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Abstract

A fundamental question about (reusable) circuit garbling schemes is: how small can the garbled
circuit be? Our main result is a reusable garbling scheme which produces garbled circuits that are the
same size as the original circuit plus an additive poly(λ) bits, where λ is the security parameter. Save
the additive poly(λ) factor, this is the best one could hope for. In contrast, all previous constructions of
even single-use garbled circuits incurred a multiplicative poly(λ) blowup.

Our techniques result in constructions of attribute-based and (single key secure) functional encryp-
tion schemes where the secret key of a circuit C consists of C itself, plus poly(λ) additional bits. All of
these constructions are based on the subexponential hardness of the learning with errors problem.

We also study the dual question of how short the garbled inputs can be, relative to the original input.
We demonstrate a (different) reusable circuit garbling scheme, based on multilinear maps, where the
size of the garbled input is the same as that of the original input, plus a poly(λ) factor. This improves
on the result of Applebaum, Ishai, Kushilevitz and Waters (CRYPTO 2013) who showed such a result
for single-use garbling. Similar to the above, this also results in attribute-based and (single key secure)
functional encryption schemes where the size of the ciphertext encrypting an input x is the same as that
of x, plus poly(λ) additional bits.
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1 Introduction

In this paper, we construct reusable garbled circuits, attribute-based encryption and (single key) functional
encryption schemes with optimally compact keys and ciphertexts. We begin by describing these crypto-
graphic objects and motivating the questions we study.

Reusable Garbled Circuits. A circuit garbling scheme, one of the most useful primitives in modern
cryptography, is a construct originally suggested by Yao in the 1980s in the context of secure two-party
computation [Yao86]. This construction relies on the existence of a one-way function to encode an arbitrary
circuit C into a garbled circuit Ĉ and then encode any input x into a garbled input x̂; a party given Ĉ
and x̂ can obtain C(x). The most important properties of garbled circuits are circuit and input privacy: an
adversary, given the garbled circuit and the encoded input, should learn nothing about the circuit C or the
input x beyond the result C(x).

A highly desirable feature of garbled circuits is reusability. Namely, once the expensive process of
garbling a circuit is complete, one would like to use it in conjunction with polynomially many garbled inputs.
Unfortunately, Yao’s original construction and its variants offered only one-time security. Specifically,
providing an encoding of more than one input (for the same garbled circuit) compromises the secrecy of
the circuit. Quite recently, Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [GKP+13b] constructed
the first fully reusable circuit garbling scheme, based on the learning with errors assumption.

Over the years, garbled circuits and variants have found many applications: two party [Yao86]
and multi-party secure protocols [GMW87], one-time programs [GKR08], key-dependent message secu-
rity [BHHI10], verifiable computation [GGP10], homomorphic computations [GHV10] and many others.
Reusable garbling schemes were used to construct token-based program obfuscation schemes and k-time
programs [GKP+13b].

A fundamental question regarding (reusable) garbling schemes is:

How small can the garbled circuit be?

Most known constructions of garbled circuits (both single-use and reusable) proceed by garbling each gate
to produce a garbled truth table, resulting in a multiplicative size blowup of poly(λ). We are aware of
three exceptions. The first is the “free XOR” optimization (for single-use garbling schemes) introduced
by Kolesnikov and Schneider [KS08] and studied in a sequence of works [CKKZ12, App13]. Here, one
produces garbled tables only for the AND gates in the circuit C, still resulting in a multiplicative poly(λ)
overhead but proportional to the number of AND gates (as opposed to the total number of gates). The
security of the transformation was eventually shown to hold under the learning parity with noise (LPN)
assumption [App13]. Secondly, Lu and Ostrovsky [LO13] recently showed how to garble RAM programs
(for single use); here, the size of the garbled RAM program grows as poly(λ) times its running time. Finally,
Goldwasser et al. [GKP+13a] show how to (reusably) garble non-uniform Turing machines under a non-
standard and non-falsifiable assumption and incurring a multiplicative poly(λ) overhead in the size of the
non-uniformity of the machine.

Our first (and main) result is a reusable circuit garbling scheme for arbitrary depth-d circuits with an
additive overhead, namely |Ĝ| = |G| + poly(λ, d). Security is based on the subexponential hardness of
the learning with errors (LWE) problem [Reg09]. Modulo the dependence on the depth and the specific
polynomial dependence on λ, this gives us the shortest possible garbled circuit. For large and shallow
circuits, such as those that arise from database lookup, search and some machine learning applications, this
gives significant bandwidth savings over previous methods (even in the single use setting).
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Theorem 1.1 (Informal). Assuming subexponential LWE, there is a reusable circuit garbling scheme that
garbles a depth-d circuit C into a circuit Ĉ such that |Ĉ| = |C| + poly(λ, d), and garbles an input x into
an encoded input x̂ such that |x̂| = |x| · poly(λ, d).

This brings us to our next question, namely, how much can we compress the garbled input. Namely, is it
possible to ensure that |x̂| = |x|+poly(λ)? Indeed, in a beautiful recent work, Applebaum, Ishai, Kushilevitz
and Waters [AIKW13] showed a construction of single-use garbled circuits with exactly this property. (We
remark that while their garbled inputs are short, their garbled circuits still incur a multiplicative overhead.)
Can we achieve this in the reusable setting?

While we are not able to compress the garbled inputs for the reusable garbled circuits construction
from Theorem 1.1, we come up with a different construction, based on multilinear maps, where |x̂| =
|x| + poly(λ, d) where d is maximum depth of circuits that can be computed in conjunction with x̂. Our
construction relies on a generalization of broadcast encryption [FN93, BGW05, BW13] and the attribute-
based encryption scheme of [GGH+13c].

Theorem 1.2 (Informal). Assuming subexponential LWE and that d-level multilinear maps exist, there is
a reusable circuit garbling scheme that garbles a depth-d circuit C into a circuit Ĉ such that |Ĉ| = |C| ·
poly(λ, d), and garbles an input x into an encoded input x̂ such that |x̂| = |x|+ poly(λ, d).

We refer the read to Appendix 5 for the construction, and focus on the short garbled circuits question
for the rest of the introduction. A natural question, which we leave open, is that of getting the best of both
schemes. Namely, a single scheme which produces both short garbled circuits and short garbled inputs.

Our reusable garbling scheme arises out of a new construction of attribute-based encryption scheme with
short secret keys, which we describe next.

Attribute-based and Functional Encryption. In an attribute-based encryption scheme [SW05, GPSW06],
a message M is encrypted together with a (public) attribute vector x ∈ {0, 1}`. The ciphertext can later
be decrypted to recover the message M if one has in his possession a secret key SKP for a predicate P
such that P (x) = true. In a functional encryption scheme [SW05, KSW08, BSW11], given the secret
key SKF for a function F , one can compute F (x) from an encryption of an input x. Moreover, all other
information about x remains hidden. It is easy to see that attribute-based encryption is a special case of
functional encryption.

The two properties that are highly desirable for attribute-based and functional encryption schemes are
collusion-resistance and succinctness. Collusion-resistance (for functional encryption) stipulates that a
set of users with secret keys SKF1 , . . . , SKFn collectively learn nothing about x other than the function
outputs F1(x), . . . , Fn(x). Succinctness requires that the size of the encryption of an input x should depend
polynomially on the size of x, but should be independent of the size of circuits computed on it.

In the past few years, there has been significant progress on constructing attribute-based encryption
schemes, in terms of efficiency, security guarantees, and diversifying security assumptions [GPSW06,
Wat09, LW10, LOS+10, CHKP12, ABB10a, OT10, Boy13]. The culmination of this line of research
resulted in the works of Gorbunov, Vaikuntanathan and Wee [GVW13] who constructed attribute-based
encryption for all circuits under the learning with errors (LWE) assumption, and the work of Garg,
Gentry, Halevi, Sahai and Waters [GGH+13c] who achieved the goal using multilinear maps [GGH13a].1

Subsequently, Goldwasser et al. [GKP+13b] gave a general construction of succinct single-key functional
encryption schemes and reusable garbled circuits, starting from any attribute-based encryption and (leveled)

1Both constructions support circuits of a priori bounded, but polynomial depth.
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fully homomorphic encryption schemes. Finally, Garg et al. [GGH+13b] constructed a many-key (also
called collusion-resistant) functional encryption scheme, albeit based on a non-standard assumption related
to multilinear maps.

In all these constructions, the secret key for a circuit C has |C| · poly(λ) bits, and the encryption of an
input x has |x| · poly(λ) bits. The only exception we are aware of is the work of Attrapadung, Libert and
Panafieu [ALdP11] who construct an attribute-based encryption scheme with short ciphertexts (but not short
secret keys) for the special case of Boolean formulas.

We construct:

1. An attribute-based encryption and a functional encryption scheme where the secret key for a circuit C
consists of C itself, plus poly(λ, d) additional bits. The constructions are based on the subexponential
hardness of LWE.

The ABE schemes are in fact the starting points for all our constructions, including those of the reusable
circuit garbling schemes. In a sense, we think of the secret key for an ABE scheme as itself a weak
garbling scheme – it provides neither circuit privacy nor input privacy, but what it does provide is
some form of authenticity. Once we have an ABE scheme, we apply the compiler of Goldwasser et
al. [GKP+13b] to obtain the functional encryption and reusable garbled circuits.

2. An attribute-based encryption and a functional encryption scheme where the size of the encryption of an
attribute vector x is |x|+poly(λ, d) bits. The ABE is based on multilinear maps, whereas the functional
encryption scheme is secure based on both multilinear maps and subexponential LWE.

