
Higher Order Masking of Look-up Tables

Jean-Sebastien Coron

University of Luxembourg

October 26, 2013

Abstract. We describe a new algorithm for masking look-up tables of block-ciphers at any order, as a coun-
termeasure against side-channel attacks. Our technique is a generalization of the classical randomized table
countermeasure against first-order attacks. We prove the security of our new algorithm against t-th order attacks
in the usual Ishai-Sahai-Wagner model from Crypto 2003; we also improve the bound on the number of shares
from n ≥ 4t + 1 to n ≥ 2t + 1 for an adversary who can adaptively move its probes between successive executions.
Our algorithm has the same time complexity O(n2) as the Rivain-Prouff algorithm for AES, and its extension by
Carlet et al. to any look-up table. In practice for AES our algorithm is less efficient than Rivain-Prouff, which
can take advantage of the special algebraic structure of the AES Sbox; however for DES our algorithm performs
slightly better.

1 Introduction

Side-Channel Attacks. An implementation of a cryptographic algorithm on some concrete device, such as
a PC or a smart-card, can leak additional information to an attacker through the device power consumption
or electro-magnetic emanations, enabling efficient key-recovery attacks. One of the most powerful attack
is the Differential Power Analysis (DPA) [KJJ99]; it consists in recovering the secret-key by performing a
statistical analysis of the power consumption of the electronic device, for several executions of a cryptographic
algorithm. Another powerful class of attack are template attacks [CRR02]; a template is a precise model
for the noise and expected signal for all possible values of part of the key; the attack is then carried out
iteratively to recover successive parts of the key.

Random Masking. A well-known countermeasure against side-channel attacks consists in masking all
internal variables with a random r, as first suggested in [CJRR99]. Any internal variable x is first masked
by computing x′ = x ⊕ r, and the masked variable x′ and the mask r are then processed separately. An
attacker trying to analyze the power consumption at a single point will obtain only random values; therefore,
the implementation will be secure against first-order DPA. However, a first-order masking can be broken in
practice by a second-order side channel attack, in which the attacker combines information from two leakage
points [Mes00]; however such attack usually requires a larger number of power consumption curves, which
can be unfeasible in practice if the number of executions is limited (for example, by using a counter). For
AES many countermeasures based on random masking have been described, see for example [HOM06].

More generally, one can split any variable x into n boolean shares by letting x = x1 ⊕ · · · ⊕ xn as in a
secret-sharing scheme [Sha79]. The shares xi must then be processed separately without leaking information
about the original variable x. Most block-ciphers (such as AES or DES) alternate several rounds, each
containing one linear transformation (or more), and a non-linear transformation. A linear function y = f(x)
is easy to compute when x is shared as x = x1 ⊕ · · · ⊕ xn, as it suffices to compute yi = f(xi) separately for
every i. However securely computing a non-linear function y = S(x) with shares is more difficult and is the
subject of this paper.

The Ishai-Sahai-Wagner Private Circuit. The theoretical study of securing circuits against an adversary
who can probe its wires was initiated by Ishai, Sahai and Wagner in [ISW03]. The goal is to protect a
cryptographic implementation against side-channel attacks in a provable way. The authors consider an
adversary who can probe at most t wires of the circuit. They showed how to transform any boolean circuit
C of size |C| into a circuit of size O(|C| · t2) that is perfectly secure against such adversary.

The Ishai-Sahai-Wagner (ISW) model is relevant even in the context of power attacks. Namely the
number of probes in the circuit corresponds to the attack order in a high-order DPA. More precisely, if a
circuit is perfectly secure against t probes, then combining t power consumption points as in a t-th order
DPA will reveal no information to the adversary. To obtain useful information about the key the adversary
will have to perform an attack of order at least t+ 1. The soundness of higher-order masking in the context
of power attacks was first demonstrated by Chari et al. in [CJRR99], who showed that in a realistic leakage
model the number of acquisitions to recover the key grows exponentially with the number of shares. Their
analysis was recently extended by Prouff and Rivain in [PR13]. The authors proved that the information
obtained by observing the entire leakage of an execution (instead the leakage of the n shares of a given
variable) can be made negligible in the masking order. This shows that the number of shares n is a sound
security parameter for protecting an implementation against side-channel attacks.

To protect against an adversary with at most t probes, the ISW approach consists in secret-sharing every
variable x into n shares xi where n = 2t+ 1, that is x = x1 ⊕ x2 ⊕ · · · ⊕ xn where x2, . . . , xn are uniformly
and independently distributed bits. An adversary probing at most n− 1 variables clearly does not learn any
information about x. Processing a NOT gate is straightforward since x̄ = x̄1 ⊕ x2 ⊕ · · · ⊕ xn; therefore it
suffices to invert the first share x1. To process an AND gate z = xy, one writes:

z = xy =

(
n

⊕
i=1

xi

)
·
(

n

⊕
i=1

yi

)
= ⊕

1≤i,j≤n
xiyj (1)

and the cross-products xiyj are processed and recombined without leaking information about the original
inputs x and y. More precisely for each 1 ≤ i < j ≤ n one generates random bits ri,j and computes
rj,i = (ri,j ⊕ xiyj)⊕ xjyi; the n shares zi of z = xy are then computed as zi = xiyi ⊕⊕j 6=i ri,j . Since there
are n2 such cross-products, every AND gate of the circuit is expanded to O(n2) = O(t2) new gates in the
circuit.

The authors also describe a very convenient framework for proving the security against any set of t probes.
Namely proving the security of a countermeasure against first-order attacks (t = 1) is usually straightforward,
as it suffices to check that every internal variable has the uniform distribution (or at least a distribution
independent from the secret-key). Such approach can be extended to second-order attacks by considering
pairs of internal variables (as in [RDP08]); however it becomes clearly unfeasible for larger values of t, as
the number of t-uples to consider would grow exponentially with t. Alternatively the ISW framework is
simulation based: the authors prove the security of their construction against a adversary with at most t
probes by showing that any set of t probes can be perfectly simulated without the knowledge of the original
input variables (such as x, y in the AND gate z = xy). In [ISW03] this is done by iteratively generating
a subset I of indices of the input shares that are sufficient to simulate the t probes; then if |I| < n the
corresponding input shares can be perfectly simulated without knowing the original input variable, simply
by generating independently and uniformly distributed bits. In the ISW construction every probe adds at
most two indices in I, so we get |I| ≤ 2t and therefore n ≥ 2t + 1 is sufficient to achieve perfect secrecy
against a t-limited adversary. A nice property of the ISW framework is that the technique easily extends
from a single gate to the full circuit: it suffices to maintain a global subset of indices I that is iteratively
constructed from the t probes as in a single gate.

The Rivain-Prouff Countermeasure. The Rivain-Prouff countermeasure [RP10] was the first provably
secure higher-order masking scheme for the AES block-cipher. Namely, all previous masking schemes were
secure against first-order or second-order attacks only. The classical randomized table countermeasure
[CJRR99] is secure against first-order attacks only. The Schramm and Paar countermeasure [SP06] was
designed to be secure at any order n, but an attack of order 3 was shown in [CPR07]. An alternative
countermeasure based on table recomputation and provably secure against second-order attacks was described
in [RDP08], but no extension to any order is known. The Rivain-Prouff countermeasure was therefore the
first masking scheme for AES secure for any order t ≥ 3.

The Rivain-Prouff countermeasure is an adaptation of the previous ISW construction to software
implementations, working in the AES finite field F28 instead of F2. Namely the non-linear part of the AES

Sbox can be written as S(x) = x254 over F28 , and as shown in [RP10] such monomial can be evaluated with
only 4 non-linear multiplications (and a few linear squarings). These 4 multiplications can be evaluated with
n-shared input using the previous technique based on Equation (1), by working over the field F28 instead of
F2. In order to achieve resistance against an attack of order t, the Rivain-Prouff algorithm also requires at
least n = 2t+ 1 shares (see [CPRR13] for a more detailed analysis).

The Rivain-Prouff countermeasure was later extended by Carlet et al. to any look-up table [CGP+12].
Namely using Lagrange interpolation any Sbox with k-bit input can be written as a polynomial

S(x) =
2k−1∑
i=0

αi · xi

over F2k , for constant coefficients αi ∈ F2k . The polynomial can then be evaluated with n-shared multi-
plications as in the Rivain-Prouff countermeasure. The authors of [CGP+12] describe two techniques for
optimizing the evaluation of S(x) by minimizing the number of non-linear multiplications: the cyclotomic
method and the parity-split method; the later method is asymptotically faster and requires O(2k/2) multipli-
cations. Therefore the Carlet et al. countermeasure with n shares has time complexity O(2k/2 · n2), where
n ≥ 2t+ 1 to ensure resistance against t-th order attacks.

