ

)2
− 1

⌉
6: (ci, ci+1)← (ci+1 + γ · ci, ci)
7: Update the Gram-Schmidt matrices µ and C∗.
8: end for
9: return C

Theorem 1 (Unbalanced reduction). Let L(B) be an n-dimensional integer lattice with
an LLL-reduced basis B = [b1, .., bn]. Let σ be a target length ≤ min ‖b∗i ‖. Algorithm 4 outputs
in polynomial time a basis C of L satisfying

‖c∗i ‖ ≤ σ for all i ∈ [2, n] (8)

‖c1‖ ≤ σn · vol(L)/σn (9)

σn+1−i

vol(C[i,n])
≤ n+ 1− i for all i ∈ [2, n] (10)

The proofs of Theorem 1 and Alg. 4 are given in Appendix B.

3.4 Cost for initial enumeration at level k

The cost of a full enumeration of any bounded coset (z + Lk) ∩ Balln(rnβσ) at level k is:

TSE =
n∑

i=1

vol(Balli(rnβσ))

vol(B
(k)
[n+1−i,n])

≤ n
n∑

i=1

Vi · (rnβ)i = Õ
(
20.398n

)
(11)



12

where the maximal term in the sum is of size Õ
(
20.398n

)
. Experiments show that the above

estimate is close to what we observe in practice as we present in Sect. 4.
This number of steps in the full enumeration is an exponential factor < 20.03n larger

than the complexity of the merge. In large dimensions, classical pruning techniques [15, 12]
can be used to cancel this exponential factor as small as 20.03n. The algorithm behaves very
well for a pruned enumeration of Ck and can recover solutions to SVP and CVP anyhow.
Also, in practice, i.e., for dimensions ≤ 100, the actual running time of the full enumeration is
already smaller than the time for the merge by collision in the consecutive steps, as elementary
operations in the enumeration are faster than memory access and vector additions in the
merge.

4 Experimental validation

In this section we present our experimental results of a C++-implementation of our algorithm,
Alg. 1, presented in Sect. 3. We make use of the newNTL [16] and fplll [7] libraries as well
as the Open MP [30] and GMP [11] library. We tested the algorithm on random lattices of
dimensions up to n = 90 as input.

4.1 Overview

Tests in smaller and larger dimensions confirm the choice of parameters α and β that we
computed for the asymptotic case. We are hence able to enumerate vectors of a target coset
C0 = (t0 + L0) ∩ Ball(R0) and in this way we solve SVP as well as CVP. Indeed, unlike
classical sieving algorithm, short elements, i.e., either a short vector or a close vector, have a
higher probability to be found than larger elements. Thus, even though we might miss some
elements of the target coset, we almost always solve the respective SVP or CVP. For instance,
the algorithm finds the same shortest vectors as solutions for the SVP challenges published
in [33]. The memory requirement and running time in the course of execution match closely
our estimates and the intermediate helper lattices Li behave as predicted.

Besides the search for one smallest/closest vector, each run of the algorithm, with appro-
priate parameters, finds a non-negligible fraction of the whole bounded coset C0. Repeating
the search for vectors in C0 several times on a randomized LLL-reduced basis will discover the
complete bounded coset. Our experiments reflect this behavior where we can use the Gaussian
heuristic or Schnorr-Euchner enumeration to verify the proportion of recovered elements of
C0.

All these tasks can be performed by a single machine or independently by a cluster as a
distributed computation.

4.2 Recovering C0 in practice for smaller dimensions

For design reasons we have described an algorithm that produces the same number of elements
per list in each iteration in order to find all of C0. All lists contain #C0 = # ((t0 + L0) ∩ Balln(R0)) ≈
(1 + εn)nβn elements on average where εn can be neglected for very large dimensions, (see
also (5)). For accessible dimensions, we need to increase the radii of the balls slightly, by
a small factor εn � 1, that compensates for small variations from the heuristic estimate.
We here present results for different values εn ≤ 0.08 and dimension n ∈ {40, 45, 50, 55, 60}.
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The larger the dimension, the better Heuristic 2.1 holds, which means that εn can be chosen
smaller, see (6). Figure 4 shows the relation between varying εn and the fraction of found
vectors of C0 for dimension n ∈ {40, 45, 50, 55, 60}. The optimal choice for εn depends on n
and the fraction of C0 we wish to enumerate.
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4.3 Probability of success for randomized repetitions - example: small
dimension

The success ratio of recovering all of C0 rises with increasing n. We here present the case of
smaller dimensions n = {50, 55} to show how it evolves.