1.1 Overview of Our Techniques

Our starting point is the observation that key-homomorphic encryption can be used as a tool to achieve
compression. Informally speaking, a key-homomorphic encryption is one where, given Encpk1(m1) and
Encpk2(m2), one can compute Encpk1+pk2(m1 + m2). Furthermore, given the secret keys of pk1 and pk2,
one can compute a secret key for pk1 + pk2.2

This observation has already turned up in a few works. It has been used implicitly in the work of
Agrawal, Freeman and Vaikuntanathan [AFV11] who constructed a functional encryption scheme with short
secret keys for the relatively simple, inner-product checking functions. As we will describe below, their
scheme can be built from an additively key homomorphic encryption scheme (with additional properties).
More recently, this has also been explicitly exploited in the work of Applebaum, Ishai, Kushilevitz and
Waters [AIKW13] who used additively key-homomorphic encryption to build a (single-use) circuit garbling
scheme with a compact input encoding. (As we mentioned before, although their input encodings are
compact, their garbled circuits grow by a multiplicative poly(λ) factor.)

Let us mention, jumping ahead, that the constructions in this paper arise out of a new method that
allows us to not only add ciphertexts encrypted under different keys, but also multiply them to obtain
Encpk1·pk2(m1 · m2). Our main technical contribution is a construction of such an object based on the
hardness of LWE. For the moment, though, let us focus on additively key-homomorphic encryption.

The foundations of our constructions arise from the techniques used in the identity-based encryption
(IBE) scheme of Agrawal, Boneh and Boyen [ABB10b]. We start by describing the inner product functional

2An astute reader would have noticed that the two ciphertexts that we add have to be encrypted using the same – or at least
correlated – randomness. A moment of thought reveals that this is necessary to achieve key homomorphism and still maintain
semantic security.

3



encryption scheme of Agrawal et al. [AFV11] which is based on the techniques in [ABB10b]. We start by
describing the inner product functional encryption scheme of Agrawal et al. [AFV11] which itself is based
on the identity-based encryption (IBE) scheme of Agrawal, Boneh and Boyen [ABB10b]. A ciphertext in
the scheme encrypting a vector x = (x1, . . . , x`) ∈ {0, 1}` consists of ` encodings3 of the form((

A1 + x1 ·B
)T

s + e1, . . . ,
(
A` + x` ·B

)T
s + e`

)
where the random matrices Ai ← Zn×mq and the matrix B ∈ Zn×mq are part of the public key, the
LWE secret s ← Znq is chosen randomly during encryption, the ei are “small” LWE error vectors, and
all computations are performed modulo a large enough prime q.

How does one check whether 〈x,y〉 = 0, given an appropriate secret key SKy? Looking at this as a set
of ciphertexts under public keys A1 +x1B, A2 +x2B, . . . , A`+x`B, we simply take a linear combination
of the encodings with coefficients yi. The result is

∑̀
i=1

yi ·
[(
Ai + xi ·B

)T
s + ei

]
≈
(∑̀
i=1

yiAi + 〈x,y〉 ·B
)T

s

If 〈x,y〉 = 0, then by key homomorphism, we just computed an encoding under the “public key”∑`
i=1 yiAi. Given a secret key for this public key, we can decrypt the resulting ciphertext and recover

s which, in particular, allows us to check if 〈x,y〉 = 0 in the first place! A particular feature of interest to
us is that the size of the secret key is independent of `, the length of y.

We note that one could use this mechanism to not just check, but also recover a hidden message m in
the case that 〈x,y〉 = 0 (simply by using a hardcore bit of s to mask the message).

So far, we just used the additive key-homomorphic features of this encoding scheme. Which raises the
natural question: if only we could get both additive and multiplicative key homomorphism, we could use
this to design a functional encryption scheme with short secret keys for arbitrary circuits (and not just inner
products). We are not quite able to achieve this dream, but we do obtain a restricted type of multiplicative
property and consequently an attribute-based encryption scheme with short secret keys. Then, using the
reduction of Goldwasser et al. [GKP+13b], we obtain single-key functional encryption with short secret
keys as well as compact reusable garbled circuits.

One of the main technical contributions of this work is a novel method of multiplying these encodings.
Assume that we want to (key-homomorphically) multiply the encodings ci =

(
Ai + xi · B

)T
s + ei and

cj =
(
Aj + xj ·B

)T
s + ej . This works as follows. Let us first define the transformation B−1 : Zn×mq →

Zm×m in such a way that for a matrix M ∈ Zn×mq , N := B−1(M) is a matrix with small entries such that
BN = M.

With this in mind, we compute

B−1(Aj)
T · ci = B−1(Aj)

T ·
[(
Ai + xi ·B

)T
s + ei

]
≈
(
Ai ·B−1(Aj) + xiAj

)T
s

Secondly, we compute

xi · cj = xi ·
[(
Aj + xj ·B

)T
s + ej

]
≈
(
xi ·Aj + xixj ·B

)T
s

3What follows is a simplified exposition of [AFV11] that ignores some technical details. In particular, the AFV ciphertext
consists of `+ 1 encodings, and not `.
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Subtracting the two expressions above gives us(
−Ai ·B−1(Aj) + xixj ·B

)T
s + noise

which is an encoding of the product xixj under a “public-key” which is a “product” of the two matrices
Ai and Aj . Here, the product is defined to be −Ai · B−1(Aj). The only catch is that performing this
homomorphic operation requires us to know xi, which is precisely the reason for the limitation to (public-
index) attribute-based encryption schemes.

Building on this key homomorphic property, we start with matrices A1, . . . ,A` at the input level and
recursively define a matrix AC for any circuit C. Key-homomorphic computation will then take the input
encodings and produce an encoding (AC + C(x) ·B)T s + noise which can be decrypted if (1) C(x) = 0,
and (2) one knows the trapdoor for AC . This, with some additional tricks that we use in the security proof,
give us the ABE scheme.

Once we construct our attribute-based encryption scheme, we use it to construct functional encryption
and reusable garbled circuits. The scheme also has a number of other features. It can be turned into an
attribute-based fully homomorphic encryption scheme (following the lines of [GSW13]) and it can support
outsourcing of the decryption algorithm (following along the lines of [GHW11, GVW13]). For more details,
we refer the reader to Appendix 6.

2 Attribute-Based Encryption

An attribute-based encryption scheme [GPSW06] for a class of predicate circuits C (namely, circuits with a
single bit output) consists of four algorithms (Setup,Enc,Keygen,Dec):

Params(1λ, dmax)→ pp ; The parameter generation algorithm takes the security parameter 1λ, and the
maximum circuit depth dmax and outputs a public parameter pp which is implicitly given to all the other
algorithms of the scheme.

Setup(1`)→ (mpk,msk) : The setup algorithm gets as input the length ` of the input index, and outputs
the master public key mpk, and the master key msk.

Enc(mpk, x, µ)→ ctx : The encryption algorithm gets as input mpk, an index x ∈ {0, 1}` and a message
µ ∈M. It outputs a ciphertext ctx.

Keygen(msk, C)→ skC : The key generation algorithm gets as input msk and a predicate specified by
C ∈ C. It outputs a secret key skC .

Dec(ctx, skC)→ µ : The decryption algorithm gets as input ctx and skC , and outputs either⊥ or a message
µ ∈M.

Definition 2.1 (Correctness). We require that for all (x, C) such that C(x) = 1 and for all µ ∈ M,
we have Pr[ctx ← Enc(mpk,x, µ);Dec(ctx, skC) = µ)] = 1 where the probability is taken over pp ←
Params(1λ, dmax), (mpk,msk)← Setup(1`) and the coins of all the algorithms in the expression above.
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Definition 2.2 (Security). For a stateful adversary A, we define the advantage function AdvABE
A (λ) to be

Pr


b = b′ :

x∗ ← A(1λ, 1`);
pp← Params(1λ, dmax);
(mpk,msk)← Setup(1`,x∗);

(µ0, µ1)← AKeygen(msk,·)(mpk), |µ0| = |µ1|;
b

$← {0, 1};
ctx ← Enc(mpk,x, µb);

b′ ← AKeygen(msk,·)(ctx)


− 1

2

with the restriction that all queries y that A makes to Keygen(msk, ·) satisfies C(x) = 0 (that is, skC does
not decrypt ctx). An attribute-based encryption scheme is selectively secure if for all PPT adversaries A,
the advantage AdvABE

A (λ) is a negligible function in λ. We call an attribute-based encryption scheme fully
secure if the adversary A is allowed to choose the challenge index x after seeing secret keys, namely, along
with choosing (µ0, µ1).

3 Preliminaries

Notation For any integer q ≥ 2, we let Zq denote the ring of integers modulo q and we represent Zq as
integers in (−q/2, q/2]. We let Zn×mq denote the set of n × m matrices with entries in Zq. We use bold
capital letters (e.g. A) to denote matrices, bold lowercase letters (e.g. x) to denote vectors. The notation AT

denotes the transpose of the matrix A.
If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′) matrix

formed by concatenating A1 and A2. A similar notation applies to vectors. When doing matrix-vector
multiplication we always view vectors as column vectors.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a
negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n) to
denote a polynomial function of n. We say an event occurs with overwhelming probability if its probability
is 1− negl(n).

3.1 Lattice Preliminaries

In this section we collect the results from the literature that we will need for our construction and the proof
of security. See Section-3 for the standard notation description.

3.1.1 Learning With Errors (LWE) Assumption

The LWE problem was introduced by Regev [Reg09], who showed that solving it on the average is as hard
as (quantumly) solving several standard lattice problems in the worst case.