Extending the randomized table countermeasure. Our new countermeasure is completely different
from the Rivain-Prouff countermeasure and its extension by Carlet et al.. Namely it is essentially based on
table recomputations and does not use multiplications over F2k . To illustrate our technique we start with
the classical randomized table countermeasure, secure against first order attacks only, as first suggested in
[CJRR99]. The Sbox table S(u) with k-bit input is first randomized in RAM by letting

T (u) = S(u⊕ r)⊕ s

for all u ∈ {0, 1}k, where r ∈ {0, 1}k is the input mask and s ∈ {0, 1}k is the output mask.1 To evaluate S(x)
from the masked value x′ = x⊕ r, it suffices to compute y′ = T (x′), as we get y′ = T (x′) = S(x′ ⊕ r)⊕ s =
S(x) ⊕ s; this shows that y′ is indeed a masked value for S(x). In other words the randomized table
countermeasure consists in first re-computing in RAM a temporary table with inputs shifted by r and with
masked outputs, so that later it can be evaluated on a masked value x′ = x⊕ r to obtain a masked output.

A natural generalization at any order n would be as follows: given as input x = x1 ⊕ · · · ⊕ xn we would
start with a randomized table with inputs shifted by x1 only, and with n− 1 output masks; then we would
incrementally shift the full table by x2 and so on until xn−1, at which point the table could be evaluated at
xn. More precisely one would initially define the randomized table

T (u) = S(u⊕ x1)⊕ s2 ⊕ · · · ⊕ sn

where s2, . . . , sn are the output masks, and then progressively shift the randomized table by letting T (u)←
T (u⊕ xi) for all u, iteratively from x2 until xn−1. Eventually the table would have all its inputs shifted by
x1 ⊕ · · · ⊕ xn−1, so as previously one could evaluate y′ = T (xn) and obtain S(x) masked by s2, . . . , sn.

What we have described above is essentially the Schramm and Paar countermeasure [SP06]. However
as shown in [CPR07] this is insecure. Namely consider the table T (u) after the last shift by xn−1; at this
point we have T (u) = S(u ⊕ x1 ⊕ · · · ⊕ xn−1) ⊕ s2 ⊕ · · · ⊕ sn for all u. Now assume that we can probe
T (0) and T (1); we can then compute T (0) ⊕ T (1) = S(x1 ⊕ · · · ⊕ xn−1) ⊕ S(1 ⊕ x1 ⊕ · · · ⊕ xn−1), which
only depends on x1 ⊕ · · · ⊕ xn−1; therefore it suffices to additionally probe xn to leak information about
x = x1⊕· · ·⊕xn−1⊕xn; this gives an attack of order 3 only for any value of n; therefore the countermeasure
can only be secure against second-order attacks.

The main issue with the previous countermeasure is that the same masks s2, . . . , sn were used to mask
all the inputs of S(u), so one can exclusive-or any two lines of the randomized table and remove all the

1One can also take s = r. For simplicity we first assume that the Sbox has both k-bit input and k-bit output.

output masks. A natural fix is to use different masks for every S(u), so one would write initially:

T (u) = S(u⊕ x1)⊕ su,2 ⊕ · · · ⊕ su,n

for all u ∈ {0, 1}k, and as previously one would iteratively shift the table by x2, . . . , xn−1, and also the masks
su,i separately for each i. The previous attack is thwarted because the lines of S(u) are now masked with
different set of masks. Eventually one would read T (xn), which would give S(x) masked by sxn,2, . . . , sxn,n.

Our new Countermeasure. Our new countermeasure is based on using independent masks as above,
with additionally a refresh of the masks between every successive shifts of the input. Since the above output
masks su,j are now different for all lines u of the table, we actually have a set of n randomized tables, as
opposed to a single randomized table in the original Schramm and Paar countermeasure. Perhaps more
conveniently one can view every line u of our randomized table as a n-dimensional vector of elements in
{0, 1}k, and write for all inputs u ∈ {0, 1}k:

T (u) = (su,1, su,2, . . . , su,n)

where initially each vector T (u) is a n-boolean sharing of the value S(u ⊕ x1). The vectors T (u) of our
randomized table are then progressively shifted for all u ∈ {0, 1}k, first by x2 and so on until xn−1, as in the
original Schramm and Paar countermeasure. Eventually the evaluation of T (xn) gives a vector of n output
shares that corresponds to S(x).

To refresh the masks between successive shifts we can generate a random n-sharing of 0, that is
a1, . . . , an ∈ {0, 1}k such that a1 ⊕ · · · ⊕ an = 0 and we xor the vector T (u) with (a1, . . . , an), independently
for every u. More concretely one can use the RefreshMasks procedure from [RP10], which consists given
y = y1 ⊕ y2 ⊕ · · · ⊕ yn in xoring both y1 and yi with tmp← {0, 1}k, iteratively from i = 2 to n. In summary
our new countermeasure is essentially the Schramm and Paar countermeasure with independent output
masks for every line of the SBOX table, and with mask refreshing after every shift of the table; we provide a
full description in Section 3.1.2

We show that our new countermeasure is secure against any attack of order t in the ISW model, with at
least n = 2t+ 1 shares. The proof works as follows. Assume that there are at most n− 3 probes; then it
must be the case that at least one of the n− 2 shifts of the table by xi and subsequent mask refreshings are
not probed at all. Since the corresponding mask refreshings are not probed, we can perfectly simulate any
subset of n− 1 shares at the output of those mask refreshings. Therefore we can perfectly simulate all the
internal variables up to the xi−1 shift by knowing x1, . . . , xi−1, and any subset of n− 1 shares after the xi
shift by knowing xi+1, . . . , xn. Since the knowledge of xi is not needed in the simulation, the full simulation
can be performed without knowing the original input x, which proves the security of our countermeasure.3

Note that it does not matter how the mask refreshing is performed; the only required property is that
after a (non-probed) mask refreshing any subset of n− 1 shares among the n shares have independent and
uniform distribution; such property is clearly satisfied by the RefreshMasks procedure from [RP10] recalled
above. We stress that in the argument above only the mask refreshings corresponding to one of the xi shift
are assumed to be non-probed (which must be the case because of the limited number of probes), and that
all the remaining mask refreshings can be freely probed by the adversary, and correctly simulated.

The previous argument only applies when the Sbox evaluation is considered in isolation. When combined
with other operations (in particular Xor gates), we must actually apply the same technique (with the
I subset) as in [ISW03], and we obtain the same bound n ≥ 2t + 1 for the number of shares, as in the
Rivain-Prouff countermeasure (see [CPRR13]).

2The mask refreshing is necessary to prevent a different attack. Assume that we probe the first component of T (0) for the
initial configuration of the table T (u), and we again probe the first component of T (0) when the table T (u) has eventually been
shifted by x2 ⊕ · · · ⊕ xn−1. If x2 ⊕ · · · ⊕ xn−1 = 0 then without mask refreshing those two probed values must be the same; this
leaks information about x2 ⊕ · · · ⊕ xn−1, and therefore it suffices to additionally probe x1 and xn−1 to have an attack of order 4
for any n.

3The previous argument could be extended to the optimal number of probes n − 1 by considering the initial sharing of
S(u⊕ x1) and by adding a final mask refreshing after the evaluation of T (xn), as actually done in Section 3.1.

Asymptotic complexities. With respect to the number n of shares, our new countermeasure has the
same time complexity O(n2) as the Rivain-Prouff and Carlet et al. countermeasures. However for a k-bit
input table, our basic countermeasure has complexity O(2k · n2) whereas the Carlet et al. countermeasure
has complexity O(2k/2 · n2), which is better for large k.

In Section 3.3 we describe a variant of our countermeasure for processors with large register size, with
the same time complexity O(2k/2 · n2) as the Carlet et al. countermeasure, using a similar approach as in
[RDP08]. Our variant consists in packing multiple Sbox outputs into a single register, and performing the
table recomputations at the register level first. For example for DES we can pack 8 output 4-bit nibbles
into a single 32-bit register; in that case the running time is divided by a factor 8. We stress that our
variant does not consist in putting multiple shares of the same variable into a single register, as reading such
register would reveal many shares at once, and thereby decrease the number of probes t required to break
the countermeasure.

