
Differing-Inputs Obfuscation and Applications

Abstract

In this paper, we study of the notion of differing-input obfuscation, introduced by Barak et
al. (CRYPTO 2001, JACM 2012). For any two circuits C0 and C1, a differing-input obfuscator
diO guarantees that the non-existence of an adversary that can find an input on which C0 and
C1 differ implies that diO(C0) and diO(C1) are computationally indistinguishable. We show
many applications of this notion:

- We define the notion of a differing-input obfuscator for Turing machines and give a con-
struction for the same (without converting it to a circuit) with input-specific running times.
More specifically, for each input, our obfuscated Turning machine takes time proportional
to the running time of the Turing machine on that specific input rather than the machine’s
worst-case running time.

- We give a functional encryption scheme that allows for secret-keys to be associated with
Turing machines, and thereby achieves input-specific running times. Further, we can equip
our functional encryption scheme with delegation properties.

- We construct a multi-party non-interactive key exchange protocol with no trusted setup
where all parties post only logarithmic-size messages. It is the first such scheme with such
short messages. We similarly obtain a broadcast encryption system where the ciphertext
overhead and secret-key size is constant (i.e. independent of the number of users), and the
public key is logarithmic in the number of users.

All our constructions make inherent use of the power provided by differing-input obfuscation. It
is not currently known how to construct systems with these properties from the weaker notion
of indistinguishability obfuscation.

1 Introduction

General-purpose program obfuscation aims to make arbitrary computer programs “unintelligi-
ble” while preserving their functionality. The first formal study of the problem of obfuscation
was undertaken by Hada [Had00] and Barak et al. [BGI+12]. Barak et al. proposed the notion
of virtual black-box (VBB) obfuscation. This notion requires that the obfuscation does not leak
anything more than what can be learnt with just a black-box oracle access to the function.
Unfortunately, in the same work, Barak et al. showed a family of circuits that cannot be VBB
obfuscated.

Weaker variants Obfuscation. In light of this impossibility result, Barak et al. left open
the problem of realizing weaker notions of obfuscation such as indistinguishability obfuscation
and differing-inputs obfuscation (see below for further explanation).

Indistinguishability obfuscation requires that given any two equivalent circuits C0 and C1

of similar size, the obfuscations of C0 and C1 are computationally indistinguishable. In a very
recent work, Garg et al. [GGH+13b], building upon the multilinear maps framework of Garg et
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al. [GGH13a], gave the first candidate construction for a general-purpose obfuscator satisfying
this notion.

The stronger notion of differing-inputs obfuscation [BGI+12] states that the existence of
an adversary that can distinguish between obfuscations of circuits C0 and C1 implies the exis-
tence of an adversary that can actually extract an input on which the two circuits differ. The
starting point for our work is the conjecture that the Garg et al. construction (and variants
of it [BR13, BGK+13]) indeed achieves the differing-inputs obfuscation notion. Perhaps the
strongest evidence for this conjecture is provided by analysis of this construction and variants
in suitable generic models [GGH+13b, BR13, BGK+13].1

The focus of this paper is to show (1) how to bootstrap the notion of differing inputs obfus-
cation to build differing inputs obfuscators for Turing Machines with per-input running time,
and (2) how to leverage differing inputs obfuscation to obtain a number of interesting applica-
tions. Before we turn to our main results, we first illustrate the usefulness of differing inputs
obfuscation with two simple examples.

Warmup: Extractable Witness Encryption for NP. As a warmup example, we will
show how differing-inputs obfuscation can be used to construct extractable witness encryption, a
primitive which already has the flavor of extraction. The notion of extractable witness encryption
for NP recently introduced in [GGSW13, GKP+13a] states that given an NP language L, an
extractable witness encryption scheme for L is an encryption scheme that takes as input an
instance x and a message bit b, and outputs a ciphertext c. If x ∈ L and w is a valid witness for
x, then a decryptor can use w to decrypt c and recover b. Furthermore, security requires that
any adversary that can decrypt ciphertext c corresponding to instance x can be used to extract
a valid witness for x.

Now we present our construction of extractable witness encryption, which is analogous
to the construction of witness encryption from indistinguishability obfuscation as in Garg et
al. [GGH+13b]. We define the circuits Cx,b for b ∈ {0, 1} taking w as input as follows. If w is
a valid witness for x, then Cx,b outputs b and ⊥ otherwise. Differing-input obfuscation of Cx,b
will serve as an encryption of the bit b. Correctness of decryption is immediate. Recall that
the security of differing-inputs obfuscation states that existence of a distinguisher between the
obfuscations of the two circuits implies the existence of an adversary that can find an input on
which the two circuits differ. Thus, by the security of differing-inputs obfuscation, we conclude
that an adversary breaking the semantic security of the above encryption scheme can be used
to extract a valid witness for x.

Example of restricted use software. We find the differing-inputs obfuscation notion
stated in its contrapositive form, i.e. non-existence of an adversary that can find input on which
the two circuits differ implies the non-existence of an adversary that can distinguish between the
obfuscations of the two circuits, as more insightful when considering applications. We highlight
how this interpretation can be useful for applications such as restricted-use software:

Software developers often want to release multiple tiers of a product with different price
points, allowing for different levels of functionality. In principle, each customer could be pro-
vided a separate version of the software, enabling only the features he needs. Ideally, a developer
could just have flags corresponding to each feature in his software. The developer could then
create a customized version of the software simply by starting with the full version and then
turning off the features the consumer does not want directly at the interface level — requiring
minimal additional effort. However, if this is all that is done, then it would be easy for an
attacker to bypass these controls and gain access to the full version or the code behind it. The

1In particular, this line of work [GGH+13b, BR13, BGK+13] culminated in an unconditional realization of the
VBB notion in the generic multilinear model. The crucial point for our case is that this proof shows extractability of
differing inputs from any distinguishing adversary, though only in a generic model.
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other alternative is for a software development team to carefully remove all unused components
— an elaborate task. Can we have the best of both worlds? Our solution is for a developer
to release an obfuscated version of the program that takes as input a signature on the cus-
tom set of functionality flags that the consumer has paid for. Next, we argue that for this
application, differing-inputs obfuscation suffices. Assuming unforgeability, no efficient malicious
user can generate a signature on any set of attributes besides the ones provided to it. Given
that observation, differing-inputs obfuscation immediately implies that the obfuscated program
with selected features turned off in the perspective of the user is indistinguishable from the
obfuscation of the program with unwanted parts removed at the start.

On the other hand, note that indistinguishability obfuscation would not suffice here: This is
because the program with the unwanted parts removed implements a different functionality from
the original program, and therefore, indistinguishability obfuscation alone does not guarantee
security in this setting.

1.1 Our Results

We obtain the following results:

Differing-input obfuscation for Turing Machines: We define the notion of differing-
input obfuscator for Turing machines and give a construction for Turing machines with bounded
length inputs (without converting it to a circuit), assuming the existence of a differing-input
obfuscator for circuits and SNARGs for P [BCCT13]. Additionally, assuming SNARKs for
P [BCCT13], we can construct a differing-input obfuscator even for the setting where the length
of the input is not bounded. (We stress that it is only for this extension that we need to assume
SNARKs.) Moreover, our construction achieves input-specific running times (explained below).
This means that evaluating the obfuscated machine on input x does not depend on the worst-
case running time of the machine but just on the running time of the unobfuscated machine on
input x.

Input-specific runtime. Most tasks in cryptography are well suited for circuits and not for
Turing machines. Hence, most cryptographic applications require that a Turing machine be
first transformed to a circuit, leading to inefficiency. This is especially true when computing
on encrypted data. For example, consider the case of fully-homomorphic encryption (FHE):
Consider computing a specified Turing machine on an encrypted input. If we were to first convert
this Turing machine to a circuit, this would mean that on every input, the evaluation will take
time proportional to the worst-case running time rather than time it takes for evaluation on that
specific input. The first variants of FHE that achieve these properties were given by [GKP+13b,
GKP+13a]. We use ideas from both of these works in our constructions and achieve input-
specific running times which may be substantially better than worst-case. Oblivious RAM
techniques for relaxing the need to convert a Turing machine to a circuit were also explored
in [OS97, LO13].

Functional Encryption for Turing Machines: We give a selectively secure functional
encryption scheme that allows for secret-keys to be associated with Turing machines and thereby
achieves input-specific running times. Further, the scheme can be equipped with delegation
properties. We note that for the case of single-key functional encryption [SS10], the problem
of supporting Turing Machines and achieving input-specific runtimes was previously introduced
and resolved by Goldwasser et al. [GKP+13a].

Short multiparty key exchange and broadcast encryption: In recent work, Boneh
and Zhandry [BZ13] show that indistinguishability obfuscation gives a broadcast encryption
system with properties that were not previously achievable (we refer to [BZ13] for a detailed
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survey of related work). While ciphertexts and secret keys in their system are constant size (i.e.,
independent of the number of users), the size of their public-key is linear in the total number of
users N . The reason for the linear-size public-key is an obfuscated program used for decryption
that takes as input (a representation of) the recipient set S ⊆ [N ] and a recipient private key
SKi. The program verifies that recipient i is part of the recipient set S, and if so, outputs a
ciphertext decryption key. Since the recipient set can be linear size, the obfuscated program
had to be linear size, thereby forcing the public-key to be linear size.

A natural approach to shrink the decryption program in the public-key is as follows: instead
of giving the program the recipient set S as an argument, we give it a short proof that i is in S.
The obfuscated decryption program will check the proof, and if valid, will decrypt the given
ciphertext. A simple proof for the statement i ∈ S can be built from collision resistant hash
functions using Merkle hash trees [Mer88]. Unfortunately, indistinguishability obfuscation (iO)
is insufficient for proving security of this approach using current techniques. The problem is
that using iO, we can only puncture a certain PRF embedded in the obfuscated program if the
resulting program is identical to the original program. However, because the proofs for i ∈ S
are succinct, there exist false proofs. That is, for any set S′ ⊆ [N ] for which i 6∈ S′, there exists
a convincing (false) proof that i ∈ S′. These false proofs prevent us from applying iO to argue
that the punctured program is indistinguishable from the original program. While false proofs
exist, finding a false proof will break collision resistance of the hash function used to construct
the Merkle tree. Therefore, differing-inputs obfuscation can be applied because no polynomial
time algorithm can distinguish the punctured program from the original program.

To make this idea work, we have to further modify the mechanism used in the broadcast
system of [BZ13]. Our final construction, presented in Section 4, is such that proving security
requires two applications of diO in three hybrid games. We also show that the same idea can
be used to improve the multiparty non-interactive key exchange (NIKE) from [BZ13] so that,
even when there is no trusted setup, all parties post at most a logarithmic-size message (in the
number of users) to the public bulletin board.

1.2 Concurrent and Independent Work

A concurrent and independent work of [BCP14] also studies differing inputs obfuscation (which
they call extractable obfuscation) and obtains a number of applications for differing inputs ob-
fuscation. This work overlaps in part with our own, but there are differences: Most notably, on
the one hand, [BCP14] demonstrate a remarkable implication showing that indistinguishability
obfuscators must satisfy a weak form of differing inputs obfuscation for any pair of circuits that
only differ on a polynomial-size set of inputs2. Most notably on the other side, we stress that
the applications of multi-party non-interactive key exchange protocol and broadcast encryption
given in this paper do not appear in their work. Furthermore, their main application of ob-
fuscating Turing machines has restrictions on the input length and running time 3 whereas our
result does not have have such restrictions.

1.3 Subsequent Work

Subsequent to the posting of our work online, many applications of differing-inputs obfuscation
have been studied. Assuming differing-inputs obfuscation, Goldwasser et al. [GGG+14] con-
struct compact indistinguishability-secure multi-input FE schemes. Bellare and Tessaro [BT13]
construct polynomially many hard-core bits from any one-way function assuming differing-inputs

2We note, however, that none of the applications we consider here would work with weak differing inputs obfus-
cators.