Suppose that we want to enumerate 100% of a coset C0 in dimension 50. According to
Fig. 4, we need to choose εn at least 0.07, which results in lists of size (1+εn)50β50 ≈ 29.4β50

and a running time (1 + εn)100(β2/α)50 ≈ 867.7 (β2/α)50 on average. An alternative, which
is less memory consuming, is to choose a smaller εn, and to run the algorithm several times
on randomized input bases. For instance, if one chooses ε = 0.0535, one should expect to
recover p = 6% of C0 per iteration on average. Then, assuming that the recovered vectors are
uniformly and independently distributed in C0, we expect to find a fraction of 1 − (1 − p)r
after r repetitions.

To confirm this independence assumption, we tested repeated execution for SVP instances
with parameters n = 50, (1 + ε)β = 1.0535

√
3/2, α =

√
4/3 . Figure 5 shows the average
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number of distinct vectors of C0 recovered as a function of the number of repetition r (and
the observed standard deviation) in comparison to the expected number of elements C0 · (1−
(1− 0.06)r). The experiments match closely the estimate.

For a random lattice of dimension n = 50 and ε = 0.0535, the size of the coset C0 is roughly
342 000. In our experiments, we found 164 662 vectors (48%) after 10 repetitions in which we
randomized the basis. After 20 trials, we found 239 231 elements which corresponds to 70%,
and after 70 trials, we found 337 016 elements (99% of C0). We obtained the following results
in dimension n = 55. After 10 trials with ε = 0.0535, we obtain 96.5% of the vectors of C0

which is significantly higher in comparison to the 48% recovered after 10 trials in dimension
50.

4.4 Shorter or closer vectors are easier to find

During the merge operations, we can find a vector v ∈ Ci if there exist vectors in the intersec-
tion between two balls of the same radius, centered at the end points of v. As the intersection
is larger when v is shorter, see Fig. 8, we can deduce that short vectors of a coset are easier
to find than longer ones.

Ri z Ri z

Fig. 8. Volume of intersection varies for vectors z of different length.

As we work with cosets, this means that vectors which are closer to the target (i.e. , short
lattice vectors when the target is 0) should appear more often for different runs on randomized
input basis. We verified this observation experimentally by comparing the norm of a vector
with the number of appearances during 100 repetitions in dimension 50, with ε = 0.0535, see
Fig. 6.

4.5 Parallelization

The algorithm itself is highly parallelizable for various types of hardware architectures. Of
course, the dominant operations are n-dimensional vector additions and Euclidean norm com-
putations, which can be optimized on any hardware containing vector instructions. Addition-
ally, unlike sieving techniques, each iteration of the outer for loop of the merge algorithm
(Alg. 2 Line 3) can be run simultaneously, as every vector is treated independently of the
output. Furthermore, one may divide the pool of vectors into p ≤ αn/2 groups of buckets at
each level, as soon as any two opposite buckets belong to the same group. Thus, the merge
operation can operate on a group independently of all other groups. This allows to efficiently
run the algorithm when the available RAM is too small to store lists of size (1 + ε)n βn. It
also allows to distribute the merge step on a cluster. For instance, in dimension n = 90 us-
ing ε = 0.0416, storing the full lists would require 3 TB of RAM. We divided the lists into
25 groups of 120 GB each, which we treated one at a time in RAM while the others were
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Table 2. Experimental results for n ∈ {70, 80}, α =
√

4/3 and β =
√

3/2.