Note that our countermeasure has memory complexity O(n), instead of O(n2) for the Rivain-Prouff
countermeasure as described in [RP10]. However we show in Appendix C that the memory complexity of
the Rivain-Prouff countermeasure can be reduced to O(n), simply by computing the variables in a different
order; this extends to the Carlet et al. countermeasure. We summarize in Table 1 the time and memory
complexities of the two countermeasures.

Countermeasure Time complexity Memory complexity

Carlet et al. [CGP+12] O(2k/2 · n2) O(2k/2 · n)

Our countermeasure O(2k · n2) O(2k · n)

Our countermeasure (large register) O(2k/2 · n2) O(2k/2 · n)

Table 1. Time and memory complexities, for a k-bit input table masked with n shares and secure against any attack at order t,
with 2t + 1 ≤ n. The memory complexity for large register size is expressed in number of registers.

Protecting a full Block-Cipher. We show how to integrate our countermeasure into the protection of a
full block-cipher against t-th order attacks. We consider two models of security. In the restricted model, the
adversary always probes the same t intermediate variables for different executions of the block-cipher. In the
full model the adversary can change the position of its probes adaptively between successive executions; this
is essentially the ISW model for stateful circuits.

The restricted model is relevant in practice because in a t-th order DPA attack, the statistical analysis is
performed on a fixed set of t intermediate variables for all executions. In both models the key is initially
provided in shared form as input, with n shares. In the full model it is necessary to re-randomize the shares
of the key between executions, since otherwise the adversary could recover the key by moving its probes
between successive executions; obviously this re-randomization of shares must also be secure against a t-th
order attack.

We show that n ≥ 2t+ 1 is sufficient to achieve security against t-th order attacks in both models. In
particular, this improves the bound n ≥ 4t + 1 from [ISW03] for stateful circuits.4 We get an improved
bound because for every execution we use both an initial re-randomization of the key shares (before they are
used to evaluate the block-cipher) and a final re-randomization of the key shares (before they are given as
input to the next execution), whereas in [ISW03] only a final re-randomization was used. With the same
technique we can obtain the same improved bound in the full model for the Rivain-Prouff countermeasure
and its extension by Carlet et al..

Note that in the full model the bound n ≥ 2t+ 1 is actually optimal. Namely as noted in [ISW03] the
adversary can probe t of the key shares at the end of one execution and then another t of the key shares at
the beginning of the next execution, hence a total of 2t key shares of the same n-sharing of the secret-key.
Hence n ≥ 2t+ 1 shares are necessary.

4In [ISW03] the bounds are n ≥ 2t + 1 for stateless circuits and n ≥ 4t + 1 for stateful circuits.

Practical Implementation. Finally we have performed a practical implementation of our new coun-
termeasure for both AES and DES, using a 32-bit architecture so that we could apply our large register
variant. For comparison we have also implemented the Rivain-Prouff countermeasure for AES and the
Carlet et al. countermeasure for DES; for the latter we have used the technique from [RV13], in which
the evaluation of a DES Sbox requires only 7 non-linear multiplications. We summarize the result of our
practical implementations in Section 5. We obtain that in practice for AES our algorithm is less efficient
than Rivain-Prouff, which can take advantage of the special algebraic structure of the AES Sbox; however
for DES our algorithm performs slightly better. Our implementation is publicly available [Cor13].

2 Definitions

In this section we first recall the Ishai-Sahai-Wagner (ISW) framework [ISW03] for proving the resistance
of circuits against probing attacks. In [RP10] Rivain and Prouff describe an adaptation of the ISW model
for software implementations. We follow the same approach and describe two security models: a restricted
model in which the adversary always probes the same t intermediate variables (which is essentially the model
considered in [RP10]), and a full model in which the t probes can be changed adaptively between executions
(which is essentially the ISW model for stateful circuits).

2.1 The Ishai-Sahai-Wagner Framework

Privacy for Stateless Circuits. A stateless circuit over F2 is a directed acyclic graph whose sources are
labeled with the input variables, sinks are labeled with output variables, and internal vertices stand for
function gates. A stateless circuit can be randomized, if it additionally contains random gates; every such
gate has no input, and its only output at each invocation of the circuit is a uniform random bit.

A t-limited adversary can probe up to t wires in the circuit, and has unlimited computational power. A
stateless circuit C is called (perfectly) secure against such adversary, if the distribution of the probes can
be efficiently and perfectly simulated, without access to the internal wires of C. For stateless circuits one
assumes that the inputs and outputs of the circuit must remain private. For example in a block-cipher the
input key must remain private. To prevent the adversary for learning the inputs and outputs one uses an
input encoder I and an output decoder O, whose internal wires cannot be probed. Additionally, the inputs of
I and the outputs of O are also assumed to be protected against probing. However, the outputs of I and the
inputs to O can be probed. Finally the t-private stateless transformer (T, I, O) maps a stateless circuit C
into a (randomized) stateless circuit C ′, such that C ′ is secure against the t-limited adversary, and O ◦C ′ ◦ I
has the same input-output functionality as C.

We illustrate this property with a simple circuit C computing a single xor gate z = x⊕ y. The input
encoder I would first generate independent uniform bits x2, . . . , xn, and let x1 = x⊕ x2 ⊕ · · · ⊕ xn. Note
that x1 is also a uniform random bit, and x = x1 ⊕ · · · ⊕ xn. If the adversary can only read t = n− 1 of the
n wires x1, . . . , xn, then the adversary’s behavior can be efficiently simulated by an adversary who cannot
probe any of these wires. Namely any t of these wires are independently and uniformly distributed random
bits; therefore the probed values can be simulated by picking t independent random bits. Note that this
does not reveal any information about x; however n = t + 1 wires are sufficient to recover x. The input
encoder I would proceed similarly with y = y1 ⊕ · · · ⊕ yn. The modified circuit C ′ would compute the wires
zi = xi ⊕ yi for all 1 ≤ i ≤ n. Eventually the output decoder O would compute z = z1 ⊕ · · · ⊕ zn. Since all
the shares xi, yi are manipulated separately, the modified circuit C ′ is clearly secure against an adversary
with at most t = n− 1 probes.

The ISW Scheme. In [ISW03] the author showed how to transform any boolean circuit C of size |C| into
a circuit of size O(|C| · t2) that is perfectly secure against a t-limited adversary. The approach in [ISW03]
consists in secret-sharing every variable x into n shares xi where n = 2t+ 1, that is x = x1 ⊕ x2 ⊕ · · · ⊕ xn
where x2, . . . , xn are uniformly and independently distributed bits. To protect any circuit it is sufficient to
show how to process a NOT gate and a AND gate.

Processing a NOT gate is straightforward since x̄ = x̄1 ⊕ x2 ⊕ · · · ⊕ xn; therefore it suffices to invert the
first share x1. Processing a AND gate z = xy is more complicated. One writes:

z = xy =

(
n

⊕
i=1

xi

)
·
(

n

⊕
i=1

yi

)
= ⊕

1≤i,j≤n
xiyj

and the cross-products xiyj are processed and recombined without leaking information about x and y. More
precisely for each 1 ≤ i < j ≤ n one generates random bits ri,j and computes rj,i = (ri,j ⊕ xiyj)⊕ xjyi; the
n shares zi of z = xy are then computed as zi = xiyi ⊕⊕j 6=i ri,j . Since there are n2 such cross-products,
every AND gate of the circuit is expanded to O(n2) = O(t2) new gates in the circuit. The authors prove
the security of their construction against a t-limited adversary by showing that any set of t probes can be
perfectly simulated without knowing the internal wires of the circuit, for n ≥ 2t+ 1.

Extension to Stateful Circuits. The ISW model and construction can be extended to stateful circuits,
that is a circuit containing memory cells. In the stateful model the inputs and outputs are known to the
attacker and one does not use the input encoder I and output decoder O. For a block-cipher the secret
key sk would be originally incorporated in a shared form ski inside the memory cells of the circuit; the key
shares ski would be re-randomized after each invocation of the circuit. The authors show that for stateful
circuits n ≥ 4t+ 1 shares are sufficient for security against a t-limited adversary; we refer to [ISW03] for
more details.