Definition 3.1 (LWE). For an integer q = q(n) ≥ 2 and an error distribution χ = χ(n) over Zq, the
learning with errors problem dLWEn,m,q,χ is to distinguish between the following pairs of distributions:

{A,AT s + x} and {A,u}

where A
$← Zn×mq , s

$← Znq ,x
$← χm,u

$← Zmq .
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Connection to lattices. Let B = B(n) ∈ N. A family of distributions χ = {χn}n∈N is called B-bounded
if

Pr[χ ∈ {−B, . . . , B − 1, B}] = 1.

There are known quantum [Reg09] and classical [Pei09] reductions between dLWEn,m,q,χ and approximat-
ing short vector problems in lattices in the worst case, where χ is a B-bounded (truncated) discretized
Gaussian for some appropriate B. The state-of-the-art algorithms for these lattice problems run in time
nearly exponential in the dimension n [AKS01, MV10]; more generally, we can get a 2k-approximation
in time 2Õ(n/k). Combined with the connection to LWE, this means that the dLWEn,m,q,χ assumption is
quite plausible for a poly(n)-bounded distribution χ and q as large as 2n

ε
(for any constant 0 < ε < 1).

Throughout this paper, the parameter m = poly(n), in which case we will shorten the notation slightly to
dLWEn,q,χ.

3.1.2 Trapdoors for Lattices

Gaussian distributions. Let DZm,s,c be the truncated discrete Gaussian distribution over Zm with
parameter s and center c, that is, we replace the output by 0 whenever the || · ||∞ norm exceeds

√
m · s.

For notational convenience, we would assume c = 0 in most cases and hence abbreviate DZm,s,0 to DZm,s.
Note that DZm,s is

√
m · s-bounded.

The following lemma gives a bound on the length of vectors sampled from a discrete Gaussian. The result
follows from [MR07, Lemma 4.4], using [GPV08, Lemma 5.3] to bound the smoothing parameter.

Lemma 3.1. Let Λ be an n-dimensional lattice, let T be a basis for Λ, and suppose s ≥ ‖T̃‖ · ω(
√

log n).
Then for any c ∈ Rn we have

Pr
[
‖x− c‖ > s

√
n : x

R← DΛ,σ,c

]
≤ negl(n)

Thus, the probability for a random sample from DZm,s to be 0 is negligible.

Lemma 3.2 (Lattice Trapdoors [Ajt99, GPV08, MP12]). There is an efficient randomized algorithm
TrapSamp(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m = Ω(n log q), outputs
a parity check matrix A ∈ Zn×mq and a ‘trapdoor’ matrix T ∈ Zm×m such that the distribution of A is
negl(n)-close to uniform and ‖T̃‖ ≤ O(n log q). Moreover, there is an efficient algorithm SampleD that
with overwhelming probability over all random choices, does the following: For any u ∈ Znq , and large
enough s = Ω(

√
n log q), the randomized algorithm SampleD(A,T,u, s) outputs a vector r ∈ Zm with

norm ||r||∞ ≤ ||r||2 ≤ s
√
n (with probability 1). Furthermore, the following distributions of the tuple

(A,T,U,R) are within negl(n) statistical distance of each other for any polynomial k ∈ N:

• (A,T)← TrapSamp(1n, 1m, q); U← Zn×kq ; R← SampleD(A,T,U, s).

• (A,T)← TrapSamp(1n, 1m, q); R← (DZm,s)
k; U := AR (mod q).

3.1.3 Sampling algorithms

We will use the following algorithms to sample short vectors from specific lattices. Looking ahead, the
algorithm SampleLeft [ABB10a, CHKP12] will be used to sample keys in the real system, while the
algorithm SampleRight [ABB10a] will be used to sample keys in the simulation.
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Algorithm SampleLeft(A,B,TA,u, α):

Inputs: a full rank matrix A in Zn×mq , a “short” basis TA of Λ⊥q (A),
a matrix B in Zn×m1

q , a vector u ∈ Znq , and a Gaussian parameter α. (1)

Output: Let F := (A ‖ B). The algorithm outputs a vector e ∈
Zm+m1 in the coset ΛF+u.

Theorem 3.3 ([ABB10a, Theorem 17], [CHKP12, Lemma 3.2]). Let q > 2, m > n and α > ‖T̃A‖ ·
ω(
√

log(m+m1)). Then SampleLeft(A,B,TA,u, α) taking inputs as in (1) outputs a vector e ∈ Zm+m1

distributed statistically close to DΛF+u,α, where F := (A ‖ B).

Algorithm SampleRight(A,B,R,TB,u, α):

Inputs: matrices A in Zn×kq and R in Zk×m, a full rank matrix B in
Zn×mq , a “short” basis TB of Λ⊥q (B), a vector u ∈ Znq , and a Gaussian
parameter α.

(2)

Output: Let F := (A ‖ AR + B). The algorithm outputs a vector
e ∈ Zm+k in the coset ΛF+u.

Often the matrix R given to the algorithm as input will be a random matrix in {1,−1}m×m. Let Sm be the
m-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We define sR := ‖R‖ := supx∈Sm−1 ‖R · x‖.

Theorem 3.4 ([ABB10a, Theorem 19]). Let q > 2,m > n and α > ‖T̃B‖ · sR · ω(
√

logm). Then
SampleRight(A,B,R,TB,u, α) taking inputs as in (2) outputs a vector e ∈ Zm+k distributed statistically
close to DΛF+u,α, where F := (A ‖AR + B).

3.1.4 Additional algorithms

We will also use the following two algorithms, throughout our paper. Let y = blog qc+ 1.

• Powersof2(a): The algorithm takes an element a ∈ Zq as input and outputs a′ = [20a, 21a, . . . , 2y−1a].
Given a matrix A ∈ Zn×nq as input, Powersof2(A) returns a matrix in Zn×nyq , with Powersof2 algorithm
applied to each element of A.

• BD(a): The algorithm takes in an element a ∈ Zq and outputs a vector aT = [a0, . . . , ay−1], where ai
is the ith bit of the binary decomposition of a ordered from LSB to MSB. Given a matrix A ∈ Zn×mq as
input, BD(A) returns a ny ×m matrix with BD applied to each element of A.

We note that for any two matrices A ∈ Zn×nq ,B ∈ Zn×mq : Powersof2(A) · BD(B) = AB. We will
frequently use matrix P = Powersof2(In), where In is an n× n identity matrix.

3.2 Multilinear Maps

Assume there exists a group generator G that takes the security parameter 1λ and the pairing bound k and
outputs groups G1, . . . , Gk each of large prime order q > 2λ. Let gi be the generator of group Gi and let
g = g1. In addition, the algorithm outputs a description of a set of bilinear maps:

{eij : Gi ×Gj → Gi+j | i, j ≥ 1, i+ j ≤ k}
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satisfying eij(gai , g
b
j) = gabi+j for all a, b ∈ Zq. We sometimes omit writing eij and for convince simply use

e as the map descriptor.

Definition 3.2 ((k, `)-Multilinear Diffie-Hellman Exponent Assumption). The challenger runs G(1λ, k)
to generate groups G1, . . . , Gk, generators g1, . . . , gk and the map descriptions eij . Next, it picks
c1, c2, . . . , ck ∈ Zq at random. The (k, `)-MDHE problem is hard if no adversary can distinguish between
the following two experiments with better than negligible advantage in λ:

(
gc1 , . . . , gc

`
1 , . . . , gc

`+2
1 , . . . , gc

2`
1 , gc2 , . . . , gck , β = g

c`+1
1

∏
2≤i≤k ci

k

)
and (

gc1 , . . . , gc
`
1 , . . . , gc

`+2
1 , . . . , gc

2`
1 , gc2 , . . . , gck , β

)
where β is a randomly chosen element in Gk.

We note that if k = 2, then this corresponds exactly to the bilinear Diffie-Hellman Exponent Assumption

(BDHE). Also, is easy to compute g
c`+1
1

∏
2≤i≤k−1 ci

k by repeated pairing of the challenge components.

4 ABE with Short Secret Key from LWE

In this section we show how to construct an Attribute-Based Encryption based on the hardness of the
standard Learning-With-Errors (LWE) assumption. As opposed to [GVW13] (where there are two randomly
chosen matrices assigned for each wire and the transformation key for gate consists of 4 “recoding” matrices)
in our construction the matrices for each wire are assigned as functions of the input matrices fixed at the setup
and there are no explicit “recoding” matrices. We now define algorithms (Params,Setup,Keygen,Enc,Dec)
for a family of circuits C of bounded depth dmax.

• Params(1λ, dmax): Let n = n(λ, dmax), q = q(n, dmax) andm = m(n, dmax). Set the error distribution
χ = χ(n) and the error bound B = B(n). We also additionally choose two Gaussian parameters: a
“small” Gaussian parameter s = s(n) (which the reader should think of as polynomially bounded), and a
“large” Gaussian parameter α = α(n, dmax) (which the reader should think of as growing exponentially
in dmax.) Output the global public parameters pp = (n, χ,B, q,m, s, α). This is implicitly given to all
of the algorithms defined below4.

• Setup(1`):

1. Run two instances of the trapdoor generation algorithm TrapGen(1n, 1m, q) to obtain (A,TA) and
(B,TB).

2. Choose ` matrices {Ai}i∈[`] at random from Zn×mq .

3. Choose a vector u at random from Znq .

4. Sample a matrix RB ∈ Zm×n(blog qc+1)
q by running SampleD(B,TB,P = Powersof2(In), s) such

that B ·RB = P.
4See Sections 4.1 and B for concrete instantiation of the parameters.
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5. Define and output the master public key as

mpk :=
(
A, {Ai}i∈[`],B,RB,u

)
and the master secret key as msk := (TA).