3We note that [BCP14] does mention how to achieve the same goal without any restrictions (on the input length
and the running time). However, only a sketch of the approach is provided.
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obfuscation. Using our construction of diO for Turing machines, Pandey et al. [PPS13] construct
a 4-message concurrent zero knowledge protocol.

Boyle et al. [BP13] show that extractability obfuscators for Turing machines and SNARKs
cannot co-exist with respect to specific (unnatural) auxiliary input distributions, and in partic-
ular, their result does not rule out the auxiliary input distributions we use in our work. Garg
et al. [GGHW13] show that if a specific type of obfuscation exists (one that is not implied by
differing inputs obfuscation), then differing-inputs obfuscation for circuits cannot exist with re-
gard to specific (unnatural) auxiliary input distributions. Although we find this follow-up work
to ours intriguing, the assumption that their specific type of obfuscation exists is also not a nat-
ural one 4. Furthermore we stress that we limit ourselves to more natural families of auxiliary
information that are unaffected by these results.

2 Preliminaries

2.1 Notation

We represent the security parameter by λ. A function f is said to be negligible in a variable n if
for every polynomial p, we have f(n) < 1

p(n) . For an algorithm A, we use the notation o← A(i)

to denote that the output of A on input i is o. We use r
$←− S to denote that r is drawn from

the space S uniformly at random.
We assume that the reader is familiar with the concept of Turing machines. We denote the

running time of Turing machine M on input x by time(M,x). We say that the output of two
Turing machines on an input are the same if the output tapes of the two Turing machines are
identical.

For every NP-language L, we associate a corresponding relation RL such that an instance
x ∈ L iff there exists a witness w such that (x,w) ∈ RL. Furthermore, we say an instance x is
a “valid” (or a true) instance iff x ∈ L. Correspondingly, those instances that don’t belong to
the language are referred to as invalid (or false) statements.

2.2 Differing-inputs Obfuscation for circuits and TMs

We recall the notion of differing-inputs obfuscation from Barak et. al. [BGI+12]. Next we present
this notion for both circuits and Turing machines. Before we go ahead with the definition, we
describe the notion of differing-inputs circuit family. Intuitively, we call a circuit family to be
differing-inputs circuit family if there does not exist any PPT adversary who given two circuits,
which are sampled from a distribution defined on this circuit family, can output a value such
that both the circuits differ on this input.

Definition 1. A circuit family C associated with a PPT Sampler is said to be a differing-inputs
circuit family if for every PPT adversary A there exists a negligible function α such that:

Prob[C0(x) 6= C1(x) : (C0, C1, aux)← Sampler(1λ), x← A(1λ, C0, C1, aux)] ≤ α(λ).

We now define the notion of differing-inputs obfuscation for a differing-inputs circuit family.

Definition 2. (Differing-inputs Obfuscators for circuits) A uniform PPT machine diO
is called a Differing-inputs Obfuscator for a differing-inputs circuit family C = {Cλ} if the
following conditions are satisfied:

• Correctness: For all security parameters λ ∈ N, for all C ∈ C, for all inputs x, we have
that

Prob[C ′(x) = C(x) : C ′ ← diO(λ,C)] = 1

4Indeed, even a heuristic construction of their specific type of obfuscation is not known.
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• Polynomial slowdown: There exists a universal polynomial p such that for any circuit
C, we have |C ′| ≤ p(|C|), where C ′ = diO(λ,C).

• Differing-inputs: For any (not necessarily uniform) PPT distinguisher D, there exists
a negligible function α such that the following holds: For all security parameters λ ∈ N,
for (C0, C1, aux)← Sampler(1λ), we have that

|Prob[D(diO(λ,C0), aux) = 1] − Prob[D(diO(λ,C1), aux) = 1] ≤ α(λ)

The concept of differing-inputs obfuscation can be thought of as a generalisation of indistinguish-
able obfuscation. This is because, indistinguishable obfuscation is defined for circuits which are
identical on all inputs and hence such circuits trivially satisfy the definition of differing-inputs
circuit familes. We conjecture that the construction defined in Garg et al. [GGH+13b] and its
optimizations from [BR13, BGK+13] satisfies this stronger notion of differing-inputs obfuscation.
In this work, using this notion we obtain many applications.

We now consider the case when we are obfuscating Turing machines. Even before we define
the differing-inputs property for Turing machines we first need to define the notion of differing-
inputs Turing machines family. Before we define this, we consider the family of Turing machines
M which is equipped with SamplerM which efficiently samples two Turing machines from M
along with auxiliary information. For simplicity, we assume that every M ∈ M on an input x
outputs the time it runs in, in addition to its output.

Definition 3. A Turing machine family M associated with a sampler SamplerM is said to be
a differing-inputs Turing machine family if for every PPT adversary, the following holds

Prob[M0(x) 6= M1(x) : (M0,M1, aux)← Sampler(1λ), x← A(1λ,M0,M1, aux)] = negl(λ)

Remark 1. Note that for simplicity we have assumed, that all Turing machines in family M
outputs the time τx in addition to the output on input x. The above definition in particular
implies that there does not exist any efficient adversary who can produce x such that the two
Turing machines output by the sampler on x run in different times. We stress that this has been
done for simplicity and our definition can also deal with a family of machines with different
running times by just padding.

Similar to the case of circuits, we define the notion of differing-inputs obfuscation for a differing-
inputs family of Turing machines.

Definition 4. (Differing-inputs Obfuscators for Turing machines) A uniform PPT
machine diO is called a Turing machine differing-inputs Obfuscator defined for differing-inputs
Turing machine family M, if the following conditions are satisfied:

• Correctness: For all security parameters λ ∈ N, for all M ∈ M, for all inputs x, we
have that

Prob[M ′(x) = M(x) : M ′ ← diO(λ,M)] = 1

• Differing-inputs obfuscation property: For any (not necessarily uniform) PPT dis-
tinguisher D, there exists a negligible function α such that the following holds: For all
security parameters λ ∈ N, for (M0,M1, aux)← SamplerM(1λ) we have that

|Prob[D(diO(λ,M0), aux) = 1] − Prob[D(diO(λ,M1), aux) = 1] ≤ α(λ)

In addition to the above properties if diO satisfies the following properties, with respect to a
universal polynomial p, then we say that diO is succinct and has input-specific run time.
Let M ′ ← diO(λ,M).
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• Succinct: The size of M ′ is p(λ, |M |), where |M | denotes the size of the Turing machine
M .

• Input-specific run time: The running time of M ′ on an input x is p(λ, time(M,x)).

Remark 2. Our definition of differing-inputs obfuscation just says that the definition can be with
respect to a class of admissible samplers, instead of with respect to all possible samplers. This
would allow us to circumvent all known trade-off results for differing-inputs obfuscation including
the recent results by Boyle et al. [BP13] and Garg et al. [GGHW13] (note there are no impos-
sibility results), which are only with respect to specific auxiliary information. Our applications
would then hold with respect to a particular sampler outputting specific auxiliary distribution, if
the assumption held for a different class of samplers, possibly, associated to a different auxiliary
distribution.

We can also consider the notion of indistinguishability obfuscation for Turing machines. The
definition is very similar to the above definition except that the indistinguishability of obfus-
cations holds only only for Turing machines which are same on all inputs. We present the
formal definition in Appendix A for the sake of completeness. We note that our construction
of Turing machine differing-inputs obfuscation also satisfies the definition of Turing machine
indistinguishable obfuscation since Definition 4 implies Definition 6.

3 Differing-inputs Obfuscators for Turing Machines

In this section, we construct differing-inputs obfuscators for Turing machines. The advantage of
considering obfuscation of Turing machines over circuits is two-fold. Firstly, the running time
of the obfuscated Turing machine would be input specific. Secondly, the size of the obfuscation
does not depend on the worst case running time of the Turing machine. Since the real world
applications are programs it is more natural to consider obfuscation of Turing machines rather
than circuits.

Our construction is based on the assumption that the differing-input obfuscator for all circuits
exists along with well studied assumptions such as the existence of FHE, SNARKs and collision
resilient hash functions.

3.1 Tools

We now describe the main cryptographic tools that we use in our construction.

Universal Turing machines. Universal Turing machine takes as input a Turing machine, an
input on which the Turing machine is executed and a time to indicate the number of steps of
execution. The output of the univeral Turing machine is basically the output of the Turing
machine on that input if the execution is completed within the time limit, which is given as
input to the universal Turing machine. Otherwise, the universal Turing machine outputs ⊥. We
consider a variant of the universal Turing machine, that instead of outputting the entire result
of execution, will just output one particular bit from the result of execution. More formally, we

define the variant as follows. For every 1 ≤ i ≤ t, represent by UTM
(i)
y,t(·), the following program:

It takes as input a Turing machine M ′ and executes M ′ on y for t steps. If the execution is
completed within t steps then output the ith bit of the output of the execution otherwise output
⊥.

FHE for Turing machines. Goldwasser et al. in [GKP+13a] build a compiler that takes a
Turing machine M along with the number of steps t as input and then produces a Turing ma-
chine that computes the FHE evaluation of M for t number of steps. In more detail, the compiler
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converts the machine into an oblivious Turing machine M using the Pippenger-Fischer [PF79]
transformation. It then constructs a new Turing machine MFHE which takes a ciphertext along
with a FHE public key as input and executes the oblivious Turing machine fully homomorphi-
cally on the ciphertext for t number of steps. The output of the compiler is MFHE. The compiler,
denoted by CompileTMFHE, is described formally in Appendix B.2.

SNARKs. Succinct non interactive arguments of knowledge, referred to as SNARKs, are
arguments where the proof sent by the prover to the verifer is succinct. By succinct we mean
that the size of the proof is upper bounded by a fixed polynomial in the security parameter and
is independent of the instance for which the proof is given. Further, SNARK verifier runs in
time that depends only on the size of the input instance and the security parameter, and not
on the size of the witness. In addition to these properties, SNARKs also satisfy the property
of extractability – there exists an extractor that given a trapdoor and a convincing proof, can
extract a witness used to generate the proof. SNARKs have been constructed under knowledge
assumptions [BCCT13]. The formal details of SNARKs are presented in Appendix B.3. We
denote the SNARK proof system we use by (Setup, P, V ).

We occasionally refer to a weaker notion of SNARKs, referred to as SNARGs (Succinct Non-
interactive Arguments of Knowledge) [BCCT13, GW11]. In place of the extractability property,
SNARGs have the weaker property of soundness – there does not exist any efficient dishonest
prover who can convince a verifier with non-negligible probability that a false statement belongs
to a language.

Hash functions. The final tool we require for our construction are collision-resilient hash
functions that map arbitrary length input to a fixed length output. More formally, we consider
a hash function H : {0, 1}∗ → {0, 1}l(λ), where l is a polynomial 5. There are constructions
of such functions known in the literature [Mer90, Dam90, GK03]. Henceforth, we refer to such
functions as collision-resilient size reducing hash functions.

3.2 Construction

We are now ready to describe the construction. Before we do this, we first describe a class
of programs P, represented by a circuit family to which we apply differing-inputs obfuscation
for circuits. Each program in this class is indexed by (g1, g2,CRS,PK1,PK2). We denote such

a program by P
(g1,g2,CRS)
(SK1,PK1,PK2). Here, (PK1,SK1), (PK2,SK2) denotes the FHE public key-secret

key pairs, g1, g2 denote the encryptions of M with respect to PK1 and PK2 respectively and
CRS denotes the common reference string output by the SNARK setup algorithm. We describe

P
(g1,g2,CRS)
(SK1,PK1,PK2) in Figure 1.

We are now ready to give the construction of differing-inputs obfuscation of a differing-input
Turing machine family denoted by M.