level = i 8 7 6 5 4 3 2 1 0

n = 80 #Si in millions 253 149 132 142 163 194 230 265 336
ε = 0.044 % of Gauss. heuristic 73 43 38 41 47 56 66 76 97

n = 70 #Si in millions - 38.8 20.3 19.0 20.0 20.3 23.1 26.5 29.8
ε = 0.049 % of Gauss. heuristic 95 50 46 50 56 65 73 87

n = 70 #Si in millions - 33.1 16.0 13.4 12.3 11.4 10.7 9.7 7
ε = 0.046 % of Gauss. heuristic 95 46 38 35 32 30.6 27.8 20

kept on hard drive. This did not produce any noticeable slowdown. Finally, the number of
elements in each bucket can be estimated precisely in advance using Heuristic 2.1, and each
group performs exactly the same vector operations (floating point addition, Euclidean norm
computation) at the same time. This makes the algorithm suitable for SIMD implementation,
not only multi-threading.

4.6 Experiments in low- and middle-sized dimensions

Our experiments in dimension 40 to 90 on challenges in [33] show that we find the same short
vectors as previously reported and found as shortest vector by use of BKZ or sieving. To solve
SVP or CVP by use of the decomposition technique, it is in fact not necessary to enumerate
the complete bounded coset C0 and to ensure that the lists are always of size (1 + εn)nβn as
we describe in the following paragraphs.

We give more details for medium dimensions n = 70 and n = 80 with α =
√

4/3 and
β =

√
3/2 in the following. The algorithm ran on a machine with an Opteron 6176 processor,

containing 48 cores at 2.3 GHz, and having 256 GB of RAM. Tab. 2 presents the observed
size of the lists Si ⊆ Ci for each level in dimension 70 and 80.

In dimension 80, we chose aborted-BKZ-30 [17] as a preprocessing. The algorithm has 8
levels and we chose ε = 0.044 to obtain 97% of C0 after a single run. The initial enumeration
on one core took a very short time of 6.5 CPU hours (so less than 10 minutes with our multi-
thread implementation of the enumeration) while each of the 8 levels of the merge took between
20 and 36 CPU hours (so less than 45 minutes per level in our parallel implementation).

The number of elements in lower levels lies below the heuristic estimate and we keep
loosing elements during the merge for the deepest levels. For example, in dimension 80 we
start with 73% of C8 and recover only 43% of C7 after one step. Towards higher levels, we
slowly begin to recover more and more elements. In dimension 80, the size of the lists starts to
increase from level 5 on as S5, S4 and S3 cover 41%, 47% and 56% of the vectors, respectively.
This continues until the final step where we find 97% of the elements of C0.

4.7 Pruning of the merge step in practice - larger dimension n = 75 and n = 90

In Section 3.1, we obtain conditions on the parameters as we request the intersection I of two
balls to be non-empty, which means that vol(I)/vol(L) ≥ K for some number K > 1 under
Heuristic 2.1. This condition suggests that at each level, each coset element in an output list
Si−1 ⊆ Ci−1 of a merge is obtained on average about K times. If the input list Si is shorter
than expected, one will indeed recover fewer than K copies of each element, but we may still
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Table 3. Experimental results with pruning, n ∈ {75, 90}, α =
√

4/3 and β =
√

3/2.

level = i 9 8 7 6 5 4 3 2 1 0 SVP

n = 75, % of Gauss. - - 50 50 47 46 46 48 50 69
ε = 0.044 heuris. cut cut solved

n = 75, % of Gauss. - - 35 35 30 25 20 15 8 6.4
ε = 0.044 heuris. cut cut solved

n = 90, % of Gauss. 70 40 40 40 40 40 40 40 40 70
ε = 0.0416 heuris. cut cut cut cut cut cut cut cut cut solved

n = 90, % of Gauss. 70 33 33 33 33 33 33 33 33 61
ε = 0.0416 heuris. cut cut cut cut cut cut cut cut cut solved

have one representative of each element of Ci−1. Our experiments confirm this fact, see Tab. 2
and Tab. 3.