2.2 Security Model for Software Implementations

In [RP10] Rivain and Prouff describe an adaptation of the ISW model for software implementations of
encryption algorithms. They consider a randomized encryption algorithm E taking as input a plaintext m
and a randomly shared secret-key sk and outputting a ciphertext c, with additional access to a random
number generator. More precisely the secret-key sk is assumed to be split into n shares sk1, . . . , skn such
that sk = sk1 ⊕ · · · ⊕ skn and any (n− 1)-uple of ski’s is uniformly and independently distributed. Instead
of considering the internal wires of a circuit, they consider the intermediate variables of the software
implementation. This approach seems well suited for proving the security of our countermeasure; in principle
one could write our countermeasure with randomized table as a stateful circuit and work in the ISW model
for stateful circuits, but that would be less convenient.

In the following we describe two different models of security. In the restricted model the adversary
provides a message m as input and receives c = Esk(m) as output. The adversary can run Esk several times,
but she always obtain the same set of t intermediate variables that she can freely choose before the first
execution. In the full model, the adversary can adaptively change the set of t intermediate variables between
executions. In both models the shares ski of the secret-key sk are initially incorporated in the memory
cells of the block-cipher implementation. We say that a randomized encryption algorithm is secure against
t-th order attack (in the restricted or full model) if the distribution of any t intermediate variables can be
perfectly simulated without the knowledge of the secret-key sk. This implies that anything an adversary A
can do from the knowledge of t intermediate variables, another adversary A′ can do the same without the
knowledge of those t intermediate variables. Note that since A initially provides the message m and receives
the ciphertext c, we can consider that both m and c are public and given to the simulator.

Note that in the full model it is necessary to re-randomize in memory the shares ski of the key, since
otherwise the adversary could recover sk by moving its probes between successive executions; obviously this
re-randomization of shares must also be secure against a t-th order attack.

3 Our New Algorithm

3.1 Description

In this section we describe our new algorithm for computing y = S(x) where

S : {0, 1}k → {0, 1}k′

is a look-up table with k-bit input and k′-bit output. Our new algorithm takes as input x1, . . . , xn such
that x = x1 ⊕ · · · ⊕ xn and must output y1, . . . , yn such that y = S(x) = y1 ⊕ · · · ⊕ yn, without leaking
information about x. Our algorithm uses two temporary tables T and T ′ in RAM; both have k-bit input
and a vector of n elements of k′-bit as output, namely

T, T ′ : {0, 1}k → ({0, 1}k′)n

Given a vector v = (v1, . . . , vn) of n elements, we write ⊕(v) = v1 ⊕ · · · ⊕ vn. We denote by T (u)[j] and
T ′(u)[j] the j-th component of the vectors T (u) and T ′(u) respectively, for 1 ≤ j ≤ n. In practice the two
tables can be implemented as 2-dimensional arrays of elements in {0, 1}k′ . We use the same RefreshMasks
procedure as in [RP10].

Algorithm 1 Masked computation of y = S(x)
Input: x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn

Output: y1, . . . , yn such that y = S(x) = y1 ⊕ · · · ⊕ yn
1: for all u ∈ {0, 1}k do

2: T (u)←
(
S(u), 0, . . . , 0) ∈ ({0, 1}k

′
)n . ⊕

(
T (u)

)
= S(u)

3: end for
4: for i = 1 to n− 1 do
5: for all u ∈ {0, 1}k do
6: for j = 1 to n do T ′(u)[j]← T (u⊕ xi)[j] . T ′(u)← T (u⊕ xi)
7: end for
8: for all u ∈ {0, 1}k do
9: T (u)← RefreshMasks

(
T ′(u)

)
. ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xi)

10: end for
11: end for . ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xn−1) for all u ∈ {0, 1}k.

12: (y1, . . . , yn)← RefreshMasks
(
T (xn)

)
. ⊕

(
T (xn)

)
= S(x)

13: return y1, . . . , yn

Algorithm 2 RefreshMasks
Input: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
Output: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
1: for i = 2 to n do
2: tmp← {0, 1}k

′

3: z1 ← z1 ⊕ tmp
4: zi ← zi ⊕ tmp
5: end for
6: return z1, . . . , zn

It is easy to verify the correctness of Algorithm 1. We proceed by induction. Assume that at Line 4 for
index i we have for all inputs u ∈ {0, 1}k:

⊕
(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xi−1) (2)

The assumption clearly holds for i = 0, since initially we have ⊕
(
T (u)

)
= S(u) for all inputs u ∈ {0, 1}k.

Assuming that (2) holds for index i at Line 4, after the shifts performed at Line 6 we have for all inputs
u ∈ {0, 1}k,

⊕
(
T ′(u)

)
= ⊕

(
T (u⊕ xi)

)
= S

(
(u⊕ xi)⊕ x1 ⊕ · · · ⊕ xi−1

)
= S(u⊕ x1 ⊕ · · · ⊕ xi)

and therefore the assumption holds at Step i+ 1. At the end of the loop we have therefore

⊕
(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xn−1)

for all u ∈ {0, 1}k, and then ⊕
(
T (xn)

)
= S(xn ⊕ x1 ⊕ · · · ⊕ xn−1) = S(x) which gives y1 ⊕ · · · ⊕ yn = S(x)

as required. This proves the correctness of Algorithm 1.
Note that a NAND gate can be implemented as a 2-bit input, 1-bit output look-up table; therefore

Algorithm 1 can be used to protect any circuit, with the same complexity O(n2) as the ISW construction.

3.2 Security Proof

The following Lemma proves the security of our countermeasure against t-th order attacks, for any t such
that 2t+ 1 ≤ n. Given a subset I ⊂ [1, n] of indices we denote x|I := (xi)i∈I .

Lemma 1. Let (xi)1≤i≤n be the input shares of Algorithm 1 and let t be such that 2t < n. For any set of t
intermediate variables, there exists a subset I ⊂ [1, n] of indices such that |I| ≤ 2t < n and the distribution
of those t variables can be perfectly simulated from the shares x|I . The output shares y|I can also be perfectly
simulated from x|I .

Proof. Given a set of t intermediate variables v1, . . . , vt probed by the adversary, we construct a subset
I ⊂ [1, n] of indices such that the distribution of those t variables can be perfectly simulated from x|I . We
call Part i the computation performed within the main for loop for index i for 1 ≤ i ≤ n− 1, that is from
Line 5 to Line 10 of Algorithm 1; similarly we call Part n the computation performed at Line 12. We do not
consider the intermediate variables from Line 2, as they can be perfectly simulated without the knowledge of
x.

The proof intuition is as follows. Every intermediate variable vh is identified by its “line” index i
corresponding to the Part in which it appears, with 1 ≤ i ≤ n, and by its “column” index j corresponding
to the j-th component of the vector in which it appears; for any such intermediate variable vh both indices i
and j are added to the subset I (except for xi and the tmp variables within RefreshMasks for which only
i is added). The crucial observation is the following: if i /∈ I, then no intermediate variable was probed
within Part i of Algorithm 1; in particular the tmp variables within the corresponding RefreshMasks were not
probed. Therefore we can perfectly simulate the outputs of the RefreshMasks function which have “column”
index j ∈ I, by generating uniform and independent elements in {0, 1}k′ , as long as |I| < n. This means
that for i /∈ I we can perfectly simulate all variables T (u)[j] for j ∈ I in Line 9. Considering now Part i
for which i ∈ I, since we know xi we can still perfectly simulate all intermediate variables with “column”
index j ∈ I (including also the tmp variables within RefreshMasks), which includes by definition of I all the
intermediates variables vh. Therefore all intermediate variables vh can be perfectly simulated as long as
|I| < n, which gives the condition 2t < n.

Formally the procedure for constructing the set I is as follows:

1. We start with I = ∅.
2. For any intermediate variable vh:

(a) If vh = xi or vh = u⊕ xi at Line 6, then add i to I.
(b) If vh = T (u⊕ xi)[j] or vh = T ′(u)[j] at Line 6 in Part i, then add both i and j to I.
(c) If vh = T ′(u)[j] or vh = T (u)[j] at Line 9 in Part i, then add both i and j to I.
(d) If vh = tmp for any tmp within RefreshMasks in Part i (either at Line 9 or 12), then add i to I.
(e) If vh = xn at Line 12, then add n to I.
(f) If vh = T (xn)[j] or vh = yj at Line 12, then add both n and j to I.

This terminates the description of the procedure for constructing the set I. Since any intermediate variable
vh adds at most two indices in I, we must have |I| ≤ 2t < n.

We now show how to complete a perfect simulation of all intermediate variables vh using only the values
x|I . We proceed by induction. Assume that at the beginning of Part i we can perfectly simulate all variables

T (u)[j] for all j ∈ J and all u ∈ {0, 1}k. This holds for i = 1 since initially we have T (u) = (S(u), 0, . . . , 0)
which does not depend on x.