The obfuscation of a Turing machine is captured by the obfuscate algorithm, denoted by
ObfuscateTM. As in Garg et. al. [GGH+13b], we view the execution of the obfuscated Tur-
ing machine on an input as an evaluation algorithm, denoted by EvaluateTM.

ObfuscateTM(1λ,M): The obfuscation algorithm on input a security parameter and a Turing
machine M ∈M does the following:

5More formally, we do the following. We consider a hash function family from which we sample a hash function H.
Whenever we use H, we implicitly mean that H was sampled from an appropriate distribution on the hash function
family.
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P
(g1,g2,CRS)
(SK1,PK1,PK2)

Given input (i, e
(i)
1 , e

(i)
2 , hx, t, ϕ),P

(g1,g2,CRS)
(SK,PK) proceeds as follows:

1. Execute the SNARK verifier V on input (e
(i)
1 , e

(i)
2 , g1, g2, hx, t, i) along with CRS and proof ϕ.

The SNARK proof system (P, V ) is defined for the language L where (e
(i)
1 , e

(i)
2 , g1, g2, hx, t, i)

are instances in L with witnesses x such that:

M
(i)
FHE = CompileTMFHE(UTM

(i)
x,2t , 2

tlog2t) and e
(i)
1 = M

(i)
FHE(PK1, g1)

and e
(i)
2 = M

(i)
FHE(PK2, g2) and H(x) = hx (1)

2. If the verifier rejects then output 0; otherwise, output DecryptFHE(e
(i)
1 ,SK1).

Figure 1 A template of a program in the program class P.

1. Generate (PK1
FHE,SK

1
FHE)← SetupFHE(1λ) and (PK2

FHE,SK
2
FHE)← SetupFHE(1λ).

2. Generate ciphertexts g1 = EncryptFHE(PK1
FHE,M) and g2 = EncryptFHE(PK2

FHE,M).

3. Compute CRS by executing the setup algorithm Setup corresponding to the SNARK proof
system, denoted by (Setup, P, V ) for the relation described in Equation 1 in Figure 1.

4. Generate a differing-inputs obfuscation for the circuit P1 = P
(g1,g2,CRS)

(SK1
FHE,PK

1
FHE,PK

2
FHE)

as P1obf =

diO(P1, λ).

5. The output of this algorithm is σ = (P1obf ,PK
1
FHE,PK

2
FHE, g1, g2,CRS).

EvaluateTM(σ = (P1obf ,PK
1
FHE,PK

2
FHE, g1, g2,CRS), x): On input the obfuscation of a Turing

machine M and input x, the EvaluateTM algorithm outputs M(x) as follows.

1. Compute the hash of x using the hash function, H and denote the result by hx (= H(x)).

2. Repeat the following for steps t = 0, 1, 2, . . . :

- Execute CompileTMFHE(UTM
(i)
x,2t , 2tlog2t) 6, for all 1 ≤ i ≤ 2t, to obtain M

(i,t)
FHE

7.

- Compute e
(i,t)
1 = M

(i,t)
FHE (PK1

FHE, g1) and e
(i,t)
2 = M

(i,t)
FHE (PK2

FHE, g2), where 1 ≤ i ≤ 2t.

- For every 1 ≤ i ≤ 2t, compute SNARK proof ϕi, using prover P , that the encryptions

e
(i,t)
1 and e

(i,t)
2 as well as the hash value hx are computed correctly as in Equation 1

in Figure 1.

- For every 1 ≤ i ≤ 2t, run P1obf(i, e
(i,t)
1 , e

(i,t)
2 , hx, t, ϕi). If the output of the program

is ⊥ 8 then go to the beginning of the loop. Else, first assign bi to be the output
of P1obf . Consider the concatenation of bi, for 1 ≤ i ≤ 2t to be out. The output of
EvaluateTM is out.

6A universal Turing machine that executes an input Turing machine for T steps, itself takes O(T logT ) number of
steps.

7Note that we need to execute the compile algorithm for every output bit. But, we know that the output length of
a Turing machine cannot exceed the running time required to produce that output. And so, we execute the compile
algorithm for 2t number of steps.

8Here we assume that the output tape of the Turing machine contains ⊥ until the execution of the Turing machine
is completed. After the execution is completed, the ⊥ symbol is replaced by the output of the execution.

9



Remark: The construction as described above relies on the existence of SNARKs. Later, in
Lemma 1 stated in Appendix C, we will see that we need SNARKs because we need to extract
the witness x corresponding to the NP-statement in Equation 1 described in Figure 1.

Alternatively, differing inputs obfuscation assuming just SNARGs can be achieved if the
inputs to the Turing machine are upper-bounded by some fixed parameter as follows. Instead
of passing hx to the program in Figure 1, we can directly pass x to the program. Note that
this could not be done if the input length was not apriori bounded because the input length of
the circuit implementing the program in Figure 1 is fixed. Since we are directly including x as
part of the input, we can use SNARGs instead of SNARKs since the whole purpose of using
SNARKs was to obtain x.

We first show that the construction satisfies both the succinctness as well as the input-specific
running time properties. The proof of correctness as well as proof of security is presented in
Appendix C. Using diO for Turing machines, we then construct a functional encryption scheme
where the secret keys are succinct and the decryption time is input-specific. The details are
presented in Appendix D. We also present a delegatable functional encryption scheme in Ap-
pendix E.

Size of Obfuscation: We now upper bound the size of the obfuscated Turing machine which
is obtained by feeding as input, Turing machine M , to the ObfuscateTM algorithm. Denote the
output of the ObfuscateTM algorithm to be (P1obf ,PK

1
FHE,PK

2
FHE, g1, g2,CRS).

• The size of the FHE public keys (PK1
FHE,PK

2
FHE) can be upper bounded by a polynomial

in the security parameter.

• The size of the FHE encryptions g1 and g2 depends on the size of the message, which is
in this case, Turing machine M along with the security parameter. That is, the size of g1

and g2 can be upper bounded by a polynomial in (λ, |M |).
• The size of the common reference string CRS is a polynomial in the security parameter

(refer to Appendix B.3).

• The size of the obfuscation P1obf is a polynomial in (λ, |P1|), where |P1| represents the
size of the circuit of P1. We now argue about the size of P1. Program P1 consists of two
main components – the SNARK verifier circuit and the decryption circuit. The size of the
SNARK verifier circuit is a polynomial in its inputs. The inputs to the SNARK verifier
circuit consists of the following.

- A pair of encryptions of Turing machine M . The size of this is a polynomial in
(λ, |M |).

- Encryptions of a single bit of the output of the Turing machine. The size of this is
just a polynomial in λ.

- Index of the output bit. The size of this is logarithmic in the running time of the
Turing machine. Since we are only interested with efficient Turing machines, we can
loosely upper bound this quantity by the security parameter λ.

- Iteration number t. Observe that this too can be can be loosely upper bounded by
the security parameter λ.

The decryption circuit on the other hand takes a ciphertext corresponding to the encryption
of a single bit and hence, the size of the decryption circuit is a polynomial in the security
parameter. Combining all the facts, we get |P1| to be a polynomial in (λ, |M |).

Running time of Evaluate algorithm: We first make the following observation. Suppose
the Turing machine M takes time T to execute on input x then the number of iterations in the
evaluation procedure need to be performed is O(T logT ). We then determine the amount of time
taken in each iteration t step by step.
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• In the first step, the FHE compiler is executed which takes time which is a polynomial
in 2t, and hence at most time T , and the size of the universal Turing machine UTMi

(x,2t)

(Refer Appendix B.2). Further, the size of the universal Turing machine is a polynomial
in |x| and the security parameter λ. Hence, the running time of the compiler is essentially
a polynomial in (λ, T, |x|).

• In the second step, M
(i,t)
FHE is executed twice and the running time of this step is a polynomial

in (T, λ).

• In the third step, a SNARK proof is computed and the running time of this is nothing
but the running time of the SNARK prover. The running time of the SNARK prover is a
polynomial in (λ, |M |, |x|, T ).

• In the fourth step, the obfuscation algorithm is evaluated. Since this obfuscation is in the
form of a circuit, the running time of this depends on the size of the obfuscation, which is
nothing but a polynomial in (λ, |M |).

Finally, the running time of computing hash on input x is a polynomial in (|x|, λ). From the
above points, we have that the running time of the Evaluate algorithm is a polynomial in
(λ, |M |, x, T ).

4 Multiparty Key Exchange and Broadcast Encryption
with Small Parameters

In this section, we build multiparty non-interactive key exchange (NIKE) and broadcast encryp-
tion from differing-inputs obfuscation. Our constructions can be built from any differing-inputs
obfuscator and any collision-resistant hash function.

First, we review Merkle hash trees and puncturable pseudorandom functions (PRFs). Given
a collision-resistant hash function H : X 2 → X , a Merkle hash tree [Mer88] gives another
collision-resistant hash function H : Xn → X where n = 2k for some fixed k. The input
consists of 2k blocks xk[i] ∈ X for i ∈ {1, . . . , 2k}. These blocks are set as the leaves of a
binary tree with 2k leaf nodes. The value at each internal node is obtained by hashing the
values of that node’s children. The output of H is the value at the root of the tree. More
precisely, for each j ∈ {0, . . . , 2k−1 − 1}, blocks xk[2j] and xk[2j + 1] are hashed using H to
obtain xk−1[j] = H(xk[2j], xk[2j + 1]). This process is repeated for k − 1, k − 2, . . . , 1 until a
single block x0 ∈ X is obtained. The output of H is set to x0.

We need the following standard property of Merkle Hash Trees. Let y ∈ X and x ∈ Xn
such that x[i] = y for some i. Since H is collision resistant we can treat h = H(x) as a binding
commitment to x. The property we need is that, given h and y, it is possible to produce a short
proof that x[i] = y. The proof consists of xk[i] and the values at all siblings of nodes on the
path from xk[i] to the root of the Merkle tree. The size of a proof is O(log n) elements of X .
False proofs exist, but they lead directly to a collision for H. These proofs can be generalized
to the case where y consists of p (not necessarily contiguous) blocks, and the size of proof will
be O(p log n) elements of X .

Following [BW13, BGI13, KPTZ13], a puncturable pseudorandom function F is a pseudo-
random function (PRF) that supports the a procedure F x ← F.Puncture(x) where

F x(y) =

{
F (y) if y 6= x

⊥ if y = x

For security, we let an adversary A commit to a point x. A receives F x, as well as a value z,
where either z = F (x) or z is chosen uniformly in the codomain of F . A puncturable PRF is
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secure if no efficient adversary A can distinguish the correct z from a random z. We note that
the PRF construction of Goldreich, Goldwasser, and Micali [GGM86] satisfies this functionality
and notion of security.

4.1 Non-interactive Multiparty Key Exchange

A NIKE protocol consists of the following three algorithms:

- Setup(λ, n): The setup algorithm takes a security parameter λ and a number n of users.
It outputs public parameters PP.

- Publish(PP, i): Each party executes the publishing algorithm, which takes as input the
public parameters and the index of the party, and generates two values: a user secret key
SKi and a user public value PVi. User i keeps SKi as his secret, and publishes PVi to the
other users.

- KeyGen(PP, i,SKi, {PVj}j=1,...,n): Finally, each party derives the shared key k using the
public parameters PP, their secret SKi, and the other parties’ public values {PVj}j=1,...,n.

Static security for a NIKE protocol is defined by the following experiment denoted by EXP(b)
and parameterized by the total number of parties n and a bit b ∈ {0, 1} on an adversary A:

PP← Setup(1λ, 1n)

(SKi,PVi)← Publish(1λ, i) for i = 1, . . . n

b′ ← A
(
PP, {PVi}i=1,...,n, k

∗ )
where

k0 ← KeyGen(PP, {PVi}i=1,...,n,SK1, 1), k1 ← {0, 1}λ, and k∗ ← kb

For b = 0, 1 let Wb be the event that b′ = 1 in EXP(b) and define AdvKE(λ) = |Pr[W0]−Pr[W1]|.