To solve SVP or CVP, one may shorten the time and memory necessary to find a solu-
tion vector by interrupting each level whenever the output list contains a sufficiently large
fraction of the elements of the bounded cosets. For example, we ran our algorithm on the
75-dimensional basis of the SVP challenge [33] with seed 38. We chose ε = 0.044 and in-
terrupted the merge if the size of the intermediate set Si reached 50% or 35% of #Ci for
i ∈ [1, k − 1]. Tab. 3 presents the intermediate list sizes. In the end, we recovered 69% and
6.4% of #C0, respectively, and the shortest vector was found in both cases. The running time
for the merge in the intermediate levels decreases compared to no pruning by a factor 0.49
and 0.29, respectively, as one would expect for lists that are smaller by at least a factor 0.5
and 0.35, respectively.

In dimension 90, we ran our algorithm on the 90 dimensional SVP-challenge with seed 11,
using ε = 0.041. We chose to keep at most 33% of Ci for i ∈ [1, k− 1]. Despite this harsh cut,
the size of the intermediate lists remained stable after the first merge. And interestingly, after
only 65 hours on 32 threads, we recovered 61% of #C0 in the end, including the published
shortest vector.

4.8 Notes on the Gaussian heuristic for intermediate levels

Our quasi-orthogonal lattices at the bottom level behave randomly and follow the Gaussian
heuristic. The most basic method to fill the bottom list Sk is to run Schnorr-Euchner enu-
meration (see Sect. 2) where the expected number of nodes in the enumeration tree is given
by (11) based on Heuristic 2.1. Previous research has established that this estimate is accu-
rate for random BKZ-reduced bases of random lattices in high dimension. Here, since we work
with quasi-orthogonal bases, which are very specific, we redo the experiments, and confirm
the findings also for quasi-orthogonal bases. Already for small dimensions (n = 40, 50, 55),
experiments show that the actual number of nodes in a Schnorr-Euchner enumeration is very
close to the expected value. Fig. 7 shows that experiment and heuristic estimate for dimension
55, for example, are almost indistinguishable.

We also make use of Heuristic 2.1 when we estimate the number of coset vectors in the
intersection of two balls. As the lower lattices in the tower are not ”random” enough, they
have close to quasi-orthonormal bases, we observe smaller lists in the lower levels and thus
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a deviation from the heuristic. Beside the geometry of lattices, the deviation depends on
the center of the balls or the center of the intersection. Randomly centered cosets of quasi-
orthonormal lattices contain experimentally an average number of points a constant factor
below (1 + εn)nβn. Zero-centered cosets contain more points, and should be avoided. The
randomization of the initial target used in Alg. 1 ensures that the centers are random modulo
Lk, even in an SVP setting. The number of vectors stays hence below, but close to the estimate
(1 + εn)nβn after the first collision steps. The following steps can only improve the situation.
The lattices in higher levels are more and more random and we observe that the algorithm
recovers the expected number of vectors. This is a sign that our algorithm is stable even when
the input pools Si are incomplete.

Finally, experiments support the claim that the number of elements per bucket during
the merge by collision corresponds to the average value (β/α)n. For example, in dimension
n = 80, for parameters α =

√
4/3, β =

√
3/2, ε = 0.044, we observe that the largest bucket

contains only 10% more elements than the average value, and that 60% of the buckets are
within ±2% of the average value.

5 Conclusion

We have presented an alternative approach to solve the hard lattice problems SVP and CVP
for random lattices. It makes use of a new technique that is different from the ones used so
far in enumeration or sieving algorithms and works by moving short vectors along a tower of
nested lattices. Our experiments show that the method works well in practice.
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A Intersection of hyperballs

The volume of the intersection, volI(d), of two n-dimensional hyperballs of radius 1 at distance
d ∈ [0.817; 2] can be approximated for large n by the volume of the n- dimensional ball of
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radius D =

√
1−

(
d
2

)2
, see Lemma 1 below. If we consider the intersection of two balls of

radius R, the volume gets multiplied by a factor Rn as stated in Corollary 1.

Lemma 1. The volume of the intersection of two n-dimensional hyperballs of radius 1 at
distance d ∈ [0.817; 2] is

2Vn−1
(n+ 1)Vn

arccos

(
d

2

)
≤ volI(d)

vol(Balln(D))
≤ 2Vn−1

(n2 + 1)Vn
arccos

(
d

2

)

where D =

√
1−

(
d
2

)2
.