We distinguish two cases. If i /∈ I then no tmp variable within the RefreshMasks in Part i has been
probed. Therefore we can perfectly simulate all intermediate variables T (u)[j] for j ∈ I at the output of
RefreshMasks at Line 9, or similarly all yj for j ∈ I at the output of RefreshMasks at Line 12 when i = n,
as long as |I| < n. Formally this can be proven as follows. Let j∗ be such that j∗ /∈ I. Since the internal
variables of the RefreshMasks are not probed, we can redefine RefreshMasks where the randoms tmp are
accumulated inside zj∗ instead of z1. Since j∗ /∈ I we have that zj∗ is never used in the computation of any
variable vh, and therefore every variables zj for j ∈ I is masked by a random tmp which is used only once.

Therefore at the output of RefreshMasks the variables T (u)[j] for j ∈ I can be perfectly simulated for all
u ∈ {0, 1}k, simply by generating uniform and independent values.

If i ∈ I then knowing xi we can perfectly simulate all intermediate variables with column index j ∈ I
in Part i. Namely our induction hypothesis states that at the beginning of Part i the variables T (u)[j] for
all j ∈ J can already be perfectly simulated. Knowing xi we can therefore propagate the simulation for all
variables with column index j and perfectly simulate T (u⊕ xi)[j], T ′(u)[j] and the resulting T (u)[j] at Line
9, and similarly the variables yj at Line 12 if i = n; in particular the tmp variables within RefreshMasks are
simulated exactly as in the RefreshMasks procedure.

Since in both cases we can perfectly simulate all intermediate variables T (u)[j] for j ∈ I at the end of
Part i, the induction hypothesis holds for i+ 1; therefore it holds for all 1 ≤ i ≤ n. From the reasoning above
we can therefore simulate all intermediate variables in Part i with column index j such that i, j ∈ I; by
definition of I this includes all intermediate variables vh, and all output shares y|I ; this proves Lemma 1. ut

3.3 A Variant for Processors with large Register

With respect to the number n of shares, our new countermeasure has the same time complexity O(n2) as
the Rivain-Prouff and Carlet et al. countermeasures. However for a k-bit input table, our algorithm has
complexity O(2k · n2) whereas the Carlet et al. countermeasure has complexity O(2k/2 · n2) only.

In this section we describe a variant of our countermeasure with the same complexity as Carlet et al.,
but for processors with large enough register size ω bits, using a similar approach as in [RDP08, Section 3.3].
We assume that a read/write operation on such register takes unit time. In this variant the k′-bit outputs of
the Sbox are first packed into words of ω = ` · k′ bits, where ` is assumed to be a power of two. For example,
for a DES Sbox with k = 6 input bits and k′ = 4 output bits, on a ω = 32 bits architecture we can pack
` = 8 output 4-bit nibbles into a 32-bit word.

Formally, starting from the original Sbox S : {0, 1}k → {0, 1}k′ we define a new Sbox S′ with k1-bit
input and ω = ` · k′ bits output

S′(a) = S(a ‖ 0k2) ‖ · · · ‖ S(a ‖ 1k2)

where k = k1 + k2 and k2 = log2 `. To compute S(x) for x ∈ {0, 1}k, we proceed in two steps:

1. Write x = a‖b for a ∈ {0, 1}k1 and b ∈ {0, 1}k2 , and compute z = S′(a) = S(a‖0k2)‖ · · · ‖S(a‖1k2)
2. Viewing z as a k2-bit input, k′-bit output table, compute y = S(x) = z(b).

We show in Appendix A how to adapt our countermeasure from Algorithm 1 to compute y = S(x) in the
two-step process above, taking as input the shares xi. Since the new table S′ has size 2k/` elements instead
of 2k, the complexity of the first step becomes O(2k/` · n2). Similarly the table at the second step contains `
elements, which gives a complexity O(` · n2). Therefore the total complexity of our variant countermeasure
is O((2k/`+ `) · n2). If we have large enough register size ω so that we can take ` = ω/k′ = 2k/2, then the
complexity of our variant countermeasure becomes O(2k/2 · n2), the same complexity as the Carlet et al.
countermeasure.5,6

4 Higher Order Masking of a Full Block-Cipher

In this section we show how to integrate our countermeasure into a full block-cipher. We consider a block-
cipher with the following operations: Xor operation z = x⊕ y, linear (or affine) transform y = f(x), and

5Since the Carlet et al. countermeasure is based on computing in the field F2k , it is unclear how the the Carlet et al.
countermeasure could benefit from larger register sizes; so it seems that its complexity remains O(2k/2 ·n2) even for large register
size.

6Note that for DES with 32-bit registers we can take the optimum ` = 26/2 = 8. However for AES the optimum ` = 28/2 = 16
would require 128-bit registers.

look-up table y = S(x). This covers both AES and DES block-ciphers. We show how to apply high-order
masking to these operations, in order to protect a full block-cipher against t-th order attacks.7

Xor operation. We consider a Xor operation z = x⊕ y. Taking as input the shares xi and yi such that
x = x1 ⊕ · · · ⊕ xn and y = y1 ⊕ · · · ⊕ yn, it suffices to compute the shares zi = xi ⊕ yi.

Linear operation. We consider a linear operation y = f(x). Taking as input the shares xi such that
x = x1 ⊕ · · · ⊕ xn, it suffices to compute the shares yi = f(xi) separately.

Table Look-up. A table look-up y = S(x) is computed using our previous Algorithm 1.

Input Encoding. Given x as input, we first encode x as x1 = x and xi = 0 for 2 ≤ i ≤ n. Secondly we let
(x1, . . . , xn)← RefreshMasks(x1, . . . , xn).

Output Decoding. Given y1, . . . , yn as input, we compute y = y1 ⊕ · · · ⊕ yn using Algorithm 3 below.

Algorithm 3 Shares recombination
Input: y1, . . . , yn
Output: y such that y = y1 ⊕ · · · ⊕ yn
1: for i = 1 to n do (y1, . . . , yn)← RefreshMasks(y1, . . . , yn)
2: c← y1
3: for i = 2 to n do c← c⊕ yi
4: return c

Key Shares Refreshing. As mentioned in Section 2.2 we must re-randomize the key shares between
successive executions of the block-cipher in order to achieve security in the full model. Using Algorithm
4 below we perform both an initial Key Shares Refreshing (before the shares ski are used to evaluate the
block-cipher), and a final Key Shares Refreshing (before the key shares ski are stored for the next execution).8

Algorithm 4 Key Shares Refreshing
Input: sk1, . . . , skn such that sk = sk1 ⊕ · · · ⊕ skn
Output: sk1, . . . , skn such that sk = sk1 ⊕ · · · ⊕ skn
1: for i = 1 to n do (sk1, . . . , skn)← RefreshMasks(sk1, . . . , skn)
2: return sk1, . . . , skn

This terminates the description of our randomized encryption algorithm. The following theorem proves the
security of the randomized encryption scheme defined above in the full model, under the condition n ≥ 2t+ 1;
we give the proof in Appendix B. This improves the bound n ≥ 4t+ 1 from [ISW03] for stateful circuits. We
stress that any set of t intermediate variables can be probed by the adversary, including variables in the
input encoding, output decoding, and key shares refreshing; that is, no operation is assumed to be leak-free.

Theorem 1. The randomized encryption scheme defined above achieves t-th order security in the full model
for n ≥ 2t+ 1.

Remark 1. The input encoding operation need not be randomized by RefreshMasks; this is because the input
x is public and given to the simulator, who can therefore perfectly simulate the initial shares x|I for any
subset I ⊂ [1, n]. Moreover in the restricted model the key shares refreshing is not necessary. In practice we
can keep both operations as their time complexity is only O(n) and O(n2) respectively.

7Xor is a linear operation, so one could consider the linear operation y = f(x) only, but it seems more convenient to consider
the Xor operation separately.

8Note that for both algorithms 3 and 4 the RefreshMasks procedure must be applied with the tmp randoms generated with
the appropriate bit-size (instead of k′).

Remark 2. We stress that the secret key sk must be initially provided with randomized shares, since sk is
secret and not given to the simulator; in other words it would be insecure for the randomized block-cipher
to receive sk as input and perform the initial input encoding on sk by himself.

Remark 3. In the output decoding operation we perform a series of n mask refreshing before computing y.
This is to enable a correct simulation of the intermediate variables c at Line 3 in case they are probed by
the adversary.