Definition 5. A multiparty key exchange protocol (Setup,Publish,KeyGen) is statically secure
if, for any PPT adversary A and any integer n, the function AdvKE(λ) is negligible.

Construction Let F be a puncturable pseudorandom function, f : X → Y a one-way function,
and H : Yn → Y a Merkle Hash Tree.

- SetupNIKE(1λ, 1n): The SetupNIKE algorithm takes the security parameter λ and a number
of users n and computes the following:

1. Generate an instance F of a puncturable pseudorandom function with security pa-
rameter λ.

2. Compute the differing-inputs obfuscation P1obf of the program P1 = P(F ) from Fig-

ure 2, using the size of the circuit to be max{|P(F )|, |P(h∗,Fh∗ )
2 |} where P

(h∗,Fh∗ )
2 is

defined in Figure 3 in Appendix F.

It sets the public parameters as
PP = P1obf

- PublishNIKE(1λ, i): User i chooses a random xi ∈ X , and computes yi = f(xi) ∈ Y. User i
keeps xi as its secret key, and publishes yi as its public value.

- KeyGenNIKE(PP, {yj}j=1,...,n, xi, i): To compute the shared secret, user i computes the
Merkle hash h = H(y1, . . . , yn), and constructs a proof π that it knows a z such that
H(z) = h and z[i] = yi. Then it computes k ← P1obf(h, π, i, yi, xi).

Correctness. Correctness of our scheme is straightforward by inspection.

12



P(F )

Given input (h, π, i, y, x), P(F ) proceeds as follows:

1. Check that π is a valid proof that there exists z ∈ Yn where H(z) = h and z[i] = y.

2. Check that f(x) = y.

3. If either check fails, abort and output ⊥.

4. Otherwise, output F (h)

Figure 2 The program P(F ) that users will use for key generation.

Parameter sizes. Secret keys in our scheme just elements in the domain of a one-way
function, which is independent of the number of users. published values are images, which are
also independent of the number of users. The public key is an obfuscation of the program in
Figure 2, which only depend logarithmically on the number of users.

Untrusted Setup. As described, our key exchange requires a trusted setup. However, as
in [BZ13], SetupNIKE can be run independently from PublishNIKE. Therefore, we can set party 1
as the “master party” who runs SetupNIKE in addition to PublishNIKE, and publishes the public
key along with his published value. We note that the material published by player 1 is still
relatively small: polylogarithmic in the number of users. This is in contrast to the scheme of
[BZ13], where player 1 must publish material of size polynomial in the number of users.

Security. The security of our scheme is given by the following theorem:

Theorem 1. The scheme above is statically secure if H is a collision resistant Merkle hash tree,
F is a secure punctured PRF, f is a secure one-way function, and the P1obf is a differing-input
obfuscation of P(F ).

Here we sketch the proof — the full proof appears in Appendix F. Let h∗ be the the hash
of the published values y1, . . . , yn. We puncture F at h∗, and add a check to the program P(F )

that h 6= h∗, resulting in a program P
(h∗,Fh∗ )
2 . The only inputs where P(F ) and P(h∗,Fh∗ ) differ

have the form (h∗, π, i, y, x) where f(x) = y and π is a valid proof that there exists z ∈ Yn
where H(z) = h∗ and z[i] = y. We argue that such inputs are hard to compute. There are two
cases:

• y = yi. Then x is a pre-image of yi under f . We can use such an input to break the
one-wayness of f .

• y 6= yi. Then since π is valid, but h∗ = H(y1, . . . , yn) with yi 6= y, the proof must yield a
collision on the underlying collision resistant hash H.

Therefore, the only inputs on P(F ) and P
(h∗,Fh∗ )
2 differ are hard to compute. Differing inputs

obfuscation thus implies that the obfuscations of the two programs are indistinguishable. At
this point, the adversary’s view only depends on the punctured PRF Fh

∗
, and the security of F

shows that the shared secret k = F (h∗) is therefore indistinguishable from random, as desired.

4.2 Broadcast Encryption

Boneh and Zhandry [BZ13] give a generic conversion from a multiparty key exchange protocol
into a broadcast encryption scheme. Applying to our key exchange protocol above, we obtain a
broadcast scheme with compact ciphertexts and secret keys (namely, independent of the number
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of users). However, the encryption key resulting from this conversion contains a public value for
every user, and is therefore linear in size. In Appendix F, we give a direct construction using
many of the same ideas as above. Our construction maintains constant-sized ciphertexts and
secret keys while shrinking the public encryption key to logarithmic in the number of users.
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A Indistinguishability Obfuscation for Turing machines
and FE for Turing machines: Definitions

A.1 iO for Turing machines

We define the notion of indistinguishability obfuscation for Turing machines similar to the
definition of indistinguishability obfuscation for circuits. Note that the two Turing machines
that need to be obfuscated in the security game, should not only be identical on all inputs but
they also need to having the same running time on all the inputs. Note that the definition of
differing-inputs obfuscation for Turing machines implies the following definition and hence our
construction in Section 3 also satisfies this definition.

Definition 6. (Indistinguishable Obfuscators for Turing machines) A uniform PPT
machine iOTM is called a Turing machine indistinguishable Obfuscators for the Turing machine
family M, if the following conditions are satisfied:

• Correctness: For all security parameters λ ∈ N, for all M ∈ M, for all inputs x, we
have that

Prob[M ′(x) = M(x) : M ′ ← iOTM(λ,M)] = 1

• Indistinguishable Obfuscation: For any (not necessarily uniform) PPT distinguisher
D, there exists a negligible function α such that the following holds: For all security pa-
rameters λ ∈ N, for all M0,M1 ∈ M, aux such that for all x, M0(x) = M1(x) and
time(M0, x) = time(M1, x) we have that

|Prob[D(iOTM(λ,M0)) = 1] − Prob[D(iOTM(λ,M1)) = 1] ≤ α(λ)

In addition to the above properties if iOTM satisfies the following properties, with respect to a
universal polynomial p, then we say that iOTM is succinct and has input-specific run time.

• Succinct: The size of M ′ is p(λ, |M |), where |M | denotes the size of the Turing machine
M .

• Input-specific run time: The running time of M ′ on an input x is p(λ, time(M,x)).
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A.2 Functional Encryption for Turing machines

We cast the definition of functional encryption in Garg et al. [GGH+13b] for the case of Turing
machines. Though the notion of functional encryption for Turing machines have already been
defined by Goldwasser et al. [GKP+13a], our definition differs from their definition in many
ways – (i) single key versus many key queries, (ii) simulation based versus indistinguishability
game based and so on. While defining FE for Turing machines we restrict the adversary to make
only certain type of function queries which is based on the running time of the function. This
is to avoid trivial attacks where the attacker will be able to distinguish the encryptions of two
messages by choosing a function query whose running time is significantly different on both the
messages.

Definition 7. Let the message space be S = Sλ. A functional encryption scheme defined
for a family of Turing machines MT , parameterized by a Turing machine T , consists of four
algorithms FE = {Setup,KeyGen,Encrypt,Decrypt}:

• Setup(1λ) - a polynomial time algorithm that takes the unitary representation of the security
paramter λ and outputs a public paramteres PP and a master secret key MSK.

• KeyGen(MSK, f) - a polynomial time algorithm that takes as input the master secret key
MSK and a function f implementable by a Turing machine M ∈ M and outputs a corre-
sponding secret key SKf .

• Encrypt(PP, x) - a polynomial time algorithm that takes the public parameters PP and a
string x ∈ S and outputs a ciphertext CT.

• Decrypt(SKf ,CT) - a polynomial time algorithm that takes a secret key SKf and ciphertext
encrypting message x ∈ S and outputs f(x).

A functional encryption scheme is correct for M if for all M ∈M and all messages x ∈ S :

Prob[(PK,MSK)← Setup(1λ);Decrypt(KeyGen(MSK, f),Encrypt(PK, x)) = f(x)] = negl(λ)

We now define the (fully) indistinguishability security for functional encryption which is de-
scribed in form of an indistinguishability game between an attacker A and a challenger.

Setup: The challenger runs (PK,MSK)← Setup(1λ) and gives PP to A.

Query: A submits queries fi ∈ M. We assume, without loss of generality that fi can be
represented by a Turing machine Mi which, on an input x, outputs fi(x) along with the time
taken by Mi to execute on x. The adversary A is then given SK← KeyGen(MSK, fi)

Challenge: The adversary then outputs messages (x0, x1) such that f(x0) = f(x1) for all f
submitted by A during the query phase.

Query: A executes another query phase. It submits queries of the form fi ∈M which are rep-
resented by Turing machines Mi as in the previous Query phase. If fi(x0) = fi(x1), adversary
A is given SK← KeyGen(MSK, fi) else the game is aborted.

Guess: A eventually outputs a bit b′ in {0, 1}.

The advantage of an adversary A is defined to be |Prob[b′ = b]− 1
2 |.

Definition 8. A functional encryption scheme is (fully) indistinguishability secure if for any
PPT adversary A, the advantage of A in the above indistinguishability game is negligible.
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In addition to the above properties, we also consider the following two properties for functional
encryption schemes for Turing machines.

• Succinctness: A functional encryption scheme is said to be succinct if the functional key
generated using KeyGen for the function f is p(λ, |M |), where p is a polynomial and M
denotes the size of the Turing machine representing the function f .

• Input-specific run time: A functional encryption scheme is said to have input-specific
run time if the decryption algorithm on input a functional key for a function f along
with an encryption of x, takes time p(λ, time(M,x)), where M is the Turing machine
representing the function f .

A weaker notion, called selective security can also be considered where the adversary submits
his challenge message to the challenger even before the challenger executes the setup phase.

B Background

B.1 Fully Homomorphic Encryption

We define the notion of fully homomorphic encryption (FHE) scheme. It consists of four PPT
algorithms (KeyGen,Encrypt,Decrypt,Eval) defined as follows.

• KeyGen(1λ): On input a security parameter 1λ it outputs a public key PKFHE and a
decryption key SKFHE.

• Encrypt(m,PKFHE): On input a message m and public key PKFHE it outputs a ciphertext
denoted by CT.

• Decrypt(CT,SKFHE): On input a ciphertext and a decryption key SKFHE it outputs a
message m.

• Eval(CT,PKFHE, f): On input a ciphertext, a public key 9 and a function f , outputs another
ciphertext CT′ such that the decryption of CT′ yields the message f(m).

The security of FHE is defined very similar to the security of the IND-CPA public key encryp-
tion scheme. There does not exist any PPT adversary A such that, for any pair of messages
m0,m1, the probability that on input Encrypt(m0,PKFHE) it outputs 0 is negligibly close to the
probability that on input Encrypt(m1,PKFHE) it outputs 0.

B.2 FHE for Turing machines

We present the construction of the compiler verbatim from Goldwasser et. al. [GKP+13a] be-
low. The compiler, denoted by CompileTMFHE, takes as input a Turing machine M and a number
of steps t, and produces a Turing machine that computes the FHE evaluation of M for t steps.
Let x̂ denote the FHE encryption of x.

CompileTMFHE(M, t):

• First, transform M into an oblivious Turing machine MO by applying the Pippenger-
Fischer transformation [PF79] for time bound t. This transformation results in a new
Turing machine MO and a transition function δ for MO. Namely, δ takes as input tape
input bit b, a state state and outputs a new state state′, new content b′ for the tape location,
and bit next indicating whether to move left or right; namely δ(b, state) = (state′, b′, next).
Let the movement function next be such that next(i) indicates whether the head on the
input tape of MO should move left or right after step i.