Proof: The intersection of two balls of radius 1 whose centers are at distance d ∈ [0, 2] of each
other can be expressed as

volI(d) = 2 ·
∫ 1

d
2

Vn−1

(√
1− x2

)n−1
dx = 2Vn−1

∫ arccos(d/2)

0
sinn(θ) dθ

where Vn−1 equals the volume of the n− 1-dimensional ball of radius 1. For d ∈ [0.817; 2] one
can bound the sinus term in the integral:

D

arccos(d/2)
θ ≤ sin(θ) ≤ D√

arccos(d/2)

√
θ .

Therefore, we obtain bounds for the volume of the intersection:

volI(d) ≤ 2Vn−1
n
2 + 1

arccos

(
d

2

)
Dn

and

volI(d) ≥ 2Vn−1
n+ 1

arccos

(
d

2

)
Dn

which proves the lemma. ut

We can use the lower-bound of Lemma 1 and obtain a numerical lowerbound on the volume
of the intersection of balls of radius R at distance at most

√
4/3R used in our algorithm:

Corollary 1 For all dimensions n ≥ 10, the volume of the intersection of two n-dimensional
hyperballs of radius R at distance dR where d ≤

√
4/3 is lower-bounded by:

RnvolI (d) ≥ 0.692√
n
·Rnvol


Balln



√

1−
(
d

2

)2



 .

B Proof of Theorem 1 and Algorithm 4:

We use the suffix “old” and “new” to denote the values of the variables at the beginning and
at the end of the “for” loop of Alg. 4, respectively. Furthermore, we call xi the value ‖b∗newi ‖
during iteration i. Note that xi is also ‖b∗oldi ‖ during the next iteration (of index i− 1 since i
goes backwards).
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For i ∈ [1, n], let ai = ‖b∗i ‖/σ. Note that ai is always ≥ 1. We show by induction over i
that the following invariant holds at the end of each iteration of Alg. 4:

aixi+1 ≤ xi ≤ aixi+1 + σai . (12)

At the first iteration (i = k − 1), it is clear that xk = ‖b∗oldk ‖ = σak . At the beginning of
iteration i, we always have ‖b∗oldi ‖ > σ, and by induction, ‖b∗oldi+1 ‖ > σ. We transform the
block so that the norm of the first vector satisfies

R ≤ ‖b∗newi ‖ ≤ R+ ‖b∗oldi ‖ (13)

where R = ‖b∗oldi+1 ‖‖b∗oldi ‖/σ .

This condition can always be fulfilled with a primitive vector of the form bnewi = boldi+1 + γboldi
for some γ ∈ Z. Since the volume is invariant, the new ‖b∗newi+1 ‖ is upper-bounded by σ.
And by construction, Equation (13) is equivalent to the invariant (12) since ‖b∗oldi ‖ = aiσ,
‖b∗newi ‖ = xi and ‖b∗oldi+1 ‖ = xi+1.

By developping (12), we derive a bound on x1:

x1 ≤ σ
k∑

i=1

a1 . . . ai ≤ σn
k∏

i=1

ai ≤ nσvol(L)/σn

which proves (9). Similarly, one obtains that xi ≤ (n + 1 − i)σ vol(B[i,n])/σ
n+1−i, which is

equivalent to (10). Note that the transformation matrix of the unbalanced reduction algorithm
is 



γ1 · · · γk−1 1 0 · · · 0
1 0 · · · 0

...
...

0
. . .

. . .
...

...
...

0 0 1 0 0 · · · 0
0 · · · · · · 0 1 0 0
...

... 0
. . . 0

0 · · · · · · 0 0 0 1




where γi is

⌈
−µi+1,i + xi+1

σ

√
1− 1

a2i

⌉
. Since each xi+1 is bounded by

n∏

j=i+1

aj =
n∏

j=i+1

max(1, ||b∗j ||2/σ) ,

all coefficients have a size polynomial in the input basis. This proves that Alg. 4 has polynomial
running time. ut