5 Practical Implementation

We have performed a practical implementation of our new countermeasure for both AES and DES, using a
32-bit architecture so that we could apply our large register variant. More precisely we could pack ` = 4
output bytes for AES, and ` = 8 output 4-bit nibbles for DES. For comparison we have also implemented
the Rivain-Prouff countermeasure [RP10] for AES and the Carlet et al. countermeasure [CGP+12] for DES;
for the latter we have used the technique from [RV13], in which the evaluation of a DES Sbox requires only
7 non-linear multiplications. The performances of our implementations are summarized in Table 2. We use
the bound n = 2t+ 1 for the full model of security (which implies security in the restricted model).

t n Time (ms) Penalty

AES, unmasked 0.0018 1

AES, Rivain-Prouff 1 3 0.092 50

AES, our countermeasure 1 3 0.80 439

AES, Rivain-Prouff 2 5 0.18 96

AES, our countermeasure 2 5 2.2 1205

AES, Rivain-Prouff 3 7 0.31 171

AES, our countermeasure 3 7 4.4 2411

AES, Rivain-Prouff 4 9 0.51 276

AES, our countermeasure 4 9 7.3 4003

t n Time (ms) Penalty

DES, unmasked 0.010 1

DES, Carlet et al. 1 3 0.47 47

DES, our countermeasure 1 3 0.31 31

DES, Carlet et al. 2 5 0.78 79

DES, our countermeasure 2 5 0.59 59

DES, Carlet et al. 3 7 1.3 129

DES, our countermeasure 3 7 0.90 91

DES, Carlet et al. 4 9 1.9 189

DES, our countermeasure 4 9 1.4 142

Table 2. Comparison of secure AES and DES implementations, in C on a MacBook Air running on a 1.86 GHz Intel processor.

We obtain that in practice for AES our algorithm is an order of magnitude less efficient than Rivain-Prouff,
which can take advantage of the special algebraic structure of the AES Sbox; however for DES our algorithm
performs slightly better than the Carlet et al. countermeasure. Note that this holds for a 32-bit architecture;
on a 8-bit architecture the comparison could be less favorable. The source code of our implementations is
publicly available [Cor13].

One could think that because of the large penalty factors the countermeasures above are unpractical.
However in some applications the block-cipher evaluation can be only a small fraction of the full protocol
(for example in a challenge-response authentication protocol), and in that case a penalty factor of say 100
for a single block-cipher evaluation may be acceptable.

References

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu Rivain. Higher-order masking
schemes for s-boxes. In FSE, pages 366–384, 2012.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to counteract
power-analysis attacks. In CRYPTO, 1999.

[Cor13] Jean-Sebastien Coron. https://github.com/coron/htable/, 2013.
[CPR07] Jean-Sebastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel cryptanalysis of a higher order masking

scheme. In CHES, pages 28–44, 2007.
[CPRR13] Jean-Sebastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Higher-order side channel security

and mask refreshing. In FSE, 2013.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In CHES, pages 13–28, 2002.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart card implementation resistant to power
analysis attacks. In ACNS, pages 239–252, 2006.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing attacks. In CRYPTO,
pages 463–481, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO, pages 388–397, 1999.

[Mes00] Thomas S. Messerges. Using second-order power analysis to attack dpa resistant software. In CHES, pages 238–251,
2000.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal security proof. In EURO-
CRYPT, pages 142–159, 2013.

[RDP08] Matthieu Rivain, Emmanuelle Dottax, and Emmanuel Prouff. Block ciphers implementations provably secure against
second order side channel analysis. In FSE, pages 127–143, 2008.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In CHES, pages 413–427,
2010.

[RV13] Arnab Roy and Srinivas Vivek. Analysis and improvement of the generic higher-order masking scheme of FSE 2012.
In CHES, pages 417–434, 2013.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[SP06] Kai Schramm and Christof Paar. Higher order masking of the AES. In CT-RSA, pages 208–225, 2006.

A A Variant for Processors with Large Registers

In this section we describe a variant of Algorithm 1 for processors with large register size ω bits. We assume
that a read/write operation on such register takes unit time. As previously the goal is to compute y = S(x)
where

S : {0, 1}k → {0, 1}k′

is a look-up table with k-bit input and k′-bit output.

Under the variant the k′-bit outputs of S are first packed into words of ω = ` · k′ bits, where ` is assumed
to be a power of two. Formally, we define a new Sbox S′ with k1-bit input and ω = ` · k′ bits output

S′(a) = S(a ‖ 0k2) ‖ · · · ‖ S(a ‖ 1k2)

for a ∈ {0, 1}k1 where k = k1 + k2 and k2 = log2 `. To compute S(x) for x ∈ {0, 1}k, we proceed in two steps:

1. Write x = a‖b for a ∈ {0, 1}k1 and b ∈ {0, 1}k2 , and compute z = S′(a) = S(a‖0k2)‖ · · · ‖S(a‖1k2)

2. Viewing z as a k2-bit input and k′-bit output table, compute y = S(x) = z(b).

We must show how to compute y = S(x) in the two steps above when the input x is shared with n
shares xi. In the first step we proceed as in Algorithm 1, except that the new table S′ has a k1-bit input
instead of a k-bit input, and ω = ` · k′-bit output instead of k′-bit output. Note that the table S′ contains
2k1 = 2k−k2 = 2k/` elements instead of 2k for the original S. Since we assume that a read/write operation on
a ω-bit register takes unit time, the complexity of the first step is now O(2k/` · n2). Note that S and S′ take
the same amount of memory in RAM; in the first step of our countermeasure we can achieve a speed-up by
a factor ` because we are moving ` blocks of k′ bits at a time inside registers of size ω = ` · k′ bits.

The second step requires a slight modification of Algorithm 1. Namely we must view the output z from
Step 1 as a look-up table with k2-bit input and k′-bit output. However this output z is now obtained in
shared form, namely we get shares z1, . . . , zn such that z = z1⊕ · · · ⊕ zn, whereas in Algorithm 1 the look-up
table S(x) is a public table. This is not a problem, as we can simply keep this table in shared form when
initializing the T (u) table at Line 2 of Algorithm 1. More precisely in the second step we can initialize the
table T (u) with:

T (u) = (z1(u), . . . , zn(u)) ∈ ({0, 1}k′)n

for all u ∈ {0, 1}k2 , and we still have ⊕
(
T (u)

)
= z(u) for all u as required. Since the second step uses a table

of size 2k2 = ` elements, its complexity is O(` · n2).

The full complexity of our variant countermeasure is therefore O((2k/`+ `) · n2). If we have large enough
register size ω so that we can take ` = ω/k′ = 2k/2, then the complexity of our variant countermeasure
becomes O(2k/2 · n2), the same complexity as the Carlet et al. countermeasure.9

The following Lemma shows that our variant countermeasure achieves the same level of security as
Algorithm 1; the proof is essentially the same as the proof of Lemma 1 and is therefore omitted.

Lemma 2. Let (xi)1≤i≤n be the input shares of the above countermeasure for large register size, and let t be
such that 2t < n. For any set of t intermediate variables, there exists a subset I ⊂ [1, n] of indices such that
|I| ≤ 2t < n and the distribution of those t variables can be perfectly simulated from the xi’s with i ∈ I. The
output shares y|I can also be perfectly simulated from x|I .

B Proof of Theorem 1

As mentioned in introduction, a nice property of the ISW framework is that the simulation technique easily
extends from a single gate to the full circuit: it suffices to maintain a global subset of indices I that is
iteratively constructed from the t probes as in a single gate. Therefore to prove Theorem 1 we proceed in
two steps: in the first step we explain how the subset I is constructed for each of the elementary operations
from Section 4; in the second step we show how to derive a proof of security for the full block-cipher, first in
the restricted model and then in the full model.

B.1 Security of Elementary Operations

For the Xor operation and the Linear operation, the construction of the subset I is straightforward.

Lemma 3. Let (xi)1≤i≤n and (yi)1≤i≤n be the input shares of the Xor operation. For any set of t intermediate
variables, there exists a subset I ⊂ [1, n] of indices such that |I| ≤ 2t and the distribution of those t variables
can be perfectly simulated from x|I and y|I . The output shares z|I can also be perfectly simulated from x|I
and y|I .

Proof. For any probed variable xi or yi or zi = xi ⊕ yi, we add i to I. We get |I| ≤ t. Any such variable can
be simulated by knowing the values x|I and y|I . ut

Lemma 4. Let (xi)1≤i≤n be the input shares of the Linear operation. For any set of t intermediate variables,
there exists a subset I ⊂ [1, n] of indices such that |I| ≤ 2t and the distribution of those t variables can be
perfectly simulated from x|I . The output shares y|I can also be perfectly simulated from x|I .