• Enc(mpk,x = (x1, . . . , x`), µ):

1. Choose a vector s ∈ Znq at random.

2. Choose a noise term e← χm and compute ψ0 = AT s + e.

3. For all input wires i ∈ [`]:

(a) Choose a random matrix Ri ← {−1, 1}m×m and let ei = RT
i e.

(b) Compute ψi = (Ai + xiB)T s + ei.

4. Encrypt the message µ as τ = uT s + e+ bq/2cµ, where e← χ.

5. Output the ciphertext as ctx =
(
x, ψ0, {ψi}i∈[`], τ

)
.

• Keygen(msk, C): For encrypting a message µ ∈ {0, 1}, do the following:

1. Inductively, from input to output, consider a gate g = (u, v;w). Without loss of generality assume
g is a binary NAND gate. The matrices for the input wires (u, v) are fixed as Au,Av by induction
and the matrix for the output wire w is assigned the value

Aw = Av ·RB · BD(Au)−B

2. Finally, let Aout be the matrix defined at the output wire by this process. Define F = [A||(Aout +
B)] ∈ Zn×2m

q . Compute rout ∈ Z2m by running SampleLeft(A, (Aout +B),TA,u, α), satisfying
F · rout = u.

3. Output the secret key for the circuit C, skC := (C, rout).

• Dec(skC , ctx): If C(x) = 0, output ⊥. Otherwise, proceed the evaluation from input to output as
follows:

1. Consider a gate g = (u, v;w) carrying input values xu, xv and hence output value xw =
xu NAND xv = 1 − xuxv. By induction, the user holds ψu = (Au + xuB)T s + eu and
ψv = (Av + xvB)T s + ev (for some error vectors eu and ev).
Compute ψw as follows:

ψw =
(
RB · BD(Au)

)T
ψv − xvψu

As we show below (in Lemma 4.1), this new ciphertext has the form
(
Aw + xwB

)T
s + ew (for a

small enough noise term ew).

2. Finally, at the output gate the user computes

ψout = (Aout + C(x) ·B)T s + eout = (Aout + B)T s + eout

(since C(x) = 1).

3. Compute β = rTout · [ψ||ψout] As we show below (in Lemma 4.1), β ≈ uT s mod q.
Output µ = 0 if |τ − β| < q/4 and µ = 1 otherwise.
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4.1 Correctness and Compactness

Lemma 4.1 (Correctness). Let C be a family of circuits with their depth bounded by dmax and let ABE =
(Params,Setup,Enc,Keygen,Dec) be our attribute-based encryption. Assuming that, for a LWE dimension
n = n(λ, dmax), the parameters for ABE are instantiated as follows5:

χ = DZ,
√
n B = O(n)

q = Õ(ndmax)O(dmax) s = O(
√
n log q)

m = O(n log q) α = O(n log q)O(dmax)

then the scheme ABE is correct, according to Definition 2.1.

Proof. Let us consider a circuit C ∈ C of depth atmost dmax, such that C(x) = 1. Informally, we have to
prove that the encoding obtained at the output wire is of the “correct” form and that the noise component e
of β is “small” enough.

Claim 4.1.1. For each encoding ψu for wire u at level j, the user holds (Au + xuB)T s + eu, where
||eu||∞ ≤ B ·m2j+1(2s

√
m)j .

Proof. First, note that when e ← χm, ||e||∞ ≤ B by the definition of χ and B. Hence, for the noise term
ei = RT

i e, ||ei||∞ ≤ mB since Ri ∈ {−1, 1}m×m. Thus, the base case for the input encodings holds.

• Now, consider a gate g = (u, v, w) and any two input encodings ψu = (Au + xuB)T s + eu, ψv =
(Av +xvB)T s+ ev at depths j0, j1 respectively, where ||eu||∞ ≤ B ·m2j0+1(2s

√
m)j0 and ||e1||∞ ≤

B ·m2j1+1(2s
√
m)j1 . Then, the recoded encoding ψw is computed as follows:

ψw = (RB · BD(Au))T ψv − xvψu
=

(
Av ·RB · BD(Au) + xvB ·RB · BD(Au)

)T
s + (RB · BD(Au))T ev

−xv
((

Au + xuB
)T

s + eu

)
=

(
Av ·RB · BD(Au) + xvAu

)T
s + (RB · BD(Au))T ev − xv

((
Au + xuB

)T
s + eu

)
=

(
Aw + (1− xuxv) ·B

)T
s + ew

where the last equation is because Aw = Av · RB · BD(Au) − B. Also, we define ew :=
(RB · BD(Au))T ev − xveu.

• Thus,

||ew||∞ ≤ m · ‖RB · BD(Au)‖max · ||eu||∞ + ||ev||∞
≤ m ·

(
(ms
√
m) · (B ·m2j0+1(2s

√
m)j0) +B ·m2j1+1(2s

√
m)j1

)
≤ B · (m2 ·m2j0+12j0(s

√
m)j0+1 +m ·m2j1+1(2s

√
m)j1)

≤ B ·m2
(

max(j0,j1)+1
)

+1 · (2s
√
m)max(j0,j1)+1

as claimed (the second inequality is because ‖RB · BD(Au)‖max ≤ nys
√
m ≤ ms

√
m).

5We refer the reader to Section-B for derivation of these parameters.
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Hence, by Claim-4.1.1, if C(x) = 1, the user obtains ψout = (Aout + C(x) · B)T s + eout = (Aout +
B)T s + eout, where ‖eout‖∞ ≤ B · m2dmax+1(2s

√
m)dmax . After final re-encoding, the user obtains

β := rTout[ψ
∗||ψout] = uT s + ef , where ef = [eT ||eTout]rout. Here, rout is the output of SampleLeft

algorithm (Algorithm 1. Hence, it has an infinite norm ‖rout‖∞ ≤ α
√
m ≤ O(n log q)O(dmax). Thus,

‖ef‖∞ ≤ m · (‖e‖∞ + ‖eout‖∞) · ‖rout‖∞ ≤ O(B ·O(n log q)O(dmax))
Also, ciphertext component τ is computed using noise term ||e||∞ ≤ B. Hence,

||ef − e||∞ ≤ O(B ·O(n log q)O(dmax)) < q/4,

which holds given the above setting of the parameters.Thus, ψ and ψ′ are “close”, message µ ∈ {0, 1} is
decoded correctly as required.

Corollary 4.2. For any depth dmax family of circuits C, the secret key size in our Attribute-Based Encryption
is O(n log q) = poly(dmax, λ).

4.2 Security Proof

Theorem 4.3 (Selective security). For all ` and polynomial dmax = dmax(`), there exists a selectively-
secure attribute-based encryption for any family of polynomial-size circuits with ` inputs and depth at most
dmax with constant secret key size (independent on the number of gates in the circuits), assuming hardness of
dLWEn,q,χ for sufficiently large n = poly(λ, dmax), q = nO(dmax) and poly(n) bounded error distribution
χ.

Proof. We follow the security strategy of [ABB10a, AFV11] to prove the security of our construction.
In particular, we define a series of hybrid games, where the first and last games correspond to the real
experiments encrypting messages µ0, µ1, respectively. We show that these games are indistinguishable.
Recall that in the selective security game, the challenge x∗ is declared before the Setup algorithm and all
circuit queries C must be such that C(x∗) = 0. Now, consider the following simulated ABE algorithms:

• Setup∗
(
1λ,x∗ = (x∗1, . . . , x

∗
` )
)
: Takes as input the challenge x∗ and does the following:

1. Choose a random matrix A∗ ∈ Zn×mp and a random vector u ∈ Znp .

2. Run the trapdoor generation algorithm TrapGen(1n, 1m, q) to obtain (B,TB).

3. Sample an m× n (blog qc+ 1) matrix RB ← SampleD(B,TB,P = Powersof2(In), s) such that
B ·RB = P.

4. For all i ∈ [`], sample a short matrix Ri ∈ {−1, 1}m×m at random and let Ai = A∗Ri − x∗iB.

5. Define and output the master public key as

mpk :=
(
A∗, {Ai}i∈[`],B,RB,u

)
• Enc∗

(
mpk, x∗ = (x∗1, . . . , x

∗
` ), µ)

)
: For encrypting a message µ ∈ {0, 1}, do the following:

1. Choose a vector s ∈ Znq at random.

2. Choose a noise term e← χm and compute ψ∗ = (A∗)T s + e.
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3. For all input wires i ∈ [`]:

(a) Compute ψi = (Ai + x∗iB)T s + RT
i e, where Ri is the matrix chosen at the setup.

4. Encrypt the message as τ = uT s + e+ bq/2cµ, where e← χ.

5. Output the ciphertext as ctx∗ =
(
x∗, ψ∗, {ψi}i∈[`], τ

)
.

• Keygen∗(msk, C):

1. The adversary will ensure the following induction: for every wire u, Au = A∗Ru − C(x∗)uB,
where R is a short matrix, and C(x∗)u is the value carried on the wire u by evaluating C on input
x∗. Now, inductively, from input to output, consider a gate g = (u, v;w). The matrices for the input
wires (u, v) are fixed as Au,Av by induction and assign the matrix Aw for the output wire w to be
Aw = Av ·RB · BD(Au)−B.