9It is not always necessary that we need to use the public key for FHE evaluation. Sometimes, a separate evaluation
key for FHE evaluation alone is also used.
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• Based on (MO, next), construct a new Turing machine MFHE that takes as input a FHE
public key PKFHE and an input encryption x̂. MFHE applies the transition function δFHE
(the FHE evaluation of δ using PKFHE) t times. Each cell of the tapes of MO corresponds
to an FHE encrypted value for MFHE. The state of MFHE at time i is the FHE encryption
of the state of MO corresponds to an FHE encrypted value for MFHE. The state of MFHE at
time i is the FHE encryption of the state of MO at time i. At step i, the transition function
δFHE takes as input the encrypted bit from the input tape b̂ that the head currently points

at, the current encrypted state ŝtate and outputs an encrypted new state ŝtate′ and a new
content b̂′. To determine whether to move the head left of right, compute next(i).

• Output the description of MFHE.

The running time of CompileTMFHE and MFHE is polynomial in t. The Turing machine MFHE takes
as input a public key and a ciphertext and then performs the FHE evaluation of M on the
ciphertext. The resulting answer is then output by MFHE.

B.3 Succinct Non Interactive Arguments of Knowledge

We now give background for succinct non-interactive arguments of knowledge. We present
the details verbatim from Goldwasser et al. [GKP+13a]. We define the universal relation as a
canonical form to represent verification-of-computation problems.

Definition 9. [BCCT13] The universal relation is the set RU of instance-witness pairs (y, w) =
((U, x, t), w), where |y|, |w| ≤ t and U is a Turing machine, such that U accepts (x,w) after at
most t steps. We denote by LU the universal language corresponding to RU . For any c ∈ N, the
universal NP relation is the set RU,c, defined as RU with the additional constraint that t ≤ |x|c.

A SNARK is a triple of algorithms (Setup, P, V ) that works as follows.

• The generator Setup on input the security parameter λ, samples a reference string CRS
(since we consider publicly verifiable SNARKs, the CRS can also contain the public verifi-
cation state). The Setup also takes as input a time bound B but we set this to B = λlogλ

which will never be achieved for NP language. Therefore, for simplicity, we do not make
B explicit from now on.

• The honest prover P (CRS, y, w) produces a proof π for the statement y = (U, x, t) given a
valid witness w.

• The verifier V (CRS, y, π) takes as input the CRS, the instance y and a proof π and deter-
ministically verifies π.

The SNARK is adaptive if the prover may choose the statement after seeing CRS.

Definition 10. A triple of algorithms (Setup, P, V ) for the relation RU,c, where Setup is prob-
abilistic and V is deterministic, is a SNARK if the following conditions are satisfied:

• Completeness: For every large enough security parameter λ ∈ N, and for every instance-
witness pair (y, w) = ((U, x, t), w) ∈ RU ,

Prob[CRS← Setup(1λ; π ← P (CRS, y, w) : V (CRS, y, π)) = 1]

• Proof of knowledge: For every polynomial-size prover P ∗ there exists a polynomial-size
extractor Ext such that for every large enough security parameter λ ∈ N, every auxillary
input z ∈ {0, 1}poly(λ), and every constant c:

Prob[CRS← Setup(1λ); (y, π)← P ∗(CRS, z); w ← Ext(CRS, z) :

V (CRS, y, π) = 1 and (y, w) /∈ RU,c] = negl(λ).
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• Efficiency. There exists a universal polynomial p such that, for every large security
parameter λ and every instance y = (M,x, t),

1. The generator Setup(1λ) runs in time p(λ);

2. The prover P (CRS, y, w) runs in time p(λ, |U |, |x|, t);

3. The verifier V (CRS, y, π) runs in time p(λ, |U |, |x|);
4. An honestly generated proof has size p(λ).

Bitansky et al. [BCCT13] demonstrated a SNARK proof system under knowledge of exponent
assumptions.

B.4 IND-CPA secure PKE

An IND-CPA (or semantically) secure Public Key Encryption scheme consists of three PPT
algorithms (KeyGen,Encrypt,Decrypt) described as follows.

1. KeyGen(1λ): On input 1λ, it outputs public key PKPKE and decryption key SKPKE.

2. Encrypt(m,PKPKE): On input message m and the public key, it outputs a ciphertext CT.

3. Decrypt(CT,SKPKE): On input a ciphertext CT and the decryption key, it outputs m.

The IND-CPA scheme is said to be semantically secure if for any PPT adversary A, there exists
a negligible function α such that the following is satisfied for any two messages m0,m1 and for
b ∈ {0, 1}:

|Prob[A(1λ,Encrypt(m0,PKPKE)) = b]− Prob[A(1λ,Encrypt(m1,PKPKE)) = b]| ≤ α(λ)

B.5 Simulation sound NIZK

We define the notion of simulation sound non-interactive zero knowledge [Sah99], which is a
specific type of NIZK [BFM88] proof system. Intuitively, this notion says that there does not
exist any efficient adversary even after receiving “fake” proofs for statements of his choice he
cannot output any convincing proof, including fake proofs, for a statement for which he had not
received any proof before.

More formally, a simulation-sound NIZK satisfies the following property along from the
completeness and zero knowledge properties of any NIZK proof system. Consider the following
game defined for PPT any adversary A. The game begins with the execution of the simulator
of the NIZK proof system who generates a fake CRS and a corresponding trapdoor. Then,
A is given oracle access to a simulator which has a corresponding trapdoor. The adversary
can submit any statement to this oracle and he will correspondingly get back a convincing
proof (which is accepted by the NIZK verifier). The game ends with A outputting (x,Π). The
adversary wins the game if (1) x was not equal to any of the statements he had queried the
oracle and (2) x is not in the language for which the NIZK is defined and (3) Π is accepted by
the NIZK verifier. We now define the simulation soundness property of a NIZK proof system.

Definition 11. A NIZK proof system is said to satisfy simulation soundness if A wins the
above game with negligible probability.

C Proof of Security of diO for TMs

We prove the correctness as well as the security of the diO for TMs scheme presented in Section 3.
Crucial to both these properties is the following lemma which shows that the program class can
be implemented by a differing-inputs circuit family. To do this, we first define a PPT algorithm
SamplerMP corresponding to the program class P as follows. The sampler SamplerMP receives
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as input security parameter λ along with (M0,M1, auxM), where (M0,M1, auxM) is the output
of SamplerM, which is the sampler algorithm of M. The sampler SamplerMP first executes
the setup algorithm of FHE twice to obtain (PK1

FHE,SK
1
FHE), (PK2

FHE,SK
2
FHE). Then, the Turing

machines M0 and M1 are encrypted using the public keys PK1
FHE and PK2

FHE to obtain g1 and g2

respectively. Finally, execute the setup algorithm of the SNARK proof system to obtain CRS.

Output the programs P
(g1,g2,CRS)

(SK1
FHE,PK

1
FHE,PK

2
FHE)

and P
(g1,g2,CRS)

(SK2
FHE,PK

1
FHE,PK

2
FHE)

. The auxillary information,

denoted by auxMP , consists of (auxM, PK1
FHE, PK

2
FHE, CRS).

Lemma 1. Consider a class of programs P, defined as before. Let P1 = P
(g1,g2,CRS)

(SK1
FHE,PK

1
FHE,PK

2
FHE)

and

P2 = P
(g1,g2,CRS)

(SK2
FHE,PK

2
FHE,PK

2
FHE)

along with auxillary information auxMP be the output of sampler algo-

rithm SamplerMP . There does not exist any PPT adversary A on input (P1,P2, auxMP ) outputs
y such that P1(y) 6= P2(y), with non-negligible probability under the assumption that M is a
differing-inputs Turing machine family.

To prove this, we assume that there exists an adversary A that outputs y such that P1(y) 6=
P2(y). Using A, we construct another adversary AM which violates the differing-inputs prop-
erty of M arriving at a contradiction. Before we proceed further, we make a notational
simplification. We assume that the input to P1 (or P2) can be parsed as (z, ϕ), where z =

(i, e
(i)
1 , e

(i)
2 , g1, g2, hx, t, ϕ).

We present the following claims that will be useful when we calculate the probability of suc-
cess of AM. The first claim says that if the programs P1 and P2 differ on any input y = (z, ϕ)
then the verifiers both in P1 and P2 accept the proof ϕ. Recall that any program in P has two
components, namely the SNARK verifier along with FHE decryption circuit. The second claim
states that if both the programs differ on any input (z, ϕ) then the output of P1 (resp., P2) is

the decryption of e
(i)
1 (resp., e

(i)
2 ). Hence, as a consequence, we have that the decryption of e

(i)
1

(with respect to PK1
FHE) different from the decryption of e

(i)
2 (with respect to PK2

FHE). We now
state the claims.

Claim 11. If there exists a y = (z, ϕ) such that P1(y) 6= P2(y) then the verifier in both P1 and
P2 accept ϕ.
Proof. The first observation is that the verifier as part of P1 is same as the verifer which is part
of P2. The second observation is that the verifier in P1 (resp., P2) does not reject the proof ϕ.
This is because, if the verifier in P1 (resp., P2) rejects then the output of P1 (resp., P2) is 0
which will contradict our hypothesis that the output of the two programs are different.

Claim 12. If there exists y = (i, e
(i)
1 , e

(i)
2 , hx, t, ϕ) such that P1(y) 6= P2(y) then the output of

P1 (resp., P2) is the decryption of e
(i)
1 (resp., e

(i)
2 ) with respect to PK1

FHE (resp., PK2
FHE).

Proof. From Claim 11, we have that the verifiers as part of both P1 and P2 accept and hence,

the output of P1(y) is the decryption of e
(i)
1 with respect to PK1

FHE and similarly, the output of

P2 is the decryption of e
(i)
2 with respect to PK2

FHE.

Now, consider the following adversary. Since (P, V ) which is a SNARK system has knowledge
extractability property we assume that there exists an extractor Ext = (Ext1,Ext2) such that
Ext1 generates (CRS, state) and then Ext2 on input an instance, (CRS, state) along with a proof,
extracts a witness corresponding to that instance 10.

10We emphasise that this is the only place where we need the extractability property. As mentioned a couple of
times before, if the length of the witness (which in this case is the input to M0 or M1) is bounded above apriori then
we could have just used SNARGs for our construction
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AM(M0,M1, auxM):

(SK1
FHE,PK

1
FHE)← SetupFHE(1λ)

(SK2
FHE,PK

2
FHE)← SetupFHE(1λ)

(CRS, td)← Ext1(1λ)
g1 ← EncryptFHE(PK1

FHE,M0)
g2 ← EncryptFHE(PK2

FHE,M1)

Denote diO(λ,P
(g1,g2,CRS)

(SK1
FHE,PK

1
FHE,PK

2
FHE)

) by P1

Denote diO(λ,P
(g1,g2,CRS)

(SK2
FHE,PK

1
FHE,PK

2
FHE)

) by P2

y ← A(P1,P2, auxMP = (PK1
FHE,PK

2
FHE, g1, g2,CRS))

Parse y as (z, ϕ)
x← Ext2(z, ϕ,CRS, td)
Output x

The next claim shows that if A can produce an input y such that P1(y) 6= P2(y) with non-
negligible probability then AM violates the security game of the differing-inputs corresponding
to the family M (Definition 4). Before we go ahead and prove the claim, we first observe that
the distribution of (P1,P2, auxMP ) as input to A in the description of AM is the same as the

output distribution of SamplerMP .

Claim 13. Let (P1,P2, auxMP ) ← SamplerMP (1λ). If there exists an adversary A on in-
put (P1,P2, aux) outputs y with non-negligible probability then the adversary AM on input
(M0,M1), which is the output of SamplerM(1λ), produces x such that M0(x) 6= M1(x).
Proof. Suppose the adversary A outputs y such that P1(y) 6= P2(y) with non-negligible proba-
bility. We make the following two observations that will prove the above claim.