Proof. For any probed variable xi or yi = f(xi) or any intermediate variable in the computation of f(xi),
we add i to I. We get |I| ≤ t. Any such variable can be simulated by knowing the values x|I . ut

The look-up table operation is computed using Algorithm 1, and the construction of I is given in the
proof of Lemma 1.

For the Initial Encoding operation we don’t need to include any index i in I; namely the input x is
assumed to be public and given to the simulator.

Lemma 5. Let x be the public input of the Initial Encoding operation. For any set of t intermediate variables,
the distribution of those t variables can be perfectly simulated from x. All output shares xi can be perfectly
simulated.

Proof. The initial shares xi with x1 = x and xi = 0 for 2 ≤ i ≤ n can be computed from x. The variables
in RefreshMasks can then be perfectly simulated. As noted previously this initial RefreshMasks is actually
unnecessary. ut

9In principle the same procedure could be applied recursively, and the total complexity would become O(k · n2) instead of
O(2k/2 · n2) for large enough registers. However since the look-up table input size k is usually small (k ≤ 8) this is unlikely to
make a difference in practice.

In the Output Decoding operation of Algorithm 3 we first perform a series of n mask refreshing before
computing y. This is to enable a correct simulation of the intermediate variables c at Line 3 in case they
are probed by the adversary. Note that the output y is assumed to be public and given to the simulator.
Heuristically this series of n mask refreshing seems necessary; otherwise to correctly simulate the intermediate
variables c one would need to know all the shares yi, which does not seem possible in the simulation.

Lemma 6. Let (yi)1≤i≤n be the input shares of the Output Decoding operation. For any set of t intermediate
variables, there exists a subset I ⊂ [1, n] of indices such that |I| ≤ 2t and the distribution of those t variables
can be perfectly simulated from y|I and y = y1 ⊕ · · · ⊕ yn.

Proof. We first consider the series of n RefreshMasks. If any variable yj is probed inside any of the RefreshMasks,
we add j to I.

Moreover since t < n there must be at least one RefreshMasks that is not probed at all; let denote by
i∗ the index of this RefreshMasks. Since we know y = y1 ⊕ · · · ⊕ yn, we can therefore perfectly simulate all
the shares (yi)1≤i≤n after this i∗-th RefreshMasks. Therefore we can perfectly simulate all yi’s until the last
RefreshMasks, and all intermediate variables c for computing y.

In summary before the i∗ RefreshMasks knowing the input shares y|I we can perfectly simulate all
intermediate variables yj for j ∈ I, and after the i∗ RefreshMasks we can perfectly simulate all intermediate
variables. This proves Lemma 6. ut

Finally we show how to construct the subset I for the Key Shares Refreshing from Algorithm 4. The
following lemma is straightforward and will be used in the restricted model of security only.10

Lemma 7. Let (ski)1≤i≤n be the input shares of Algorithm 4. For any set of t intermediate variables, there
exists a subset I ⊂ [1, n] of indices such that |I| ≤ 2t and the distribution of those t variables can be perfectly
simulated from the values sk|I . The output shares sk′|I can be perfectly simulated from sk|I

Proof. If a variable skj in a RefreshMasks operation is probed, we add j to I. We get |I| ≤ t ≤ 2t, and we
can perfectly simulate those t intermediate variables from the input values sk|I , as well as the output shares
sk′|I . ut

B.2 Security of the full Block-Cipher in the Restricted Model

In this section we prove the security of the full block-cipher against t-th order attack in the restricted model,
using essentially the same reasoning as in [ISW03]. We first restrict ourselves to a single execution of the
randomized block-cipher.

For the full block-cipher we compute a global subset I ⊂ [1, n] of indices by examining each n-shared
operation in the randomized block-cipher. We have seen in the previous section that in each n-shared
operation a probe adds at most 2 indices in I. Since a total of t intermediate variables in the full block-cipher
can be probed by the adversary, the size of the set I will still be bounded by 2t. The simulation is then
performed as in the proof of Lemma 1, from the input of the randomized block-cipher to the output. The
input shares sk|I of the block-cipher can be perfectly simulated as long as |I| < n, by generating uniform
and independent values. Moreover we have shown in the previous lemmas that the output shares y|I of all
operations can always be simulated given the input shares with indices in I. Therefore we can maintain the
invariant that for each n-shared operation g, the shares of the inputs to g with indices in I are perfectly
simulated. Inductively the values of all t intermediate variables probed by the adversary can therefore be
perfectly simulated.

The previous reasoning is easily extended to multiple executions of the block-cipher in the restricted
model of security. We can see these multiple executions as a single execution in which the shares ski of the
secret-key are initially provided as input. Namely the shares ski used in one execution are applied the initial
and final Key Shares Refreshing procedures in this same execution and then used as input for the next

10As mentioned previously the Key Shares Refreshing operation is actually unnecessary in the restricted model.

execution. In the “unwound” execution the adversary can obtain up to t intermediate variables in each of
the concatenated sub-executions Q. Since in the restricted model these t intermediate variables are the same
in each sub-execution Q, we can keep the same subset I of indices for the “unwound” execution and the
simulation proof can proceed as before. This proves the security of our construction in the restricted model
of security, for n ≥ 2t+ 1.

B.3 Security in the Full Model, for n ≥ 4t + 1

For ease of exposition we first prove the security in the full model under the stronger bound n ≥ 4t+ 1. For
this we prove a different lemma for the Key Refreshing Operation; instead of considering the output shares
sk′|I as in Lemma 7 we prove a stronger property: we show that any subset J of at most 2t output shares
from Algorithm 4 can be perfectly simulated.

Lemma 8. Let (ski)1≤i≤n be the input shares of Algorithm 4, where n ≥ 4t+1. For any set of t intermediate
variables, there exists a subset I ⊂ [1, n] of indices such that |I| ≤ 2t and the distribution of those t variables
can be perfectly simulated from the values sk|I . Moreover for any subset J ⊂ [1, n] such that |J | ≤ 2t we can
perfectly simulate the output shares sk′|J .

Proof. The subset I is constructed as previously. If a variable skj in a RefreshMasks operation is probed,
we add j to I. We get |I| ≤ t ≤ 2t. Note that we use the weaker bound |I| ≤ 2t because when considering
the full block-cipher the subset I will be constructed from all n-shared operations, instead of only the Key
Shares Refreshing operation; this includes Algorithm 1 in which a single probe can add 2 indices in I, which
gives the bound |I| ≤ 2t.

Since t < n there exists at least one RefreshMasks operation that is not probed at all, corresponding to
index i∗. Since this i∗-th RefreshMasks operation is not probed at all, we can perfectly simulate any set of
n− 1 ≥ 4t shares as output of this i∗-th RefreshMasks. We can therefore simulate the shares corresponding
to the (at most) 2t indices in J , and also the shares corresponding to the (at most) 2t indices in I. Note
that the two subsets I and J are not necessarily disjoint; however the simulation requires |J ∪ I| < n; this
condition is satisfied since |J ∪ I| ≤ |J | + |I| ≤ 2t + 2t ≤ 4t < n. Note that the condition n ≥ 4t + 1 is
necessary for our simulation to work; if we only had n ≥ 2t+ 1 then we could not necessarily simulate the
shares from both J and I, as we could have |J ∪ I| = n and be unable to simulate the output shares without
knowing the secret-key sk. The previous simulation after the i∗-th RefreshMasks is then propagated to the
output of Algorithm 4.