Note that, when Aw is assigned this way,

Aw = (A∗Rv − C(x∗)vB) ·RB · BD(Au)−B

= A∗Rv ·RB · BD(Au)− C(x∗)vAu −B

= A∗Rv ·RB · BD(Au)− C(x∗)v(A
∗Ru − C(x∗)uB)−B

= A∗(Rv ·RB · BD(Au)− C(x∗)vRu) + (C(x∗)uC(x∗)v − 1)B

= A∗Rw − (1− C(x∗)uC(x∗)v)B

= A∗Rw − C(x∗)wB

2. Therefore, by the above inductive property Aout = A∗R − C(x∗)B for some known matrix R ∈
Zm×m. Since C(x∗) = 0, we have Aout = A∗R. Let F = [A∗||(Aout + B)] = [A∗||A∗R + B].
Compute rout ∈ Z2m by running SampleRight(A∗,B,R,TB,u, α), satisfying F · rout = u.

3. The secret key for the circuit C is skC := (C, rout).

Game Sequence We now define a series of games and then prove that all games Game i and Game i+1
are either statistically or computationally indistinguishable.

• Game 0: The challenger runs the real ABE algorithms and encrypts message µ0 for the challenge index
x∗.

• Game 1: The challenger runs the simulated ABE algorithms Setup∗,Keygen∗,Enc∗ and encrypts
message µ0 for the challenge index x∗.

• Game 2: The challenger runs the simulated ABE algorithms Setup∗,Keygen∗, but chooses a uniformly
random element of the ciphertext space for challenge index x∗.

• Game 3: The challenger runs the simulated ABE algorithms Setup∗,Keygen∗,Enc∗ and encrypts
message µ1 for the challenge index x∗.

• Game 4: The challenger runs the real ABE algorithms and encrypts message µ1 for the challenge index
x∗.
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Lemma 4.4. The view of an adversary in Game 0 is statistically indistinguishable from Game 1. Similarly,
the view of an adversary in Game 3 is statistically indistinguishable from Game 4.

Proof. We prove for the case of Game 0 and Game 1, as the other case is identical. First, note the differences
between the games:

• In Game 0, matrix A∗ is sampled using TrapGen algorithm and matrices Ai ∈ Zm×mp are randomly
chosen. In Game 1, matrix A∗ ∈ Zn×mp is chosen uniformly at random and matrices Ai = A∗Ri−x∗iB
for uniformly random Ri ∈ {−1, 1}m×m.

• In Game 0, each ciphertext component is computed as:

ψi = (Ai + x∗iB)T s + ei = (Ai + x∗iB)T s + RT
i e

On the other hand, in Game 1 the ciphertext is computed as:

ψi = (Ai + x∗iB)T s + RT
i e = (A∗Ri)

T s + RT
i e = RT

i

(
(A∗)T s + e

)
• Finally, in Game 0 the vector rout is sampled using SampleLeft, whereas in Game 1 it is sampled using
SampleRight algorithm.

For sufficiently large α (See Section-B), the distributions produced in two games are statistically
indistinguishable which follows readily from [AFV11, Lemma 4.3], Theorem-3.3 and Theorem-3.4.

Lemma 4.5. If the decisional LWE assumption holds, then the view of an adversary in Game 1 is
computationally indistinguishable from Game 2. Similarly, if the decisional LWE assumption holds, then
the view of an adversary in Game 2 is computationally indistinguishable from Game 3.

Proof. Assume there exist an adversary Adv that distinguishes between Game 1 and Game 2. We show
how to break LWE problem given a challenge {(ai, yi)}i∈[m+1] where yi = aTi · s + ei (for a fixed, random
s ∈ Znq and a noise term sampled from the error distribution ei ← χ) or yi are random samples in Zq. Let
A∗ = [a1,a2, . . . ,am] ∈ Zn×mq and u = am+1. Let ψ∗ = [y1, y2, . . . , ym] and τ = ym+1 + µ bq/2c.

Now, run the simulated Setup∗ algorithm where A∗,u are as defined above. Run the simulated Keygen∗

algorithm. Finally, to simulate the challenge ciphertext set ψ∗, τ as defined above and compute

ψi = RT
i ψ
∗ = RT

i

(
(A∗)T s + e

)
Note that if yi’s are LWE samples, then this corresponds exactly to the Game 1. Otherwise, the ciphertext
corresponds to an independent random sample by the left-over hash lemma.

To conclude, note that Game 0 always corresponds to an encryption of the challenge message µ0 in
the real experiment and Game 4 corresponds to an encryption of the challenge message µ1 (also in the real
experiment). Hence, by the standard hybrid argument, no adversary can distinguish between encryptions of
µ0 and µ1 establishing the selective security of our ABE scheme.
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5 ABE with Short Ciphertext from Mmaps

Intuition We assume that the circuits consist of AND and OR gates. To handle general circuits (with
negations), we can apply De Morgan’s rule to transform it into a monotone circuit, doubling the number of
input attributes (similar to [GGH+13c]).

Applebaum, Ishai, Kushilevitz and Waters showed how to compress ”one-time” garbled keys using an
additively key-homomorphic encryption [AIKW13]. In particular, the “compressed” key is a summation
of keys corresponding to the set of active inputs to the circuit. This approach works only for “one-time”
evaluation of garbled circuits. Next, we view the construction of ABE through the lens of (weakly)
“reusable” garbled circuits proposed in [GVW13], where for each gate the user performs double-key
proxy re-encryption (referred to as TOR). Similarly, we generalize [AIKW13] in a novel way to support
reusability: instead of decrypting, we perform re-encryption where randomness source s is specified by the
ABE encryptor. Hence, our mechanism can be viewed as achieving key-homomorphic proxy re-encryption.
Given (

∏
i∈X hi)

s in the ciphertext viewed as an encryption of 0 using randomness s under the product
of keys hi, the user obtains gsri2 for all active wires i, which can be viewed as an encryption of 0 using
randomness s and key gri2 . From that moment, the construction is very similar to [GGH+13c]. To prove the
security, we generalize the bilinear Diffie-Hellman Exponent Assumption (used to prove the security of the
first broadcast encryption with constant size ciphertext [BGW05]) to the multi-linear setting.

Similar to [GGH+13c], our construction can be converted to multi-linear graded-encodings, recently
instantiated by Garg, Gentry, and Halevi [GGH13a] and Jean-Sébastien Coron, Tancrède Lepoint and Mehdi
Tibouchi [CLT13].

Theorem 5.1 (Selective security). For all polynomials dmax = dmax(λ), there exists a selectively-secure
attribute-based encryption with ciphertext size poly(dmax) for any family of polynomial-size circuits with
depth at most dmax and input size `, assuming hardness of (d+ 1, `)−Multilinear Diffie-Hellman Exponent
Assumption.

5.1 Our Construction

• Params(1λ, dmax): The parameters generation algorithms takes the security parameter and the maxi-
mum circuit depth. It generate a multi-linear map G(1λ, k = d+ 1) that produces groups (G1, . . . , Gk)
along with a set of generators g1, . . . , gk and map descriptors {eij}. It output the public parameters
pp =

(
{Gi, gi}i∈[k], {eij}i,j∈[k]

)
, which are implicitly known to all of the algorithms below.

• Setup(1`): For each input bit i ∈ {1, 2, . . . , `}, choose a random element qi in Zp. Let g = g1 be the
generator of the first group. Define hi = gqi . Also, choose α at random from Zp and let t = gαk . Set the
master public key

mpk := (h1, . . . , h`, t)

and the master secret key as msk := α.

• Keygen(C,msk): The key-generation algorithm takes a circuit C with ` input bits and a master secret
key msk and outputs a secret key skC defined as follows.

1. Choose randomly
(
(r1, z1), . . . , (r`, z`)

)
∈ Zq for each input wire of the circuit C. In addition,

choose
(
(r`+1, a`+1, b`+1), . . . , (rn, an, bn)

)
from Zq randomly for all internal wires of C.
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2. Compute the matrix M :

M :=



g−z1 g−z2 g−z3 . . . g−z`

(h1)z1gr1 (h1)z2 (h1)z3 . . . (h1)z`

(h2)z1 (h2)z2gr2 (h2)z3 . . . (h2)z`

(h3)z1 (h3)z2 (h3)z3gr3 . . . (h3)z`

...
. . .

...