• Using Claim 11, we have the fact that the verifier accepts the proof ϕ corresponding to the
instance z with non-negligible probability, where y can be parsed as (z, ϕ) is the output
of A. From the knowledge extractability property, we have the fact that the extractor
outputs a valid witness x with non-negligible probability. Since, x is a valid witness to z,

we have the fact that e
(i)
1 is an encryption of M0(x) with respect to public key PK1

FHE and

similarly, e
(i)
2 is an encryption of M1(x) with respect to public key PK2

FHE.

• Using Claim 12, we have that the output of program P1 (resp., P2) is the decryption
of g1 (resp., g2) with respect to PK1

FHE (resp., PK2
FHE). Rephrasing this in terms of first

observation, the output of P1 on input y is M0(x) and the output of P2 on input y is
M1(x). Since, y is such that P1(y) 6= P2(y) with non-negligible probability, we have that
M0(x) 6= M1(x). This completes the proof.

The above claim contradicts the assumption thatM is a differing-inputs Turing machine family
and this proves P is a differing-inputs circuit family.

Corollary 2. Differing-inputs obfuscation for the circuit family P exists under the assumption
that IND-CPA FHE exists, SNARKs exists, collision resistant hash functions and differing-
inputs obfuscation exists for any differing-inputs circuit family.

We now prove the correctness and the security of the differing-inputs obfuscation scheme.

Correctness. For simplicity, we assume that the obfuscaton of P1, denoted by P1obf , is exe-
cuted once, as against multiple times, and the entire output of the FHE evaluation phase is fed
to the obfuscation of P1. We now argue the correctness of the scheme. The correctness of the
FHE scheme along with the correctness of the SNARK proof system imply that the input to P1
is an encryption of M(x) followed by a valid proof that the encryption is correctly computed,
where x is the input to the obfuscation scheme. Now, note that if a valid encryption of M(x)
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and a valid proof that M(x) is correctly computed is given to P1 then the output of P1 would
be M(x). And so, by the correctness of diO it follows that even the output of the obfuscation
of P1, which is P1obf , is M(x). This proves the correctness of the diO scheme.

Security proof. We now describe the security proof of the differing-inputs obfuscation scheme
for the Turing machines. The security expermient proceeds by the challenger first executing
the sampler algorithm of M. On input a security parameter, the sampler algorithm outputs
(M0,M1, auxM). The challenger then sends Mobf to the adversary, where Mobf is either the
diO obfuscation of M0 or M1. The security guarantee is that the adversary’s output when M0

is obfuscated is negligibly close to its output when M1 is obfuscated. To show this, we first
describe the hybrids which are similar to the hybrids in the security proof of the indistinguisha-
bility obfuscation scheme of the circuits from Garg et al. [GGH+13b]. For completeness sake,
we present the hybrids below.

Hybrid0: This corresponds to the honest execution of the differing-inputs obfuscation corre-
sponding to the Turing machine M0.

Hybrid1: In this hybrid, the ciphertext g1 is generated by encrypting M0 (under PK1
FHE) while

the ciphertext g2 is obtained by encrypting the Turing machine M1 (under PK2
FHE). The rest of

the hybrid is the same as the previous hybrid Hybrid0.

Hybrid2: The ciphertexts g1 and g2 are generated the same way as in the previous hybrid. The
only difference is that instead of obfuscating program P1, the program P2 is obfuscated.

Hybrid3: In this hybrid, the ciphertexts g1 is generated by encrypting M1 (under PK1
FHE) while

the ciphertext g2 is (still) generated by encrypting M1 (under PK2
FHE). As in the previous hy-

brid, the obfuscation component is still generated from P2.

Hybrid4: The ciphertexts are generated as in the previous hybrid. That is, g1 and g2 are
encryptions of M1 under keys PK1

FHE and PK2
FHE respectively. But this time, the obfuscation

component corresponds to the program P1 instead of P2.
Note that this corresponds to the honest execution of the differing-inputs obfuscation corre-

sponding to the obfuscation of M1.

We present a series of claims that show that the hybrids are computationally indistinguish-
able with respect to each other.

Claim 1. Hybrids H0 and H1 are computationally indistinguishable under the assumption that
the FHE scheme is IND-CPA secure.
Proof. We assume that these two hybrids are distinguishable and then arrive at a contradiction
by contradicting the IND-CPA security of the FHE scheme. Suppose there exists an adversary
A that distinguishes hybrids Hybrid0 and Hybrid1 then we construct an adversary A′ that breaks
the IND-CPA security of FHE scheme as follows. The adversary A′, on input a public key PK1,
first executes A to get the messages M0 and M1. It then sends this to the challenger who decides
to encrypt either M0 or M1 depending on the challenge bit. The challenege ciphertext, CT(2),
is handed over to A′ who does the following. It generates public key-secret key pair (SK0,PK0)

and then encrypts m0 using PK0 to obtain CT(1). Further, it generates the program P1 in which
the decryption is done using the decryption key SK0. It finally gives (CT(1),CT(2),P1obf), where
P1obf = diO(P1), to A and then A′ outputs whatever A outputs.

Claim 2. Hybrids H1 and H2 are computationally indistinguishable under the assumption that
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differing-inputs obfuscators exist for all circuits.
Proof. Consider an adversary who receives P1,P2 and Pobf , which is either an obfuscation of
P1 or P2. If the adversary receives an obfuscation of P1 then we are in hybrid Hybrid1 and if
the adversary receives the obfuscation of P2 then we are in hybrid Hybrid2. So, if the adversary
could indeed distinguish the two hybrids with non-negligible probability then he can as well
distinguish the obfuscations of P1 and P2 with non-negligible probability. This contradicts the
differing-inputs property of P from Corollary 2, thus proving the claim.

Claim 3. Hybrids H2 and H3 are computationally indistinguishable under the assumption that
the FHE scheme is IND-CPA secure.
Proof. We assume that these two hybrids are distinguishable and then arrive at a contradiction
by contradicting the IND-CPA security of the FHE scheme. Suppose there exists an adversary
A that distinguishes hybrids Hybrid0 and Hybrid1 then we construct an adversary A′ that breaks
the IND-CPA security of FHE scheme as follows. The adversary A′, on input a public key PK0,
first executes A to get the messages m0 and m1. It then sends this to the challenger who decides
to encrypt either m0 or m1 depending on the challenge bit. The challenge ciphertext, CT(1), is
handed over to A′ who does the following. It generates public key-secret key pair (SK1,PK1)

and then encrypts m1 using PK1 to obtain CT(2). Further, it generates the program P2 in which
the decryption is done using the decryption key SK2. Finally, it computes P2obf , which is the
indistinguishability obfuscation of P2. It gives (CT(1),CT(2),P2obf) to A and then A′ outputs
whatever A outputs.

Claim 4. Hybrids H3 and H4 are computationally indistinguishable under the assumption that
differing-inputs obfuscators exist for all circuits.
Proof. This is similar to the proof of Claim 2. Consider an adversary who receives P1,P2 and
Pobf , which is either an obfuscation of P1 or P2. If the adversary receives an obfuscation of P2
then we are in hybrid Hybrid3 and if the adversary receives the obfuscation of P1 then we are in
hybrid Hybrid4. So, if the adversary could indeed distinguish the two hybrids with non-negligible
probability then he can as well distinguish the obfuscations of P1 and P2 with non-negligible
probability. This contradicts the differing-inputs property of P from Corollary 2, thus proving
the claim.

From the above arguments it follows that hybrids Hybrid0 and Hybrid4 are computationally
indistinguishable. This proves the differing-inputs property of the Turing machines M0 and M1.
More formally,

Theorem 3. Under the existence of the following primitives, the construction in Section 3 is a
differing-inputs obfuscation for any family of differing-inputs Turing machines.

• IND-CPA secure fully homomorphic encryption scheme.

• Succinct Non-Interactive Arguments of Knowledge.

• Differing-inputs obfuscation for all circuits.

• Collision resilient hash functions.

D FE for Turing machines

In this section, we give a construction of a functional encryption scheme that enjoys the suc-
cinctness as well as the input-specific runtime properties. The scheme uses indistinguishability
obfuscation for Turing machines as a building block. Note that our construction in Section 3
applies for indistinguishability obfuscation for Turing machines as well. We adopt the scheme as
described in Garg et al. [GGH+13b] to the case of Turing machines. Similar to Garg et al. we are
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only able to achieve selective security. However using complexity leveraging we can boost this
to full security 11. We present the scheme as presented in [GGH+13b] below. The construction
uses public key encryption, statistically simulation sound non-interactive zero knowledge proofs.
The background for these primitives can be found in Garg et al. We let (SetupPKE , EncryptPKE ,
DecryptPKE) be the algorithms comprising our (perfectly correct) encryption scheme. Our SSS-
NIZK system will consist of algorithms SetupNIZK , ProveNIZK , VerifyNIZK and has a simulator
Sim.

We build a functional encryption system for messages of length n = n(λ). For messages of length
n and security parameter λ the ciphertexts of our PKE scheme will be of length ` = `(λ, n).
The construction is as follows:

- SetupFE(1λ) : The SetupFE algorithm takes the security parameter λ and computes the
following.

1. Generate (PK1
PKE ,SK

1
PKE)← SetupPKE(1λ) and (PK2

PKE ,SK
2
PKE)← SetupPKE(1λ).

2. Set CRS← SetupNIZK .

It sets the public parameters and master secret key as

PP = {PK1
PKE ,PK

2
PKE ,CRS} and MSK = {SK1

PKE}.

- KeyGenFE(MSK, f): On input the master secret key and a Turing machine implementing
f , it does the following. It computes an indistinguishability obfuscation (for Turing ma-

chines) of P3(f,SK1
PKE ,CRS), denoted by O

P3(f,SK1
PKE

,CRS) , for the program P3(f,SK1
PKE ,CRS)

using the size of the Turing machine implementing P3(f,SK1
PKE ,CRS) to be equal to the

value max{|P3(f,SK1
PKE ,CRS)|, |P4(f,SK2

PKE ,CRS)|}. We output O
P3(f,SK1

PKE
,CRS) as the secret

key SKf .

- EncryptFE(PP,m ∈ {0, 1}n): On input the public parameters PP and a message m, output
c := (e1, e2, π), where e1 = EncryptPKE(PK1

PKE ,m; r1) and e2 = EncryptPKE(PK2
PKE ,m; r2)

and π is a NIZK proof of Equation 2.

- DecryptFE(SKf , c = (e1, e2, π)): The decryption algorithm runs the obfuscated Turing
machine SKf on input (e1, e2, π) and outputs the answer.

The two program classes as mentioned in the construction are described below.

11We note that the construction of the adaptively-secure FE scheme as described in [BCP14] does not use complexity
leveraging.
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P3

On input(e1, e2, π), the program P3(f,SK
1
PKE ,CRS) proceeds as follows:

1. Check that π is valid NIZK proof (using the VerifyNIZK algorithm and CRS) for the NP-
statement

∃m, r1, r2 : (2)(
e1 = EncryptPKE(PK1

PKE ,m; r1)
∧
e2 = EncryptPKE(PK2

PKE ,m; r2)
)

2. If any checks fail output 0; otherwise output f
(
DecryptPKE(SK1

PKE , e1)
)
.

P4

On input(e1, e2, π), P4(f,SK
2
PKE ,CRS), the program proceeds as follows:

1. Check that π is valid NIZK proof (using the VerifyNIZK algorithm and CRS) for the NP-
statement

∃m, r1, r2 :(
e1 = EncryptPKE(PK1

PKE ,m; r1)
∧
e2 = EncryptPKE(PK2

PKE ,m; r2)
)

2. If any checks fail output 0; otherwise output f
(
DecryptPKE(SK2

PKE , e2)
)
.