In summary we can perfectly simulate any intermediate variable skj for j ∈ I, knowing the input shares
sk|I . By definition of I this covers all the probed intermediate variables. Moreover any subset J of 2t output
shares can be perfectly simulated. This proves the lemma. ut

We now turn to the proof of Theorem 1 under the stronger condition n ≥ 4t + 1. In the full model
of security the adversary can adaptively change the t probed intermediate variables between each of the
sub-executions Q. Therefore we obtain a different subset I of indices for each sub-execution Q. Assume
that we know the input shares skin|I for the set of indices I of a given sub-execution Q. We can therefore
perfectly simulate the t intermediate variables probed by the adversary in this sub-execution Q. Consider
now the next execution Q′, in which the simulation of the t intermediate variables requires the knowledge
of the input shares skin|I′ for a possibly different subset I ′. Recall that in each sub-execution Q the key
shares are applied the initial and final Key Share Refreshing procedures and then provided as input to
the next sub-execution Q′. We can now use the property shown in Lemma 8: any subset J of at most 2t
output variables skouti from the final Key Share Refreshing procedure of sub-execution Q can be perfectly
simulated. We can then “connect” the two executions as follows. Since |I ′| ≤ 2t we can take J = I ′, which
enables to perfectly simulate the output shares skout|J which are the same as the input shares skin|I′ of the

next sub-execution Q′. Therefore we can maintain the invariant that in each sub-execution Q with subset
I the shares skin|I as input to sub-execution Q are perfectly simulated. The simulation can then proceed
as before from one sub-execution to the next; inductively the values of all t intermediate variables probed

by the adversary can be perfectly simulated in each sub-execution. Note that the previous property from
Lemma 8 requires the stronger bound n ≥ 4t+ 1 instead of n ≥ 2t+ 1.

Note that under this stronger bound n ≥ 4t + 1 we did not need the initial Key Shares Refreshing
operation, which is actually unnecessary. However this initial Key Shares Refreshing operation will be
required to obtain the improved bound n ≥ 2t+ 1.

B.4 Security in the Full Model for n ≥ 2t + 1

We now prove a lemma specifically for the initial Key Shares Refreshing operation.

Lemma 9 (Initial Key Shares Refreshing). Let (ski)1≤i≤n be the input shares of Algorithm 4, where
n ≥ 2t+ 1. For any set of t intermediate variables, there exists subsets I, I2 ⊂ [1, n] of indices with |I| ≤ 2t
and |I2| ≤ t such that the distribution of those t variables can be perfectly simulated from the values sk|I2,
and the distribution of the output shares sk′|I can be perfectly simulated.

Proof. Since t < n there exists at least one RefreshMasks operation that is not probed at all, corresponding
to index i∗.

The subset I2 is constructed as follows. If a variable skj in a RefreshMasks operation of index i < i∗ is
probed, we add j to I2. We get |I2| ≤ t.

The subset I is constructed as follows. If a variable skj in a RefreshMasks operation of index i > i∗ is
probed, we add j to I. We get |I| ≤ t ≤ 2t.

Since the i∗-th RefreshMasks operation is not probed at all, we can perfectly simulate any set of n−1 ≥ 2t
shares as output of this i∗-th RefreshMasks. We can therefore perfectly simulate the shares corresponding to
the (at most) 2t indices in I. This simulation can be propagated to the output shares sk′|I of Algorithm 4.

In summary before the i∗-th RefreshMasks we can perfectly simulate any intermediate variable skj for
j ∈ I2, knowing the input shares sk|I2 . And after the i∗-th RefreshMasks we can perfectly simulate any
intermediate variable skj for j ∈ I. By definition of I2 and I this covers all the probed intermediate variables.
This proves the lemma. ut

Our second lemma concerns the final Key Shares Refreshing. As previously instead of considering the
output shares sk′|I for the subset I as in Lemma 7, we prove a stronger property, namely that the output

shares sk′|J can be perfectly simulated for any subset J ⊂ [1, n] such that |J | ≤ t.

Lemma 10 (Final Key Shares Refreshing). Let (ski)1≤i≤n be the input shares of Algorithm 4, where
n ≥ 2t + 1. For any set of t intermediate variables, there exists a subset I ⊂ [1, n] of indices such that
|I| ≤ 2t and the distribution of those t variables can be perfectly simulated from the values sk|I . Moreover
for any subset J ⊂ [1, n] such that |J | ≤ t we can perfectly simulate the output values sk′|J .

Proof. The proof is similar to the proof of Lemma 9. Since t < n there exists at least one RefreshMasks
operation that is not probed at all, corresponding to index i∗.

The subset I is constructed as follows. If a variable skj in a RefreshMasks operation of index i < i∗ is
probed, we add j to I. We get |I| ≤ t ≤ 2t.

We also construct a subset I3 as follows. If a variable skj in a RefreshMasks operation of index i > i∗ is
probed, we add j to I3. We get |I3| ≤ t

Since the i∗-th RefreshMasks operation is not probed at all, we can perfectly simulate any set of n−1 ≥ 2t
shares as output of this i∗-th RefreshMasks. We can therefore perfectly simulate the shares corresponding
to the (at most) t indices in I3, and the (at most) t indices in J . Note that the two subsets I3 and J
are not necessarily disjoint; however the simulation requires |J ∪ I3| < n; this condition is satisfied since
|J ∪ I3| ≤ |J |+ |I3| ≤ t+ t ≤ 2t < n. The previous simulation after the i∗-th RefreshMasks is then propagated
to the output of Algorithm 4.

In summary before the i∗-th RefreshMasks we can perfectly simulate any intermediate variable skj
for j ∈ I, knowing the input shares sk|I . And after the i∗-th RefreshMasks we can perfectly simulate any

intermediate variable skj for j ∈ I3. By definition of I3 and I this covers all the probed intermediate
variables. Moreover any subset J of at most t output variables sk′i can be perfectly simulated. This proves
the lemma. ut

We can now terminate the proof of Theorem 1, using essentially the same reasoning as in the previous
section.

In a given sub-execution Q the input key shares skini as provided as input to the initial Key Shares
Refreshing operation, which outputs the shares skmed

i which are used by the block-cipher operations. The
key shares skmed

i are then given as input to the final Key Shares Refreshing operation, which outputs the
shares skouti . These shares are then given as input to the next sub-execution Q′.

In the full model of security the adversary can adaptively change the t probed intermediate variables
between each of the sub-executions Q. Therefore we obtain a different subset I of indices for each sub-
execution Q. Moreover from Lemma 9 for each sub-execution Q we have a subset of indices I2 with |I2| ≤ t
such that the knowledge of input key shares skin|I2 is necessary for the simulation of the probed variables in

the initial Key Refreshing operation. Assume that we know the input shares skin|I2 ; from Lemma 9 one can

then perfectly simulate the output shares skmed
|I of this initial Key Refreshing Operation. These outputs

shares skmed
|I can then be used to perfectly simulate the probed variables in the main block-cipher operations.

Then from Lemma 10 knowing skmed
|I one can also perfectly simulate the probed variables in the final Key

Shares Refreshing operation. The output shares skouti are then provided as input to the next sub-execution
Q′. Since the simulation of this next sub-execution Q′ requires the knowledge of skin|I′2

, from Lemma 10 we

can again “connect” the two executions: it suffices to take J = I ′2 (which is possible since by Lemma 9 we
have |I ′2| ≤ t), which enables to perfectly simulate the shares skout|J which are then the same as the input

shares skin|I′2
, which are then perfectly simulated for the next sub-execution Q′. The simulation can then

proceed as before from one sub-execution to the next; inductively the values of all t intermediate variables
probed by the adversary can be perfectly simulated in each sub-execution. This terminates the proof of
Theorem 1.

C Secure Multiplication with Linear Memory Complexity

In this section we show that the SecMult algorithm from [RP10] can be computed with O(n) memory instead
of O(n2). We first recall the original SecMult algorithm from [RP10], and then describe our variant SecMult’
with O(n) memory complexity.

Algorithm 5 SecMult - masked multiplication over F2k

Input: shares a1, . . . , an such that a = a1 ⊕ · · · ⊕ an, and shares b1, . . . , bn such that b = b1 ⊕ · · · ⊕ bn
Output: shares ci such that c1 ⊕ · · · ⊕ cn = ab
1: for i = 1 to n do
2: for j = i + 1 to n do
3: ri,j ← F2k

4: rj,i ← (ri,j ⊕ aibj)⊕ ajbi
5: end for
6: end for
7: for i = 1 to n do
8: ci ← aibi
9: for j = 1 to n, j 6= i do ci ← ci ⊕ ri,j

10: end for
11: return c1, . . . , cn

Algorithm 6 SecMult’ - masked multiplication over F2k , linear memory
Input: shares a1, . . . , an such that a = a1 ⊕ · · · ⊕ an, and shares b1, . . . , bn such that b = b1 ⊕ · · · ⊕ bn
Output: shares ci such that c1 ⊕ · · · ⊕ cn = ab
1: for i = 1 to n do
2: ci ← aibi
3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do
6: s← F2k . s = ri,j
7: s′ ← (s⊕ aibj)⊕ ajbi . s′ = rj,i
8: ci ← ci ⊕ s
9: cj ← cj ⊕ s′

10: end for
11: end for
12: return c1, . . . , cn