(h`)
z1 (h`)

z2 (h`)
z3 . . . (h`)

z`gr`


3. Consider a gate Γ = (u, v, w) where wires u, v are at depth j−1 and w is at depth j. If Γ is an OR

gate, compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awruj ,K4
Γ = grw−bwrvj

)
Else if Γ is an AND gate, compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awru−bwrvj

)
4. Set σ = gα−rnk−1

5. Define and output the secret key as

skC :=
(
C, {KΓ}Γ∈C , σ

)
• Enc(mpk, x,m): The encryption algorithm takes the master public key mpk, an index x and a message
m ∈ {0, 1}, and outputs a ciphertext ctx defined as follows. Choose a random element s in Zq. Let X
be the set of indices i such that xi = i. Let γ0 = ts if m = 1, otherwise let γ0 be a randomly chosen
element from Gk. Output ciphertext as

ctx :=

(
x, γ0, g

s, γ1 =
( ∏
i∈X

hi
)s)

• Dec(ctx, skC): The decryption algorithm takes the ciphertext ctx, and secret key skC and proceeds as
follows. If C(x) = 0, it outputs ⊥. Otherwise,

1. Let X be the set of indices i such that xi = i. For each input wire i ∈ X , using the matrix M
compute gri

(∏
j∈X hj

)zi and then

gris2 = e

(
gs, gri

( ∏
j∈X

hj
)zi) · e(γ1, g

−zi
)

= e

(
gs, gri

( ∏
j∈X

hj
)zi) · e(( ∏

j∈X
hj
)s
, g−zi

)
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2. Now, for each gate Γ = (u, v, w) where w is a wire at level j, (recursively going from the input to
the output) compute grwsj+1 as follows. If Γ is an OR gate, and C(x)u = 1 compute

grwsj+1 = e
(
K1

Γ, g
rus
j

)
· e
(
gs,K3

Γ

)
else if C(x)v = 1 compute

grwsj+1 = e
(
K2

Γ, g
rvs
j

)
· e
(
gs,K4

Γ

)
else if Γ is an AND gate, compute

grwsj+1 = e
(
K1

Γ, g
rus
j

)
· e
(
K2

Γ, g
rvs
j

)
· e
(
gs,K3

Γ

)
3. If C(x) = 1, then the user computes grnsk for the output wire. Finally, compute

ψ = e
(
gs, σ

)
· grnsk = e

(
gs, gα−rnk−1

)
· grnsk

4. Output m = 1 if ψ = γ0, otherwise output 0.

5.2 Correctness

We show the correctness in two steps: first, we show that for all active input wires i ∈ X , the user correctly
computes gris2 .

e

(
gs, gri

( ∏
j∈X

hj
)zi) = ·e

(( ∏
j∈X

hj
)s
, g−zi

)
=

e
(
g, g
)ris · (g,∏

j∈X
hj
)szi · ( ∏

j∈X
hj , g

)−szi = gris2

Claim 5.1.1. For all active wires w at level j (that is, C(x)w = 1) the user holds gsrwi+1 .

Proof. Clearly, the base case is satisfied as shown above. Now consider a gate Γ = (u, v, w). If g is an OR

gate and assume C(x)u = 1, then

gsrwj+1 = e
(
K1

Γ, g
rus
j

)
· e
(
gs,K3

Γ

)
= e

(
gaw , grusj

)
· e
(
gs, grw−awruj

)
= e

(
g, gj

)awrus · e(g, gj)srw · e(g, gj)−awrus
The case when C(x)v = 1 is similar. Also, if g is an AND gate, then

gsrwj+1 = e
(
K1

Γ, g
rus
j

)
· e
(
K2

Γ, g
rvs
j

)
· e
(
gs,K3

Γ

)
= e

(
gaw , grusj

)
· e
(
gbw , grvsj

)
· e
(
gs, grw−awru−bwrvj

)
= e

(
g, gj

)awrus · e(g, gj)bwrvs · e(g, gj)srw · e(g, gj)−awrus−bwrvs
= e

(
g, gj

)awrus+bwrvs · e(g, gj)srw · e(g, gj)−awrus−bwrvs
Hence, if C(x) = 1, the user computes gsrnk and so

ψ = e
(
gs, σ

)
· grnsk

= e
(
gs, gα−rnk−1

)
· grnsk

= gαsk = ts = γ0

if m = 1.
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5.3 Security Proof

Assume there is an adversary Adv∗ that breaks the security of the ABE scheme. We construct an adversary
Adv that break the (k, `)-Multi-linear Diffie-Hellman Exponent Assumption. The adversary Adv is given a
challenge (

gc1 , . . . , gc
`
1 , . . . , gc

`+2
1 , . . . , gc

2`
1 , gc2 , . . . , gck , β

)
where β is either g

c`+1
1

∏
2≤i≤k ci

k or a random element of Gk. The adversary invokes Adv∗ and gets x∗ as
the challenge index. Let X be the set of indices i such that xi = 1. The adversary will ensure the following
induction: For every wire w at depth j, rw = c`+1

1

∏
2≤i≤j ci (plus some known randomness). Hence, for

all input wires w, rw = c`+1
1 (plus some known randomness). We now define simulated experiments which

Adv will be using to break the assumption.

• Setup∗(1`): For each input bit i /∈ X , choose a random element bi in Zq and implicitly set qi =
c`+1−i

1 + bi. For each i ∈ X , choose a random qi ∈ Zq. Let g = g1 be the generator of the first group.

For all i, compute hi = gqi . Randomly choose γ and let t = gαk = g
c`+1
1

∏
2≤i≤k−1 ci+γ

k which can be
computed from the challenge component by repeated pairing. Set the master public key

mpk := (h1, . . . , h`, t)

and the master secret key as msk :=⊥.

• Keygen∗(C,msk): The key-generation algorithm takes a circuit C with ` input bits and a master secret
key msk and outputs a secret key skC defined as follows.

1. For all i ∈ X , choose randomly ri ∈ Zq. For all i /∈ X , randomly choose fi ∈ Zq and implicitly
set ri = c`+1

1 + fi (that is, we embed the challenge into the attributes /∈ X).

2. For all i ∈ [`], choose pi ∈ Zq at random and implicitly set zi = −ci1 + pi.

3. Compute the matrix M :

M :=



g−z1 g−z2 g−z3 . . . g−z`

(h1)z1gr1 (h1)z2 (h1)z3 . . . (h1)z`

(h2)z1 (h2)z2gr2 (h2)z3 . . . (h2)z`

(h3)z1 (h3)z2 (h3)z3gr3 . . . (h3)z`

...
. . .

...

(h`)
z1 (h`)

z2 (h`)
z3 . . . (h`)

z`gr`


4. We now argue that the adversary can compute every entry in the matrix M .

(a) Entries of the first row can be computed by g−zi = gc
i
1−pi = gc

i
1 · g−pi , where pi is known.
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(b) Note that for all i = j (i.e. the diagonal entries). If i /∈ X , then

(hi)
zi · gri = g(c`+1−i

1 +bi)(−ci1+pi) · gc
`+1
1 +fi = gc

`+1−i
1 pi−bici1+bipi+fi

If i ∈ X , then qi, zi, ri are all known.
(c) Now, consider non-diagonal entries i 6= j. If i /∈ X and j ∈ X , then

(hi)
zj =

(
gc
`+1−i
1 +bi

)−cj1+pj = g−c
`+1−i+j
1 · g−bic

j
1 · gpjc

`+1−i
1 · gbipj

which can be computed given the challenge and the knowledge of bi, pj . Also, if i ∈ X and
j /∈ X , similarly

(hi)
zj =

(
gqi
)−cj1+pj = g−c

j
1qi · gqipj

can be computed given the challenge and the knowledge of qi, pj .

5. Consider a gate Γ = (u, v, w) where wires u, v are at depth j − 1 and w is at depth j.

(a) If Γ is an OR gate and C(x∗)w = 1, then values rw, aw, bw are randomly chosen from Zq.
Otherwise, we implicitly set aw = cj + dw, bw = cj + kw, where dw, kw ∈ Zq are randomly
chosen and cj is the value a part of the challenge. Also, implicitly set rw = c`+1

1

∏
2≤i≤j ci+ew,

where ewZq is randomly chosen. Compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awruj ,K4
Γ = grw−bwrvj

)
Note that in the case C(x∗)w = 0,

rw − awru = c`+1
1

∏
2≤i≤j

ci + ew −
(
cj + dw

)(
c`+1

1

∏
2≤i≤j−1

ci + nu
)

= −cjnu − dw
(
c`+1

1

∏
2≤i≤j−1

ci
)
− dwnu + ew

Hence, componentK3
Γ can be computed by pairing j elements from the challenge: gc1 , g`, gc2 , . . . , gcj−1 .

Similarly, for term K4
Γ.

(b) Else if Γ is an AND gate and C(x∗)w = 1, then values rw, aw, bw are randomly chosen from
Zq. And the adversary computes

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awru−bwrvj

)
Otherwise, if C(x∗)u = 0, then implicitly set rw = c`+1

1

∏
2≤i≤j ci + ew, aw = cj + dw where

ew, dw are randomly chosen. Also, choose bw at random. Again, the adversary can compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awru−bwrvj

)
Note that,

rw − awru − bwrv = c`+1
1

∏
2≤i≤j

ci + ew −
(
cj + dw

)(
c`+1

1

∏
2≤i≤j−1

ci + nu
)
− bwrv

= ew − cjnu − dw
(
c`+1

1

∏
2≤i≤j−1

ci
)
− dwnu − bwrv
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Hence, K3
Γ can be computed by the adversary by applying j pairings to the challenge

components gc1 , g`, gc2 , . . . , gcj−1 and using the other known randomness components.

The adversary performs the symmetric operations if C(x∗)v = 0.

6. Set σ = gα−rnk−1 . Note that sinceC(x∗) = 0 the component rn embeds parts challenge into it. Hence,
σ can be computed by the adversary due to cancellation in the exponent:

α− rn = c`+1
1

∏
2≤i≤k−1

cj + γ − c`+1
1

∏
2≤i≤k−1

cj + en = γ + en

7. Define and output the secret key as

skC :=
(
C, {KΓ}g∈C , σ

)
• Enc∗(mpk, x∗,m): The encryption algorithm takes the master public key mpk, an index x∗ and a

message m, and outputs a ciphertext ctx∗ defined as follows. Let X be the set of indices i such that
x∗i = i. Implicitly let s = ck. Let γ0 = γ = β · gγckk . Output ciphertext as

ctx :=

(
x, γ0, g

ck , γ1 =
( ∏
i∈X

hi
)ck)

where b is a randomly chosen bit. Note that
(∏

i∈X hi
)s can be computed given the challenge

component gck and known randomness qi for i ∈ X . If β = g
c`+1
1

∏
2≤i≤k ci

k , then,

β · gγckk =
(
g
c`+1
1

∏
2≤i≤k−1

k · gγk
)ck

=
(
g
c`+1
1

∏
2≤i≤k−1 +γ

k

)ck
= tck = ts

which corresponds to an encryption of 1. Otherwise, if β is a randomly chosen in Gk, this corresponds
to an encryption of 0.