We do not describe the correctness and the security arguments here since they are identical to
the arguments in Garg et al. [GGH+13b]. Since the functional keys are (indistinguishability)
obfuscation of Turing machines, it can be seen that the scheme satisfies both succinctness and
input-specific runtime properties.

E Delegatable functional encryption scheme

The notion of delegatable functional encryption scheme is introduced in this section. Delegat-
able functional encryption is a functional encryption scheme having the additional operation of
delegation of functional keys. We first give an informal description of the delegate operation.
Suppose, Alice has a functional key corresponding to some function. Alice decrypting all the
messages all by herself is cumbersome. She wants to delegate some specific decryptions to Bob.
One way to do that is Alice hands over her key to Bob. However, Bob can now decrypt mes-
sages which he is not supposed to. Instead what Alice can do is compute a new key from the
functional key it possesses and she can hand over the key to Bob. The key is designed in such a
way that Bob can only decrypt messages he is supposed to and nothing more. This is precisely
what delegation deals with. We define the class of functions that can be delegated. Suppose,
Alice has a key corresponding to function f then she can delegate those functions g which can
be written as a composition of f ′ on f , denoted by f ′ ◦ f , for some function f ′ 12.

12More formally, f ′ ◦ f takes as input x and outputs f ′(f(x)).
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E.1 Definition

We define a delegatable functional encryption scheme to consist of the following PPT algorithms
(Setup,KeyGen,Encrypt,Decrypt,Delegate). The first four PPT algorithms are the same as in
the definition of the functional encryption described in Appendix A.2.

• Setup(1λ) - a polynomial time algorithm that takes the unitary representation of the se-
curity paramter λ and outputs a public paramteres PP and a master secret key MSK.

• KeyGen(MSK, f) - a polynomial time algorithm that takes as input the master secret
key MSK and a function f implementable by a Turing machine M ∈ M and outputs a
corresponding secret key SKf .

• Encrypt(PP, x) - a polynomial time algorithm that takes the public parameters PP and a
string x ∈ S and outputs a ciphertext CT.

• Decrypt(SKf ,CT) - a polynomial time algorithm that takes a secret key SKf and ciphertext
encrypting message x ∈ S and outputs f(x).

• Delegate(PP,SKf , f
′) - a polynomial time algorithm that takes as input a public key PP,

a functional key SKf and a function f ′ and outputs a functional key SKf ′◦f that evaluates
the function f ′ ◦ f on the message contained in the ciphertext.

A delegatable functional encryption scheme satisfies two main properties, namely correctness
and security. The criterion for correctness is the same as that of the functional encryption
scheme. In addition, the following must be satisfied – if the output of a delegate operation
on input SKf and f ′ is SKf ′◦f then the decryption algorithm on input SKf ′◦f along with an
encryption of a message x should give f ′(f(x)) as its output. We describe the security notion
next.

E.2 Security notion

We now describe the security notion employed for a delegatable encryption scheme. We follow
the security notion defined in [SW08] for a predicate encryption scheme. The security is mod-
elled as a game between a challenger and an adversary.

Setup. The challenger executes the Setup algorithm of the delegatable functional encryption
scheme and gives the public key, denoted by PK to the adversary.

Query. The adversary submits queries to the challenger adaptively. There are three subphases
in the query phase. The first is the creation of the functional key, second is the delegation phase
and the third is the reveal phase.

• Creation. The adversary submits the queries fi to the challenger who computes the keys
SKfi corresponding to fi. These keys are not yet revealed to the adversary.

• Delegation. The adversary now chooses the keys, generated during the creation phase,
on which the delegation operation need to be applied. This is done by the adversary
submitting a function f ′i along with an index i, to indicate the key on which the delegate
operation need to applied. The challenger then executes Delegate on SKfi along with f ′i
to obtain SKf ′i◦fi . As in the previous case, the key is not yet revealed to the adversary.

• Reveal. The adversary asks the challenger to reveal a functional key that was generated
in one of the previous phases.

Challenge. The adversary then sends the two challenge messages x0, x1 such that for all func-
tional keys SKf created by the challenger (including the ones during the delegation phase),
f(x0) = f(x1). If this condition is not satisfied then the challenger aborts the game. Otherwise,
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the challenger encrypts xb using the public key PK, where b is a bit chosen uniformly at random,
and the resulting ciphertext is then handed over to the adversary.

Query. This phase is similar to the previous query phase. In this phase too, for any functional
key SKf created, f(x0) should be the same as f(x1).

Guess. The game ends when the adversary guesses a bit b′. The advantage of an adversary in
the above game is defined to be |Prob[b′ = b]− 1

2 |.

Definition 12. A delegatable functional encryption scheme is said to be (fully) secure if for all
PPT adversaries A, the advantage of A is a negligible function of λ.

We consider a weaker notion of security, namely selective security, where the challenge messages
x0 and x1 are fixed by the adversary before the Setup phase is executed. We note that we
can transform a selectively secure delegatable FE scheme to an adaptively secure delectable FE
scheme using complexity leveraging.

E.3 Construction

Consider the functional encryption scheme described in Appendix D. Corresponding to this
scheme we define a delegate operation, denoted by Delegate, as follows. On input a key SKf and
a function f ′, specified by a Turing machine, the delegate operation computes the indistinguisha-
bility obfuscation of the program Pf

′,SKf . The program Pf
′,SKf on input (CT1,CT2, hΠ, ϕ), first

evaluates the obfuscation SKf on input (CT1,CT2, hΠ) to obtain z. It then evaluates f ′ on z to
obtain f ′(z), which it then outputs.

We claim that this is a delegatable encryption scheme. The correctness of this scheme follows
from the correctness of indistinguishability obfuscation. We argue about the security informally
here. We first design the hybrids such that the first hybrid corresponds to the indistinguishability
game in the delegatable functional encryption scheme and the last hybrid corresponds to the
game in the functional encryption scheme. In each hybrid, we replace a delegate operation by
a key generation operation. That is, if an adversary requests delegate operation f ′ on key SKf ,
instead of performing the delegation operation we generate a fresh key SKf ′◦f .

To argue the indistinguishability of the hybrids, note that it suffices to show that the output
distribution of the key generation for the function f ′ ◦ f is computationally indistinguishable
from the output distribution of the delegation operation on input SKf , corresponding to f , and

f ′. To see this, observe that the programs Pf
′,SKf and P(f,SK1,CRSSS ,CRSSNARK) are equivalent. The

output of the key generation is the obfuscation of P(f,SK1,CRSSS ,CRSSNARK) and correspondingly the
output of the delegate operation is the output of Pf

′,SKf . From the equivalence of these pro-
grams, it follows that their obfuscations, and hence the outputs (distributions) of KeyGen and
Delegate are computationally indistinguishable. This proves that any two consecutive hybrids
are computationally indistinguishable. The adversary can succeed in the last hybrid with only
negligible probability and this follows from the fact that our functional encryption scheme is
secure. Hence, the adversary can succeed in the first hybrid, which is the security game of the
delegatable encryption scheme, only with negligible probability. This completes the proof.

Remark. The above delegatable functional encryption scheme works for both circuits as well as
Turing machines. If a delegatable scheme need to be constructed only for circuits then we can
directly construct the scheme from the functional encryption scheme by Garg et. al. [GGH+13b]
using the delegation operation defined as above.
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F Multiparty Key Exchange and Broadcast Encryption

Here we prove Theorem 1, which states that our multiparty key exchange protocol is secure.
We also our broadcast encryption construction and prove its security.

We start with the proof of Theorem 1.

Proof. We prove security through a sequence of hybrids.
Hybrid0: This is the honest key exchange game, EXP(0) in the NIKE security definition, where
the adversary receives an obfuscation of P(F ), published values {yi}i=1,...,n, and the correct
challenge group key k∗ = F (h∗) where h∗ = H(y1, . . . , yn).
Hybrid1: This game is identical to Hybrid0, except that instead of receiving the correct public

key consisting of P1obf , the adversary receives the obfuscation P2obf of the program P
(h∗,Fh∗ )
2 in

Figure 3.

P
(h∗,Fh∗ )
2

Given input (h, π, i, y, x), P
(h∗,Fh∗ )
2 proceeds as follows:

1. Check that h 6= h∗.

2. Check that π is a valid proof that there exists z ∈ Yn where H(z) = h and z[i] = y.

3. Check that f(x) = y.

4. If any check fails, abort and output ⊥.

5. Otherwise, output F h∗(h)

Figure 3 The program P
(h∗,Fh∗ )
2 that users will use for key generation.

Hybrid2: This game is identical to Hybrid1, except that instead of setting the challenge group
key as k∗ = F (h∗), this k∗ is chosen uniformly at random from the range of F , independent
of F .
Hybrid3: This game is identical to Hybrid2, except the adversary is given the correct public key
consisting of an obfuscation of P(F ). This game is the same as Hybrid0, except that the challenge
group key k∗ is chosen uniformly at random, and is therefore identical to EXP(1) in the NIKE
security definition.

We need to argue that each of these hybrids are indistinguishable. First, we argue that

P(F ) and Ph
∗,Fh∗

form a differing-inputs circuit family, where h∗ = H(y1, . . . , yn) where yi =
f(xi) and the adversary gets auxiliary information {yi}i=1,...,n. Consider any differing input
(h, π, i, y, x). It must be that h = h∗, π is a valid proof, and f(x) = y. There are two cases:

• y = yi. Then x is a pre-image of yi under f . We can use such a differing input to break
the one-wayness of f .

• y 6= yi. Then since π is valid, but h∗ = H(y1, . . . , yn) with yi 6= y, the proof must yield a
collision on the underlying collision resistant hash H.

Therefore, the security of f andH show that P and P2 form a differing-inputs function family.
Therefore, the obfuscations P1obf and P2obf are indistinguishable. This in turn shows that
Hybrid0 is indistinguishable from Hybrid1. The same applies to Hybrid2 and Hybrid3. Therefore,
it remains to prove the indistinguishability of Hybrid1 and Hybrid2.

Let A be an adversary that distinguishes Hybrid1 from Hybrid2 with probability ε. We
construct an adversary B that breaks the security of F . B generates xi for himself and computes
yi = f(xi). B also computes h∗ = H(y1, . . . , yn), and then asks its challenger for the constrained
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function Fh
∗

and the value of F at h∗, obtaining the key k∗. Now B constructs the obfuscation
of P2. It gives this obfuscation, all of the yi, and k∗ to A, and runs A. B outputs the output of
A.

If k∗ is the correct value of F (h∗), then B correctly simulates Hybrid1. Otherwise if k∗ is
random it simulates Hybrid2. Therefore, B breaks the security of F with probability ε, meaning
ε is negligible. Thus Hybrid1 is indistinguishable from Hybrid2, as desired.

We have thus shown that Hybrid0 is indistinguishable from Hybrid3, showing that our con-
struction is statically secure.

F.1 Broadcast Encryption

Next, we construct a broadcast encryption system with short ciphertexts, public keys, and secret
keys. We begin by defining a broadcast encryption scheme and what it means to be secure. A
(public-key) broadcast encryption system [FN94] is made up of three randomized algorithms:

Setup(λ, n) Given the security parameter λ and the number of receivers n, output n private
keys SK1, . . . ,SKn and public parameters PP. For i = 1, . . . , n, recipient number i is given
the private key SKi.

Encrypt(PP, S) Takes as input a subset S ⊆ {1, . . . , n}, and the public parameters PP. It
outputs a pair (Hdr, k) where Hdr is called the header and k ∈ K is a message encryption
key chosen from a key space K. We will often refer to Hdr as the broadcast ciphertext.

Let m be a message to be broadcast that should be decipherable precisely by the receivers
in S. Let cm be the encryption of m under the symmetric key k. The broadcast data
consists of (S,Hdr, cm). The pair (S,Hdr) is often called the full header and cm is often
called the broadcast body.