The adversary Adv uses the above simulated algorithms to answer the queries to Adv∗. If Adv∗ returns

m = 1, then Adv outputs that β = g
c`+1
1

∏
2≤i≤k ci

k . Otherwise, it outputs that β is randomly chosen in the
target.

6 Applications

6.1 Single-Key Functional Encryption and Reusable Garbled Circuits

Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich showed how to obtain a Single-Key Functional
Encryption (SKFE) and Reusable Garbled Circuits (See Section-A for definitions) from: (1) Attribute-based
Encryption, (2) Fully-Homomorphic Encryption and (3) “one-time” Garbled Circuits [GKP+13b] . In this
section we show what we gain in efficiency in the secret key and ciphertext sizes for these two construction
by using our ABE schemes.
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Theorem 6.1 ([GKP+13b]). There is a (fully/selectively secure) single-key functional encryption scheme
FE for any class of circuits C that take ` bits of input and produce a one-bit output, assuming the existence
of (1) C-homomorphic encryption scheme, (2) a (fully/selectively) secure ABE scheme for a related class of
predicates and (3) Yao’s Garbling Scheme, where:

1. The size of the secret key is 2 · α · abe.keysize, where abe.keysize is the size of the ABE key for circuit
performing homomorphic evaluation of C and outputting a bit of the resulting ciphertext.

2. The size of the ciphertext is 2 · α · abe.ctsize(` · α+ γ) + poly(λ, α, β)

where (α, β, γ) denote the sizes of the FHE (ciphertext, secret key, public key), respectively. abe.keysize, abe.ctsize(k)
are the size of ABE secret key, ciphertext on k-bit attribute vector and λ is the security parameter.

Since FHE (and Yao’s Garbled Circuits) can also be instantiated assuming the sub-exponential hardness
of LWE ([BV11, BGV12]), we obtain the following corollaries.

Corollary 6.2. Combining our short secret key ABE construction (Theorem-4.3) and Theorem-6.1, we
obtain a single-key functional encryption scheme for a circuit class C with depth at most dmax, where the
secret key size is some poly(dmax, λ) and λ is the security parameter.

To obtain a short secret key for functional encryption scheme, we need another observation. There exists
a fully-homomorphic encryption scheme where ciphertext encrypting k bits of input is of size k + poly(λ),
where λ is the security parameter. Starting from any FHE scheme and a symmetric-key encryption where
the size of the ciphertext is the size of the input plus poly(λ), this can be done as follows:

1. The new FHE encryption algorithm on input m of size k samples a fresh symmetric-key K of size
poly(λ) and encrypts m using the symmetric-key encryption algorithm to get a ciphertext ct0 of size
k + poly(λ).

2. Next, it encrypts K using the standard FHE algorithm to get ct1. Hence, the total size of the ciphertext
is k + poly(λ).

3. The homomorphic evaluation algorithm can first run the symmetric decryption on ct0, ct1 to get a
homomorphic encryption of m, and then continue with the homomorphic circuit evaluation.

Corollary 6.3. Combining the above observation, our short ciphertext ABE construction (Theorem-5.1) and
Theorem-6.1, we obtain a single-key functional encryption scheme for any circuit class C with depth at most
dmax and ` bit inputs, where the size of the ciphertext is `+ poly(dmax, λ) and λ is the security parameter.

Next, we apply our results to get the optimal construction of reusable garbled circuits.

Theorem 6.4 ([GKP+13b]). There exists a reusable garbling scheme for any class of circuits C that take
` bits of input, assuming the existence (1) symmetric-encryption algorithm, (2) a single-key functional
encryption for C, where:

1. The size of the secret key is |C| + fe.keysize + poly(λ), where fe.keysize is the size of the FE key for
circuit performing symmetric-key decryption and evaluation of C.

2. The size of the ciphertext is fe.ctsize(λ+ `)

where fe.ctsize(λ+ `) is the size of FE ciphertext on λ+ `-bit input.
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Corollary 6.5. From Corollary-6.2 and Theorem-6.4, we obtain a reusable garbled circuits scheme for any
class of polynomial-size circuits with depth at most dmax, where the secret key size is |C|+ poly(dmax, λ).

Corollary 6.6. From Corollary-6.3 and Theorem-6.4, we obtain a reusable garbled circuits scheme for
any class of polynomial-size circuits with depth at most dmax and ` bit inputs, where the ciphertext size is
`+ poly(dmax, λ).

6.2 Attribute-Based Fully Homomorphic Encryption (ABFHE)

An attribute-based fully homomorphic encryption (ABFHE) scheme has all of the functionality of ABE, but
also allows messages encrypted under the same public index to be processed homomorphically by anyone
(without any public or private keys), such that the final ciphertexts can still be decrypted by any party that
was entitled to decrypt the original ciphertexts. Recently, Gentry, Sahai and Waters [GSW13] constructed
the first ABFHE scheme, building on the ABE scheme of Gorbunov, Vaikuntanathan and Wee [GVW13].
By apply Gentry et al.’s techniques to our ABE scheme, we obtain an ABFHE scheme with constant size
secret keys, with security based on LWE.

Recall that Gentry et al. actually provided a general compiler to transform any LWE-based ABE scheme
with suitable properties into an LWE-based ABFHE scheme, the properties being:

1. Property 1 (Ciphertext and decryption key vectors): Decryption keys ~sC and ciphertexts ~cx are
vectors over Zq. The first coefficient of each ~sC is 1.

2. Property 2 (Small Dot Product): If ~cx encrypts 0, then 〈~cx, ~sC〉 is “small”.

3. Property 3 (Security): Encryptions of 0 are indistinguishable from uniform vectors over Zq (under
LWE).

As in [GVW13], decryption keys in our LWE-based ABE scheme do not natively have the form needed
by the compiler. But, as with [GVW13], one can re-interpret decryption as a two-step process. In the first
step, rather than decrypting “incrementally” gate-by-gate, we “holistically” view decryption as applying
an overall linear transformation (in particular, a dot product) to the ciphertext vector: we thereby obtain a
“sub-key” ~sC,x, a vector that depends on skC and x, that represents this overall linear transformation. In the
second step, we simply determine whether the dot product 〈~cx, ~sC,x〉 is small or not. Viewed in this way,
our ABE scheme has all of the properties required by Gentry et al.’s compiler, and we obtain ABFHE with
short secret keys.

6.3 Outsourcing Decryption

Since ABE decryption is often computationally expensive, the question arises: can we outsource it
[GHW11]? Gorbunov et al. [GVW13] showed that decryption in their scheme can be outsourced easily:
roughly, the user associated to circuit C gives the server its entire secret key skC , except for the secret key
material associated to the final gate (used in the final step of decryption). In our scheme, we can do exactly
the same thing, but the payoff is greater: since all of the recoding matrices in our secret keys are public
except the last one, they do not need to be transmitted to or stored by the server; the server only needs the
circuit C associated to each user.
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A Additional Preliminaries

A.1 Functional Encryption (FE)

We recall the functional encryption definition from the literature [KSW08, BSW11, GVW12] with some
notational changes.

Definition A.1. A functional encryption scheme FE for a class of boolean circuits with an n-bit input
C = {Cn}n∈N is a tuple of four p.p.t. algorithms (FE.Setup, FE.Keygen, FE.Enc, FE.Dec) such that:

• FE.Setup(1λ) takes as input the security parameter 1λ and outputs a master public key mpk and a
master secret key msk.

• FE.Keygen(msk, C) takes as input the master secret key msk and a circuit C ∈ C and outputs a key
skC .

• FE.Enc(mpk, x) takes as input the master public key mpk and an input x ∈ {0, 1}∗ and outputs a
ciphertext c.

• FE.Dec(skC , c) takes as input a key skC and a ciphertext c and outputs a value y.

Correctness. For any polynomial n(·), for every sufficiently large security parameter λ, for n = n(λ), for
all C ∈ Cn, and all x ∈ {0, 1}n,

Pr[(mpk,msk)← FE.Setup(1λ); skC ← FE.Keygen(msk, C); c← FE.Enc(mpk, x) :

FE.Dec(skC , c) = C(x)] = 1− negl(λ).

A.1.1 Security of Functional Encryption

Intuitively, the security of functional encryption requires that an adversary should not learn anything about
the input x other than the computation result C(x), for some circuit C for which a key was issued (the
adversary can learn the circuit C). As mentioned, two notions of security have been used in previous work:
full and selective security, with the same meaning as for ABE. We present both definitions because we
achieve them with different parameters of the gapSVP assumption. Our definitions are simulation-based:
the security definition states that whatever information an adversary is able to learn from the ciphertext and
the function keys can be simulated given only the function keys and the output of the function on the inputs.

Definition A.2. (FULL-SIM-Security FE Security) Let FE be a functional encryption scheme for the family
of circuits C = {Cn}n∈N. For every p.p.t. adversary A = (A1, A2) and p.p.t. simulator S, consider the
following two experiments:

expreal
FE,A(1λ): expideal

FE,A,S(1λ):

1: (mpk,msk)← FE.Setup(1λ)
2: (C, stateA)← A1(mpk)
3: skC ← FE.Keygen(msk, C)
4: (x, state′A)← A2(stateA, skC)

5: c← FE.Enc(mpk, x)
6: Output (state′A, c)

5: c̃← S(mpk, skC , C, C(x), 1|x|)
6: Output (state′A, c̃)
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The scheme is said to be (single-key) FULL-SIM−secure if there exists a p.p.t. simulator S such that
for all pairs of p.p.t. adversaries (A1, A2), the outcomes of the two experiments are computationally
indistinguishable: {

expreal
FE,A(1λ)

}
λ∈N

c
≈
{

expideal
FE,A,S(1λ)

}
λ∈N

.

We now define selective security, which is a weakening of full security, by requiring the adversary to
provide the challenge input x before seeing the public key or any other information besides the security
parameter. We simply specify the difference from full security.

Definition A.3 (SEL-SIM-Security). The same as Def. A.2, but modify the game so that the first step consists
of A specifying the challenge input x given only the security parameter.

A.2 Reusable Garbled Circuits

We use the term reusable garbled circuit to refer to the most interesting variant of garbled circuits: the ones
that can run on an arbitrary number of encoded inputs without compromising the privacy of the circuit or of
the input. We recall the definition of a reusable garbled circuit presented in [GKP+13b].

Definition A.4. A reusable garbling scheme for a family of circuits C = {Cn}n∈N with Cn a set of boolean
circuits taking as input n bits, is a tuple of p.p.t. algorithms RGb = (RGb.Garble,RGb.Enc,RGb.Eval) such
that

• RGb.Garble(1λ, C) takes as input the security parameter λ and a circuitC ∈ Cn for some n, and outputs
the garbled circuit Γ and a secret key sk.

• RGb.Enc(sk, x) takes as input x ∈ {0, 1}∗ and outputs an encoding c.

• RGb.Eval(Γ, c) takes as input a garbled circuit Γ, an encoding c and outputs a value y which should be
C(x).

Correctness. For any polynomial n(·), for all sufficiently large security parameters λ, for n = n(λ), for
all circuits C ∈ Cn and all x ∈ {0, 1}n,

Pr[(Γ, sk)← RGb.Garble(1λ, C); c← RGb.Enc(sk, x); y ← RGb.Eval(Γ, c) : C(x) = y] = 1− negl(λ).

Efficiency. There exists a universal polynomial p = p(λ, n) (p is the same for all classes of circuits C)
such that for all input sizes n, security parameters λ, for all boolean circuits C of with n bits of input, for
all x ∈ {0, 1}n,

Pr[(Γ, sk)← RGb.Garble(1λ, C) : |sk| ≤ p(λ, n) and runtime(RGb.Enc(sk, x)) ≤ p(λ, n)] = 1.

Note that since RGb.Enc is a p.p.t. algorithm, it suffices to ensure that |sk| ≤ p(λ, n) and obtain that
RGb.Enc’s runtime is also at most a polynomial. We prefer to keep the runtime of RGb.Enc in the definition
as well for clarity.
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A.2.1 Security of Reusable Garbled Circuits

Here, we present the security definition of the reusable garbled circuits, as presented in [GKP+13b].

Definition A.5. (Input and circuit privacy with reusability)
Let RGb be a garbling scheme for a family of circuits C =

{
Cn
}
n∈N. For a pair of p.p.t. algorithms

A = (A1, A2) and a p.p.t. simulator S = (S1, S2), consider the following two experiments:

expreal
RGb,A(1λ): expideal

RGb,A,S(1λ):

1: (C, stateA)← A1(1λ)
2: (gsk,Γ)← RGb.Garble(1λ, C)

3: α← A
RGb.Enc(gsk,·)
2 (C,Γ, stateA)

4: Output α

1: (C, stateA)← A1(1λ)
2: (Γ̃, stateS)← S1(1λ, 1|C|)

3: α← A
O(·,C)[[stateS ]]
2 (C, Γ̃, stateA)

4: Output α

In the above, O(·, C)[[stateS ]] is an oracle that on input x from A2, runs S2 with inputs C(x), 1|x|, and
the latest state of S; it returns the output of S2 (storing the new simulator state for the next invocation).

We say that the garbling scheme RGb is input- and circuit-private with reusability if there exists a p.p.t.
simulator S such that for all pairs of p.p.t. adversaries A = (A1, A2), the following two distributions are
computationally indistinguishable:{

expreal
RGb,A(1λ)

}
λ∈N

c
≈
{

expideal
RGb,A,S(1λ)

}
λ∈N

.

We can see that this security definition enables reusability of the garbled circuit: A2 is allowed to make
as many queries for input encodings as it wants.

B Parameters Derivation for Short Secret Key ABE

This section provides a detailed description on the selection of parameters for our scheme, so that both
correctness (see Section 4.1) and security (see Section 4.2) of our scheme are satisfied.

For a family of circuits C of bounded depth dmax, with the LWE dimension n, the parameters can be chosen
as follows:

• The error distribution χ is typically a truncated discrete Gaussian distribution DZ,
√
n with parameter√

n. And, the error bound B = O(
√
n
√
n) = O(n). For this B, the probability for a random sample

from DZ,
√
n to be 0 would be negl(n), according to Theorem 3.1.

From now, we will consider the LWE modulus parameter q = q(n, dmax), without instantiating it, to
calculate the other parameters m, s, α. Later, we will instantiate q with a value which would make m, s, α
satisfy the correctness and security properties.

• The parameter m = O(n log q).

• The “small” Gaussian parameter s is chosen to be O(
√
n log q).
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• Now, let us calculate the value of the “large” Gaussian parameter α = α(n, dmax). We should choose α
such that the output of the SampleLeft and the SampleRight algorithms are statistically indistinguishable
from each other, when provided with the same set of inputs F and u.

The SampleRight algorithm (Algorithm 1) requires

α > ‖T̃B‖ · ‖R‖ · ω(
√

logm) (3)

Hence, we proceed as follows:

1. First, we calculate the value of ‖R‖, where R is the matrix obtained corresponding to Aout in the
simulated ABE algorithm KeyGen∗. In KeyGen∗, at each step of the induction, we get the matrix

Rw = Rv ·RB · BD(Au)− C(x∗)vRu

corresponding to the matrix Aw of the outgoing wire w of the gate g(u, v;w). We prove the
following claim which would help us deduce the value of ‖R‖max.

Claim B.0.1. Suppose that for the gate g(u, v;w), with the incoming wires u, v at depths j0, j1
respectively, ‖Ru‖max ≤ m2j0(2s

√
m)j0 and ‖Rv‖max ≤ m2j1(2s

√
m)q1 . Then, for the outgoing

wirew, the maximum norm of the matrix Rw would be ‖Rw‖max ≤ m2(max(j0,j1)+1)(2s
√
m)max(j0,j1)+1

Proof. This proof proceeds similar to the calculation of ‖ew‖∞ in Claim-4.1.1. In particular,

‖Rw‖max ≤ m · ‖RB · BD(Au)‖max · ‖Ru‖max + ‖Rv‖max

≤ m
(
(ms
√
m) ·m2j0(2s

√
m)j0 +m2j1(2s

√
m)j1)

≤
(
m2 ·m2j02j0(s

√
m)j0+1 +m ·m2j1(2s

√
m)j1)

≤ m2(max(j0,j1)+1)(2s
√
m)max(j0,j1)+1

Thus, the maximum norm of the matrix Rw corresponding to Aw would be ‖Rw‖max ≤
m2(max(j0,j1)+1)(2s

√
m)max(j0,j1)+1.

Thus, each element of the matrix R corresponding to Aout, has an absolute value of atmost
‖R‖max ≤ m2dmax(2s

√
m)dmax .

2. We then get sR as follows:

sR := ‖R‖ := sup
x∈Sm−1

‖R · x‖ ≤ m · ‖R‖max ≤ m
2dmax+1(2s

√
m)dmax

3. For a matrix TB got from TrapSamp (Algorithm 3.2), ‖T̃B‖ = O(
√
n log q).

4. Finally, we substitute these values in Equation 3 to get the value of α required for the SampleRight
algorithm.

α ≥ O(
√
n log q) ·m2dmax+1(2s

√
m)dmax · ω(

√
logm) (4)

The value of the parameter α required for the SampleLeft algorithm (Algorithm 2) is

α ≥ O(
√
n log q) · ω(

√
log 2m) (5)
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Thus, to satisfy both Equation 4 and Equation 5, we set the parameter

α ≥ O(
√
n log q) ·m2dmax+1(2s

√
m)dmax · ω(

√
logm)

Thus, the outputs of the SampleLeft and the SampleRight algorithms will be statistically indistinguish-
able from each other, when provided with the same set of inputs F and u. Since we had assigned the
“small” Gaussian parameter s = O(

√
n log q), the parameter α ≥ O(m3dmax+2). Hiding the constants,

we assign α = O(n log q)O(dmax).

When our scheme is instantiated with these parameters, the correctness (see Section 4.1) of the scheme is
satisfied when

O(B ·O(n log q)O(dmax)) < q/4

Clearly, this condition is satisfied when q = Õ(n log dmax)O(dmax). Also, this value of q = poly(n), enables
both the quantum reduction [Reg09] and the classical reduction [Pei09] from dLWEn,q,χ to approximating
lattice problems in the worst case, when n, χ chosen as described above. To conclude this section, for a
given max depth dmax and an LWE dimension n = n(dmax), we set the parameters for our scheme to satisfy
both the correctness and security, as follows:

χ = DZ,
√
n

B = O(n)

q = Õ(ndmax)O(dmax)

m = O(n log q)

s = O(n log q)

α = O(n log q)O(dmax)
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