Decrypt(PP, i,SKi, S,Hdr) Takes as input a subset S ⊆ {1, . . . , n}, a user id i ∈ {1, . . . , n} and
the private key SKi for user i, and a header Hdr. If i ∈ S the algorithm outputs a key
k ∈ K. Intuitively, user i can then use k to decrypt the broadcast body cm and obtain the
message m.

The above definition describes a public-key broadcast encryption scheme. In a secret-key broad-
cast system, the encryption algorithm Encrypt requires as an additional input a private broadcast
key BK that is only known to the broadcaster.

The length efficiency of a broadcast encryption system is measured in the length of
the header Hdr. The shorter the header, the more efficient the system. Some systems such
as [BGW05, Del07, DPP07, BS03, SF07] achieve a fixed size header that depends only on the
security parameter and is independent of the size of the recipient set S.

As usual, we require that the system be correct, namely that for all subsets S ⊆ {1, . . . , n}
and all i ∈ S if (PP, (SK1, . . . ,SKn)) ← Setup(1λ, n) and (Hdr, k) ← Encrypt(PP, S) then
Decrypt(PP, i,SKi, S,Hdr) = k.

Security. We define selective security for a broadcast system. Security is defined using the
following experiment, denoted EXP(b), parameterized by the total number of recipients n and
by a bit b ∈ {0, 1}:

(PP, (SK1, . . . ,SKn))← Setup(1λ, 1n)

(S∗, state)← A(1λ, 1n)
b′ ← A(PP, state, {SKi}i/∈S∗ ,Hdr, k∗)
where

(Hdr, k0)← Encrypt(PP), k1 ← {0, 1}λ, and k∗ ← kb.
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For b = 0, 1 let Wb be the event that b′ = 1 in EXP(b) and as usual define AdvKE(λ) = |Pr[W0]−
Pr[W1]|.

Definition 13. We say that a broadcast encryption system is selectively secure if for all prob-
abilistic polynomial time adversaries A the function AdvKE(λ) is negligible.

Notation: Fix a set Y, and label two elements of Y as 0 and 1. For a set S ⊆ {1, . . . , n}, let
χ(S) ∈ Yn denote a sequence of n elements of Y where χ(S)[i] = 0 if i /∈ S, and χ(S)[i] = 1 if
i ∈ S. We call χ(S) the incidence vector for S.

Construction We now construct a private key broadcast system — in Section F.2, we show how
to make the scheme public key. Let F be a puncturable pseudorandom function, H : Yn → Y a
Merkle Hash Tree, and SIG = (SetupSIG,SSIG, VSIG) a signature scheme.

- SetupBE(1λ, 1n): The SetupBE algorithm takes the security paramemter λ and a number of
users n and computes the following:

1. Generate (PK,SK)← SetupSIG(1λ).

2. Generate an instance F of a puncturable pseudorandom function with security pa-
rameter λ

3. Compute the differing-inputs obfuscation P1obf of the program P1 = P(PK,F ), using

the size of the circuit to be max{|P(PK,F )|, |P(PK,h∗,Fh∗ )
2 |} where P

(PK,h∗,Fh∗ )
2 is defined

in Figure 5.

4. For each user i, compute the signature on i: σi ← SSIG(SK, i).

It sets the public parameters, broadcast key, and user secret key as:

PP = P1obf and BK = F and SKi = σi

- EncryptBE(BK, S). To encrypt to a set S, let z = χ(S) ∈ Yn be the incidence vector for S,
and let hS = H(z). Output an empty header, and the message encryption key kS = F (hS).

- DecryptBE(PP, σi, S, h). To compute the message encryption key kS , user i computes hS =
H(χ(S)), as well as a proof π that it knows a z such that H(z) = h and z[i] = 1 ∈ Y.
Then the message encryption key is kS ← P1obf(j, π, i, σi).

P(PK,F )

Given input (h, π, i, σ) P(PK,F ) proceeds as follows:

1. Check that π is a valid proof that there exists z ∈ Yn where H(z) = h and z[i] = 1 ∈ Y.

2. Check that VSIG(PK, i, σ) accepts.

3. If any check fails, abort and output ⊥.

4. Otherwise, output F (h)

Figure 4 The program P(PK,F ) that users will use for decryption.

Correctness. Correctness of our scheme is straightforward by inspection.

Parameter sizes. Secret keys in our scheme are just signatures, which are independent of
the number of users. Headers are empty, and the public key is an obfuscations of the program
in Figure 4, which only depend logarithmically on the number of users.
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Security. The security of our scheme is given by the following theorem:

Theorem 4. The scheme above is selectively secure if H is a collision resistant Merkle hash tree,
F is a secure punctured PRF, SIG is a secure signature scheme, and the P1obf is a differing-input
obfuscation of P(PK,F ).

Proof. We prove security through a sequence of hybrids.
Hybrid0: This hybrid represents the honest selective security game for broadcast encryption. The
adversary commits to a set S∗. Then the adversary receives the public parameters PP = P1obf ,
and secret keys σi = SSIG(PK, i) for each i /∈ S∗. Let h∗ = H(χ(S∗)). The adversary also receives
k∗ = F (h∗). The adversary is now allowed to make encryption queries to any set S 6= S∗, to
which it receives the correct message encryption key.
Hybrid1: In this hybrid, we add the requirement that for any encryption query on a set S, that
h∗ 6= H(χ(S)). If this check fails, abort the game.
Hybrid2: This hybrid is identical to Hybrid1 except for the generation of P1obf in the public key.
Given F , we puncture F at h∗, obtaining the program Fh

∗
. We set the public key to be the

differing-inputs obfuscation P2obf of the program P
(PK,h∗,Fh∗ )
2 in Figure 5.

P
(PK,h∗,Fh∗ )
2

Given input (h, π, i, σ) P
(PK,h∗,Fh∗ )
2 proceeds as follows:

1. Check that h 6= h∗.

2. Check that π is a valid proof that there exists z ∈ Yn where H(z) = h and z[i] = 1 ∈ Y.

3. Check that VSIG(PK, i, σ) accepts.

4. If any check fails, abort and output ⊥.

5. Otherwise, output F h∗(h)

Figure 5 The program P
(PK,h∗,Fh∗ )
2 that users will use for decryption.

Hybrid3: This hybrid is identical to Hybrid2, except that instead of k∗ = F (h∗), we set k∗ to be
a uniform string in the codomain of F .
Hybrid4: This is identical to Hybrid3, except the adversary is again given the correct public key
consisting of an obfuscation of P(PK,F ).
Hybrid5: This hybrid is identical to Hybrid4, except we remove the check in encryption queries
that h∗ 6= H(χ(S)). This game is identical to Hybrid0, except that k∗ is chosen at random and
independent of F . Therefore, this hybrid is exactly the dishonest selective security game.

We need to argue that each of these hybrids is indistinguishable. First, if Hybrid1 aborts
during an encryption query for S, it means H(χ(S)) = h∗ = H(χ(S∗)), and thus χ(S) and χ(S∗)
form a collision for H (since S 6= S∗). By the collision resistance of H, this can only happen
with negligible probability. Therefore, Hybrid0 is indistinguishable from Hybrid1. The same is
true of Hybrid4 and Hybrid5.

Our next step is to show that P and P2 are input-indistinguishable. Indeed, suppose an
adversary, given P, P2, a set S∗, and σi = SSIG(SK, i) for i /∈ S∗ can compute an input (h, π, i, σ)
where P and P2 differ. The only way for P and P2 to have different outputs is for P2 to abort at
a point where P does not. Thus, at any such point, it must be that h = h∗, π is a valid proof,
and σ is a valid signature on i. There are two cases:

• i ∈ S∗. Then σ is a valid forgery. If an adversary produces such an input, we can use
it to break the security of SIG. The adversary works as follows: on input PK for SIG, it
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generates the programs P and P2, and makes signature queries on i /∈ S∗ to obtain σi,
and gives all of these parameters to the differing-inputs adversary. The differing inputs
adversary then produces a differing input (h∗, π, i∗, σ∗). Since i∗ is assume to be in S∗, σ∗

is a valid forgery for the message i∗.

• i /∈ S∗. Then π proves h∗ = H(χ(S′)) for some S′ 6= S∗. This proof gives us a collision for
H.

Therefore, assuming H is collision resistant and SIG is a secure signature scheme, P and P2 are
input indistinguishable. This means that the obfuscations P1obf and P2obf are indistinguishable.

Since the only difference between Hybrid1 and Hybrid2 is the obfuscation of two input-
indistinguishable programs, the hybrids themselves are indistinguishable. The same applies
to Hybrid3 and Hybrid4. It remains to prove that Hybrid2 and Hybrid3 are indistinguishable.

Suppose we have an adversary A distinguishing Hybrid2 from Hybrid3. We construct an
adversary B breaking the security of F . B runs A, and when A outputs a set S∗, B computes
h∗ = H(χ(S∗)) and asks its F challenger for the punctured PRF Fh

∗
. It also makes a challenge

on h∗, obtaining the key k∗. With Fh
∗
, B can generate P2, which it obfuscates and gives to

A. It also generates the parameters for SIG and gives A the signatures on all points not in S∗,
and gives k∗ as the message encryption key. If k∗ is the correct key F (h∗), then B perfectly
simulates the view of A in Hybrid2. Otherwise, the view is identical to Hybrid3. Therefore, if A
distinguishes Hybrid2 from Hybrid3 with non-negligible probability, B distinguishes the correct
k∗ from a random k∗ also with non-negligible probability. The security of F therefore implies
that Hybrid2 is indisitnguishable from Hybrid3.

We can therefore conclude that Hybrid0 is indistinguishable from Hybrid5, proving the security
of our broadcast encryption scheme.

F.2 A public key broadcast scheme

In the broadcast system of the previous section the broadcaster’s key BK had to be kept secret.
Here we show how to modify the broadcast scheme to make it public key. Our modification is
simple: we have the broadcaster generate a random input x ∈ X to a one-way function f , and
let y = f(x) ∈ Y. The hash h is now H(χ(S), y). We we change the public program to be an
obfuscation P1O of P(PK,F ) in Figure 6.

P(PK,F )

Given input (y, h, π, i, σ) P(PK,F ) proceeds as follows:

1. If i = 0:

(a) Check that π is a valid proof that there exists z ∈ Yn+1 where H(z) = h and z[n+ 1] = y.

(b) Check that y = f(σ).

2. If i 6= 0,:

(a) Check that π is a valid proof that there exists z ∈ Yn+1 where H(z) = h, z[i] = 1 ∈ Y,
and z[n+ 1] = y.

(b) Check that VSIG(PK, i, σ) accepts.

3. If any check fails, abort and output ⊥.

4. Otherwise, output F (h)

Figure 6 The program P(PK,F ) that users will use for decryption.
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To encrypt, the broadcaster lets z′ = χ(S) ∈ Yn, lets z = (z′, y), and sets h = H(z). The
broadcaster also generates a proof π that it knows a z with H(z) = h and z[n+1] = y, and runs
P1O on input (y, h, π, 0, x). The result is the message encryption key k = F (h). The header is
y. To decrypt, user i generates a proof π that it knows z ∈ Yn+1 with z[i] = 1, z[n+ 1] = y and
H(z) = h, and runs P1O on input (y, h, π, σi) to obtain the key k = F (h).

For security, it is straightforward to adapt the proof from above to the public key scheme.

The main difference is arguing that the program P(PK,F ) and the modified program P
(PK,h∗,Fh∗ )
2

which aborts if h = h∗ form a differing-input circuit family. The only difference in the argument
is that a differing input might have i = 0. But in this case, the collision resistance of H implies
that y = y∗ from the challenge, and that f(σ) = y∗, which means σ is a preimage of y∗. The
one-wayness of f shows that this can only happen with negligible probability, meaning P and
P2 are a differing-inputs circuit family.
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